
1

1

Desarrollo de Aplicaciones
en Red

José Rafael Rojano Cáceres
http://www.uv.mx/rrojano

2

What we saw
• Distributed system: Collection of

independent computers that for the
user works like if it where one CPU.

• Distributed operating system: Is the
actor in charge to achieve the past.

• Network operating systems: is the
actual result, wait to to became in a
true DOS. Each machine have their
kernel.

3

1. OS Design

• The design of OS can be saw from
three points of view:
– What services are offered
– Interface available for users and

programmers
– Component and interconnections

4

1.1 Operating System Service (1)

• The number and type of service differs
between each OS. The basic interface offered
are:
– User interface

• CLI, GUI, and batch interface
– Program execution
– I/O operations

• ports or device
– File-system manipulation
– Communications

• Shared memory or message passing
– Error detection

5

1.1 Operating System Service (2)

• Secondary services can be found
– Resource allocation

• CPU scheduling routines according to the
complexity of the job

– Accounting
– Protection and security

6

2. Service description

2

7

2.1 User interface (1)
• As we saw, CLI a GUI approach exists
• CLI are operated by a command

interpreter
• The command interpreter is called shell
• Two approach for building a interpreter

– by itself execute programs (size of
interpreter)

– Implements command as a system
programs (to load and execute programs)

8

2.1 User interface (2)

• GUI started in the early of 70s at Xerox
• Widespread by the Macintosh in the

80s
• Several GUIs does exist

– Mac OS
– Windows
– CDE and X-window
– KDE, GNome

9

3. System calls

10

3.1 System calls
• It provides an interface for calling services in an OS
• Imagine how many system calls does exist in order

to copy from one file to another
• System programmers usually consider this aspect to

provide an API (application programming interface) for the
developer

Acquire input file name
Acquire output file name
Open the input file
Create output file
Loop
read
write

Until
Close output file
Write result on screen
Terminate normally

11

• For APIs use does exist different ones for example:
– Win32
– Java
– Posix API for posix systems includes Linux, Mac, Unix

• Also it’s important to say that many times the
programmer use API to do system calls in stead of
invoke system calls, this help to the portability

User
application

System call
interface

User Mode

Kernel Mode

Code implementation for open
System call
return

#include <stdio.h>
int main() {

…
printf();

…
}

System call to Write()

Standard C Library {stdio}

12

3.2 Type of System Calls

• Five general group are found:
– Process control
– File manipulation
– Device manipulation
– Information maintenance
– Communications

3

13

3.2.1 Process control
• Process control refers to the

mechanism that OS use for handling
the termination of a program.

• It can be normal (end) or abnormal
(abort).

• In such case of error, a trap is issue
causing dump file.

• In the next slide you will see a resume
of type of system call

14

• Process control
– End, abort
– Load, execute
– Create or terminate process
– Get or set process attribute
– Wait
– Allocate memory

• File management
– Create, delete, Open, close, read, write

• Device management
– Request, release a device. Read or write

• Information maintenance
– Get or set, time, system data or process properties

• Communications
– Create, delete connection, send or receive message

15

Example of getting process
properties

• /** Identifica el id del proceso hijo y padre */

1. #include <sys/types.h>
2. #include <stdio.h>
3. #include <unistd.h>
4. void main(void)
5. {
6. pid_t id_proceso;
7. pid_t id_padre;
8. id_proceso = getpid();
9. id_padre = getppid();
10. printf("Identificador de proceso: %d\n", id_proceso);
11. printf("Identificador del proceso padre: %d\n",

id_padre);
12. }

16

3.2.1.1 Multitasking environment

• In multitasking environment in stead of
single-tasking child process can be
executed. Mechanism are different, Ex.:

Free
memory

kernel

Command
interpreter

Free
memory

kernel

Command
interpreter

a) b)

New
process

Free
memory

kernel

interpreter

Process c

DOS environment Unix environment

Process B

Process D

1) Forked new process
1.1 System call fork()

2) Execute program
2.1 System call exec()

17

Example of create process

1. #include <sys/types.h>
2. #include <stdio.h>
3. #include <unistd.h>
4. void main(void)
5. {
6. pid_t pid;
7. int status;
8. pid = fork();
9. switch(pid)
10. {
11. case -1: /* error del fork() */
12. perror("Error el el proceso fork");
13. break;
14. case 0: /* proceso hijo */
15. execlp("ls","ls","-l",NULL);
16. perror("Error en el proceso de creación exec");
17. break;
18. default: /* padre */
19. printf("Yo soy el proceso padre\n");
20. }
21. }

18

3.2.2 File management

• The design of File System has many
aspect, however we can identify some
common system calls in this aspect:
– Basic operations over files (O,C, R, W, S)
– Get or set attributes to files and directories

4

19

3.2.3 Device management
• One a process is executed in need access to

different resource, the resource controlled by
the system can be seen as device

• Device can be hardware or software
– Disk, printers
– Virtual devices

• So, in this category is necessary to consider
the administration for accessing and
releasing devices

20

3.2.4 Information maintenance

• In this aspect many systems provide
functionality for date and time.

