
1

1

sessionX

José Rafael Rojano Cáceres
http://www.uv.mx/rrojano

Desarrollo de Aplicaciones
en Red

2

Session plan

• General vision
• Middleware
• OMA
• Corba

– IDL
– ORB
– IIOP

• Examples

3

What’s Corba?
Middleware

for
Programming

Distributed
Applications

RPC RMI DCOM CORBA

4

RPC vs. Corba

• Corba share the same model that RPC
• Instead of RPC, Corba defines an

complete architecture and identify with
detail the elements.

• RPC is a mechanism of communication
• Corba is an reference architecture that

includes an mechanism of
communication

5

Middleware

• In order to provide a solution to all the
problems generated by Distributed
Systems we got middleware.

• Middleware offers general services that
support distributed execution of
applications.

6

Middleware task
• Object model support: Middleware should offer mechanisms

to support the concepts incorporated in the object model.
• Operational interaction: Middleware should allow the

operational interaction between two objects. The model used
is the method invocation for an object in oriented
programming language.

• Remote interaction: Middleware should allow the interaction
between two objects located in different address spaces.

• Distribution transparency: From the standpoint of the
program, interaction between objects is identical for both local
and remote interactions.

• Technological independence: The middleware supports the
integration of different technologies.

2

7

The structure of a middleware
platform

A p p l i c a t i o n s

N e t w o r k i n g

Architecture

OS
M i d d l e w a r e

8

DCE Middleware

Subjacent element, particular to the implementation

1

2

3 4

5 7

6

9

Summary
• Middleware often is saw for the programmer as a API

(Application Programming Interface).
• Middleware takes care of differences in the

architecture like byte ordering.
• Middleware offers communication with different

languages. This through an IDL language.
• Middleware is a set of models that offer a

programming environment simple, consistent, and
integrated to keep simple the process of design,
programming, and management of applications.

10

OMA

Object Management
Architecture

11

OMA (1)
• The Object Management Architecture (OMA)

is a standard, which describes a general
platform for the development of distributed,
object-oriented applications.

• The Common Object Request Broker
Architecture (CORBA) is a standard also,
which is an specialization of OMA and
describes an actual middleware platform

12

OMA (2)

• OMA defines:
– An object model, which makes

differentiation between
• Object semantics

– Characteristic visible to client

• Object implementation
– How to execute objects

– A reference architecture defines:
• Relationship between objects

3

13

OMA Reference Architecture
• Object services: This category

combines the horizontal system services
that are application-independent and can
be used in different contexts. Examples
of object services include naming,
trading, and security services.

• Common facilities: The common
facilities provide horizontal end user
services that are typically required in
different application contexts. An
example is the printing service.

• Domain interfaces: The domain
interfaces represent vertical services for
special application areas. Examples of
domain interfaces are medical,
telecommunications, and financial
services.

• Application interfaces: The application
interfaces represent application-specific
services. In contrast to the three other
categories, application interfaces are not
included in the OMG standardization
efforts.

© Morgan Kaufmann, Distributed Systems a middleware approach

ORB

H

H

V

14

Common Object Request
Broker Architecture

15

What’s CORBA (1)
• The Common Object Request Broker Architecture (CORBA) was

first published in 1990 by the Object Management Group (OMG), a
non-profit organization that was founded in 1989 to integrate
distributed applications based on a variety of existing technologies.

• CORBA standardizes interfaces and semantics for object-oriented
middleware.

• It includes a specification for the Object Request Broker (ORB), a
software library with standardized CORBA object interfaces that
allows clients and targets to communicate with each other across a
network in a well-defined way. In addition, CORBA automatically
applies a range of useful services to communications. After the ORB
is initialized, all CORBA objects can be invoked by applications like
local software objects.

http://www.mico.org/ 16

What’s CORBA (2)

• Corba is a set of specifications (not
implementations) that let object to
communicate between different languages
and different platforms.

• The CORBA specification v1.1 was
introduced in 1991 to give a standard
mechanism for objects to communicate
across a network

• Later new releases specification were
CORBA 2.0 in 1994 and CORBA 3.0 in
2000

Corba

Object
Model

Reference
Model

First global vision of Corba

17

Terminology (1)
• A Object Model aims to provide a

systematic representation of the
problem area based on: abstraction,
modularity, encapsulation, and
hierarchy.

• Object: An object is therefore a self-
contained problem area.
– The objects have certain elements showed in

the next slide.

18

Terminology (2)

4

19

Corba components (1)

stub T skel

T

client T serverIDL
compiler

Object Request Broker

Invocation
adapter

Object
Adapter

20

Corba components (2)

Stub IDL POA

Object Request Broker

Equal interface for all
ORB implementations

Equal interface C/S

Interface dependent of
ORB Implementation

Client Server

Skel
IDL

OMG spec (public)

Provider spec (private)

21

ORB

Object Request Broquer

22

ORB
• The Object Request Broker is the core element in the

Corba architecture.
• The ORB provides a mechanism for transparently

communicating client requests to target object
implementations.

