Total de citas tipo A: 337
Total de citas tipo B: 4
Lima-Rivera D, Anell-Mendoza MB, Rivera-Fernández A, Salinas-Castro A, Cerdán C, López-Lima D, Villain L (2024) Host status of plants associated to coffee shady agroecosystems to Meloidogyne paranaensis. Journal of Plant Disease and Protection, 131, pp 873-880. https://doi.org/10.1007/s41348-024-00882-5
Citado por:
TIPO A
- da Silva, A.A., dos Reis Fatobene, B.J., Alves, P.S. et al. Elucidating bioactive compounds and antioxidant enzymes in Coffea arabica for enhanced defense against Meloidogyne paranaensis. Eur J Plant Pathol (2024). https://doi.org/10.1007/s10658-024-02971-5
- Marques, E. R., Salgado, S. M. de L., Silva, A. A. da, Teixeira, L. P., & Fatobene, B. J. D. R. (2024). Diferencial vegetativo e produtivo de progênies de Coffea arabica em área infestada por Meloidogyne paranaensis e Meloidogyne exigua. REVISTA DELOS, 17(61), e2946. https://doi.org/10.55905/rdelosv17.n61-186
López-Lima D, Alarcón-Utrera D, Ordáz-Melendez JA, Villain Luc, Carrión G (2023) Metarhizium carneum formulations: A promising new biological control to be incorporated in the integrated management of Meloidogyne enterolobii on tomato plants. Plants 2023(12): 3431. https://doi.org/10.3390/plants12193431
Citado por:
TIPO A
- Shao Ke Meng, ChaoPeng Liang, Qun Zheng, ShiQi Zhu, Jian Wu, BoTong Wang, Yong Qing Wang, Zhixiang Zhang, DongMei Cheng (2025) Insecticidal effect and mechanism of Metarhizium anisopliae ZHKUJGZ1 against Solenopsis invicta (Hymenoptera: Formicidae), Pesticide Biochemistry and Physiology, Volume 209, 106350. https://doi.org/10.1016/j.pestbp.2025.106350
- Alves GU, Felipe CG, Denner RF, Mara RR, Leila GA. Waitea circinata: a novel biocontrol agent against Meloidogyne enterolobiion tomato plants. J Nematol. 2025 Mar 14;57(1):20250002. doi: 10.2478/jofnem-2025-0002. PMID: 40104689; PMCID: PMC11914925.
- Zane J. Grabau, Rebeca Sandoval-Ruiz, and Chang Liu (2024) Fumigation Using 1,3-Dichloropropene Manages Meloidogyne enterolobii in Sweetpotato More Effectively than Fluorinated Nematicides. Plant Diseases. https://doi.org/10.1094/PDIS-12-23-2726-RE
López-Lima D, Tejeda-Reyes MA, Rodríguez-Málaga RD, López-Bautista E, Salinas-Castro A, Illescas-Riquelme CP (2023) New hosts, distribution, and color trap preferences of the invasive thrips Scirtothrips dorsalis (Thysanoptera: Thripidae) in Mexico. Journal of Entomological Science 58(4): 400–411. DOI: 10.18474/JES23-11
Citado por:
TIPO A
- Satar S, Kalkan Ç. Türkiye’nin Çukurova Bölgesi Turunçgillerinde Yeni Zararlı Scirtothrips dorsalis Hood (Thysanoptera: Thripidae)’in Dağılımı ve Zararı. Çukurova J. Agric. Food. Sciences. December 2024;39(2):436-450.
Santiago-Hernández I, Acosta-Ramos M, Vargas-Hernández M, López- Lima D, Salinas-Castro A (2023) A new monitoring system for the coffee borer Hypothenemus hampei Ferrari, 1837 (Coleoptera: Curculionidae: Scolytinae) in México. Revista Chilena de Entomología 49(3): 547-555 https://doi.org/10.35249/rche.49.3.23.14
Citado por:
TIPO A
- Sailyng Dayana Siu Palma, Edgardo Salvado Jiménez-Martínez, Juan Carlos Morán Centeno (2023). Alternativas biológicas para el manejo de Hypothenemus hampei (Ferrari), en Coffea arabica L, Jalapa, Nicaragua vol. 10, núm 2, 2023 DOI: https://doi.org/10.29166/siembra.v10i2.5306
- Beristain-Moreno, M. E., Ramírez-Martínez, A., Sósol-Reyes, D., & Osorio-Acosta, F. (2024). Perception of small producers concerning the effects of climate change on flowering and pests in coffee agroecosystems: a case study. Tropical and Subtropical Agroecosystems, 27(2).
Alarcón-Utrera D, Cerdán-Cabrera CR, Alvarado-Castillo G, Carrión G, Hernández-Viveros JJ, Illescas-Riquelme CP, López-Lima D (2022) Pseudophilothrips perseae damaging Hass avocado fruits in México. Southwestern Entomologist 47(3): 685-690. https://doi.org/10.3958/059.047.0317
Citado por:
TIPO A
- Rodríguez-Arrieta, J. A., González-Hernández, H., & Vargas-Martínez, A. (2024). Redefinition of the Genus Pseudophilothrips1 with New Synonyms of the Species on Persea americana from Mexico and Central America. Southwestern Entomologist, 49(3), 1-25.
Salinas-Castro A, Navarro-de la Fuente L, Tapia-Vázquez I, López-Lima D (2022) First report of Meloidogyne enterolobii on chard (Beta vulgaris subsp. vulgaris) and carrot (Daucus carota) in México Journal of Plant Diseases and Protection https://doi.org/10.1007/s41348-022-00636-1
Citado por:
TIPO B
- Lugo-García, Luz & Martínez-Anaya, Claudia & Salinas-Castro, Alejandro & Landa-Cadena, Mahatma & Vázquez, Irán. (2023). Combined treatment with Purpureocillum lilacinum MTL01 and Bacillus velezensis 83 reduces galling by Meloidogyne enterolobii and improves flowering in greenhouse-grown tomato. 10.21203/rs.3.rs-3559535/v1.
Murillo-Hernández JE, Illescas-Riquelme CP, López-Lima D, Manzanilla-Ramírez MA (2022) Incidencia y daños de Scirtothrips dorsalis en plantaciones de limón mexicano en Colima, México. Southwestern Entomologist 47(1):211-214 https://doi.org/10.3958/059.047.0120
Citado por:
TIPO A
- Zamora-Landa, Á. I., Estrada-Virgen, M. O., Lemus-Soriano, B. A., Morales-Hernández, M., Martínez-Magaña, M., & Cambero-Campos, O. J. (2023). Primer Reporte de Scirtothrips dorsalis1 Causando Daños al Cultivo de Vid en Jalisco, México. Southwestern Entomologist, 48(1), 283-286.
- Ahuelicán, L., & Romero, M. O. H. Memorias del III Congreso Nacional de Entomología aplicada realizado del 31 de agosto al 02 de septiembre de 2022 en Oaxtepec, Morelos, México.
Gamboa-Becerra R, López-Lima D, Villain L, Breitler J-C, Carrión G, Desgarennes D (2021) Molecular and Environmental Triggering Factors of Pathogenicity of Fusarium oxysporum and F. solani Isolates Involved in the Coffee Corky-Root Disease. Journal of Fungi 7, 253. https://doi.org/10.3390/jof7040253
Citado por:
TIPO A
- López-Arellanes, M. E., López-Pacheco, L. D., Elizondo-Luevano, J. H., & González-Meza, G. M. (2025). Algae and Cyanobacteria Fatty Acids and Bioactive Metabolites: Natural Antifungal Alternative Against Fusarium sp. Microorganisms, 13(2), 439.
- Sun, J., Yang, X. Q., Wan, J. L., Han, H. L., Zhao, Y. D., Cai, L., … & Ding, Z. T. (2023). The antifungal metabolites isolated from maize endophytic fungus Fusarium sp. induced by OSMAC strategy. Fitoterapia, 171, 105710.
- Manikandan, K., Shanmugam, V., Sidharthan, V. K., Saha, P., Saharan, M. S., & Singh, D. (2024). Characterization of field isolates of Fusarium spp. from eggplant in India for species complexity and virulence. Microbial Pathogenesis, 186, 106472.
- Rodríguez, C. L., Strub, C., Chochois, V., Verheecke-Vaessen, C., Durand, N., Jourdan, C., … & Schorr-Galindo, S. (2023). Effect of post-harvest management practices on the mycobiome and ochratoxin A contamination of differently processed robusta coffees from Ivory Coast. Postharvest Biology and Technology, 206, 112573.
- Negahban, H., Mostowfizadeh-Ghalamfarsa, R., Bolboli, Z., Salami, M., & Jafari, M. (2024). Potential host range of Stilbocrea banihashemiana and susceptibility of economically important trees to this emergent fungal canker-causing pathogen. Journal of Plant Diseases and Protection, 131(5), 1597-1608.
- Li, P., Gu, S., Zhu, Y., Xu, T., Yang, Y., Wang, Z., … & Hu, Q. (2023). Soil microbiota plays a key regulatory role in the outbreak of tobacco root rot. Frontiers in Microbiology, 14, 1214167.
- Hernández Rodríguez, A. V. (2023). Variación de la patogenicidad de Fusarium oxysporum f. sp. dianthi en relación con la resistencia o susceptibilidad de híbridos de clavel (Dianthus caryophyllus). Universidad Militar Nueva Granada Facultad de Ciencias Básicas y Aplicadas Programa de Biología Aplicada. https://repository.umng.edu.co/server/api/core/bitstreams/de523042-110e-40a9-ad36-ba23296c4692/content
- Esparza, J. F. C., Montoya, L., Desgarennes, D., Carrión, G., Ramos, A., César, E., … & Bandala, V. M. (2023). Bioactivity of Pseudomarasmius nidus-avis and other wild fungi from mesophytic mountain forest in Mexico in control of phytopathogens. Agrociencia.
- Hernández-Valencia, A., Tapia-Vargas, L., Hernández-Pérez, A., & Larios-Guzmán, A. (2021). Evaluación de fertilizantes orgánicos y su efecto en la nutrición y desarrollo del aguacate. Contribuciones tecnológicas para el futuro forestal y agropecuario Veracruzano, 66-73.
- Ruíz Andrade, G. (2024). Estudio del efecto antagónico de Paraburkholderia sp. GB99 contra hongos patógenos en cultivo de café. Benemérita Universidad Autónoma de Puebla https://hdl.handle.net/20.500.12371/26902
- Mbebi, A. J., Breitler, J. C., Bordeaux, M., Sulpice, R., McHale, M., Tong, H., … & Nikoloski, Z. (2022). A comparative analysis of genomic and phenomic predictions of growth-related traits in 3-way coffee hybrids. G3, 12(9), jkac170.
TIPO B
- Mbebi, A. J., Breitler, J. C., Bordeaux, M., Sulpice, R., McHale, M., Toniutti, L., … & Nikoloski, Z. (2022). A comparative analysis of genomic and phenomic predictions of growth-related traits in three-way coffee hybrids.
López-Lima D, Mtz-Enriquez AI, Carrion G, Basurto-Cereceda S, Pariona N (2021) The bifunctional role of copper nanoparticles in tomato. Effective treatment for Fusarium wilt and plant growth promoter. Scientia Horticulturae. https://doi.org/10.1016/j.scienta.2020.109810
Citado por:
TIPO A
- Tamayo-Ruiz, L. E., Neri-Ramírez, E., Cabrera-de La Fuente, M., Rocandio-Rodríguez, M., Moreno-Ramírez, Y. D. R., & Delgado-Martínez, R. (2025). SYNERGISTIC POTENTIAL OF GRAFTING AND COPPER NANOPARTICLES IN TOMATO (Solanum lycopersicum L.) HYBRIDS WITH DEFICIT IRRIGATION. Tropical and Subtropical Agroecosystems, 28(1).
- Yadav, A., Yadav, K., & Abd-Elsalam, K. A. (2023). Nanofertilizers: types, delivery and advantages in agricultural sustainability. Agrochemicals, 2(2), 296-336.
- Zulfiqar, U., Haider, F. U., Maqsood, M. F., Mohy-Ud-Din, W., Shabaan, M., Ahmad, M., … & Shahzad, B. (2023). Recent advances in microbial-assisted remediation of cadmium-contaminated soil. Plants, 12(17), 3147.
- Guleria, G., Thakur, S., Shandilya, M., Sharma, S., Thakur, S., & Kalia, S. (2023). Nanotechnology for sustainable agro-food systems: The need and role of nanoparticles in protecting plants and improving crop productivity. Plant Physiology and Biochemistry, 194, 533-549.
- Cruz-Luna, A. R., Cruz-Martínez, H., Vásquez-López, A., & Medina, D. I. (2021). Metal nanoparticles as novel antifungal agents for sustainable agriculture: Current advances and future directions. Journal of Fungi, 7(12), 1033.
- Akhtar, N., Ilyas, N., Meraj, T. A., Pour-Aboughadareh, A., Sayyed, R. Z., Mashwani, Z. U. R., & Poczai, P. (2022). Improvement of plant responses by nanobiofertilizer: a step towards sustainable agriculture. Nanomaterials, 12(6), 965.
- Kaur, H., Kaur, H., Kaur, H., & Srivastava, S. (2023). The beneficial roles of trace and ultratrace elements in plants. Plant Growth Regulation, 100(2), 219-236.