• Also the system provides mechanism
to identify process, as we saw in the
example on page 15.

21

3.2.5 Communication

• As we said there are two ways for
– Shared memory
– Message passing

22

3.2.5.1 Shared memory
• To use this model the process employ

system calls to access shared memory
owned by other process

• Shared memory requires that process
removes or grant access level

• It is necessary for this model that programs
provide mechanism for concurrency

• There is a variant to this model, thread,
where shared memory is the default
mechanism

23

3.2.5.2 Message passing
• In this model through message are

send between process
• Communication must be establish in

advanced
• Name of the other process and

communicator (PC) must be known
• Identify this properties through system

calls are sent to the correspondent
system calls for processing

24

3.3 System Programs
• It’s another aspect to consider in the design

of an OS
• Many system programs are just interface of

the system calls
• They are divided in the next categories

– File management
– Status information
– File modification
– Programming language support
– Programming loading and execution
– communications

Programación de
sistemas

5

25

4. Design & implementation
in OS

26

General aspects

• Define goals and specification at
highest level: considering hardware

• But, beyond this consideration
basically we have two approach
– User goals
– System goals

• In general we found the rules of design
in software engineering

27

5. Operating System
Structure

28

5.1 General aspects

• The approach to design the structure of
an OS is in general based in the
partition task this is because of
complexity

29

5.2 Simple structure
• Many commercial OS does

not have defined structures,
because are small like Msdos

• In Msdos interfaces and
levels are not well separated
for that applications can
access basic functionalities
of I/O

• Another example is the early
Unix which was separated in
kernel and system programs,
later the kernel was layered in
services (see fig 5.2)

Fig. 5.1

30

5.3 Layered structure (1)
• With proper hardware support, OS can be broken

into smaller and efficient pieces.
• In the figure 5.2 and 5.3 you can see an approach

where OS is broken in layers or levels. The bottom
(0) is hardware and upper level (N) are applications

• The main advantage in this approach is simplicity
and debugging

• Each layer is implemented with those functions
provides for the lower layer

• A layer does not need to know how are operations
implemented, only need to know what it does

6

31

5.3 Layered structure (2)
• Also layered approach

can be less efficient that
others types

• For example a system
call can take so much
time going from upper to
lower considering that it
may needs execute I/O
operations, the system
call can be longer that in
a non layered system.

Fig. 5.2

32

Unix systems structure

Fig. 5.3

33

5.4 Microkernel
• As was said the expansion of kernel in UNIX become

complex, in 80s, Carnegie Mellon University develop
Mach system with an approach in microkernel.

• This method consist in remove all nonessential
components from the kernel implementing them as
system or user-level programs.

• The main function is to provide an interface between
user and services through message passing.

• Modularity and easily modifications without affect
the kernel

• There is also more security because programs are
executed with user privileges

• Ex.: Tru64 unix, QNX

34

5.5 Modules
• Another approach is the construction

of OS as modules
• This approach is based in the object

oriented paradigm
• Here the kernel has some core

components and dynamically links to
services

• Examples of this are Solaris, Linux and
MacOS

35

A core kernel structure
• Message passing

does not exist

Fig. 5.4

Fig. 5.5

• MacOs knows as
Darwin as
hybrid: layers
and microkernel 36

Virtual Machines

• A virtual machine is the conclusion of a
layered system.

• The idea in a VM is the abstraction of
hardware into several different
execution environments, creating the
idea of a own computer.
– Virtual memory
– Scheduling

7

37

Model of VM

38

VMware example

• Vmware abstract Intel x86 hardware
into isolated VM.

• It let run different guest OS

39

VMware architecture

40

Java VM example

• Java defines an architectural-neutral
byte code

• Two components for java architecture

41

.Net platform example

• Also program are targeted to run on
platform instead of specific
architecture

• The core of the architecture is the CLR
(Common Language Runtime)
– Which run intermediate code

representation call MS-IL (Microsoft
Intermediate Language)

42

.Net architecture

8

43

Reference

• Silberschatz et Al, Operating Systems
concepts 7th. Wiley.