• The ORB simplifies distributed programming by
decoupling the client from the details of the method
invocations. This makes client requests appear to be
local procedure calls. When a client invokes an
operation, the ORB is responsible for finding the
object implementation, transparently activating it if
necessary, delivering the request to the object, and
returning any response to the caller.

• In the next slide you can see an conceptual overview
of the ORB

23

Corba ORB Architecture

http://www.cs.wustl.edu/~schmidt/corba-overview.html
24

Components ORB (1)
• An Object is a CORBA programming entity that

consists of an identity, an interface, and an
implementation, which is known as a Servant.
– Servant, This is an implementation programming language

entity that defines the operations that support a CORBA IDL
interface. Servants can be written in a variety of languages,
including C, C++, Java, Smalltalk, and Ada.

• ORB Interface, is a logical entity that may be
implemented in various ways (such as one or more
processes or a set of libraries). To decouple
applications from implementation details, the
CORBA specification defines an abstract interface
for an ORB. This interface provides various helper
functions such as converting object references to
strings and vice versa, and creating argument lists
for requests made through the dynamic invocation
interface described below.

5

25

Components ORB (2)
• Dynamic Invocation Interface (DII), This interface allows a client to

directly access the underlying request mechanisms provided by
an ORB. Applications use the DII to dynamically issue requests to
objects without requiring IDL interface-specific stubs to be linked
in. Unlike IDL stubs (which only allow RPC-style requests), the DII
also allows clients to make non-blocking deferred synchronous
(separate send and receive operations) and oneway (send-only)
calls.

• Dynamic Skeleton Interface (DSI), This is the server side's
analogue to the client side's DII. The DSI allows an ORB to deliver
requests to an object implementation that does not have compile-
time knowledge of the type of the object it is implementing. The
client making the request has no idea whether the implementation
is using the type-specific IDL skeletons or is using the dynamic
skeletons.

• Object Adapter, This assists the ORB with delivering requests to
the object and with activating the object. More importantly, an
object adapter associates object implementations with the ORB.
Object adapters can be specialized to provide support for certain
object implementation styles (such as OODB object adapters for
persistence and library object adapters for non-remote objects). 26

Static invocation

27

IDL

Interface Definition Language

28

IDL (1)
• The Interface Definition Language (IDL) is used to

specify object interfaces independently of a specific
programming language.

• IDL is the basis for the separation of the interface and
the implementation of an object.

• OMG-IDL is a declarative language it contains no
algorithmic constructs for the description of loops,
branching, and so forth.

• Its syntax is extensively based on that of C++, but it
includes some additional constructs to accommodate the
special characteristics of distributed environments (for
example, the identification of parameters as input or
output parameters).

29

IDL (2)

• Don’t forget there are different IDL not
only for Corba.

• Currently OMG defines IDL for: C, C++,
Smalltalk, Phyton, Ada 95, Cobol, PL/1
and Java.

• Each IDL files is mapped to the
correspondent stub and skeleton.

30

Entities IDL

Entity

Abstract Interface Basic Value Object Reference Value TypeConstruct Values

Union
Array
Struct

Sequence

Any, Boolean
Octet, Short

Long, LongLong
UShort, ULong

ULongLong, Float
Double, LongDouble

Fixed, Char
WChar, String
WString, Enum

6

31

IDL syntax
module <identification> {

<type declaration>
<constant declaration>
<exception declaration>

Interface <identification>[:<inheritance>]{
<type declaration>
<constant declaration>
<attributes declaration>
<exception declaration>
[<return type >] <identification>(<list of arguments>) [raises <exception>]
[<return type >] <identification>(<list of arguments>) [raises <exception>]
…..

};

Interface <identification>[:<inheritance>]
{ ….. }
….

};

http://www.omg.org/technology/documents/idl2x_spec_catalog.htm 32

IIOP

Internet Inter ORB Protocol

33

IIOP
• This is the protocol used to transmit the

message through ORB.
• This protocol is based in GIOP (General

Inter-ORG Protocol) which is an specification
• IIOP defines:

– Requirements for transport layer
– The CDR (Common Data Representation)
– The Message format

• IIOP JRMP

34

Example

© Hello is SUN’s property

35

IDL file

module HelloApp
{

interface Hello
{

string sayHello();
oneway void shutdown();

};
};

1

2

3

36

Compiling IDL files
• Idlj –fall Hello.IDL

– HelloPOA.java This abstract class is the stream-based server skeleton, providing basic
CORBA functionality for the server. It extends org.omg.PortableServer.Servant, and
implements the InvokeHandler interface and the HelloOperations interface. The server class,
HelloServant, extends HelloPOA.

– _HelloStub.java This class is the client stub, providing CORBA functionality for the client. It
extends org.omg.CORBA.portable.ObjectImpl and implements the Hello.java interface.

