
1

1

Desarrollo de Aplicaciones
en Red

José Rafael Rojano Cáceres
http://www.uv.mx/rrojano

2

El modelo de comunicación

3

General concepts

• As we saw in a Distributed System the
logical and physical component are
separated, so on, we need to
communicate it in some way.

• Up to now we have talk about:
– Message Passing
– Client/Server
– RPC

4

Models of communication
• Message Passing
• Client/Server
• Peer to Peer
• Mom (Message oriented Middleware)
• RPC
• Distributed Objects

– RMI
– Corba
– DCOM

• Mobil Agents

5

Each model define the way in which
components interact each other
– The pattern of communication
– The functional role

6

• It defines some primitives like send,
receive, etc.

• An layer abstraction for them are
sockets.

• Their functionalities includes
communication:
– Synchronous
– Asynchronous
– Queues

Message Passing

prs1 prs2

mss

mss

mss

2

7

Client / Server
• In this model there are processing of

information in both client and server
• The role for serve includes offering different

services
• The communication can be:

– Synchronous
– Queue

• Can you give some examples?
– …

request

answer 8

Peer to Peer

• In this model both process can be seen
as server or client

• The role is designed interactively
• The communication as well as client /

server can be:
– Synchronous
– Queue

9

MOM (Message Oriented Middleware)

• This model implements a message
service

• The message are persistent
• The communication is:

– Asynchronous
• Queue

• The communication can be set as:
– Point to point
– Multicast

Message
Service

Sender Receiver 10

MOM (2)

• It facilitates communication between
distributed applications

• MOM is mainly oriented to
asynchronous communications, while
p2p or RPC are synchronous

11

Middleware
• There is not a set of standardize

functionalities for it, because middleware
change fast, but in general we can identify:
– Presentation services: forms manager, printing

manager, hypermedia linker
– Communication services: P2P, RPC, Message

Passing
– Control services: transaction manager, scheduler
– Information services: directory, relation database

manager, repository manager
• MOM falls in communication services

category

12

RPC (1)
• The remote procedure call defined a

communication:
– Synchronous
– Queue

• Process of communication
– The client process package the parameters in a

message and send to server waiting the answer
– The server unpack parameters, execute locally the

call, get the result, again pack it and send it back

3

13

RPC (2)

Application code
Start call End call

stub
pack unpack

Runtime RPC
send receive

Application code
execute call

stub
pack unpack

Runtime RPC
send receive

14

RPC (3)
• A stub is generated through RPC software
• Stub task at the Client are:

– Localize the server
– Package and unpackage parameters
– Send message and wait for the answer

• Stub task at the server is:
– Similar task that client

• Stubs are independent of implementation
only depends of the interface

15

An example with RPC

16

How RPC look like?

Suma.x

Cliente.c

cliIntf.c

Servidor.c

serIntf.c

Common filesCommon files

Suma.h

Suma_xdr.c

rpcgen

17

Suma.x
struct peticion {

int a;
int b;

};

program SUMAR {
version SUMAVER {

int SUMA(peticion) = 1;
} = 1;

} = 99;
Suma.h

#ifndef _SUMA_H_RPCGEN
#define _SUMA_H_RPCGEN
#include <rpc/rpc.h>
struct peticion {

int a;
int b;

};
#define SUMAVER ((u_long)99)
#define SUMA ((u_long)1)
extern int * suma_1(peticion *, CLIENT *);
extern int * suma_1_svc(peticion *, struct
svc_req *);
#endif /* !_SUMA_H_RPCGEN */ 18

Servidor.c
#include "suma.h"
int *suma_1_svc(peticion *argp, struct svc_req
*rqstp)
{

static int result;
result = argp->a + argp->b;
return(&result);

}

Cliente.c
#include "suma.h"
main(int argc, char* argv[])
{

CLIENT *clnt;
int *res;
peticion suma_1_arg;
char *host;
if(argc < 2) {

printf("usage: %s server_host\n",
argv[0]);

exit(1);
}
host = argv[1];
/* find server*/
clnt = clnt_create(host, SUMAR,

SUMAVER, "udp");
if (clnt == NULL) {

clnt_pcreateerror(host);
exit(1);

}
suma_1_arg.a = 5;
suma_1_arg.b = 2;
res = suma_1(&suma_1_arg, clnt);
if (res == NULL) {

clnt_perror(clnt, "call failed:");
}
printf(“The result is %d\n", *res);
clnt_destroy(clnt);

}

4

19

Distributed Objects
• JAVA RMI

– Remote Method
Invocation

• CORBA
– Common Object

Request Broker

Process
A Process

B

Object

Method
a

Method
x ORB

Object
requestor Object

20

Mobile Agents

•A mobile agent is a program in
execution (with code a data)
•It achieve some work like data
recollection a returning data later
•A mobile agent can be used to install
or maintain software

21

Abstraction Level
Object
space

ORB, Mobil Agents,
Network service

RPC, RMI

Client / Server, MOM

Message Passing
Low

High

22

Object Space
• Object spaces form the basic of distributed objects

by supplying the location.
• In Small talk there are two types of Object Space:

– Export sets: maintain lists of object exported by space, not
effective for remote reference

– Full object space: support full reference
• Remote references are proxies which identify

particular object in particular object spaces
(location) and explain how to get a message to the
object

• In small talk symbolic references allow object
spaces to implement primitive naming service.