- Wahab, S., Salman, A., Khan, Z., Khan, S., Krishnaraj, C., & Yun, S. I. (2023). Metallic nanoparticles: a promising arsenal against antimicrobial resistance—unraveling mechanisms and enhancing medication efficacy. International journal of molecular sciences, 24(19), 14897.
- Eevera, T., Kumaran, S., Djanaguiraman, M., Thirumaran, T., Le, Q. H., & Pugazhendhi, A. (2023). Unleashing the potential of nanoparticles on seed treatment and enhancement for sustainable farming. Environmental Research, 236, 116849.
- El-Abeid, S. E., Mosa, M. A., El-Tabakh, M. A., Saleh, A. M., El-Khateeb, M. A., & Haridy, M. S. (2024). Antifungal activity of copper oxide nanoparticles derived from Zizyphus spina leaf extract against Fusarium root rot disease in tomato plants. Journal of Nanobiotechnology, 22(1), 28.
- Bakshi, M., & Kumar, A. (2021). Copper-based nanoparticles in the soil-plant environment: Assessing their applications, interactions, fate and toxicity. Chemosphere, 281, 130940.
- Cannon, S., Kay, W., Kilaru, S., Schuster, M., Gurr, S. J., & Steinberg, G. (2022). Multi-site fungicides suppress banana Panama disease, caused by Fusarium oxysporum f. sp. cubense Tropical Race 4. PLoS Pathogens, 18(10), e1010860.
- Sharma, P., Sangwan, S., & Mehta, S. (2023). Emerging role of phosphate nanoparticles in agriculture practices. In Engineered nanomaterials for sustainable agricultural production, soil improvement and stress management(pp. 71-97). Academic Press.
- Yan, L., Bao, K., Xu, X., Li, L., & Wu, X. (2024). Recent progress in fluorescent probes for Cu2+ based on small organic molecules. Journal of Molecular Structure, 139100.
- Zhen, Y., Ge, L., Chen, Q., Xu, J., Duan, Z., Loor, J. J., & Wang, M. (2022). Latent benefits and toxicity risks transmission chain of high dietary copper along the livestock–environment–plant–human health axis and microbial homeostasis: a review. Journal of Agricultural and Food Chemistry, 70(23), 6943-6962.
- El-Sayed, E. S. R., Mohamed, S. S., Mousa, S. A., El-Seoud, M. A. A., Elmehlawy, A. A., & Abdou, D. A. (2023). Bifunctional role of some biogenic nanoparticles in controlling wilt disease and promoting growth of common bean. AMB Express, 13(1), 41.
- Tortella, G., Rubilar, O., Pieretti, J. C., Fincheira, P., de Melo Santana, B., Fernández-Baldo, M. A., … & Seabra, A. B. (2023). Nanoparticles as a promising strategy to mitigate biotic stress in agriculture. Antibiotics, 12(2), 338.
- Tortella, G., Rubilar, O., Fincheira, P., Parada, J., de Oliveira, H. C., Benavides-Mendoza, A., … & Seabra, A. B. (2024). Copper nanoparticles as a potential emerging pollutant: Divergent effects in the agriculture, risk-benefit balance and integrated strategies for its use. Emerging Contaminants, 100352.
- Daniel, A. I., Hüsselmann, L., Shittu, O. K., Gokul, A., Keyster, M., & Klein, A. (2024). Application of nanotechnology and proteomic tools in crop development towards sustainable agriculture. Journal of Crop Science and Biotechnology, 27(3), 359-379.
- Bouqellah, N. A. (2023). In silico and in vitro investigation of the antifungal activity of trimetallic Cu–Zn-magnetic nanoparticles against Fusarium oxysporum with stimulation of the tomato plant’s drought stress tolerance response. Microbial Pathogenesis, 178, 106060.
- Javaid, A., Hameed, S., Li, L., Zhang, Z., Zhang, B., & -Rahman, M. U. (2024). Can nanotechnology and genomics innovations trigger agricultural revolution and sustainable development?. Functional & Integrative Genomics, 24(6), 216.
- Deng, C., Plotter, C. R., Wang, Y., Borgatta, J., Zhou, J., Wang, P., … & Elmer, W. H. (2023). Nanoscale CuO charge and morphology control Fusarium suppression and nutrient biofortification in field-grown tomato and watermelon. Science of The Total Environment, 905, 167799.
- Periakaruppan, R., Palanimuthu, V., Abed, S. A., & Danaraj, J. (2023). New perception about the use of nanofungicides in sustainable agriculture practices. Archives of Microbiology, 205(1), 4.
- Parada, J., Tortella, G., Seabra, A. B., Fincheira, P., & Rubilar, O. (2024). Potential antifungal effect of copper oxide nanoparticles combined with fungicides against Botrytis cinerea and fusarium oxysporum. Antibiotics, 13(3), 215.
- Mohapatra, B., Chamoli, S., Salvi, P., & Saxena, S. C. (2023). Fostering nanoscience’s strategies: A new frontier in sustainable crop improvement for abiotic stress tolerance. Plant Nano Biology, 3, 100026.
- Tighe-Neira, R., Gonzalez-Villagra, J., Nunes-Nesi, A., & Inostroza-Blancheteau, C. (2022). Impact of nanoparticles and their ionic counterparts derived from heavy metals on the physiology of food crops. Plant Physiology and Biochemistry, 172, 14-23.
- Irshad, S., Xie, Z., Qing, M., Ali, H., Ali, I., Ahmad, N., … & Nawaz, A. (2024). Application of coconut shell activated carbon filter in vertical subsurface flow constructed wetland for enhanced multi-metal bioremediation and antioxidant response of Salvinia cucullate. Environmental Pollution, 346, 123597.
- Zhu, X., Ma, X., Gao, C., Mu, Y., Pei, Y., Liu, C., … & Sun, X. (2022). Fabrication of CuO nanoparticles composite ε-polylysine-alginate nanogel for high-efficiency management of Alternaria alternate. International Journal of Biological Macromolecules, 223, 1208-1222.
- Soni, S. K., Dogra, S., Sharma, A., Thakur, B., Yadav, J., Kapil, A., & Soni, R. (2024). Nanotechnology in Agriculture: Enhancing Crop Productivity with Sustainable Nano-Fertilizers and Nano-Biofertilizers. Journal of Soil Science and Plant Nutrition, 1-34.
- Rouphael, Y., Carillo, P., Ciriello, M., Formisano, L., El-Nakhel, C., Ganugi, P., … & Colla, G. (2023). Copper boosts the biostimulant activity of a vegetal-derived protein hydrolysate in basil: morpho-physiological and metabolomics insights. Frontiers in Plant Science, 14, 1235686.
- Bao, H. G., Tung, H. T., Van, H. T., Bien, L. T., Khai, H. D., Mai, N. T. N., … & Nhut, D. T. (2022). Copper nanoparticles enhanced surface disinfection, induction and maturation of somatic embryos in tuberous begonias (Begonia× tuberhybrida Voss) cultured in vitro. Plant Cell, Tissue and Organ Culture (PCTOC), 151(2), 385-399.
- Cota-Ungson, D., González-García, Y., Cadenas-Pliego, G., Alpuche-Solís, Á. G., Benavides-Mendoza, A., & Juárez-Maldonado, A. (2023). Graphene–Cu nanocomposites induce tolerance against Fusarium oxysporum, increase antioxidant activity, and decrease stress in tomato plants. Plants, 12(12), 2270.
- Ashraf, H., Batool, T., Anjum, T., Illyas, A., Li, G., Naseem, S., & Riaz, S. (2022). Antifungal Potential of Green Synthesized Magnetite Nanoparticles Black Coffee–Magnetite Nanoparticles Against Wilt Infection by Ameliorating Enzymatic Activity and Gene Expression in Solanum lycopersicum L. Frontiers in Microbiology, 13, 754292.
- Feder-Kubis, J., Wirwis, A., Policht, M., Singh, J., & Kim, K. H. (2024). Principles and practice of greener ionic liquid–nanoparticles biosystem. Green Chemistry, 26(6), 3072-3124.
- Vithanage, M., Zhang, X., Gunarathne, V., Zhu, Y., Herath, L., Peiris, K., … & Siddique, K. H. (2023). Plant nanobionics: Fortifying food security via engineered plant productivity. Environmental Research, 229, 115934.
- Malandrakis, A. A., Kavroulakis, N., Avramidou, M., Papadopoulou, K. K., Tsaniklidis, G., & Chrysikopoulos, C. V. (2021). Metal nanoparticles: Phytotoxicity on tomato and effect on symbiosis with the Fusarium solani FsK strain. Science of the Total Environment, 787, 147606.
- Bhatia, P., & Gupta, M. (2022). Micronutrient seed priming: new insights in ameliorating heavy metal stress. Environmental Science and Pollution Research, 29(39), 58590-58606.
- Corbu, V. M., Dumbravă, A. Ş., Marinescu, L., Motelica, L., Chircov, C., Surdu, A. V., … & Chifiriuc, M. C. (2023). Alternative mitigating solutions based on inorganic nanoparticles for the preservation of cultural heritage. Frontiers in Materials, 10, 1272869.
- Gemin, L. G., de Lara, G. B., Mógor, Á. F., Mazaro, S. M., Sant’Anna-Santos, B. F., Mógor, G., … & Marques, H. M. C. (2023). Polysaccharides combined to copper and magnesium improve tomato growth, yield, anti-oxidant and plant defense enzymes. Scientia Horticulturae, 310, 111758.
- Irshad, M. A., Hussain, A., Nasim, I., Nawaz, R., Al-Mutairi, A. A., Azeem, S., … & Zaki, M. E. (2024). Exploring the antifungal activities of green nanoparticles for sustainable agriculture: a research update. Chemical and Biological Technologies in Agriculture, 11(1), 133.
- Luo, J., Zhang, M., Deng, Y., Li, H., Bu, Q., Liu, R., … & Li, Y. (2023). Copper nanoparticles lead to reproductive dysfunction by affecting key enzymes of ovarian hormone synthesis and metabolism in female rats. Ecotoxicology and Environmental Safety, 254, 114704.
- Liu, P., Yang, M., Hermanowicz, S. W., & Huang, Y. (2022). Efficacy-associated cost analysis of copper-based nanopesticides for tomato disease control. ACS Agricultural Science & Technology, 2(4), 796-804.
- Zhang, H., Zheng, T., Wang, Y., Li, T., & Chi, Q. (2024). Multifaceted impacts of nanoparticles on plant nutrient absorption and soil microbial communities. Frontiers in Plant Science, 15, 1497006.
- Hafeez, K., Atif, M., Perveen, S., Parveen, A., Akhtar, F., & Yasmeen, N. (2024). Unraveling the contribution of copper seed priming in enhancing chromium tolerance in wheat by improving germination, growth, and grain yield. Environmental Science and Pollution Research, 31(27), 39549-39569.
- Pagano, L., Rossi, R., White, J. C., Marmiroli, N., & Marmiroli, M. (2023). Nanomaterials biotransformation: In planta mechanisms of action. Environmental Pollution, 318, 120834.
- Wang, Y., Wang, R., He, J., Li, T., Fu, X., Li, J., & He, G. (2024). Effects of varying nano-ZnO concentrations on the physiology, biochemistry, root exudate, and root microbial community of Agrostis stolonifera. Environmental Science: Nano, 11(12), 4830-4846.
- Rajpal, V. R., Dhingra, Y., Khungar, L., Mehta, S., Minkina, T., Rajput, V. D., & Husen, A. (2024). Exploring Metal and metal-oxide nanoparticles for nanosensing and biotic stress management in plant systems. Current Research in Biotechnology, 100219.
- Kudasova, D., Mutaliyeva, B., Vlahoviček-Kahlina, K., Jurić, S., Marijan, M., Khalus, S. V., … & Vinceković, M. (2021). Encapsulation of synthesized plant growth regulator based on copper (ii) complex in chitosan/alginate microcapsules. International journal of molecular sciences, 22(5), 2663.
- Pavlicevic, M., Elmer, W., Zuverza-Mena, N., Abdelraheem, W., Patel, R., Dimkpa, C., … & White, J. C. (2023). Nanoparticles and biochar with adsorbed plant growth-promoting rhizobacteria alleviate Fusarium wilt damage on tomato and watermelon. Plant Physiology and Biochemistry, 203, 108052.
- Gaucin-Delgado, J. M., Ortiz-Campos, A., Hernandez-Montiel, L. G., Fortis-Hernandez, M., Reyes-Pérez, J. J., Gonzáles-Fuentes, J. A., & Preciado-Rangel, P. (2022). CuO-NPs improve biosynthesis of bioactive compounds in lettuce. Plants, 11(7), 912.
- Leal, F. D. S., Santos Neto, H., Pinheiro, I. C. L., Oliveira, J. M., Pozza, A. A. A., & Pozza, E. A. (2024). Copper and silver nanoparticles control coffee rust: decrease the quantity of sprayed active ingredients and is an alternative for sustainable coffee production. European Journal of Plant Pathology, 168(1), 39-51.
- Radziemska, M., Gusiatin, Z. M., Kumar, V., & Brtnicky, M. (2022). Co-application of nanosized halloysite and biochar as soil amendments in aided phytostabilization of metal (-oid) s-contaminated soil under different temperature conditions. Chemosphere, 288, 132452.
