
1

1

Desarrollo de Aplicaciones
en Red

José Rafael Rojano Cáceres
http://www.uv.mx/rrojano

2

Process management
• A process can be thought as a program in execution.
• Process are the unit of work on modern time-sharing

system.
• As a part of the execution the process could need

resources. These resources are allocated for it.
• Usually a process has a thread of execution but it

can hold more
• The OS is responsible of:

– Process management
– Process scheduling
– Process communication

3

Concepts

• A program containing a collection of
instructions is not a process.

• A process is an alive entity that is
running.

• A program is a passive entity
• A process is an active entity
• A program becomes a process when

it’s loaded into memory
4

Process in memory
• Text, collection of

instructions. Responsible
for the program counter

• Data, collection of global
variables

• Stack, temporary data like
parameters

• Heap, dynamic memory
during process run time

Stack

heap

text

data

5

Process state

• A process can be in the next states:
– New: The process is being created
– Running: instructions are executing
– Waiting: process is waiting signaling
– Ready: process is waiting for processor
– Terminated: process finished execution

6

Process state diagram

2

7

Process scheduling

8

Concepts

• Multiprogramming objective is to have
some process running at all times, to
maximize CPU use.

• Time sharing objective is to switch CPU
among process.

• Process scheduler achieve the task of
select the available process

9

Scheduling queues
• All process in the system are put into a job

queue.
• All process ready or waiting belongs to the

ready queue. This queue point to the PCB of
the process.

• A new process is queued, once it is
dispatched several event occurs:
– Process can issue I/O request
– Can create a subprocess and wait for its finishing
– Process can be removed

10

Scheduler vision

11

Scheduler typos
• Short term scheduler

– Schedule process to the CPU
– Fast decision

• Long term scheduler
– Schedule jobs
– Take from pool to load into memory
– Executed less frequency

• Medium term scheduler
– Removes process from memory for later

reentering to cpu
– Swapping process

12

Process creation (1)
• When a process create a new

process:
1. The parent continues to execute with its

children
2. The parent wait until all children finish

• Respect to the address space:
1. Child is a duplicate from parent (same

data a text areas)
2. Child is a new program loaded into it.

3

13

Process creation (2)

• Fork creates same address space
• Exec replace memory space, old

process is replaced for new one

14

Proccess creation API win32

15

Interprocess
communication

16

How the process communicates

• Each process running can be either
independent or cooperative

• Some reasons for cooperation are:
– To share information
– Computation speedup
– Modularity
– Convenience

• To achieve cooperation process require
IPC (InterProcess Communication)

17

IPC models

• Shared memory
– It’s established a common memory area

• Message passing
– Message are sent by process

Time is invest in
passing message

Same address
space

18

Shared memory

• Should be established a common
address space

• The process is responsible for
accessing and writing into the same
space

4

19

Message passing
• MP provides a mechanism to communicate a

to synchronize without use the same address
space

• To do this some considerations are
necessary:
– Direct or indirect communication
– Synchronous or asynchronous communication
– Automatic or explicit buffering

• On each case a link must be establish first

20

Direct communication (1)

• The process that want to communicate
must have a way to refer each other.

• Direct communication
– The name of receiver or sender must be

explicitly named
– For example:

• Send (p, message) P=receiver
• Receive (q, message) Q=sender

21

Direct communication (2)
• The link established under this scheme has

the next properties:
– A link between each process is established, need

to know each process
– A link is associated with exactly two process
– Between each process exist one link

• This process is symmetric because each
process must name the other to
communicate

22

Direct communication (3)
• In an asymmetric communication the

sender knows the receiver, the receiver
is not required to know the sender

• Here the primitives would be like:
– Send (p, message)
– Receive (id, message) id=variable process

• The disadvantage in any scheme is the
dependency and limited modularity

• This technique is hard-coding

23

Indirect communication (1)

• With this scheme messages are passed
and received from mailbox or ports.