23

Denominación y servicio de
nombres

24

Naming (denominación)

• This is the name that receive the
process of association between logical
objects and physical objects.
– For example: naming files for user is

different to management files by the OS
(tracks and sectors)

– In a distributed system it’s necessary
naming the machine also

5

25

Naming structure
How can be

naming structure

flat hierarchal

Netbios DNS

Limited unlimited

26

Translating names
• A process in charge to translate names is the

binder. The process of translation is know as
binding.

• The binder as the task of:
– Resolution: translate name for id
– Inclusion: adding new names
– Erasing: deleting old names
– Modification: alter existing names

• The binder must provide fail-over
• When accessing an object must be

established capabilities (rights).
– What operation can be done

27

Where the binder is?

There are
several options

In a static
address

It’s known
by the OS

It’s seek
by broadcast

Recompile all
clients and servers

Update
environment

variable
Send a new broadcast

If the binder changes its location??

28

Characteristic in a binder

• It’s desirable that the binder has:
– Transparent location (static)

• The name does not reveal location
– Independent location (dynamic)

• The name of the object does not change when it’s
relocated

– An static address and knows possition for
the OS, are static

– Broadcasting is dynamic

29

Remote Procedure Call

In detail

30

RPC (1)
• Recalling communication takes place at the

lower levels through message passing.
• The protocol used is RR (request/response)
• RPC is a mechanism to implement the

transparency in the systems.
• The RPC is not more that just a remote

operation customized by the mask of a
procedural interface.

• RPC has its origin with Birrell & Nelson, 1984
as mechanism to solve the passing data

6

31

RPC (2)
• Recall the mechanism to do the call is based

in a stub.
• For the client the stub:

– Take the parameters from local stack
– Do all the pass seen at page 12

• At the server
– Take the parameters from message and put in

local stack
But the process is not as simple as I show it

the last slides…..

32

Task for RPC

• Service Interface
– It’s on charge to marshalling the of

parameters
– It’s written in conventional language

• Seek of server
– As we saw this process is know as binding

• Management communication
– The task is transmit and receive

33

Service Interface

• It’s very important for the whole service
Client

local call return

1. Flat
2. XDR

Internal
representation

send receive

Server

Service rutine

Flat
XDR

Internal
representation

send receive

Dispatcher

34

Passing of parameters
• Flatting data mean transform a data structure

in a collection of bytes.
• It is not a easy task because of internal data

codification (ascii, ebcdic, …)
• Data representation (Big a Little Endian)
• For this it’s necessary an independent

representation
– XDR (external data representation) proposed by

Sun, Xerox, ASN.1

35

Stub generation
• With the interface defined can be implemented the

stub.
• Notice that implementation in client and server can

be different because these can be written in different
language.

• For that it’s necessary to define the interface in a
language IDL (Interface Definition Language)
– The IDL in general provides semantic that languages

doesn’t offer
• Having this definition it can be generated

automatically the stub for server and for client

36

Client & Server Stubs
User

program
Application

User
program

Application

Generic
IDL

interface
Interface
generator

Interface
language c Client’s stubClient’s stub

C
compiler

User program
Object

User program
Object stub

Object
stub

Object

C
compiler

Linker
executable

Server’s stub
+ dispatcher
Server’s stub
+ dispatcher

Remote
Procedure

server

Remote
Procedure

server

server program
Object

server program
Object

7

37

Example RPC SUN

38

Service defined in XDR

RPC compiler
(rpcgen)

Stub client

Stub server Marshaling
process

Header .h

Remeber the binder is local to each client

39

//Definition in XDR, for service call “Archiver”
CONST MAX=1000;
typedef int ID_File;
typedef int Ptr_File;
typedef int Length;
struct Data_s { Length length_data;

char buffer[MAX];
int error};

struct Writting_Args { ID_File file;
Ptr_File position;
Data_s data};

struct Reading_Args { ID_File file;
Ptr_File position;
Length leng_data};

program Archiver{
version VER{

void write_data(WriteArg)=1;
Data_s read_data(ReadArg)=2;

}=2;
}=9999;

The interface
• XDR

– Contains the definition
of the operations

– The ID
– Number of service

• With the XDR is
generated
– Client’s Stub
– Main server program +

dispatcher
– Serialization routines
– header

Policies (1=w, 2=r, 9999=save
40

Marshaling
• Sun uses XDR to represent

any data structure to pass
as parameter

• XDR support some
primitives data type

• But also can be defined new
data structures for the user

XDR primitives:
Integer, Real, Boolean, Char,
String, Abstract data types,

Enumeration, Arrays, pointers, etc

rpcgen

Routines for
serializarion

Serialization
library .h

Stub server
+ dispatcher

Stub client Header .h

41

Binding for RPC

• RPC does not has a binding service in
stead there is binder for machine
(portmapper)

• The binder is a server listening in an
static port

• The client must specify address, the
stub seek the server through the local
binder

42

• To be continued………

8

43

Reference
• http://www2.sims.berkeley.edu/courses/is206/f97/Gr

oupB/mom/

