Programa de estudio de experiencia educativa

I. Área académica

Área Académica Técnica

2.-Programa educativo

Ingeniería Naval

3.- Campus

Veracruz-Boca del río

4.-Dependencia/Entidad

Facultad de Ingeniería Mecánica y Ciencias Navales

E Cádica	6Nombre de la experiencia	7 Area de f	ormación
5 Código	educativa	Principal	Secundaria
	Termodinámica	D	No aplica

8.-Valores de la experiencia educativa

Créditos	Teoría	Práctica	Total horas	Equivalencia (s)
8	3	2	75	Termodinámica

9.-Modalidad

10.-Oportunidades de evaluación

Curso	ABGHJK=Todas
-------	--------------

II.-Requisitos

Pre-requisitos	Co-requisitos
Ninguno	Ninguno

12.-Características del proceso de enseñanza aprendizaje

Individual / Grupal	Máximo	Mínimo
Individual	40	10

13.-Agrupación natural de la Experiencia educativa

14.-Proyecto integrador

Academia de Ingeniería Marina	Ingeniería Marina
-------------------------------	-------------------

15.-Fecha

Elaboración	Modificación	A probación
Enero 2020	Enero 2020	Junio 2020

16.-Nombre de los académicos que participaron

Dr. Mariano Azzur Hernández Contreras

Dr. José Hernández Hernández

MsC. Ranulfo Hernández Valdes

Ing. Ricardo de Jesús Reyes Rodríguez

M.I.A. Edna Dolores Rosas Huerta

Ing. Benjamín Ross Benítez

Ing. Esperanza Salazar Martínez

M.I.A. Mariana Silva Ortega

M.T.E. Aguivar Olidel A. Vite Flores

17.-Perfil del docente

Ingeniero o Licenciatura en área afín a la experiencia educativa, preferentemente con maestría en ciencias de la Ingeniería o afín y/o preferentemente con Doctorado en Ciencias de la Ingeniería o afín y/o con experiencia docente en instituciones de nivel superior.

18.-Espacio

19.-Relación disciplinaria

Intrafacultades	Multidisciplinaria
-----------------	--------------------

20.-Descripción

Esta experiencia educativa se localiza en el área disciplinar (3 hrs teoría y 2 hrs práctica, 8 créditos).

Su propósito es proporcionar los conocimientos para analizar los diferentes sistemas térmicos empleados en el sector laboral. Es indispensable para el estudiante aplicar las leyes de la termodinámica en el análisis de las máquinas térmicas, para su desarrollo se proponen estrategias metodológicas de estudios de casos para posteriormente analizarlo y discutirlos en grupos; por lo tanto, el desempeño de la unidad de competencia se evidencia mediante trabajos extraclases y exámenes parciales y global.

21.-Justificación

Esta experiencia es importante para la formación profesional del estudiante de ingeniería naval y áreas afines ya que la termodinámica se encarga de estudiar los fenómenos correspondientes a los fluidos, calor, temperatura y todo lo relacionado con procesos termodinámicos. Su estudio es importante para la formación profesional del estudiante de Ingeniería Naval ya que proporciona herramientas teóricas en el desempeño de su carrera ingenieril. Fortalece el análisis de los diferentes sistemas térmicos utilizados en la industria naval, tales como: plantas de propulsión con turbinas a vapor, plantas de propulsión con turbinas a gas, plantas de propulsión con motores Diesel, sistemas de refrigeración, estaciones de compresión de gas y/o de bombeo, entre otros.

22.-Unidad de competencia

El estudiante analiza las máquinas térmicas mediante la aplicación de conceptos, leyes y fórmulas termodinámicas que relacionan las diferentes variables de los procesos y que serán de utilidad para el desarrollo de proyectos industriales y de investigación e innovación científica y tecnológica, en un marco de colaboración, creatividad y trabajo colaborativo con el fin de determinar el desempeño de la máquina térmica.

23.-Articulación de los ejes

Los alumnos reflexionan en grupo en un marco de orden y respeto mutuo, sobre los dispositivos y máquinas térmicas; aplicando las leyes de la termodinámica en equipo colaboran y con actitud de respeto resuelven los problemas relativos a la experiencia educativa.

24.-Saberes

Teóricos	Heurísticos	Axiológicos
CONCEPTOS FUNDAMENTALES DE LA TERMODINÁMICA Panorama general y sus aplicaciones. Sistemas Termodinámicos. Propiedades intensivas y extensivas. Estado de una Sustancia. Procesos y Ciclos. Ley Cero de la Termodinámica.	 Interpretación de la información obtenida en diferentes fuentes bibliográficas. Conceptualización de la teoría de sustancia puras. Aplicación de las leyes de la termodinámica a los dispositivos térmicos. Resolución de 	 Disposición al trabajo colaborativo Constancia para realizar los problemas relativos a la experiencia educativa Respeto a la exposición de ideas de los compañeros
	problemas	

PROPIEDADES DE UNA SUSTANCIA PURA

Sustancia Pura. Fases de una Sustancia Pura.

