
1

1

Desarrollo de Aplicaciones
en Red

José Rafael Rojano Cáceres
http://www.uv.mx/rrojano

session

2

RMI

Remote Method Invocation

3

Introduction
• Java RMI let’s work calling remote methods.
• Underneath it works with the Socket Java

API.
• With RMI it’s possible to access an object

like if it where local.
• David Curtis, principal of OMG, describe RMI

as a technology for programming while
CORBA is a technology for integration.

• RMI is only oriented a Java and Corba to any
language.

4

Considerations

• Object models for Corba and RMI are
different, it is possible to use Corba
with Java but the object needs to be
translated.

• Any JVM can use RMI
• RMI is simple and easy if only needs to

be used Java, Corba will necessary if
heterogeneous system are used.

5

Considerations

• Object in java doesn't call methods
directly in stead of call their interface

• It’s possible also to interact with
remote object without previous
knowledge of them

6

RMI architecture
User

Application

stub

Remote reference
Layer

TCP

IP

Hardware
interface

skel

application

presentation

session

transport

network
data link

physical

client server

OSI MODEL

•Presentation, session and
transport are the most important
layer in RMI

•Presentation, has the stubs and
skels that provides a common
interface

•Session is conformed by the
Remote Reference Layer which
manages the creation of object
and their calls, for that use the
protocol JRMP (Java Remote
Method Protocol) it’s different to
IIOP (Internet Inter ORB Protocol)
from Corba

•The transport layer use by default
TCP to send the object

2

7

Publish object with RMI
• In order to communicate RMI defines

two basic entities, on the one hand the
client, and the other hand the server

• Server has the task to create remote
objects

• Clients have the task to get remote
references and invoke it

• RMI defines for this task a stub (for
client) and a skeleton (for server)

8

Stub

• The stub is a proxy or local adapter that
let the client communicates with
remote objects

9

Skeleton

• A skeleton is the complement for the
stub, and it is in charge to pass all the
request from clients to remote object,
and later to return the results.

10

Communication (1)
• The communication process is based in

serialization which is not made explicitly in
stead it’s made by RMI class
– sun.rmi.server.MarshalOutputStream

• Any primitive object and objects derivate
from the class Serializable are passed by
value

• When an object is passed by reference, it’ll
be passing stub or skeletons as pointers
from the remote object (increases messaging
on the network)

11

Conceptual communication

Register service

object

object

12

Working with RMI
Define

Remote
interface

Implement
Remote
interface

1 2

class

3

javac

rmic

Implement
client 45

javac
rmiregistry

7

6

class

3

13

RMI registry (1)
• To publish the object can be used three

mechanism
– DNS
– JNDI (Java Naming and Directory Service)
– RMI

• In the last case RMI provides a tool called
rmiregistry

• rmiregistry provides a service listening by
default at the port 1099

• Through this service object can
communicates

14

RMI registry (2)
• Process of registry and discovering

– Start rmiregistry (by default 1099 port)
– The remote object is created and registered with a name

• This creates a skeleton
• A sockets waits for the request

– The local object call the remote interface through the invocation
with the name used in the registry

– The stub send a reference with the IP, port and ID of the object
• The stub open a stream and serializes the object and wait that the layer

makes their work
• The transport layer creates a socket and send the stream

– At the remote server, the transport layer does a similar process
passing the information to the skeleton

– The skeleton opens a stream and deserialize el object
• The skeleton makes the invocation at the server and again the same step

that in the client are achieved
– The answers is returned to the client

15

RMI packages
java.rmi

registry server activation dgc

registry: A registry is a remote object that maps names to remote objects. A
server registers its remote objects with the registry so that they can be
looked up. When an object wants to invoke a method on a remote object, it
must first lookup the remote object using its name. The registry returns to the
calling object a reference to the remote object, using which a remote method
can be invoked.

server: Provides classes and interfaces for supporting the server side of RMI.
A group of classes are used by the stubs and skeletons generated by the
rmic stub compiler. Another group of classes implements the RMI Transport
protocol and HTTP tunneling. 16

RMI packages
java.rmi

registry server activation dgc

activation: Provides support for RMI Object Activation. A remote object's
reference can be made “persistent” and later activated into a “live” object
using the RMI activation mechanism.

dgc: Provides classes and interface for RMI distributed garbage-collection
(DGC). When the RMI server returns an object to its client (caller of the
remote method), it tracks the remote object's usage in the client. When there
are no more references to the remote object on the client, or if the reference's
“lease” expires and not renewed, the server garbage-collects the remote
object.

17

The Application
java.rmi.Remote

<<interface>>
nombreInterfaz

+métodoA(int, int):int;
+metodoB(int, int):int;

throws java.rmi.RemoteException

implementaInterfaz

+métodoA(int, int):int;
+métodoB(int, int):int;

-métodoC();

UnicastRemoteObject

Naming.rebind
Servidor

Instancia:implementaInterfaz
main():void;

Naming.lookup

Cliente
Instancia:nombreInterfaz

main():void;

implements
extends

extendsextends

18

General description
• The Remote interface serves to identify

interfaces whose methods may be invoked
from a non-local virtual machine.

• The Naming class provides methods for
storing and obtaining references to remote
objects in a remote object registry.
– bind
– rebind
– lookup

4

19

rebind method

• Rebind let’s “to re-link” the specified
name with a new object
– public static void rebind(String name, Remote obj)

throws RemoteException, MalformedURLException

• You can use like:
implementaInterfaz objeto = new implementaInterfaz();
rebind(“rmi://host/serviceName”,objeto);

• The string name takes the form of a
URL:

rmi://host:port/serviceName
20

lookup method

• Returns a reference, a stub, for the
remote object associated with the
specified name.
– public static Remote lookup(String name) throws

NotBoundException, MalformedURLException, RemoteException

• You can use like:
nombreInterfaz objeto =(nombreInterfaz) Naming.lookup

(“rmi://localhost/nameService”);
int resultado = objeto.MétodoA(1,2);

21

RemoteException
• A RemoteException is the common

superclass for a number of
communication-related exceptions that
may occur during the execution of a
remote method call.

• Each method of a remote interface, an
interface that extends java.rmi.Remote,
must list RemoteException in its
throws clause.

22

Defining the interface
import java.rmi.*;
public interface Calculadora extends Remote
{

// Se declaran todos los métodos accesibles
public double multi(double n1, double n2) throws

remoteException;
public double suma(double n1, double n2) throws

remoteException;
...

}

1

primitives or implements Serializable or Remote

23

Implementing interface
import java.rmi.*;
import java.rmi.server.*;
public class CalculadoraImplementada extends UnicastRemoteObject

implements Calculadora
{

// Se declaran todos los métodos accesibles
public double multi(double n1, double n2) throws
remoteException
{ // se implementa el método multi, que multiplica dos
números
}
public double suma(double n1, double n2) throws remoteException
{ // se implementa el método suma, que suma dos números
}
...

}

2

24

Using remote interface
import java.rmi.*;
public class CalculadoraCliente
{

public static void main (String arg[])
{

Calculadora calc = new BuscarRegistro("cliente",
"objeto");

calc.multi(23.2452324, 123.123121231);
}

}

5

This should be the method
lookup from RMI

5

25

Example

26

Reference

• William Grosso, Java RMI, O’Reilly,
2001

• JavaTM 2 Platform Std. Ed. v1.4.2, Sun