- Deng, C., Wang, Y., Castillo, C., Zhao, Y., Xu, W., Lian, J., … & White, J. C. (2024). Nanoscale Iron (Fe3O4) Surface Charge Controls Fusarium Suppression and Nutrient Accumulation in Tomato (Solanum lycopersicum L.). ACS Sustainable Chemistry & Engineering, 12(35), 13285-13296.
- Paranthaman, L., Seethapathy, P., Pandita, D., Gopalakrishnan, C., Sankaralingam, S., Venkatesh, S., … & Elansary, H. O. (2023). Levering proteomic analysis of Pseudomonas fluorescens mediated resistance responses in tomato during pathogenicity of Fusarium oxysporum f. sp. oxysporum. Frontiers in Sustainable Food Systems, 7, 1157575.
- Chauhan, H., Patel, M., Patel, P., Tiwari, S., Jinal, H. N., & Amaresan, N. (2023). Assessment of copper (Cu) nanoparticle for their biocontrol activity against Xanthomonas oryzae pv. oryzae, growth promotion, and physiology of rice (Oryza sativa L.) plants. Letters in Applied Microbiology, 76(1), ovac066.
- Martins, M. A., Kiirika, L. M., Schaffer, N., Sajnóg, A., Coutinho, J. A., Franklin, G., & Mondal, D. (2024). Unveiling Dissolution Kinetics of CuO Nanofertilizer Using Bio-Based Ionic Liquids Envisaging Controlled Use Efficiency for Sustainable Agriculture. ACS Sustainable Resource Management, 1(6), 1291-1301.
- Ortega-Ortiz, H., Gaucin-Delgado, J. M., Preciado-Rangel, P., Fortis-Hernandez, M., Hernandez-Montiel, L. G., La CRUZ-LAZARO, E. D., & Lara-Capistran, L. (2022). Copper oxide nanoparticles biosynthetized improve germination and bioactive compounds in wheat sprouts. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 50(1), 12657-12657.
- Singh, A., Figueiredo, R., Avagyan, A. A., Movsesyan, H. S., Rajput, V. D., Minkina, T. M., … & Ghazaryan, K. (2024). Market value of nanotechnology-based products in agriculture: Current status and future sustainability goals in the era of climate change.
- Malviya, T., Prabha, M., Tiwari, P., & Singh, V. (2024). Gum Arabic capped Cu/Zn bimetallic nanoparticles for the germination and growth of chickpea. Materials Today: Proceedings, 106, 21-35.
- Suazo-Hernández, J., Klumpp, E., Arancibia-Miranda, N., Jara, A., Poblete-Grant, P., Sepúlveda, P., … & de la Luz Mora, M. (2022). Combined effect of soil particle size fractions and engineered nanoparticles on phosphate sorption processes in volcanic soils evaluated by elovich and Langmuir–freundlich models. Journal of Soil Science and Plant Nutrition, 22(3), 3685-3696.
- Mosquera-Murillo, K. E., Castañeda-Manquillo, A. M., Ángel-Camilo, K. L., Arciniegas-Grijalba, P. A., de Valdenebro, M. R., Mosquera-Sanchez, L. P., … & Rodriguez-Paez, J. E. (2023). Evaluation of the toxicity of ZnO nanoparticles obtained by a chemical route on the nasal respiratory epithelium of the biomodel Mus musculus. Journal of Nanoparticle Research, 25(12), 258.
- Caguana, T., Cruzat, C., Herrera, D., Peña, D., Arévalo, V., Vera, M., … & Vanegas, E. (2025). Metal Nanoparticles Obtained by Green Hydrothermal and Solvothermal Synthesis: Characterization, Biopolymer Incorporation, and Antifungal Evaluation Against Pseudocercospora fijiensis. Nanomaterials, 15(5), 379.
- Khanna, K., Sharma, N., Ohri, P., & Bhardwaj, R. (2022). Emerging trends of nanoparticles in sustainable agriculture: current and future perspectives. Plant and Nanoparticles, 1-52.
- Perfilieva, A. I., Sukhov, B. G., Kon’kova, T. V., Strekalovskaya, E. I., & Krutovsky, K. V. (2025). Diversity of copper-containing nanoparticles and their influence on plant growth and development. Plant Physiology and Biochemistry, 109575.
- Sakthivel, A., Chandrasekaran, R., Balasubramaniam, S., Sathyanarayanan, H., & Gnanajothi, K. (2025). Nanomaterials as Potential Plant Growth Modulators: Applications, Mechanism of Uptake, and Toxicity: A Comprehensive Review. BioNanoScience, 15(1), 1-21.
- Swain, R., Behera, M., Sahoo, S., & Rout, G. R. (2025). Nanoscience in Plant Stress Mitigation: A Comprehensive Review. BioNanoScience, 15(1), 1-28.
- Asmawi, A. A., Adam, F., Azman, N. A. M., & Rahman, M. B. A. (2024). Advancements in the nanodelivery of azole-based fungicides to control oil palm pathogenic fungi. Heliyon, 10(18).
- Dey, M. G., Langenfeld, N. J., & Bugbee, B. (2023). Copper can be elevated in hydroponics and peat-based media for potential disease suppression: concentration thresholds for lettuce and tomato. HortScience, 58(4), 459-464.
- Rajpal, V. R., Dhingra, Y., Khungar, L., Mehta, S., Minkina, T., Rajput, V. D., & Husen, A. (2024). Current research in biotechnology. Current Research in Biotechnology, 7, 100219.
- Ndaba, B., Akindolire, M., Botha, T. L., & Roopnarain, A. (2024). The Use of Nanofertilizers as Micronutrients to Improve Marginal Soils and Crop Production. In The Marginal Soils of Africa: Rethinking Uses, Management and Reclamation(pp. 205-227). Cham: Springer Nature Switzerland.
- Ismail, N. A., Shameli, K., Ali, R. R., Sukri, S. N. A. M., & Isa, E. D. M. (2021). Copper/graphene based materials nanocomposites and their antibacterial study: A mini review. Journal of Research in Nanoscience and Nanotechnology, 1(1), 44-52.
- Gaucin-Delgado, J. M., Zúñiga-Valenzuela, E., Pérez-Garcia, S. C., Vázquez-Vazquez, C., Orona-Castillo, I., & García-Sánchez, H. D. (2024). Nanobiofortificación con cobre en sandía. Revista Mexicana de Ciencias Agrícolas, 15(7), e3837-e3837.
- Panwar, H., Chaudhary, H., Kumar, P., Phukon, H., Kalita, D., & Dubey, R. C. (2025). Nanoparticles for Control of Soil-Borne Fungal Pathogens. In Nanofertilizers for Sustainable Agriculture: Assessing Impacts on Health, Environment, and Economy(pp. 79-99). Cham: Springer Nature Switzerland.
- Singh, P., Khan, D., & Kumar, A. (2024). Introduction to nanopesticides, nanoherbicides, and nanofertilizers. In Nanopesticides, nanoherbicides, and nanofertilizers(pp. 1-25). CRC Press.
- Ahsan, S. M., Imran, M., Hoque, M. I. U., Shaffique, S., Shazad, R., Rahman, M. M., … & Ray, R. L. (2024). Nanotechnology in Crop Protection. In Revolutionizing Agriculture: A Comprehensive Exploration of Agri-Nanotechnology(pp. 101-120). Cham: Springer Nature Switzerland.
- Palanisamy, S., Jayachandran, P. R., Saravanavelan, G., & Karuppaiah, K. (2025). Mechanisms of Release of Nanofertilizer’s Nutrients (Nanonutrients) in Soil for Sustaining Agro-System. In Nanofertilizers in Agriculture: Synthesis, Mechanisms, and Effect on Plants(pp. 205-238). Cham: Springer Nature Switzerland.
- Tung, H. T., Bao, H. G., Luan, V. Q., & Nhut, D. T. (2024). Enhanced Surface Disinfection and Subsequent Growth in Plant Micropropagation by Copper Nanoparticles. In Metal Nanoparticles in Plant Cell, Tissue and Organ Culture(pp. 277-298). Singapore: Springer Nature Singapore.
- Tamez, C., Zuverza-Mena, N., Elmer, W., & White, J. C. (2022). Inorganic nanoparticles to promote crop health and stimulate growth. In Inorganic nanopesticides and nanofertilizers: A view from the mechanisms of action to field applications(pp. 271-293). Cham: Springer International Publishing.
- Arabzadeh, G. (2024). Antifungal Properties of Black Soldier Fly Larval Frass: Impact on Plant Pathogens Control(Doctoral dissertation, Université Laval).
- Rajani, & Meena, R. K. (2025). Formulation of Nano-Fertilizers Using Various Carriers. In Nanofertilizers in Agriculture: Synthesis, Mechanisms, and Effect on Plants(pp. 53-74). Cham: Springer Nature Switzerland.
- Diana, C. U., González García, Y., Cadenas Pliego, G., Alpuche Solís, Á. G., Benavides Mendoza, A., & Juárez Maldonado, A. (2023). Graphene–Cu Nanocomposites Induce Tolerance against Fusarium oxysporum, Increase Antioxidant Activity, and Decrease Stress in Tomato Plants.
- Ajiwe, S. T., & Popoola, A. R. (2024). Effect of Copper Nanoparticles on Incidence and Severity of Fusarium wilt and Fruit Yield of Tomato (Solanum lycopersicum L.). Nigerian Journal of Biotechnology, 41(1), 88-96.
- Chatterjee, B., & Ravishankar Rai, V. (2023). Nanofertilizers: A Promising Approach to Boost Plant Health and Yield. In Nanofertilizers for Sustainable Agroecosystems: Recent Advances and Future Trends (pp. 455-506). Cham: Springer Nature Switzerland.
- Espinoza Pinelo, J. M. (2024). NANOPARTÍCULAS METÁLICAS COMO PROMOTORAS DE LA GERMINACIÓN Y COMPUESTOS ANTIFÚNGICOS EN TOMATE. http://51.143.95.221/handle/TecNM/8796
- Akhtar, N., Ilyas, N., Meraj, T. A., Aboughadareh, A. P., Sayyed, R. Z., & Mashwani, Z. (2022). Improvement of plant responses by nanobiofertilizer: A step towards sustainable agriculture. Nanomaterials. 2022; 12: 965.
- Strekalovskaya, E. I., Kon’kova, T. V., Perfileva, A. I., Sukhov, B. G., & Krutovsky, K. V. (2025). Diversity of copper-containing nanoparticles and their influence on plant growth and development. Plant Physiology and Biochemistry Volume 220, 109575. https://doi.org/10.1016/j.plaphy.2025.109575
- Caguana Reyes, S. T. (2025). Metal nanoparticles obtained by green hydrothermal and solvothermal synthesis: characterization, biopolymer incorporation, and antifungal evaluation against Pseudocercospora fijiensis. Universidad de Cuenca. https://dspace.ucuenca.edu.ec/items/d51c3da0-ceef-4ae8-93d0-a3bd2d529913
- Trujillo Ortigoza, K. (2024). Fungal endophytes of cactus (Stenocereus spp.) as a potential alternative to alleviate drought stress in juveniles of Theobroma cacao L. ICS95. Universidad de los Andes. Disponible en: https://hdl.handle.net/1992/75908
- Purkayastha, K. D. (2024). Assessment of Zn Based Metallic Nanomaterials for Environmental Application: Evaluating the Significance of Green-Synthetic Routes(Doctoral dissertation, Tezpur University).
- Abdelghany, T., Alharbi, A. A., & Al-Rajhi, A. M. (2021). Suppression Application of Copper Oxide Nanoparticles for Wilt-Inducing Fusarium Equiseti in Wheat. https://www.researchsquare.com/article/rs-882655/v1
- Palanisamy, S., Jayachandran, P. R., Saravanavelan, G., & Karuppaiah, K. Agro-System. Nanofertilizers in Agriculture: Synthesis, Mechanisms, and Effect on Plants, 205. https://books.google.es/books?hl=es&lr=&id=ikxLEQAAQBAJ&oi=fnd&pg=PA205&ots=tZmCQHOQ15&sig=bTrn-VNFEkY9DkivbB4_Ye1q95U#v=onepage&q&f=false
- Ren, X., Liu, J., Zhang, Y., Zhang, J., Yang, Y., Yang, W., … & Xu, H. A Rapid and Specific Fluorescent Probe Based on Esipt-Aie-Active for Copper Ion Quantitative Detection in Food Samples. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5125699
- HERNANDEZ-MONTIEL, L. G., La CRUZ-LAZARO, E. D., & Liliana, L. A. R. A. Copper oxide nanoparticles Copper oxide nanoparticles biosynthetized biosynthetized biosynthetized improve germination improve germination improve germination and bioactive compounds in wheat sprouts and bioactive compounds in wheat sprouts Hortensia ORTEGA-ORTIZ1, Jazmín M. GAUCIN-DELGADO2*, Pablo PRECIADO-RANGEL2*, Manuel FORTIS-HERNANDEZ2.
- Qari, S. H., Abdulmajeed, A. M., Alnusaire, T. S., & Soliman, M. H. (2022). Responses of Crop Plants Under Nanoparticles Supply in Alleviating Biotic and Abiotic Stresses. In Sustainable Agriculture Reviews 53: Nanoparticles: A New Tool to Enhance Stress Tolerance(pp. 231-246). Cham: Springer International Publishing.