• A mailbox can be viewed as a object
where message can be left.

• Each mailbox has a unique id.
• The primitives would be something like

– Send (A, message)
– Receive (A, message) A=common mailbox

24

Indirect communication (2)

• With this scheme messages are passed
and received from mailbox or ports.

• A mailbox can be viewed as a object
where message can be left.

• Each mailbox has a unique id.
• The primitives would be something like

– Send (A, message)
– Receive (A, message) A=common mailbox

5

25

Indirect communication (3)

• The link established under this scheme
has the next properties:
– Communication possible if the two

process share a mailbox
– A link can be associated with more than

two process
– Between each process exist more than

one link

26

Synchronous or asynchronous
communication (1)

• MP can be blocking (sync) or nonblocking
(async)

• As the communication takes place using the
primitives send and receive, does exist
different options to implement this:
– Blocking send
– nonBlocking send
– Blocking receive
– nonBlocking receive

27

Synchronous or asynchronous
communication (2)

• Blocking send:
– The sending process is blocked until the message

is received
• nonBlocking send:

– The sending process sends the message and
finish

• Blocking receive:
– The receiver block upto a message is received

• nonBlocking receive:
– The receiver retrives either a message or null

28

Automatic or explicit buffering
(1)

• Whether communication is direct or
indirect a temporary queue is
necessary

• This queue can be implemented as:
– Zero capacity
– Bounded capacity
– Unbounded capacity

29

Automatic or explicit buffering
(2)

• Zero capacity
– The queue does not have capacity, in this case

the sender must block until the message is
delivery

• Bounded capacity
– The queue has finite N capacity. The sender can

continue working, but if queue is full blocking is
necessary

• Unbounded capacity
– Potentially the queue is infinite, any quantity of

message can be wait in it.

30

Examples

6

31

Posix: shared memory

• In Posix system it’s possible to use API
1. Create an shared memory area shmget
2. Attach the segment to the address space

of a new process shmat
3. Update the shared memory area
4. Release the area from address space

32

Indicates:
1. A new shared

memory is created
2. The size
3. Type of access

Indicates:
1. Id for access
2. Area of memory for

the segment, null
specify OS
decision

3. Type of access,
0=W&R

33

• Besides of a process can share
communication using shared memory
or message passing other three
scheme can be used in the model client
server
– Sockets
– RPC
– RMI

34

Sockets

• A socket is defined as an endpoint for
communication

• Two process communicating use two
sockets

148.226.1.1:1465148.226.1.1:1465

126.10.1.2:80126.10.1.2:80

Host A

Host B

35

General Scheme for communication
Open communication channel

Server socket ref

announce reference in network
ref = new (Port)

Wait request
While, for, do

Listen request
ref.accept()

Create child process
child = ref.accept()

Read/Send data
child.read() | child.write()

Close channel
ref.close()

Open communication channel
socket ref

Connect server
ref = new (host, port)

Read/Send data
child.read() | child.write()

Close channel
ref.close()

server client 36

Deployment sockets

• The elements for working with are in
java.net.Socket

• Through this class establish a
independent environment from
platform instead of using native code
from platform.

• Java.net.ServerSocket implements a
socket to listen from the server

7

37

Simple communication scheme
for java

ServerSocket (port, timeout) Socket (host, port)

accept()

OutputStream

close()

OutputStream

close()

server client

InputStream InputStream

1. Server open port
and wait

2. Client open
connection

3. Server creates
connection with
accept 4. Client and server

communicates
with streams

38

Useful class for communication
• Socket: basic object to communicate via TCP.

Communication take place through streams.
• ServerSocket: Listen in server for request

connections, Socket object must be used for
establish the connection.

• DatagramSocket: implements UDP sockets.
• MuticastSocket: mutilcast for machines.
• NetworkServer & NetworkClient: class used for

create methods or variables in a server or client
TCP/IP.

• SocketImpl: let us implement our own Socket class,
useful to write firewall or bar reader.

