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El modelo de comunicación

3

General concepts

• As we saw in a Distributed System the 
logical and physical component are 
separated, so on, we need to 
communicate it in some way.

• Up to now we have talk about:
– Message Passing
– Client/Server
– RPC
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Models of communication
• Message Passing
• Client/Server
• Peer to Peer
• Mom (Message oriented Middleware)
• RPC
• Distributed Objects

– RMI
– Corba
– DCOM

• Mobil Agents
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Each model define the way in which 
components interact each other
– The pattern of communication
– The functional role
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• It defines some primitives like send, 
receive, etc.

• An layer abstraction for them are 
sockets.

• Their functionalities includes 
communication:
– Synchronous
– Asynchronous
– Queues

Message Passing
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Client / Server
• In this model there are processing of 

information in both client and server
• The role for serve includes offering different 

services
• The communication can be:

– Synchronous
– Queue

• Can you give some examples?
– …

request

answer 8

Peer to Peer

• In this model both process can be seen 
as server or client

• The role is designed interactively 
• The communication as well as client / 

server can be:
– Synchronous
– Queue
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MOM (Message Oriented Middleware)

• This model implements a message 
service

• The message are persistent
• The communication is:

– Asynchronous
• Queue

• The communication can be set as:
– Point to point
– Multicast

Message
Service

Sender Receiver 10

MOM (2)

• It facilitates communication between 
distributed applications

• MOM is mainly oriented to 
asynchronous communications, while 
p2p or RPC are synchronous
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Middleware
• There is not a  set of standardize 

functionalities for it, because middleware 
change fast, but in general we can identify:
– Presentation services: forms manager, printing 

manager, hypermedia linker
– Communication services:  P2P, RPC, Message 

Passing
– Control services: transaction manager, scheduler
– Information services: directory, relation database 

manager, repository manager
• MOM falls in communication services 

category
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RPC (1)
• The remote procedure call defined a 

communication:
– Synchronous
– Queue

• Process of communication
– The client process package the parameters in a 

message and send to server waiting the answer
– The server unpack parameters, execute locally the 

call, get the result, again pack  it and send it back
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RPC (2)

Application code
Start call End call

stub
pack unpack

Runtime RPC
send receive

Application code
execute call

stub
pack unpack

Runtime RPC
send receive
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RPC (3)
• A stub is generated through RPC software
• Stub task at the Client are:

– Localize the server
– Package and unpackage parameters
– Send message and wait for the answer

• Stub task at the server is:
– Similar task that client

• Stubs are independent of implementation 
only depends of the interface
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An example with RPC
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How RPC look like?

Suma.x

Cliente.c

cliIntf.c

Servidor.c

serIntf.c

Common filesCommon files

Suma.h

Suma_xdr.c

rpcgen
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Suma.x
struct peticion {

int a;
int b;

};

program SUMAR {
version SUMAVER {

int SUMA(peticion) = 1;
} = 1;

} = 99;
Suma.h

#ifndef _SUMA_H_RPCGEN
#define _SUMA_H_RPCGEN
#include <rpc/rpc.h>
struct peticion {

int a;
int b;

};
#define SUMAVER ((u_long)99)
#define SUMA ((u_long)1)
extern int * suma_1(peticion *, CLIENT *);
extern int * suma_1_svc(peticion *, struct 
svc_req *);
#endif /* !_SUMA_H_RPCGEN */ 18

Servidor.c
#include "suma.h"
int *suma_1_svc(peticion *argp, struct svc_req 
*rqstp)
{

static int result;
result = argp->a + argp->b;
return(&result);

}

Cliente.c
#include "suma.h"
main( int argc, char* argv[] )
{

CLIENT *clnt;
int *res;
peticion suma_1_arg;
char *host;
if(argc < 2) {

printf("usage: %s server_host\n", 
argv[0]);

exit(1);
}
host = argv[1];
/* find server*/
clnt = clnt_create(host, SUMAR, 

SUMAVER, "udp");
if (clnt == NULL) {

clnt_pcreateerror(host);
exit(1);

}
suma_1_arg.a = 5;
suma_1_arg.b = 2;
res = suma_1(&suma_1_arg, clnt);
if (res == NULL) {

clnt_perror(clnt, "call failed:");
}
printf(“The result is %d\n", *res);
clnt_destroy( clnt );

}
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Distributed Objects
• JAVA RMI

– Remote Method 
Invocation

• CORBA
– Common Object 

Request Broker

Process
A Process

B

Object

Method
a

Method
x ORB

Object 
requestor Object
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Mobile Agents

•A mobile agent is a program in 
execution (with code a data)
•It achieve some work like data 
recollection a returning data later
•A mobile agent can be used to install 
or maintain software
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Abstraction Level
Object
space

ORB, Mobil Agents, 
Network service

RPC, RMI

Client / Server, MOM

Message Passing
Low

High
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Object Space
• Object spaces form the basic of distributed objects 

by supplying the location.
• In Small talk there are two types of Object Space:

– Export sets: maintain lists of object exported by space, not 
effective for remote reference

– Full object space: support full reference
• Remote references are proxies which identify 

particular object in particular object spaces 
(location) and explain how to get a message to the 
object

• In small talk symbolic references allow object 
spaces to implement primitive naming service.
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Denominación y servicio de 
nombres
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Naming (denominación)

• This is the name that receive the 
process of association between logical 
objects and physical objects.
– For example: naming files for user is 

different to management files by the OS 
(tracks and sectors)

– In a distributed system it’s necessary 
naming the machine also
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Naming structure
How can be 

naming structure

flat hierarchal

Netbios DNS

Limited unlimited
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Translating names
• A process in charge to translate names is the 

binder. The process of translation is know as 
binding.