- Перфильева, А. И., & Забанова, Н. С. (2023). Агрохимические аспекты применения медьсодержащих наноструктур: влияние на рост и развитие растений, антибактериальный эффект (обзор). Известия Иркутского государственного университета. Серия: Биология. Экология, 44, 3-26.
- NAM, V. C. N. V. NGHIÊN CỨU TÁC DỤNG CỦA NANO BẠC VÀ NANO ĐỒNG TRONG KHỬ TRÙNG MẪU, KHỬ TRÙNG MÔI TRƯỜNG NUÔI CẤY VÀ VI NHÂN GIỐNG MỘT SỐ CÂY TRỒNG CÓ GIÁ TRỊ KINH TẾ.
- dos Santos, F. P. (2021). Síntese e Caracterização Físico-Química de Nanomateriais de Lípido Sólido para o Encapsulamento de Ingredientes Ativos de Fungicidas: uma Alternativa Mais Sustentável(Master’s thesis, Universidade do Porto (Portugal)).
- HERNÁNDEZ, J. M. S. (2021). EFFECT OF COPPER OR SILVER ENGINEERED NANOPARTICLES ON PHOSPHORUS AVAILABILITY IN VOLCANIC SOILS(Doctoral dissertation, UNIVERSIDAD DE LA FRONTERA).
TIPO B
- López-Luna, J., Nopal-Hormiga, Y., López-Sánchez, L., Mtz-Enriquez, A. I., & Pariona, N. (2023). Effect of methods application of copper nanoparticles in the growth of avocado plants. Science of The Total Environment, 880, 163341.
López-Lima D, Carrion G, Sánchez-Nava P, Desgarennes D, Villain L,. (2020) Fungal diversity and Fusarium oxysporum pathogenicity associated with coffee corky-root disease in México. Rev. FCA Uncuyo. http://revistas.uncu.edu.ar/ojs3/index.php/RFCA/article/view/3075
Citado por:
TIPO A
- Lu, L., Tibpromma, S., Karunarathna, S. C., Jayawardena, R. S., Lumyong, S., Xu, J., & Hyde, K. D. (2022). Comprehensive review of fungi on coffee. Pathogens, 11(4), 411.
- Medina-Sauza, R. M., Álvarez-Jiménez, M., Ortíz-Huerta, Y., Ruiz-Sayago, E., Blouin, M., Villain, L., … & Barois, I. (2022). Bulk and rhizosphere soil properties under two Coffea species influenced by the earthworm Pontoscolex corethrurus. Rhizosphere, 21, 100458.
- da Silva, C. A., Santos, E. A., Viana, A. P., Dias, J. R. M., & Partelli, F. L. (2021). Genetic diversity in Coffea canephora genotypes for leaf nutrient concentration. Revista de la Facultad de Ciencias Agrarias UNCuyo, 53(1), 22-34.
- Olalde-Lira, G. G., Raya Montaño, Y. A., Apáez Barrios, P., Vargas-Sandoval, M., Pedraza Santos, M. E., Raymundo, T., … & Nieves Lara-Chávez, M. B. (2020). Caracterización de Fusarium spp., fitopatógeno de aguacate (Persea americana Miller var. drymifolia (Schltdl. y Cham.)) en Michoacán, México. Revista de la Facultad de Ciencias Agrarias. Universidad Nacional de Cuyo, 52(2), 301-316.
- Al-Faifi, Z., Alsolami, W., Abada, E., Khemira, H., Almalki, G., & Modafer, Y. (2022). Fusarium oxysporum and Colletotrichum musae associated with wilt disease of Coffea arabica in coffee gardens in Saudi Arabia. Canadian Journal of Infectious Diseases and Medical Microbiology, 2022(1), 3050495.
- Téllez, C. F. S., Acevedo, W. A. M., Contreras, L. R., & Pedraza, Á. M. C. (2023). Prevalencia de hongos filamentosos en granos de café cultivado en norte de Santander, Colombia. Revista de Investigación Agraria y Ambiental, 14(1), 85-101.
- Del Moral-Hernández, A., del Socorro Fernández, M., Barrientos-Salcedo, C., Carmona-Hernández, O., de la Cruz-Elizondo, Y., Rodríguez, M. L., & Lozada-García, J. A. (2023). Inhibición del crecimiento micelial de extractos etanólicos de Piper L. sobre Fusarium oxysporum f. sp. vanillae. Acta Agrícola y Pecuaria, 9(1).
- Alvarez, M. A., Mastrantonio, L., & Moreiras, S. M. (2019). Ánalisis de susceptibilidad de flujos de detritos en el Parque Provincial Aconcagua, Mendoza, Argentina. Revista de la Facultad de Ciencias Agrarias. Universidad Nacional de Cuyo, 51(2), 177-191.
- Amaro, F. J. C., Ramos, F. D. T., Atoc, J. B. A., García, C. L. M., & Arellano, M. A. R. (2023). Experiencia del empleado y productividad laboral en establecimientos del sector restaurantes en contexto de Covid-19. Revista Científica Pakamuros, 11(1).
- Ossa, C., Cortes, M., & Hoyos, R. (2023). Optimización de una formulación de antioxidantes, con la técnica de impregnación al vacío, para mejorar el color de los palmitos de Iraca. Revista de Investigación Agraria y Ambiental, 14(1), 103-122.
- Huaman, A., Torres, M., Ramirez, G., Leiva, S., Sanchez, T., & Oliva, S. (2021). Caracterización morfológica de hongos asociados al agroecosistema café (Coffea arabica L.), en el estado de Tabasco, México Morphological characterization of fungi associated with the coffee agroecosystem (Coffea arabica L.), in the state of Tabasco, Mexico. Revista Pakamuros, 9(3), 44-58.
- Hernández-Valencia, A., Tapia-Vargas, L., Hernández-Pérez, A., & Larios-Guzmán, A. (2021). Evaluación de fertilizantes orgánicos y su efecto en la nutrición y desarrollo del aguacate. Contribuciones tecnológicas para el futuro forestal y agropecuario Veracruzano, 66-73.
- de Sousa Gonçalves, R. J., de Castro Carvalho, R., Maluf, W. R., Matos Andrade, T., Gonçalves Neto, Á. C., & Zilderlânia Alves, M. (2019). Resistencia a Meloidogyne enterolobii en batatas. Revista de la Facultad de Ciencias Agrarias. Universidad Nacional de Cuyo, 51(2), 318-332.
- Rudnick, V. A. D. S., Vieira Junior, J. R., Fernandes, C. D. F., Rocha, R. B., Teixeira, A. L., Ramalho, A. R., … & Uchôa, F. P. (2020). Resistance of new Coffea canephora clones to root-knot nematode (Meloidogyne incognita) in the western amazon.
- Ortiz, R. S., Marín, S. M. A., Morales, J. G. B., & García, M. I. E. Avances en agricultura sostenible y cambio climático.
- Lu, L., Tibpromma, S., Karunarathna, S. C., Jayawardena, R. S., Lumyong, S., Xu, J., & Hyde, K. D. (2022). Comprehensive Review of Fungi on Coffee. Pathogens 2022, 11, 411.
- Bezerra, C. D. S. (2022). Diversidade fenotípica e parâmetros genéticos de Coffea canephora Pierre ex A. Froehner no estado do Amazonas.
López-Lima D, Desgarennes D, Lima-Rivera DL, Carrión G. (2020) Integrated management of Globodera rostochiensis: a novel biocontrol agent, crop rotation and fallow. Journal of Plant Diseases and Protection 127, 633–640. https://doi.org/10.1007/s41348-020-00325-x
Citado por:
TIPO A
- Mhatre, P. H., Divya, K. L., Venkatasalam, E. P., Watpade, S., Bairwa, A., & Patil, J. (2022). Management of potato cyst nematodes with special focus on biological control and trap cropping strategies. Pest Management Science, 78(9), 3746-3759.
- Islam, S. U., Mangral, Z. A., Hussain, K., Tariq, L., Bhat, B. A., Khuroo, A. A., & Dar, T. U. H. (2023). Unravelling diversity, drivers, and indicators of soil microbiome of Trillium govanianum, an endangered plant species of the Himalaya. Environmental Research, 227, 115819.
- Chandrasekar, S., Natarajan, P., Mhatre, P. H., Mahajan, M., Nivitha, S., Palanisamy, V. E., … & Sundararaj, P. (2022). RNA-seq of cyst nematode infestation of potato (Solanum tuberosum L.): A comparative transcriptome analysis of resistant and susceptible cultivars. Plants, 11(8), 1008.
- Nyang’au, M. N., Akutse, K. S., Fathiya, K., Charimbu, M. K., & Haukeland, S. (2023). Biodiversity and efficacy of fungal isolates associated with Kenyan populations of potato cyst nematode (Globodera spp.). Biological Control, 186, 105328.
- Rocha, L. F., & Duggal, P. (2023). Management of Cyst-Forming Nematodes in agricultural crops through novel biological and genetic engineering technologies. In Novel Biological and Biotechnological Applications in Plant Nematode Management (pp. 313-339). Singapore: Springer Nature Singapore.
- Babych, A., Babych, O., Havryliuk, O., Statkevych, O., Dziuman, Y., Litvinov, D., … & Prichodko, D. (2024). Diversity.
- Bhatta, B. (2021). Globodera pallida Control Using Brassica juncea Seed Meal Extract and the Trap Crop Solanum sisymbriifolium (Master’s thesis, University of Idaho).
- Lugo-Faría, Z. C., Ramírez, C., Montero, R., Crozzoli, R., Salas, J., Aguirre, Y., … & Barrios-Maestre, R. (2022). Estrategias agroecológicas para el control del nematodo dorado de la papa en el estado Mérida, Venezuela. Agronomía Tropical, 72, e5080526.
Lamelas A, Desgarennes D, López-Lima D, Villain L, Alonso-Sánchez A, Artacho A, Latorre A, Moya A, Carrion G. (2020) The bacterial microbiome of Meloidogyne-based disease complex in coffee and tomato. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2020.00136
Citado por:
TIPO A
- Chen, W., Modi, D., & Picot, A. (2023). Soil and phytomicrobiome for plant disease suppression and management under climate change: A review. Plants, 12(14), 2736.
- Migunova, V. D., & Sasanelli, N. (2021). Bacteria as biocontrol tool against phytoparasitic nematodes. Plants, 10(2), 389.
- Topalović, O., & Geisen, S. (2023). Nematodes as suppressors and facilitators of plant performance. New Phytologist, 238(6), 2305-2312.
- Li, Y., Lei, S., Cheng, Z., Jin, L., Zhang, T., Liang, L. M., … & Tian, B. (2023). Microbiota and functional analyses of nitrogen-fixing bacteria in root-knot nematode parasitism of plants. Microbiome, 11(1), 48.
- Sarri, K., Mourouzidou, S., Ntalli, N., & Monokrousos, N. (2024). Recent advances and developments in the nematicidal activity of essential oils and their components against root-knot nematodes. Agronomy, 14(1), 213.
- Vinothini, K., Nakkeeran, S., Saranya, N., Jothi, P., Richard, J. I., Perveen, K., … & Mastinu, A. (2024). Rhizosphere Engineering of Biocontrol Agents Enriches Soil Microbial Diversity and Effectively Controls Root-Knot Nematodes. Microbial Ecology, 87(1), 120.
- dos Santos Gomes, W., Pereira, L. L., da Luz, J. M. R., da Silva, M. D. C. S., Veloso, T. G. R., & Partelli, F. L. (2024). Exploring the microbiome of coffee plants: Implications for coffee quality and production. Food Research International, 179, 113972.
- Solís-García, I. A., Ceballos-Luna, O., Cortazar-Murillo, E. M., Desgarennes, D., Garay-Serrano, E., Patiño-Conde, V., … & Reverchon, F. (2021). Phytophthora root rot modifies the composition of the avocado rhizosphere microbiome and increases the abundance of opportunistic fungal pathogens. Frontiers in Microbiology, 11, 574110.
- Veronico, P., Sasanelli, N., Troccoli, A., Myrta, A., Midthassel, A., & Butt, T. (2023). Evaluation of fungal volatile organic compounds for control the plant parasitic nematode Meloidogyne incognita. Plants, 12(10), 1935.
- Duong, B., Marraccini, P., Maeght, J. L., Vaast, P., Lebrun, M., & Duponnois, R. (2020). Coffee microbiota and its potential use in sustainable crop management. A review. Frontiers in Sustainable Food Systems, 4, 607935.
- Lu, P., Shi, H., Tao, J., Jin, J., Wang, S., Zheng, Q., … & Cao, P. (2023). Metagenomic insights into the changes in the rhizosphere microbial community caused by the root-knot nematode Meloidogyne incognita in tobacco. Environmental Research, 216, 114848.
- Leveau, J. H. (2024). Re-envisioning the plant disease triangle by integration of host microbiota and a pivot in focus to health outcomes. Annual Review of Phytopathology, 62.
- El-Maraghy, S. S., Tohamy, A. T., & Hussein, K. A. (2021). Plant protection properties of the plant growth-promoting fungi (PGPF): Mechanisms and potentiality. Res. Environ. Appl. Mycol.(J. Fungal Biol.), 11, 391-415.
