UNIVERSIDAD VERACRUZANA (Maestría en Ciencias en Micro y Nanosistemas)

DATOS GENERALES

Nombre del Curso

Física del Estado Sólido

PRESENTACIÓN GENERAL

Justificación

Esta Experiencia Educativa se enfoca en revisar detalladamente los fundamentos físicos más elementales para comprender las características físicas de los materiales sólidos a nivel atómico, se identifican las estructuras atómicas y su relación con las propiedades macroscópicas como la dureza, transparencia óptica, conductividad eléctrica y térmica, entre otras. Es fundamental para el entendimiento de las propiedades que presentan los materiales a escalas micro y nanométricas.

OBJETIVOS GENERALES DEL CURSO

Proporcionar un entendimiento básico de los aspectos fundamentales y aplicaciones del comportamiento del electrón dentro de los sólidos, especialmente en cristales así como las propiedades electrónicas de diferentes materiales (metales, semiconductores, dieléctricos, materiales magnéticos y superconductores), basados en la aplicación de los principios básicos de la física clásica y cuántica.

UNIDADES, OBJETIVOS PARTICULARES Y TEMAS

UNIDAD 1

Estructura atómica

Objetivos particulares

La función de esta unidad es introducir al alumno en los principales tipos de materiales que existen y en el conocimiento de sus propiedades en general, de los que cualquier ingeniero puede disponer en la práctica. Comprender la naturaleza de sus propiedades en base al conocimiento de los materiales a escala micro y nanométrica.

Temas

- 1.1.- Introducción a la física del estado sólido
- 1.2.- Estructura electrónica del átomo
- 1.3.- Tabla periódica
- 1.4.- Enlaces en sólidos
- 1.5.- Materiales iónicos, covalentes y metálicos

UNIDAD 2

Propiedades cristalinas de los sólidos

Objetivos particulares

El alumno tendrá la capacidad de entender el significado de diagrama de fase y de poder determinar cuándo una fase es estable. También comprenderá como se inicia una transformación de fase y se entenderá el concepto de nucleación.

Temas

- 1.1.- Introducción a sólidos amorfos y cristalinos
- 1.2.- Redes y sistemas cristalinos
- 1.3.- Direcciones y planos cristalinos
- 1.4.- Defectos puntuales, lineales y superficiales
- 1.5.- Materiales cristalinos iónicos y covalentes
- 1.6.- Grupos puntuales
- 1.7.- Espacio reciproco y zona de Brillouin
- 1.8.- Difracción de rayos X

UNIDAD 3

Fonónes y propiedades térmicas

Objetivos particulares

Revisar los fundamentos físicos involucrados en la interacción de los materiales con la radiación electromagnética y su medio ambiente.

Temas

- 1.1.- Introducción a la vibración de los átomos
- 1.2.- Interacción de losátomos en un cristal
- 1.3.- Movimiento armónico en una cadena lineal monoatómica
- 1.4.- Movimiento armónico en una cadena lineal diatómica
- 1.5.- Movimiento armónico en una cadena tredimensional
- 1.6.- Fonónes
- 1.7.- Espectrosocopía Raman
- 1.8.- Velocidad del sonido
- 1.9.- Expansion térmica
- 1.10.-Conductividad térmica

UNIDAD 4

Estructura de bandas de energía en cristales

Objetivos particulares

Revisar los fundamentos físicos que determinan el comportamiento electrónico y óptico de los materiales sólidos cristalinos

Temas

- 1.1.- Introducción al concepto de bandas de energía
- 1.2.- Electrones en cristales
- 1.3.- Densidad de estados
- 1.4.- Estructura de bandas en semiconductores
- 1.5.- Estructura de bandas en metales

UNIDAD 5

Dispositivos semiconductores

Objetivos particulares

Identificar las propiedades físicas más importantes de los materiales semiconductores que son aprovechadas para el desarrollo de dispositivos semiconductores

Temas

- 1.1.- Técnicas de fabricación de semiconductores
- 1.2.- Homouniones y heterouniones P-N, P-N-P, N-P-N
- 1.3.- Celdas solares fotovoltaicas
- 1.4.- Diodos emsiores de luz
- 1.5.- Láseres de estado sólido
- 1.6.- Transistores

TÉCNICAS DIDÁCTICAS Y ASPECTOS METODOLÓGICOS

Discusión de problemas

Revisión de videos

Lectura e interpretación de textos.

Aprendizaje basado en problemas.

Elaboración de tareas

EQUIPO NECESARIO

Materiales didácticos:

Libros

Revistas científicas

Artículos de investigación

Pintarrón

Plumones

Borrador

Recursos didácticos:

Aula de cómputo

Software especializado

Proyector

Computadora

Internet

Biblioteca virtual

Eminus

BIBLIOGRAFÍA

- 1) Ciencia e Ingeniería de los Materiales, Askeland Donald R., Fulay Pradeep P., Wright Wendelin J., Cengage Learning, 2017.
- 2) Materials Science and Engineering, An Introduction. William D. Callister, Jr. & David G. Rethwisch, Wiley 9th ed. 2014.

- 3) Fundamentals of Solid State Engineering, Manijeh Razeghi, Springer 4th Ed. 2019.
- 4) Solid State Physics: Problems and Solutions, Lázló Mihály, Michael C. Martin, Wiley-Interscience, 1996.
- 5) Introduction to Solid State Physics, Charles Kittel, Wiley, 2004.
- 6) Advanced Solid State Physics, Philip Phillips, Westview Press, 2002.
- 7) Solid State Physics, Neil W. Ashcroft, N. David Mermin, Brooks Cole, 2000.
- 8) Solid State and Semiconductor Physics, J. P. McKelvey, Harper & Row, 1995.
- 9) Electronic Structure and the Properties of Solids (The Physics of the Chemical Bond), Walter A. Harrison, Dover Publications Inc., 1989.

REFERENCIAS ELECTRÓNICAS (Última fecha de acceso:)

http://solidstate.physics.sunysb.edu/teach/intlearn/

http://www.physics.udel.edu/~bnikolic/teaching/phys624/lectures.html

http://sky.net.co/physics/solido.html

http://jas.eng.buffalo.edu/

http://www.martindalecenter.com/Calculators3A_2_S-Phy.html

http://de.physnet.net/PhysNet/solidstate.html

(29 de septiembre 2020)

Otros Materiales de Consulta:

EVALUACIÓN			
SUMATIVA			
Aspecto a Evaluar	Forma de Evaluación	Evidencia	Porcentaje
Exámenes	Parcial	Exámenes resueltos correctamente.	50%
Tareas	Ejercicios prácticos relacionados con los temas	Ejercicios resueltos correctamente y entregados en tiempo y forma.	30%
Exposición oral	Exposición oral de una investigación documental	Presentación en power point o software similar	20%
Total			100%