– Hello.java This interface contains the Java version of our IDL interface. The Hello.java
interface extends org.omg.CORBA.Object, providing standard CORBA object functionality. It
also extends the HelloOperations interface and org.omg.CORBA.portable.IDLEntity.

– HelloHelper.java This class provides auxiliary functionality, notably the narrow() method
required to cast CORBA object references to their proper types. The Helper class is
responsible for reading and writing the data type to CORBA streams, and inserting and
extracting the data type from Anys. The Holder class delegates to the methods in the Helper
class for reading and writing.

– HelloHolder.java This final class holds a public instance member of type Hello. Whenever
the IDL type is an out or an inout parameter, the Holder class is used. It provides operations
for org.omg.CORBA.portable.OutputStream and org.omg.CORBA.portable.InputStream
arguments, which CORBA allows, but which do not map easily to Java's semantics. The
Holder class delegates to the methods in the Helper class for reading and writing. It
implements org.omg.CORBA.portable.Streamable.

– HelloOperations.java This interface contains the methods sayHello() and shutdown(). The
IDL-to-Java mapping puts all of the operations defined on the IDL interface into this file,
which is shared by both the stubs and skeletons.

7

37

// HelloServer.java
// Copyright and License
import HelloApp.*;
import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContextPackage.*;
import org.omg.CORBA.*;
import org.omg.PortableServer.*;
import org.omg.PortableServer.POA;
import java.util.Properties;

class HelloImpl extends HelloPOA {
private ORB orb;
public void setORB(ORB orb_val) {

orb = orb_val;
}

// implement sayHello() method
public String sayHello() {

return "\nHello world !!\n";
}

// implement shutdown() method
public void shutdown() {

orb.shutdown(false);
}

}

Servant

Establece los valores para el ORB

1

2

3

38

Server
public class HelloServer {
public static void main(String args[]) {

try{
// create and initialize the ORB
ORB orb = ORB.init(args, null);
// get reference to rootpoa & activate the POAManager
POA rootpoa = POAHelper.narrow(orb.resolve_initial_references("RootPOA"));
rootpoa.the_POAManager().activate();
// create servant and register it with the ORB
HelloImpl helloImpl = new HelloImpl();
helloImpl.setORB(orb);
// get object reference from the servant
org.omg.CORBA.Object ref = rootpoa.servant_to_reference(helloImpl);
Hello href = HelloHelper.narrow(ref);
// get the root naming context
org.omg.CORBA.Object objRef =

orb.resolve_initial_references("NameService");
// Use NamingContextExt which is part of the Interoperable
// Naming Service (INS) specification.
NamingContextExt ncRef = NamingContextExtHelper.narrow(objRef);
// bind the Object Reference in Naming
String name = "Hello";
NameComponent path[] = ncRef.to_name(name);
ncRef.rebind(path, href);
System.out.println("HelloServer ready and waiting ...");
// wait for invocations from clients
orb.run();

}
catch (Exception e) {

System.err.println("ERROR: " + e);
e.printStackTrace(System.out);

}
System.out.println("HelloServer Exiting ...");

}
}

39

Client
// Copyright and License

import HelloApp.*;
import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContextPackage.*;
import org.omg.CORBA.*;
public class HelloClient
{

static Hello helloImpl;
public static void main(String args[])

{
try{

// create and initialize the ORB
ORB orb = ORB.init(args, null);
// get the root naming context
org.omg.CORBA.Object objRef =

orb.resolve_initial_references("NameService");
// Use NamingContextExt instead of NamingContext. This is
// part of the Interoperable naming Service.
NamingContextExt ncRef = NamingContextExtHelper.narrow(objRef);
// resolve the Object Reference in Naming

String name = "Hello";
helloImpl = HelloHelper.narrow(ncRef.resolve_str(name));
System.out.println("Obtained a handle on server object: " + helloImpl);
System.out.println(helloImpl.sayHello());
helloImpl.shutdown();
} catch (Exception e) {
System.out.println("ERROR : " + e) ;
e.printStackTrace(System.out);
}

}
}

40

Running the example
• idlj –fall Hello.idl
• javac HelloApp/*.java
• javac HelloServer.java
• javac HelloClient.java
• start orbd -ORBInitialPort 1050 -

ORBInitialHost localhost
• start java HelloServer -ORBInitialPort 1050 -

ORBInitialHost localhost
• java HelloClient -ORBInitialPort 1050 -

ORBInitialHost localhost

41

Reference

• Puder, Römer, & Pilhofer - Distributed
Systems a middleware approach, 2006

• Abian, Miguel. Java y las redes, 2004.
• Horstman Cay, Java 2, 2003.
• Sun, J2SE documentation
• Sun, JSEE documentation
• http://www.omg.org/technology/documents/corba_spec_catalog.htm
• http://docs.sun.com/source/817-5445/agcorba.html
• http://www.omg.org/docs/formal/04-03-01.pdf