- Parrado, L. M., & Quintanilla, M. (2024). Plant-parasitic nematode disease complexes as overlooked challenges to crop production. Frontiers in Plant Science, 15, 1439951.
- Bez, C., Esposito, A., Thuy, H. D., Nguyen Hong, M., Valè, G., Licastro, D., … & Venturi, V. (2021). The rice foot rot pathogen Dickeya zeae alters the in‐field plant microbiome.Environmental microbiology, 23(12), 7671-7687.
- Dos Santos, D. G., Coelho, C. C. D. S., Ferreira, A. B. R., & Freitas-Silva, O. (2021). Brazilian coffee production and the future microbiome and mycotoxin profile considering the climate change scenario. Microorganisms, 9(4), 858.
- Collett, R. L., Marais, M., Daneel, M., Rashidifard, M., & Fourie, H. (2021). Meloidogyne enterolobii, a threat to crop production with particular reference to sub-Saharan Africa: an extensive, critical and updated review. Nematology, 23(3), 247-285.
- Liu, Y., Yang, X., Shen, W., Wang, X., Liu, H., Wang, Y., & Lu, H. (2024). Organophosphorus nematicide potentiated nematicidal effect by changing rhizosphere bacterial and fungal communities. Rhizosphere, 31, 100936.
- Siddiqui, Z. A., & Aziz, S. (2024). Plant parasitic nematode-fungus interactions: Recent concepts and mechanisms. Plant Physiology Reports, 29(1), 37-50.
- La, S., Li, J., Ma, S., Liu, X., Gao, L., & Tian, Y. (2024). Protective role of native root-associated bacterial consortium against root-knot nematode infection in susceptible plants. Nature Communications, 15(1), 6723.
- Vinothini, K., Nakkeeran, S., Saranya, N., Jothi, P., Prabu, G., Pavitra, K., & Afzal, M. (2024). Metagenomic profiling of tomato rhizosphere delineates the diverse nature of uncultured microbes as influenced by Bacillus velezensis VB7 and Trichoderma koningiopsis TK towards the suppression of root-knot nematode under field conditions. 3 Biotech, 14(1), 2.
- Rabasco-Vílchez, L., Bolívar, A., Morcillo-Martín, R., & Pérez-Rodríguez, F. (2024). Exploring the microbiota of tomato and strawberry plants as sources of bio-protective cultures for fruits and vegetables preservation. Future Foods, 100344.
- Rojas-Chacón, J. A., Echeverría-Beirute, F., Madrigal, J. P. J., & Gatica-Arias, A. (2024). Microorganismos de suelo y su relación con la calidad de la bebida de café: Una revisión. Agronomía Mesoamericana, 35(1).
- Migunova, V. D., Tomashevich, N. S., Konrat, A. N., Lychagina, S. V., Dubyaga, V. M., D’Addabbo, T., … & Asaturova, A. M. (2021). Selection of bacterial strains for control of root-knot disease caused by Meloidogyne incognita. Microorganisms, 9(8), 1698.
- Ren, Z., Chen, A. J., Zong, Q., Du, Z., Guo, Q., Liu, T., … & Gao, L. (2023). Microbiome signature of endophytes in wheat seed response to wheat dwarf bunt caused by Tilletia controversa Kühn. Microbiology Spectrum, 11(1), e00390-22.
- Medina-Sauza, R. M., Solís-García, I. A., Blouin, M., Villain, L., Guevara, R., Barois, I., & Reverchon, F. (2023). Microniches harbor distinct bacterial communities at the soil-plant-earthworm interface. European Journal of Soil Biology, 118, 103531.
- Clavero-Camacho, I., Ruiz-Cuenca, A. N., Cantalapiedra-Navarrete, C., Castillo, P., & Palomares-Rius, J. E. (2024). Diversity of microbial, biocontrol agents and nematode abundance on a susceptible Prunus rootstock under a Meloidogyne root gradient infection. Frontiers in Plant Science, 15, 1386535.
- Zou, J., Kyndt, T., Yu, J., & Zhou, J. (2024). Plant–nematode battle: engagement of complex signaling network. Trends in Parasitology.
- Gómez-Gómez, R. (2024). ¿ Malezas o arvenses? Una propuesta conceptual para su manejo agroecológico. Agronomía Mesoamericana, 35(1).
- Gao, J., Chen, L., Wang, J., Zhao, W., Zhang, J., Qin, Z., … & Yang, Q. (2024). Response of the Symbiotic Microbial Community of Dioscorea opposita Cultivar Tiegun to Root-Knot Nematode Infection. Plant Disease, 108(8), 2472-2483.
- Kudjordjie, E. N., Santos, S. S., Topalović, O., & Vestergård, M. (2024). Distinct changes in tomato-associated multi-kingdom microbiomes during Meloidogyne incognita parasitism. Environmental Microbiome, 19(1), 53.
- Lartey, I., Benucci, G. M., Marsh, T. L., Bonito, G. M., & Melakeberhan, H. (2023). Characterizing microbial communities associated with northern root-knot nematode (Meloidogyne hapla) occurrence and soil health. Frontiers in Microbiology, 14, 1267008.
- Kamalanathan, V., Sevugapperumal, N., Nallusamy, S., Ashraf, S., Kailasam, K., & Afzal, M. (2023). Metagenomic approach deciphers the role of community composition of mycobiome structured by Bacillus velezensis VB7 and Trichoderma koningiopsis TK in tomato rhizosphere to suppress root-knot nematode infecting tomato. Microorganisms, 11(10), 2467.
- Kunda, P., Mondal, S., De, D., Dhal, P. K., & Mukherjee, A. (2024). Alteration of Rice Root Endophytic Bacterial Community Composition by Meloidogyne graminicola and Identification of Potential Biocontrol Agent. Annals of Microbiology, 74(1), 42.
- Zhang, X. Y., Li, H. R., Jiang, H. J., Wu, X. H., Ma, C. Y., Luo, D. L., … & Dai, C. C. (2024). Endophytic fungi promote peanut fitness by re-establishing rhizosphere nematode communities under continuous monocropping conditions. Plant and Soil, 1-21.
- Archana, T. S., Kumar, D., Kumar, V., & Shukuru, B. N. (2023). Root-knot disease complex: an interactive perspective with microorganisms. In Root-galling disease of vegetable plants(pp. 237-251). Singapore: Springer Nature Singapore.
- Rojas-Chacón, J. A., Echeverría-Beirute, F., Madrigal, J. P. J., & Gatica-Arias, A. (2024). Soil microorganisms and their relationship with coffee beverage quality: A review. Agronomía Mesoamericana, 35(1).
- Morán Centeno, J. C., & Jimenez-Martínez, E. (2024). Macrofauna edáfica en agroecosistemas de Coffea arabica L., en Tepec-Xomolth, Nicaragua. Agronomía Mesoamericana, 35(1).
- Saidova, S., Egamberganova, A., Khalilov, I., Eshova, K., Azimov, D., Akramova, F., … & Abdurakhmanova, G. (2024). Biological effectiveness of the Bt 26 strain of Bacillus thuringiensis in fighting the root-knot nematode Meloidogyne inсognita. Biosystems Diversity, 32(4), 484-488.
- Souza, R. M., Oliveira, D. F., Gomes, V. M., Viana, A. J., Silva, G. H., & Machado, A. R. (2023). Meloidogyne enterolobii-induced Changes in Guava Root Exudates Are Associated With Root Rotting Caused by Neocosmospora falciformis. Journal of Nematology, 55(1), 20230055.
- Clavero-Camacho I, Ruiz-Cuenca AN, Cantalapiedra-Navarrete C, Castillo P and Palomares-Rius JE (2024) Diversity of microbial, biocontrol agents and nematode abundance on a susceptible Prunus rootstock under a Meloidogyne root gradient infection. Front. Plant Sci. 15:1386535. doi: 10.3389/fpls.2024.1386535
- Alizadeh, M., & Mobasseri, M. (2023). Unlocking the pathobiome evolution clock (PEC) by devo-omics. Microenviron Microecol Res, 5(1), 5.
- Laura Rabasco-Vílchez, Araceli Bolívar, Ramon Morcillo-Martín, Fernando Perez Rodríguez (2024) Exploring the microbiota of tomato and strawberry plants as sources of bio-protective cultures for fruits and vegetables preservation. Future Foods Volume 9, June 2024, 100344
- Tafes, E. K., Seid, A., & Kebede, M. (2021). REACTION OF SELECTED TOMATO (Solanum lycopersicum) VARIETIES TOWARDS Meloidogyne incognita AND BACTERIALWILT (Ralstonia solanacearum (Doctoral dissertation, Haramaya University, Haramaya).
- Alford, B. A. (2020). Microbial Ecology of Wild and Domesticated Chickpeas (Doctoral dissertation, University of California, Davis).
- Kumar, P., & Murali, V. (2023). A Review on Soil and Phytomicrobiome for Plant Disease Management. International Journal of Environment and Climate Change, 13(10), 2890-2904.
- Chen, W., Modi, D., & Picot, A. (2023). Soil and Phytomicrobiome for Plant Disease Suppression and Management under Climate Change: A Review. Plants 2023, 12, 2736.
López-Lima D, Desgarennes D, Herrera M, Alarcón D, Carrión G. (2020) Diversity of thrips (Thysanoptera) associated with avocado orchards in central Veracruz México. Journal of Entomological Science 55:141-145. https://doi.org/10.18474/0749-8004-55.1.141
Citado por:
TIPO A
- Fan, R., Fan, Z., Sun, Z., Chen, Y., & Gui, F. (2023). Insecticide susceptibility and detoxification enzyme activity of Frankliniella occidentalis under three habitat conditions. Insects, 14(7), 643.
- Cao, Y., Qi, G., Jiang, F., Meng, Y., Wang, C., Gu, Z., … & Li, C. (2023). Population performance and detoxifying and protective enzyme activities of four thrips species feeding on flowers of Magnolia grandiflora (Ranunculales: Magnolia). Pest Management Science, 79(9), 3239-3249.
- Fan, R., Fan, Z., Sun, Z., Chen, Y., & Gui, F. (2023). Insecticide susceptibility and detoxification enzyme activity of Frankliniella occidentalis under three habitat conditions. Insects. 2023: 14 (7): 643.
Desgarennes D, Carrion G, Lopez-Lima D (2018) Integrated management reduces Globodera rostochiensis abundance and enhances nematode community composition. Archives of Agronomy and Soil Science 64:1-12 https://doi.org/10.1080/03650340.2017.1322195
Citado por:
TIPO A
- Latina, R. A., Jungco, J. M., Cabusas, J. V. B., Felicitas, E. F. A., Rulloda, S. L., Kingay, D. B., & Pedroche, N. B. (2024). Morpho-molecular characterization of golden potato cyst nematode population from Bauko, Mountain Province, Philippines. Journal of Plant Diseases and Protection, 131(2), 631-641.
- Ochieng, B. O. (2023). Management of Potato Cyst Nematodes Using Host Resistance, Organic Amendments and Biocontrol Agents in Nyandarua County, Kenya (Doctoral dissertation, University of Nairobi).
Lima-Rivera DL, López-Lima D, Desgarennes D, Velázquez-Rodríguez AS, Carrión G (2016) Phosphate solubilization by fungi with nematicidal potential. Journal of Soil Science and Plant Nutrition 16:507-524 https://scielo.conicyt.cl/pdf/jsspn/v16n2/aop4216.pdf
Citado por:
TIPO A
- Moreno-Gavíra, A., Huertas, V., Diánez, F., Sánchez-Montesinos, B., & Santos, M. (2020). Paecilomyces and its importance in the biological control of agricultural pests and diseases. Plants, 9(12), 1746.
- Baron, N. C., Rigobelo, E. C., & Zied, D. C. (2019). Filamentous fungi in biological control: current status and future perspectives. Chilean journal of agricultural research, 79(2), 307-315.
- Yadav, A. N., Mishra, S., Kour, D., Yadav, N., & Kumar, A. (Eds.). (2020). Agriculturally important fungi for sustainable agriculture (Vol. 1). Cham: Springer.
- Vera-Morales, M., López Medina, S. E., Naranjo-Morán, J., Quevedo, A., & Ratti, M. F. (2023). Nematophagous fungi: A review of their phosphorus solubilization potential. Microorganisms, 11(1), 137.
- Guardiola-Márquez, C. E., Santos-Ramírez, M. T., Figueroa-Montes, M. L., Valencia-de Los Cobos, E. O., Stamatis-Félix, I. J., Navarro-López, D. E., & Jacobo-Velázquez, D. A. (2023). Identification and characterization of beneficial soil microbial strains for the formulation of biofertilizers based on native plant growth-promoting microorganisms isolated from northern Mexico. Plants, 12(18), 3262.
- Mhatre, P. H., Divya, K. L., Venkatasalam, E. P., Watpade, S., Bairwa, A., & Patil, J. (2022). Management of potato cyst nematodes with special focus on biological control and trap cropping strategies. Pest Management Science, 78(9), 3746-3759.
- Sánchez-Montesinos, B., Diánez, F., Moreno-Gavíra, A., Gea, F. J., & Santos, M. (2020). Role of Trichoderma aggressivum f. europaeum as Plant-Growth Promoter in Horticulture. Agronomy, 10(7), 1004.