Estados Termodinámicos de una Sustancia Pura: Liquido comprimido o subenfriado.

Mezcla saturada líquido vapor.

Vapor Sobrecalentado. Tablas de Propiedades Termodinámicas.

Diagramas de propiedades para procesos de cambio de fase.

Ecuaciones de estado de gases ideales.

Factor de compresibilidad. Carta generalizada de compresibilidad.

Mezcla de gases y vapores.

PRIMERA LEY DE LA TERMODINÁMICA

Calor y trabajo.

Conservación de masa y ecuación de continuidad. Primera ley aplicada a un sistema cerrado.

Proceso de estado estable y flujo estable.

Primera ley aplicada a un sistema Abierto.

Proceso de estado uniforme y flujo uniforme. Calores específicos a presión y volumen constante. Coeficiente de Joule Thomson. Cambios de energía

interna.

relacionados a la experiencia educativa.

- Conclusión de la eficiencia obtenida en las máquinas térmicas.
- Elaboración de problemarios.
- Creatividad para la elaboración de proyectos
- Honestidad en la elaboración de los problemarios.

Cambios de entalpía.	
Procesos termodinámicos	
con gases ideales.	
Termodinámica de	
Mezclas.	
SEGUNDA LEY DE LA	
TERMODINÁMICA	
Máquinas Térmicas y	
Bombas Térmicas y	
Postulados de la segunda	
ley. Postulado de Kelvin-	
Planck.	
Postulado de Clausius.	
Proceso Reversible.	
Ciclo Reversible o Ciclo	
Carnot.	
ENTROPÍA	
Desigualdad de Clausius.	
Concepto de entropía.	
Principio del incremento	
de entropía.	
Irreversibilidades.	
Cambio de entropía de	
sustancias puras.	
Procesos isoentrópicos.	
Diagrama de propiedades	
que involucran a la	
entropía.	
Eficiencia isoentrópica de	
dispositivos de flujo	
estacionario.	
Balance de entropía.	
Exergia.	
-ACI 81a.	

25.-Estrategias metodológicas

De aprendizaje	De enseñanza
 Exposición de motivos y metas. 	 Exposición.
 Búsqueda de información. 	 Tareas para estudio independiente
 Lectura e interpretación. 	en clase y extractase.
 Análisis y discusión de problemas. 	 Plenaria.

- Resolución en equipo de problemas propuestos por los autores de la bibliografía recomendada.
- Discusiones grupales en torno a los ejercicios.
- Preparar y presentar exposición en clase.
- Trabajo en equipo.

- Exposición medios didácticos.
- Enseñanza tutorial.
- Aprendizaje basado en problemas.
- Conferencias.
- Organización de equipos de trabajo para realizar investigaciones del tema.

26.-Apoyos educativos

Materiales didácticos	Recursos didácticos
Libro de Texto.	Pintarrón.
 Programa de Estudio de la EE. 	 Marcadores.
 Apuntes del profesor. 	 Computadora y cañón.
Audiovisuales.	Software.
 Artículos científicos. 	

27.-Evaluación del desempeño

Evidencia (s) de desempeño	Criterios de desempeño	Ámbito(s) de aplicación	Porcentaje
Prueba escrita individual.	 Expresión escrita Pensamiento crítico y creativo Solución de problemas 	Áulico	70 %
Resolución de casos, cuestiones teóricas, ejercicios prácticos o problemas propuestos. Llevando a cabo una evaluación continua.	 Coherente Relevante Pertinente Utilización de software 	Áulico Plataforma institucional Web	30%

28.-Acreditación

Para acreditar esta EE el estudiante deberá haber presentado con idoneidad y pertinencia cada evidencia de desempeño, es decir, que en cada una de ellas haya obtenido cuando menos el 60%, además de cumplir el porcentaje de asistencia establecido en el estatuto de alumnos 2008.

29.-Fuentes de información

Básicas

- Yunus C., Boles M. A, Kanoglu M. (2019). Termodinámica 8va. edición México Mc Graw Hill.
- Moran M. J., Shapiro H.N. (2006). Fundamentals of engineering thermodynamics 5ta. Edición England John Wiley & Sons
- Sonntag R. E., Borgnakke C. (2003). Fundamentals of thermodynamics EUA John Wiley & Sons.
- Wylen V., Sontag G. J., Richard E. (2007). Fundamentos de Termodinámica. 2da. Edición EUA Limusa Wiley.
- Manrique V. E. (2001). Termodinámica 3ra edición México Oxford University.

Complementarias

- Donald E., Wark R. K. Jr (2019). Termodinámica 6ta. edición México Mc Graw Hill Interamericana.
- Russell L. D., George A, Adison A. (1997). Termodinámica clásica Ira. edición México Wesley Iberoamericana.
- Faires V. M. (2000). Termodinámica 6ta. edició. México Hispano-Americana.