• The binder as the task of:
– Resolution: translate name for id
– Inclusion: adding new names
– Erasing: deleting old names
– Modification: alter existing names

• The binder must provide fail-over
• When accessing an object must be 

established capabilities (rights).
– What operation can be done
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Where the binder is?

There are 
several options

In a static 
address

It’s known 
by the OS

It’s seek
by broadcast

Recompile all 
clients and servers

Update 
environment

variable
Send a new broadcast

If the binder changes its location??
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Characteristic in a binder

• It’s desirable that the binder has:
– Transparent location (static)

• The name does not reveal location
– Independent location (dynamic) 

• The name of the object does not change when it’s 
relocated

– An static address and knows possition for 
the OS, are static

– Broadcasting is dynamic

29

Remote Procedure Call

In detail
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RPC (1)
• Recalling communication takes place at the 

lower levels through message passing. 
• The protocol used is RR (request/response)
• RPC is a mechanism to implement the 

transparency in the systems.
• The RPC is not more that just a remote 

operation customized by the mask of a 
procedural interface.

• RPC has its origin with Birrell & Nelson, 1984 
as mechanism to solve the passing data
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RPC (2)
• Recall the mechanism to do the call is based 

in a stub.
• For the client the stub:

– Take the parameters from local stack
– Do all the pass seen at page 12

• At the server
– Take the parameters from message and put in 

local stack
But the process is not as simple as I show it 

the last slides…..
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Task for RPC

• Service Interface
– It’s on charge to marshalling the of 

parameters
– It’s written in conventional language

• Seek of server
– As we saw this process is know as binding

• Management communication
– The task is transmit and receive
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Service Interface

• It’s very important for the whole service
Client

local call return

1. Flat
2. XDR

Internal
representation

send receive

Server 

Service rutine

Flat
XDR

Internal
representation

send receive

Dispatcher
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Passing of parameters
• Flatting data mean transform a data structure 

in a collection of bytes.
• It is not a easy task because of internal data 

codification (ascii, ebcdic, …)
• Data representation (Big a Little Endian)
• For this it’s necessary an independent 

representation
– XDR (external data representation) proposed by 

Sun, Xerox, ASN.1 
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Stub generation
• With the interface defined can be implemented the 

stub.
• Notice that implementation in client and server can 

be different because these can be written in different 
language.

• For that it’s necessary to define the interface in a 
language IDL (Interface Definition Language)
– The IDL in general provides semantic that languages 

doesn’t offer
• Having this definition it can be generated 

automatically the stub for server and for client

36

Client & Server Stubs 
User

program
Application

User
program

Application

Generic
IDL 

interface
Interface
generator

Interface 
language c Client’s stubClient’s stub

C 
compiler

User program
Object 

User program
Object stub

Object 
stub

Object 

C 
compiler

Linker
executable

Server’s stub
+ dispatcher
Server’s stub
+ dispatcher

Remote 
Procedure

server

Remote 
Procedure

server

server program
Object 

server program
Object 
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Example RPC SUN

38

Service defined in XDR

RPC compiler
(rpcgen)

Stub client

Stub server Marshaling 
process

Header .h

Remeber the binder is local to each client
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//Definition in XDR, for service call “Archiver”
CONST MAX=1000;
typedef int ID_File;
typedef int Ptr_File;
typedef int Length;
struct Data_s { Length length_data;

char buffer[MAX];
int error};

struct Writting_Args { ID_File file;
Ptr_File position;
Data_s data};

struct Reading_Args { ID_File file;
Ptr_File position;
Length leng_data};

program Archiver{
version VER{

void write_data(WriteArg)=1;
Data_s read_data(ReadArg)=2;

}=2;
}=9999;

The interface
• XDR

– Contains the definition 
of the operations

– The ID
– Number of service

• With the XDR is 
generated
– Client’s Stub 
– Main server program + 

dispatcher
– Serialization routines
– header

Policies (1=w, 2=r, 9999=save
40

Marshaling
• Sun uses XDR to represent 

any data structure to pass 
as parameter

• XDR support some 
primitives data type

• But also can be defined new 
data structures for the user

XDR primitives:
Integer, Real, Boolean, Char, 
String, Abstract data types, 

Enumeration, Arrays, pointers, etc

rpcgen

Routines for 
serializarion

Serialization
library .h

Stub server
+ dispatcher

Stub client Header .h
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Binding for RPC

• RPC does not has a binding service in 
stead there is binder for machine 
(portmapper)

• The binder is a server listening in an 
static port 

• The client must specify address, the 
stub seek the server through the local 
binder

42

• To be continued………
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Reference
• http://www2.sims.berkeley.edu/courses/is206/f97/Gr

oupB/mom/