- Moreno-Gavíra, A., Diánez, F., Sánchez-Montesinos, B., & Santos, M. (2020). Paecilomyces variotii as a plant-growth promoter in horticulture. Agronomy, 10(4), 597.
- Ikhajiagbe, B., Anoliefo, G. O., Olise, O. F., Rackelmann, F., Sommer, M., & Adekunle, I. J. (2020). RETRACTED: Major phosphorus in soils is unavailable, yet critical for plant development. Notulae Scientia Biologicae, 12(3), 500-535.
- Roy, A. (2021). Biofertilizers for agricultural sustainability: current status and future challenges. current trends in microbial biotechnology for sustainable agriculture, 525-553.
- Nagachandrabose, S. (2020). Management of potato cyst nematodes using liquid bioformulations of Pseudomonas fluorescens, Purpureocillium lilacinum and Trichoderma viride. Potato Research, 63(4), 479-496.
- Nagachandrabose, S. (2018). Liquid bioformulations for the management of root-knot nematode, Meloidogyne hapla that infects carrot. Crop Protection, 114, 155-161.
- Arias Mota, R. M., Juárez González, A., Heredia Abarca, G., & de la Cruz Elizondo, Y. (2022). Capacidad fosfato solubilizadora de hongos rizosféricos provenientes de cafetales de Jilotepec, Veracruz.
- Arias, R. M., Heredia Abarca, G., del Carmen Perea Rojas, Y., de la Cruz Elizondo, Y., & García Guzman, K. Y. (2023). Selection and characterization of phosphate-solubilizing fungi and their effects on coffee plantations. Plants, 12(19), 3395.
- Huilgol, S. N., Nandeesha, K. L., & Banu, H. (2022). Fungal biocontrol agents: an eco-friendly option for the management of plant diseases to attain sustainable agriculture in India. In Fungal diversity, ecology and control management(pp. 455-481). Singapore: Springer Nature Singapore.
- Danish, M., & Robab, M. I. (2024). Interactions of opportunistic fungi, plants, and plant parasitic nematodes. In Opportunistic Fungi, Nematode and Plant Interactions: Interplay and Mechanisms(pp. 1-10). Singapore: Springer Nature Singapore.
- Kumar, K. K. (2020). Fungi: A bio-resource for the control of plant parasitic nematodes. Agriculturally Important Fungi for Sustainable Agriculture: Volume 2: Functional Annotation for Crop Protection, 285-311.
- Nagachandrabose, S. (2017). Combined application of Pseudomonas fluorescens and Purpureocillium lilacinum liquid formulations to manage Globodera spp on potato. Journal of Crop Protection, 6(4), 529-537.
- Romero Fernández, A. D. J., Arias Mota, R. M., & Mendoza-Villarreal, R. (2019). Aislamiento y selección de hongos de suelo solubilizadores de fósforo nativos del estado de Coahuila, México. Acta botánica mexicana, (126).
- Guardiola-Márquez, C. E., Figueroa-Montes, M. L., Pacheco Moscoa, A., & Senés-Guerrero, C. (2021). Native microbial consortia improve maize shoot and root systems at early developmental stages in a seedbed assay. Scientia fungorum, 51.
- Seenivasan, N., Jayakumar, J., & Prabhu, S. (2020). Management of citrus nematode, Tylenchulus Semipenetrans through chemigation with liquid formulations of Purpureocillium Lilacinum and neem in acid lime orchards. Pest Management in Horticultural Ecosystems, 26(2), 254-261.
- Nagachandrabose, S., Jayaraman, J., & Somasundaram, P. (2022). Application of liquid bio-inoculants through a drip irrigation system to manage slow decline disease caused by Tylenchulus semipenetrans in acid lime trees. Phytoparasitica, 50, 243-253.
- Seenivasan, N. (2018). Effect of concomitant application of Pseudomonas fluorescens and Purpureocillium lilacinum in carrot fields infested with Meloidogyne hapla. Archives of Phytopathology and Plant Protection, 51(1-2), 30-40.
- Mostafa, I. (2023). Effect of some biocides and entomopathogenic nematodes on suppressing root-knot nematode. Al-Azhar Journal of Agricultural Research, 48(3), 319-330.
- Demera, A. C., Troya, T. A. E., Cedeño, J. A. F., Pincay, Í. A., López, K. M., & Montaño, O. J. (2024). Aislamiento y caracterización molecular de hongos rizosféricos solubizadores de fósforo asociados a los cultivos de tomate (Solanum lycopersicum) y arroz (Oriza sativa). Ciencia Latina Revista Científica Multidisciplinar, 8(6), 10974-10992.
- Ochieng, B. O. (2023). Management of Potato Cyst Nematodes Using Host Resistance, Organic Amendments and Biocontrol Agents in Nyandarua County, Kenya (Doctoral dissertation, University of Nairobi).
- Huilgol, S. N., Nandeesha, K. L., & Banu, H. (2022). Fungal Biocontrol Agents: An Eco-friendly 22. Fungal diversity, ecology and control management, 455.
- Saranya, S., & Patel, S. I. (2022) Biocontrol Potentiality and Plant Growth Promoting Ability of Nematophagous Fungi. Environment and Ecology 40:2426—2432, October—December 2022 ISSN 0970-0420
- Pastore, G. (2022). Solubilization of Phosphorus, Silicon, and Calcium and Abundance of Phosphorus-solubilizing Bacteria in Temperate Forest Soils(Doctoral dissertation).
TIPO B
- Gamboa‐Becerra, R., Monribot‐Villanueva, J. L., Carrión, G., Guerrero‐Analco, J. A., & Desgarennes, D. (2024). Exploring the Exo‐Metabolomes and Volatile and Non‐Volatile Compounds of Metarhizium Carneum and Lecanicillium Uredinophilum.Chemistry & Biodiversity, 21(12), e202401259
Hernández-Leal T, López-Lima D, Carrion G (2016) Effect of the application of nematophagous fungus Purpureocillium lilacinum over nutrients availability on agricultural soil and yield of Avena sativa. Rev. FCA Uncuyo, 48:1-12 http://revista.fca.uncu.edu.ar/images/stories/pdfs/2016-02/Cp01_Carrin.pdf
Citado por:
TIPO A
- Baron, N. C., de Souza Pollo, A., & Rigobelo, E. C. (2020). Purpureocillium lilacinum and Metarhizium marquandii as plant growth-promoting fungi. PeerJ, 8, e9005.
- Moreno-Salazar, R., Sánchez-García, I., Chan-Cupul, W., Ruiz-Sánchez, E., Hernández-Ortega, H. A., Pineda-Lucatero, J., & Figueroa-Chávez, D. (2020). Plant growth, foliar nutritional content and fruit yield of Capsicum chinense biofertilized with Purpureocillium lilacinum under greenhouse conditions. Scientia Horticulturae, 261, 108950.
- Luna-Fletes, J. A., Cruz-Crespo, E., Can-Chulim, Á., Chan-Cupul, W., Luna-Esquivel, G., García-Paredes, J. D., … & Mancilla-Villa, O. R. (2023). Biofertilizantes y sustratos orgánico-minerales en el cultivo de chile habanero. Revista fitotecnia mexicana, 46(2), 137-146.
- Swibawa, I. G., Fitriana, Y. U. Y. U. N., Suharjo, R., Susilo, F. X., & Rani, E. K. A. (2020). Morpho-molecular identification and pathogenicity test on fungal parasites of guava root-knot nematode eggs in Lampung, Indonesia. Biodiversitas, 21(3), 1108-1115.
- Valdovinos-Nava, W., Chan-Cupul, W., Hernández-Ortega, H. A., & Ruíz-Sánchez, E. (2020). Effects of biological and mineral fertilization on the growth, nutrition, and yield of Capsicum chinense under greenhouse conditions. Journal of Plant Nutrition, 43(15), 2286-2298.
- Luna-Fletes, J. A., Cruz-Crespo, E., Can-Chulim, Á., Chan-Cupul, W., Luna-Esquivel, G., García-Paredes, J. D., … & Mancilla-Villa, O. R. (2023). Biofertilizers and organic-mineral substrates in habanero pepper crop. Revista fitotecnia mexicana, 46(2), 137-146.
- Corrêa-Moreira, D., Costa, G., Pereira, S., Almeida, A., Laine, R., Teixeira, C., … & Oliveira, M. (2023). Purpureocillium lilacinum, a biocontrol agent: Bioprospecting of its antagonistic activity against pathogenic Sporothrix spp.
Lara-Posadas SV, Núñez-Sánchez AE, López-Lima D, Carrion G (2016) Plant parasitic nematodes associated with banana roots (Musa acuminata AA) in central Veracruz, México. Revista Mexicana de Fitopatología 34:116-130 DOI: 10.18781/R.MEX.FIT.1507-7 http://www.rmf.smf.org.mx/ojs/index.php/RMF/article/view/21/23
Citado por:
TIPO A
- Sousa, A. B. P., Rocha, A. D. J., Oliveira, W. D. D. S., Rocha, L. D. S., & Amorim, E. P. (2024). Phytoparasitic Nematodes of Musa spp. with Emphasis on Sources of Genetic Resistance: A Systematic Review. Plants, 13(10), 1299.
- Riascos-Ortiz, D., Mosquera-Espinosa, A. T., De Agudelo, F. V., de Oliveira, C. M. G., & Muñoz-Florez, J. E. (2020). An integrative approach to the study of Helicotylenchus (Nematoda: Hoplolaimidae) Colombian and Brazilian populations associated with Musa crops. Journal of nematology, 52, e2020-54.
- Subbotin, S. A., & Chitambar, J. J. (Eds.). (2018). Plant parasitic nematodes in sustainable agriculture of North America. Cham, Switzerland: Springer.
- Riascos-Ortiz, D., Mosquera-Espinosa, A. T., Varón de Agudelo, F., Oliveira, C. M. G., & Muñoz Flórez, J. E. (2022). Non-conventional management of plant-parasitic nematodes in musaceas crops. In Sustainable Management of Nematodes in Agriculture, Vol. 1: Organic Management(pp. 381-422). Cham: Springer International Publishing.
- del Prado-Vera, I. C., Franco-Navarro, F., & Godinez-Vidal, D. (2018). Plant parasitic nematodes and management strategies of major crops in Mexico. Plant Parasitic Nematodes in Sustainable Agriculture of North America: Vol. 1-Canada, Mexico and Western USA, 31-68.
- Riascos, D. H., Mosquera-Espinosa, A. T., de Agudelo, F. V., Rosa, J. M. O., Oliveira, C. M. G., & Muñoz, J. E. (2019). Morphological, biochemical, and molecular diagnostics of Meloidogyne spp. associated with Musa spp. in Colombia. Nematropica, 49(2), 229-245.
- Rea Reyes, J. D. (2020). Evaluación de la eficiencia de enraizadores en el incremento de la masa radical del banano (Musa AAA) y su efecto en las poblaciones de nemátodos(Bachelor’s thesis, BABAHOYO: UTB, 2020).
- Rendón Restrepo, L. F. (2020). Capacitación a productores sobre el nematodo fitoparásito Radopholus similis, en cultivos de musáceas y su respectivo biocontrolador, Paecilomyces lilacinus, en el municipio de Andes-Antioquia, Colombia.
- Díaz, E. P., Yzquierdo, G. A. R., Vásquez, M. B., Lara, D. A. C., Quijano, E. B., Gutiérrez, S. L. C., … & Londoño, C. F. C. (2024). El cultivo de plátano (Musa AAB): una alternativa tecnológica para el departamento del Huila.
- Rodríguez-Zamora, M., Treminio-Suarez, L., Gómez-Martinez, J., López-Somarriba, J., & Larios Gonzáles, R. C. (2024). Nematodos fitoparásitos asociados al cultivo de guayaba (Psidium guajava L.) en parcela manejada con enfoque agroecológico. La Calera, 24(42), 15-20.
- Cando Tuarez, C. G. (2019). “Efectos del trinchado de raíces de banano (Musa AAA) sobre la masa radical y la densidad poblacional de nemátodos”(Bachelor’s thesis, Babahoyo: UTB, 2019).
- FERNANDO, C. M. D. (2024). EFECTO DEL HONGO ANTAGONISTA SOBRE LA POBLACIÓN DE NEMATODOS EN EL CULTIVO DE BANANO, MACHALA-EL ORO(Doctoral dissertation, UNIVERSIDAD AGRARIA DEL ECUADOR).
- Arrieta Almanza, A. S. (2023). Condiciones edafológicas bioindicadoras asociadas a nematodos fitopatógenos en el cultivo de plátano en el departamento de Córdoba.
- Abad, P., & Karol, L. (2022). Densidad poblacional y determinación de nematodos fitoparásitos asociados al cultivo de vid (Vitis vinífera L.) en el Medio Piura–Perú.
- Salazar Zhunio, E. E. (2024). Evaluación de tres extractos naturales en el manejo de poblaciones de nemátodos fitófagos en banano (Musa sapientum L) variedad Filipino a nivel de fincas convencionales de Machala–El Oro.
- Quispe, L., & Marilia, J. (2023). Identificación de nemátodos fitoparásitos en el cultivo de café (Coffea arábica L.) en el Centro Poblado de Chipaco Monzón-Huánuco 2023.