39

Opening sockets
• For a client:

Socket myClient;
try {

myClient = new Socket(“host”,
“port”);

} catch (IOException e) {
System.out.println(e);

}

• For a server:

Socket myServer;
try {

myServer = new ServerSocket (
“port”);

} catch (IOException e) {
System.out.println(e);

}

Socket Client

Socket socketServer = null;
try {

socketServer = myServer.accept();
} catch (IOException e) {

System.out.println(e);
}

40

Creating Input streams
• For a client:

DataInputStream Input_data;
try {

Input_data = new DataInputStream(
myClient.getInputStream());

} catch(IOException e) {
System.out.println(e);

}

DataInputStream: let us read lines y
primitives java data.

Function for this are available:
– read(), readChar(), readInt(),

readDouble() y readLine().

• For a server:

DataInputStream Input_data;
try {

Intput_data =
new DataInputStream(

socketServer.getInputStream());
} catch(IOException e) {

System.out.println(e);
}

41

Creating Output streams
• For a client:

PrintStream Output_data;
try {

Output_data = new PrintStream(
myClient.getOutputStream());

} catch(IOException e) {
System.out.println(e);

}

DataOutputStream Output_data;
try {

Output_data = new
DataOutputStream(myClient..getOut
putStream());

} catch(IOException e) {
System.out.println(e);

}

• For a server:

PrintStream Output_data;
try {
Output_data = new PrintStream(

socketServer.getOutputStream());
} catch(IOException e) {
System.out.println(e);
}

42

Closing sockets
• For a client:

try {
Input_data.close();
Output_data.close();
myClient.close();

} catch(IOException e) {
System.out.println(e);

}

• For a server:

try {
Input_data.close();
Output_data.close();
socketServer.close();
myServer.close();

} catch(IOException e) {
System.out.println(e);

}

8

43

Cliente.java
import java.io.*;
import java.net.*;
class Cliente
{

static final String HOST = "localhost";
static final int PUERTO = 5000;
public Cliente()
{

try
{

Socket skCliente = new Socket(HOST, PUERTO);
InputStream aux = skCliente.getInputStream();
DataInputStream flujo = new DataInputStream(aux);
System.out.println(flujo.readUTF());
skCliente.close();

}
catch (Exception e)
{

System.out.println(e.getMessage());
}

}
public static void main(String[] arg)
{

new Cliente();
}

}
44

Servidor.java
import java.io.*;
import java.net.*;
class Servidor
{

static final int PUERTO = 5000;
public Servidor() {

try {
ServerSocket skServidor = new ServerSocket(PUERTO);
System.out.println("Escucho el puerto " + PUERTO);
for (int numCli = 0; numCli < 3; numCli++) {
Socket skCliente = skServidor.accept(); // Crea objeto
System.out.println("Sirvo al cliente " + numCli);
OutputStream aux = skCliente.getOutputStream();
DataOutputStream flujo= new DataOutputStream(aux);
flujo.writeUTF("Hola cliente " + numCli);
skCliente.close();
}
System.out.println("Demasiados clientes por hoy");
} catch(Exception e) {
System.out.println(e.getMessage());
}
}

public static void main(String[] arg)
{

new Servidor();
}

}

45

RPC

• The Remote Procedure Call is a
mechanism to abstract the procedure
call mechanism.

• It’s similar to IPC, but it’s in client-
server environment

• All the message are addressed to RPC
daemon

46

RMI
• The Remote Method Invocation allows to

invoke a method on a remote object.
• Object are considered as remote if they are

running on different JVM
• The different between RMI and RPC are:

– RPC support procedural programming, only
procedure and functions can be called

– RMI is based in object, so method can be invoked
– In RPC the parameters are based in structures
– In RMI can be passed objects as parameters

• Through RMI is possible to develop
distributed application across a network

47

Reference

• Silberschatz et Al, Operating Systems
concepts 7th. Wiley.