- Ruiz Jiménez, R. A. (2022). Beneficios del uso de las diatomeas para reducir las poblaciones de nemátodos Radopholus similis y Meloidogyne spp. en el cultivo de Banano(Bachelor’s thesis, BABAHOYO: UTB, 2022).
- Romero, A., Ocampo, E., Delgado, J., Salas, E., Guillen, C., & Araya, M. Control de Radopholus similis en banano (Musa AAA) en Chiapas, México. Acorbat Revista de Tecnología y Ciencia 1(1): 60 https://doi.org/10.62498/AR TC.2460
- Riascos Ortiz, D. (2019). Caracterización morfológica y molecular de fitonematodos asociados a Musa spp., en el Valle del Cauca y el eje cafetero(Doctoral dissertation).
- Jara Castagne, J. C. (2018). Densidad poblacional e identificación de nematodos fitoparásitos asociados al cultivo del Café (Coffea arábica l.), en el sector de la divisoria, provincia de Padre Abad, Ucayali. Tesis https://repositorio.unu.edu.pe/items/e65e7145-2a22-4997-b52c-ab0b8f9c97ee
- Tharani, G., Alagesan, A., Jawahar, S., Saranya, S., Balakrishnan, A., Padmanaban, B., & Manivannan, S. (2021). Distribution and molecular characterization of Helicotylenchus multicinctus (Tylenchida: Hoplolaimidae) from banana roots in Namakkal region, Tamil Nadu. Int J Bot Stud, 6, 965-971.
- Montero Bricio, P. F. (2022). Manejo integrado del nematodo Pratylenchus coffeae en el cultivo de banano musa AAA(Bachelor’s thesis, BABAHOYO: UTB, 2022).
- CHICA, M., & ELÍ, J. (2018). FERTILIZACIÓN CON NITRÓGENO Y POTASIO: SU INFLUENCIA EN LAS POBLACIONES DE PLAGAS PRINCIPALES DEL PLÁTANO (MUSA AAB) CV. CURARE(Doctoral dissertation).
- Bravo Vergara, G. C., & Zambrano Zambrano, T. E. (2024). Control de nematodos en banano (Musa x paradisiaca L), con bioestimulante orgánico “BRUGNEM” como práctica de responsabilidad ambiental y social (Bachelor’s thesis, Calceta: ESPAM MFL).
Lopez-Lima D, Sánchez-Nava P, Carrión G, Espinosa de los Monteros A, Villain L (2015) Corky-root symptoms for coffee in central Veracruz are linked to the root-knot nematode Meloidogyne paranaensis, a new report for Mexico. European Journal of Plant Pathology.141:623-629 https://doi.org/10.1007/s10658-014-0564-9
Citado por:
TIPO A
- Trejo-Aguilar, D. (2018). Efecto de la micorriza arbuscular en plantas de café (Coffea arabica L.) Infectadas por el nematodo de la corchosis de la raíz. Agro Productividad, 11(4).
- Saikai, K. K., Oduori, C., Situma, E., Njoroge, S., Murunde, R., Kimenju, J. W., … & Coyne, D. (2023). Biocontrol-based strategies for improving soil health and managing plant-parasitic nematodes in coffee production. Frontiers in Plant Science, 14, 1196171.
- Subbotin, S. A., & Chitambar, J. J. (Eds.). (2018). Plant parasitic nematodes in sustainable agriculture of North America. Cham, Switzerland: Springer.
- Machado, A. C., SILVA, S. D., & Ferraz, L. C. C. B. (2019). Métodos em nematologia agrícola. Piracicaba: Sociedade Brasileira de Nematologia, 184.
- del Prado-Vera, I. C., Franco-Navarro, F., & Godinez-Vidal, D. (2018). Plant parasitic nematodes and management strategies of major crops in Mexico. Plant Parasitic Nematodes in Sustainable Agriculture of North America: Vol. 1-Canada, Mexico and Western USA, 31-68.
- Santos, M. F. A., Correa, V. R., Peixoto, J. R., Mattos, V. S., Silva, J. G. P., Moita, A. W., … & Carneiro, R. M. D. G. (2018). Genetic variability of Meloidogyne paranaensis populations and their aggressiveness to susceptible coffee genotypes. Plant Pathology, 67(1), 193-201.
- Goulart, R. D. R., Terra, W. C., Salgado, S. M. D. L., Alves, J. D., Campos, V. P., Fatobene, B. J. D. R., … & Oliveira, R. D. A. D. L. (2019). Meloidogyne paranaensis and M. exigua alter coffee physiology. Nematology, 21(5), 459-467.
- da Silva, A. A., dos Reis Fatobene, B. J., Alves, P. S., Azevedo, L. M., Santiago, W. D., de Oliveira Santos, M., … & de Lima Salgado, S. M. (2024). Elucidating bioactive compounds and antioxidant enzymes in Coffea arabica for enhanced defense against Meloidogyne paranaensis. European Journal of Plant Pathology, 1-18.
- Rezende, R. M., Andrade, V. T., Salgado, S. M., de Rezende, J. C., Neto, T. G., & Carvalho, G. R. (2019). Arabica coffee progenies with multiple resistant to root-knot nematodes. Euphytica, 215, 1-9.
- de Almeida, S. F., dos Santos, M. F. A., Stefanelo, D., de Barros Souza, C. F., Cares, J. E., & Carneiro, R. M. (2023). Comparison between enzymatic and molecular diagnostic techniques for identification of Meloidogyne spp. on coffee in Brazil and restricted occurrence of M. izalcoensis. Physiological and Molecular Plant Pathology, 128, 102156.
- Alves, P. S., Fatobene, B. J. D. R., Salgado, S. M. D. L., Gomes, A. C., Campos, V. P., Carneiro, R. M., & de Souza, J. T. (2019). Early and late responses characterise the resistance derived from Ethiopian wild germplasm ‘Amphillo’of Coffea arabica to Meloidogyne paranaensis. Nematology, 21(8), 793-804.
- Santos, M. F., Mattos, V. S., Gomes, A. C. M., Monteiro, J. M., Souza, D. A., Torres, C. A., … & Carneiro, R. M. (2020). Integrative taxonomy of Meloidogyne paranaensis populations belonging to different esterase phenotypes. Nematology, 22(4), 453-468.
- López-García, F. J., & Cruz-Castillo, J. G. (2019). Yield of Coffea arabica grafted onto Coffea canephora in soils infested with nematodes in Mexico. SBICafé. http://dx.doi.org/10.25186/cs.v14i3
- Castillo-García, H. (2024). Detección molecular rápida del nematodo agallador Meloidogyne incognita en raíces de café (Coffea arabica L.). Revista Agrotecnológica Amazónica, 4(2), e737-e737.
- Carvalho, A. M. D., Salgado, S. M. D. L., Mendes, A. N. G., Pereira, A. A., Botelho, C. E., Tassone, G. A. T., & Lima, R. R. D. (2017). Caracterização de genótipos de Coffea arabica L. em área infestada pelo nematoide Meloidogyne paranaensis. SBICafe. http://www.sbicafe.ufv.br:80/handle/123456789/8253
- de Lima Salgado, S. M., dos Reis Fatobene, B. J., Mendes-Resende, M. P., Terra, W. C., Silva, V. A., & de Melo Lima, I. (2020). Resistance of Conilon coffee cultivar Vitoria Incaper 8142 to Meloidogyne paranaensis under field conditions. Experimental Agriculture, 56(1), 88-93.
- Fatobene, B. J. D. R., Gonçalves, W., Oliveira, C. M. G., & Guerreiro Filho, O. (2019). Clonal Arabica coffee resistant to Meloidogyne paranaensis and damage threshold on plants development. Scientia Agricola, 76(3), 227-231.
- Torres-López, J., López-Buenfil, J. A., Carrillo-Fasio, J. A., & Tovar-Pedraza, J. M. (2022). First report of the root-knot nematode Meloidogyne enterolobii on coffee in Mexico. Indian Phytopathology, 75(3), 915-917.
- Santos, H. F., Salgado, S. M. D. L., Mendes, A. N. G., Carvalho, A. M. D., Botelho, C. E., & Andrade, V. T. (2018). Initial productive performance of coffee progenies in an area infested by Meloidogyne paranaensis. SBICafe. http://www.coffeescience.ufla.br/index.php/Coffeescience/article/view/1495
- Cid del Prado-Vera, I., Magallanes-Tapia, M. A., Velasco-Azorsa, R., & Pérez-Espíndola, A. (2022). Organic Amendments and Other Strategies for Management of Meloidogyne spp. and Nacobbus aberrans in Horticultural and Orchard Crops: The Mexican Experience. Sustainable Management of Nematodes in Agriculture, Vol. 1: Organic Management, 343-379.
- Subbotin, S. A., & Burbridge, J. (2022). Report of the Parana coffee root-knot nematode, Meloidogyne paranaensis (Tylenchida: Meloidogynidae) from Caladium sp. in the continental United States. Journal of Nematology, 53, e2021-108.
- Silva, A. F. D. (2023). Herança da resistência de acesso ao cafeeiro Amphillo a Meloidogyne paranaensis. SBICafé. http://www.sbicafe.ufv.br/handle/123456789/14697
- Sera, G. H., Carvalho, F. G., de B Fonseca, I. C., Shigueoka, L. H., da Silva, S. A., da Silva, A., & Ito, D. S. (2020). Resistance to nematode’Meloidogyne paranaensis’ in arabica coffee genotypes introgressed with’Coffea liberica’. Australian Journal of Crop Science, 14(8), 1236-1241.
- Sera, G. H., Fernandes, L. E., Fonseca, I. C. D. B., Ito, D. S., Shigueoka, L. H., Junior, V. M., … & Pereira, A. A. (2021). Intermediate resistance to nematode’Meloidogyne paranaensis’ in Hibrido de Timor coffee genotypes. Australian Journal of Crop Science, 15(5), 628-633.
- TERRA, W., LIMA, I. D. M., SALGADO, S. D. L., FATOBENE, B. D. R., RESENDE, M., & SILVA, V. (2019). Resistance of Conilon coffee cultivar Vitoria Incaper 8142 to Meloidogyne paranaensis under field conditions.Memória Técnica do Incaper http://biblioteca.incaper.es.gov.br/digital/handle/123456789/3658
- Stefanelo, D. R. (2019). Primeiro relato de Meloidogyne izalcoensis no Brasil e avaliação da resistência a essa espécie e a M. exigua em genótipos de Coffea spp.SBICafé. http://www.sbicafe.ufv.br/handle/123456789/14403
- Beristain-Moreno, M. E., Ramírez-Martínez, A., Sósol-Reyes, D., & Osorio-Acosta, F. (2024). PERCEPTION OF SMALL PRODUCERS CONCERNING THE EFFECTS OF CLIMATE CHANGE ON FLOWERING AND PESTS IN COFFEE AGROECOSYSTEMS: A CASE STUDY. Tropical and Subtropical Agroecosystems, 27(2).
Lopez-Lima D, Carrion G, Núñez-Sánchez AE (2014) Isolation of fungi associated with Criconemoides sp. and their potential use in the biological control of ectoparasitic and semiendoparasitic nematodes in sugar cane. Australian Journal of Crop Science 8:389-396 http://www.cropj.com/carrion_3_8_2014_389_396.pdf
Citado por:
TIPO A
- Moreno-Gavíra, A., Huertas, V., Diánez, F., Sánchez-Montesinos, B., & Santos, M. (2020). Paecilomyces and its importance in the biological control of agricultural pests and diseases. Plants, 9(12), 1746.
- Hawar, S. N., Taha, Z. K., Hamied, A. S., Al-Shmgani, H. S., Sulaiman, G. M., & Elsilk, S. E. (2023). Antifungal activity of bioactive compounds produced by the endophytic fungus Paecilomyces sp.(JN227071. 1) against Rhizoctonia solani. International Journal of Biomaterials, 2023(1), 2411555.
- Kiriga, A. W., Haukeland, S., Kariuki, G. M., Coyne, D. L., & Beek, N. V. (2018). Effect of Trichoderma spp. and Purpureocillium lilacinum on Meloidogyne javanica in commercial pineapple production in Kenya. Biological Control, 119, 27-32.
- Panyasiri, C., Supothina, S., Veeranondha, S., Chanthaket, R., Boonruangprapa, T., & Vichai, V. (2022). Control efficacy of entomopathogenic fungus Purpureocillium lilacinum against chili thrips (Scirtothrips dorsalis) on chili plant. Insects, 13(8), 684.
- Toju, H., & Tanaka, Y. (2019). Consortia of anti-nematode fungi and bacteria in the rhizosphere of soybean plants attacked by root-knot nematodes. Royal Society Open Science, 6(3), 181693.
- Solano Castillo, T. F., Castillo Ávila, M. L., Medina Medina, J. V., & del Pozo Núñez, E. M. (2014). Efectividad de hongos nematófagos sobre Meloidogyne incognita (Kofoid y White) Chitwood en tomate en condiciones de campo, Loja, Ecuador. Revista de Protección Vegetal, 29(3), 192-196.
- Das, M. M., Herrera, R. R., Haridas, M., & Sabu, A. (2022). Purpureocillium lilacinum: A promising bionematicide for sustainable agriculture. In Biocontrol systems and plant physiology in modern agriculture (pp. 61-91). Apple Academic Press.
- Sabri, K., Mokabli, A., Mokrini, F., Khayi, S., Laasli, S. E., Smaha, D., … & Hadj-Sadok, D. N. (2022). Diversity of nematophagous fungi associated with vegetable crops in Northern Algeria. Archives of Phytopathology and Plant Protection, 55(4), 405-419.
- Rigobelo, E. C. (2025). Endophytic Filamentous Fungi as Sources of Metabolites for Agricultural Applications. In Fungal Metabolites for Agricultural Applications: Biostimulation and Crop Protection by Fungal Biotechnology (pp. 1-20). Cham: Springer Nature Switzerland.
- Ibrahim, A. Y. (2023). Population of Soil Nematodes in The Treatment of Brassicaceae Plant Waste. Jurnal Fitopatologi Indonesia, 19(1), 19-29.
- Kiriga, A. W. (2018). Occurrence of plant parasitic nematodes in commercial pineapple fields and effect of biocontrol agents on Meloidogyne species in Kenya (Doctoral dissertation, Kenyatta University).
- Nyambura, K. A. (2021). Efficacy of Indigenous Antagonistic Fungi against Root-Knot Nematodes on Tomato in Kirinyaga County, Kenya (Doctoral dissertation, Kenyatta University).
- Ibrahim, A. Y. (2023). Populasi Nematoda Tanah pada Perlakuan Limbah Tanaman Brassicaceae. Jurnal Fitopatologi Indonesia, 19(1).
Lopez-Lima D, Sánchez-Nava P, Carrión G, Núñez-Sánchez AE (2013) Eighty-nine percent reduction of potato cyst nematode population using biological control and rotation. Agronomy for Sustainable Development, 33:425–431 https://doi.org/10.1007/s13593-012-0116-7
Citado por:
TIPO A
- Moreno-Gavíra, A., Huertas, V., Diánez, F., Sánchez-Montesinos, B., & Santos, M. (2020). Paecilomyces and its importance in the biological control of agricultural pests and diseases. Plants, 9(12), 1746.
- Mhatre, P. H., Divya, K. L., Venkatasalam, E. P., Watpade, S., Bairwa, A., & Patil, J. (2022). Management of potato cyst nematodes with special focus on biological control and trap cropping strategies. Pest Management Science, 78(9), 3746-3759.
- Dandurand, L. M., & Knudsen, G. R. (2016). Effect of the trap crop Solanum sisymbriifolium and two biocontrol fungi on reproduction of the potato cyst nematode, Globodera pallida. Annals of Applied Biology, 169(2), 180-189.
- Tkachenko, O. V., Evseeva, N. V., Boikova, N. V., Matora, L. Y., Burygin, G. L., Lobachev, Y. V., & Shchyogolev, S. Y. (2015). Improved potato microclonal reproduction with the plant growth-promoting rhizobacteria Azospirillum. Agronomy for Sustainable Development, 35, 1167-1174.
- Bellone, D., Gardarin, A., Valantin-Morison, M., Kergunteuil, A., & Pashalidou, F. G. (2023). How agricultural techniques mediating bottom-up and top-down regulation foster crop protection against pests. A review. Agronomy for Sustainable Development, 43(1), 20.
- Srivastava, S., Patel, J. S., Singh, H. B., Sinha, A., & Sarma, B. K. (2015). Streptomyces rochei SM 3 induces stress tolerance in chickpea against Sclerotinia sclerotiorum and NaCl. Journal of Phytopathology, 163(7-8), 583-592.
- Asyiah, I. N., Mudakir, I., Hoesain, M., Pradana, A. P., Djunaidy, A., & Sari, R. F. (2020). Consortium of endophytic bacteria and rhizobacteria effectively suppresses the population of Pratylenchus coffeae and promotes the growth of Robusta coffee. Biodiversitas Journal of Biological Diversity, 21(10).
- Saravanan, R., Saranya, N., Ragapriya, V., Rajaswaminathan, V., Kavino, M., Krishnamoorthy, A. S., & Nakkeeran, S. (2022). Nematicidal property of clindamycin and 5-hydroxy-2-methyl furfural (HMF) from the banana endophyte Bacillus velezensis (YEBBR6) against banana burrowing nematode radopholus similis. Indian Journal of Microbiology, 62(3), 364-373.
- Subbotin, S. A., & Chitambar, J. J. (Eds.). (2018). Plant parasitic nematodes in sustainable agriculture of North America. Cham, Switzerland: Springer.
- del Prado-Vera, I. C., Franco-Navarro, F., & Godinez-Vidal, D. (2018). Plant parasitic nematodes and management strategies of major crops in Mexico. Plant Parasitic Nematodes in Sustainable Agriculture of North America: Vol. 1-Canada, Mexico and Western USA, 31-68.
- Tankam Chedjou, I., Montarry, J., Fournet, S., & Hamelin, F. M. (2024). Combining Masculinizing Resistance, Rotation, and Biocontrol to Achieve Durable Suppression of the Potato Pale Cyst Nematode: A Model. Evolutionary Applications, 17(9), e70012.
- Jesus, F. N., Damasceno, J. C., Barbosa, D. H., Malheiro, R., Pereira, J. A., & Soares, A. C. (2015). Control of the banana burrowing nematode using sisal extract. Agronomy for Sustainable Development, 35, 783-791.
- Moosavi, M. R. (2020). Efficacy of microbial biocontrol agents in integration with other managing methods against phytoparasitic nematodes. Management of Phytonematodes: Recent Advances and Future Challenges, 229-258.
- Sankar, C., Soorianathasundaram, K., Kumar, N., Karunakaran, G., & Sivakumar, M. (2017). Induction of resistant to Radopholus similis and defence related mechanism in susceptible and resistance banana hybrids infected with Radopholus similis.
- Chiuta, N. E., Pofu, K. M., & Mashela, P. W. (2021). Influence of pre-infectional and post-infectional nematode resistance mechanisms in crop rotation sequences on population densities of Meloidogyne species and soil health. Thesis (Ph. D. Agriculture (Plant Production)) — University of Limpopo, 2021
- Abbasi, K., Zafari, D., & Wick, R. (2017). Evaluation of chitinase enzyme in fungal isolates obtained from golden potato cyst nematode (Globodera rostochiensis). Zemdirbyste-Agriculture, vol. 104, No. 2 (2017), p. 179–184. DOI 10.13080/z-a.2017.104.023
- Chiuta, N. E., Pofu, K. M., & Mashela, P. W. (2021). Nematode resistance technologies for managing thermophilic Meloidogyne species on potato (Solanum tuberosum): A review. Research on Crops, 22(2), 369-379.
- Ashraf, S., Nakkeeran, S., Saranya, N., Jothi, G., Banu, J. G., Mohankumar, S., … & Nayana, R. K. (2022). Computational Analysis Reveals 10‐acetyl‐9, 10‐dihydroacridine as a Novel Biomolecule From Bacillus licheniformis (MW301654) Possessing Nematicidal Property Against Banana Root Knot Nematode Meloidogyne incognita. In Biological Forum—An International Journal (Vol. 14, No. 3, pp. 363-370).
- Ochieng, B. O. (2023). Management of Potato Cyst Nematodes Using Host Resistance, Organic Amendments and Biocontrol Agents in Nyandarua County, Kenya (Doctoral dissertation, University of Nairobi).
- Kamai, N. W. (2021). Management of Potato Cyst (Globodera Rostochiensis W.) Nematode using Host Plant Resistance, Chicken Manure and Datura Stramonium L. Extracts in Nakuru County, Kenya (Doctoral dissertation, Egerton University).
- Abbasi, K., & Zafari, D. (2021). First report of some fungal species on the potato golden cyst nematode, Globodera rostochiensis in Iran. Journal of Vegetables Sciences, 4(2), 53-66.
- Bhatta, B. (2021). Globodera pallida Control Using Brassica juncea Seed Meal Extract and the Trap Crop Solanum sisymbriifolium (Master’s thesis, University of Idaho).
- Mbiyu, M. W. (2023). Diversity, Factors Influencing Spread and Population Build Up of Potato Cyst Nematodes and Potential of Phytochemicals in Their Management in Kenya (Doctoral dissertation, University of Nairobi).
- Yanzhi, M. A. O., Ruochao, N. I. U., Jiying, S. U. N., Fanxiang, M. I. N., Shuai, Y. A. N. G., Wenzhong, W. A. N. G., … & Mei, G. U. O. (2022). Occurrence and control of nematode diseases in potato (Solanum tuberosum L.). Soils and Crops, 11(1), 104-114.
- Rodríguez Cordero, Á. E. (2019). Evaluación de prácticas de manejo integrado y convencional del nematodo de quiste de la papa (Globodera pallido Stone 1973), en la Estación Experimental Carlos Durán en Tierra Blanca de Cartago. Universidad Nacional, Costa Rica
- Franke, K., Gryń, G., Nowakowski, M. M., Nowakowski, M., & Skibowska, B. (2019). Effect of some root leachates and dry extracts of Brassicaceae plants on potato cyst nematode populations. Russian Journal of Nematology, 27(2), 123-130.
- Pavan, P. R., Kavitha, C., Paramaguru, P., Manoranjitham, S. K., & Vetrivelkalai, P. Variations in Biochemical Constituents for Tolerance to Nematode and Fusarium wilt Complex in Select Banana Hybrids. Current Journal of Applied Science and Technology 40(17): 61-67
- Abbasi, K., Wick, R., & Zafari, D. (2020). Chitinase activity of biocontrol fungi cultured from the golden potato cyst nematode, Globodera rostochiensis. Pakistan Journal of Nematology, 38(1).
- Wick, R. (2020). Chitinase Activity of Biocontrol Fungi Isolated from the Golden Potato Cyst Nematode and their Antagonist Potential. EC Agriculture, 6, 05-15.
- Soleri, D., Cleveland, D. A., & Smith, S. E. (2019). Starting and Caring for Garden. Food Gardens for a Changing World, 149.
- Байдаулетова, Н. Н. (2021). ОСОБЕННОСТИ МЕТОДА МИКРОКЛОНАЛЬНОГО РАЗМНОЖЕНИЯ СПИРЕИ. Global Science and Innovations: Central Asia (см. в книгах), 2(3), 8-11.
- Santos, M., Cavalcante, J., Cristina, A., Nascimento, F., & da Conceição, F. (2016). ATIVIDADE NEMATICIDA DE RESÍDUO LÍQUIDO DE SISAL FERMENTADO EM BANANEIRA. Cadernos Macambira, 1(2).
- Franke, K., Gryn, G., Nowakowski, M. M., Nowakowski, M., & Skibowska, B. (2019). Влияние некоторых корневых экссудатов и сухих экстрактов растений Brassicaceae на популяции цистообразующей картофельной нематоды. Russian Journal of Nematology, 27(2), 123-130.
- TIRCHI, N. (2015). Etude de la bioécologie des nématodes à kystes du genre Globodera inféodés à la culture de pomme de terre dans la plaine du Haut-Chéliff (Doctoral dissertation, ENSA).
Núñez-Camargo MC, Carrión G, Núñez-Sánchez AE, López-Lima JD (2012) Assessment of in vitro pathogenicity of Purpureocillium lilacinum on Globodera rostochiensis. Tropical and Subtropical Agroecosystems, 15:S126-S134. http://www.revista.ccba.uady.mx/ojs/index.php/TSA/article/view/1746/777
Citado por:
TIPO A
- Viera, W., Noboa, M., Bermeo, J., Báez, F., & Jackson, T. (2018). Quality parametres of four types of formulations based on Trichoderma asperellum and Purpuricillium lilacinum. Enfoque UTE, 9(4), 145-153.
- Schapovaloff, M. E., Alves, L. F. A., Fanti, A. L., Alzogaray, R. A., & López Lastra, C. C. (2014). Susceptibility of adults of the cerambycid beetle Hedypathes betulinus to the entomopathogenic fungi Beauveria bassiana, Metarhizium anisopliae, and Purpureocillium lilacinum. Journal of Insect Science, 14(1), 127.
- Castro-Bustos, D., Acosta-Urdapilleta, M., Téllez-Téllez, M., Hernández-Velázquez, V. M., López-Martínez, V., Villegas-Torres, O. G., … & Martínez-Fernández, E. (2024). Diversidad y nuevos registros de Cordyceps sl (Hypocreales: Ascomycota), hongos patógenos de artrópodos del estado de Morelos, México. Acta botánica mexicana, (131).
- Paris, M. (2017). Diversidad y distribución de hongos endófitos en endemismos canarios. Trabajo de grado. Universidad de La Laguna https://riull.ull.es/xmlui/bitstream/handle/915/6750/Diversidad%20y%20distribucion%20de%20hongos%20endofitos%20en%20endemismos%20canarios.pdf
- García-Velasco, R., & Chavarro-Carrero, E. A. (2020). Purpureocillium lilacinum (Hypocreales: Ophiocordycipitaceae) como biocontrolador de Nacobbus aberrans (Tylenchida: Pratylenchidae) y Meloidogyne incognita (Tylenchida: Meloidogyne) en tomate cv. río grande. Acta Agrícola y Pecuaria, 6(1).
- Gortari, M. C., & Hours, R. A. (2019). In vitro antagonistic activity of Argentinean isolates of Purpureocillium lilacinum on Nacobbus aberrans eggs. Current Research in Environmental and Applied Mycology Doi 10.5943/cream/9/1/14