SOME FRACTIONAL DIFFERENTIAL EQUATIONS ON MATHEMATICAL BIOLOGY

Jesús Enrique Escalante Martínez¹ Juan Rosales García² Celia María Calderón Ramón¹ Juan Rodrigo Laguna Camacho¹ José Francisco Goméz Aguilar³

¹Faculty of Mechanical and Electrical Engineering FIME-UV ²Universidad de Guanajuato, México ³Cátedras CONACYT. CENIDET

4th Mexican Workshop in Fractional Calculus

2 CIRCADIAN RHYTHM

BIOLOGICAL ASSUMPTIONS AND CONSIDERATIONS OF THE MATHEMATICAL MODEL

Natural rhythm on-off, Van der Pel-oscillator

BIOLOGICAL ASSUMPTIONS AND CONSIDERATIONS OF THE MATHEMATICAL MODEL

Number of competitors and distance to them

BIOLOGICAL ASSUMPTIONS AND CONSIDERATIONS OF THE MATHEMATICAL MODEL

Memory system: Fractional Differential Equations.

$$\ddot{x_i} = f_i(x_i, \dot{x_i}) + \sum_{j \neq i} a_{ij} x_j, \quad (1 \le i, j \le 4),$$

$$f_i(x_i, \dot{x_i}) = \mu (1 - x_i^2) \dot{x_i} - a_{ii} x_i.$$
(1)

The parameter a_{ij} , is the influence firefly *i* experiencing due to the brightness of the firefly *j*. Let be $a_{ii} = k$.

$$\ddot{x_i} = f_i(x_i, \dot{x_i}) + \sum_{j \neq i} a_{ij} x_j, \quad (1 \le i, j \le 4),$$

$$f_i(x_i, \dot{x_i}) = \mu (1 - x_i^2) \dot{x_i} - a_{ii} x_i.$$
(1)

The parameter a_{ij} , is the influence firefly *i* experiencing due to the brightness of the firefly *j*. Let be $a_{ii} = k$.

The system (1) is expressed in a canonical form using the change of variables as follow: $z_1 = x_1$, $z_2 = \dot{x}_1$, $z_3 = x_2$, $z_4 = \dot{x}_2$, $z_5 = x_3$, $z_6 = \dot{x}_3$, $z_7 = x_4$ and $z_8 = \dot{x}_4$, now the system is given by:

$$\dot{z}_{2i-1} = z_{2i}, \quad \dot{z}_{2i} = f_{2i-1}(z_{2i-1}, z_{2i}) + \sum_{\substack{s \neq i \\ 2j-1 \neq 2i-1}} a_{is} z_{2j-1},$$
 (2)

 $1 \leq s, i, j \leq 4.$

SYSTEM OF FRACTIONAL DIFFERENTIAL EQUATIONS

$${}_{0}^{C}D_{t}^{\gamma}z_{2i-1} = z_{2i}, \quad {}_{0}^{C}D_{t}^{\gamma}z_{2i} = f_{2i-1}(z_{2i-1}, z_{2i}) + \sum_{\substack{s \neq i \\ 2j-1 \neq 2i-1}} a_{is}z_{2j-1}, \quad (3)$$

$$1 \le s, i, j \le 4.$$

The Liouville-Caputo operator defining the fractional derivative for $(\gamma > 0)$ as

$${}_{0}^{C}\mathcal{D}_{t}^{\gamma}f(t) = \frac{1}{\Gamma(n-\gamma)} \int_{0}^{t} \frac{f^{(n)}(\eta)}{(t-\eta)^{\gamma-n+1}} d\eta,$$
(4)

where ${}_{0}^{C}\mathcal{D}_{t}^{\gamma}$ is a Liouville-Caputo fractional derivative with respect to *t*.

SYSTEM OF FRACTIONAL DIFFERENTIAL EQUATIONS

$${}_{0}^{C}D_{t}^{\gamma}z_{2i-1} = z_{2i}, \quad {}_{0}^{C}D_{t}^{\gamma}z_{2i} = f_{2i-1}(z_{2i-1}, z_{2i}) + \sum_{\substack{s\neq i\\2j-1\neq 2i-1}} a_{is}z_{2j-1}, \quad (3)$$

$$1 \le s, i, j \le 4.$$

The Liouville-Caputo operator defining the fractional derivative for $(\gamma > 0)$ as

$${}_{0}^{C}\mathcal{D}_{t}^{\gamma}f(t) = \frac{1}{\Gamma(n-\gamma)} \int_{0}^{t} \frac{f^{(n)}(\eta)}{(t-\eta)^{\gamma-n+1}} d\eta,$$
(4)

5/29

where ${}_{0}^{C}\mathcal{D}_{t}^{\gamma}$ is a Liouville-Caputo fractional derivative with respect to *t*.

LINEAR ARRAY. ONE OR TWO COMPETITORS

System linearization (3) around of the equilibrium point $0 \in \mathbb{R}^8$ in terms of the parameters k, μ is defined by M_1

Γ0	1	0	0	0	0	0	[0
-k	μ	1	0	0	0	0	0
0	0	0	1	0	0	0	0
1	0	-k	μ	1	0	0	0
0	0	0	0	0	1	0	0
0	0	1	0	$^{-k}$	μ	1	0
0	0	0	0	0	0	0	1
0	0	0	0	1	0	-k	μ

The eigenvalues of M_1 are $1/2(\mu \pm \sqrt{\pm 2 \pm \sqrt{5} - 4k + \mu^2})$. Since a periodic phenomenon modeled complex eigenvalues are needed and therefore

$$k > max \left\{ \frac{1}{4} (\mu^2 \pm 2 \pm 2\sqrt{5}) \right\}$$
$$= \frac{1}{4} (\mu^2 + 2 + 2\sqrt{5})$$
$$\approx 1.868033989.$$

SQUARE ARRAY. TYPE 1

System linearization (3) around of the equilibrium point $0 \in \mathbb{R}^8$ in terms of the parameters k, μ is defined by M_2

Γ0	1	0	0	0	0	0	٦0
-k	μ	1	0	1/2	0	0	0
0	0	0	1	0	0	0	0
1	0	$^{-k}$	μ	1	0	1/2	0
0	0	0	0	0	1	0	0
1/2	0	1	0	$^{-k}$	μ	1	0
0	0	0	0	0	0	0	1
L 1	0	1/2	0	1	0	$^{-k}$	μ

The eigenvalues of M_2 are $1/2(\mu \pm \sqrt{-6 - 4k + \mu^2})$, $1/2(\mu \pm \sqrt{10 - 4k + \mu^2})$ and $1/2(\mu \pm \sqrt{-2 - 4k + \mu^2})$ of algebraic multiplicity 2. Thus

$$k > max \left\{ \frac{1}{4}(\mu^2 - 6), \\ \frac{1}{4}(\mu^2 + 10), \frac{1}{4}(\mu^2 - 2) \right\}$$
$$= \frac{1}{4}(\mu^2 + 10) = 2.75$$

SQUARE ARRAY. TYPE 2

System linearization (3) around of the equilibrium point $0 \in \mathbb{R}^8$ in terms of the parameters k, μ is defined by M_3

Γ0	1	0	0	0	0	0	[0
-k	μ	1/2	0	1	0	1/2	0
0	0	0	1	0	0	0	0
1/2	0	$^{-k}$	μ	1/2	0	1	0
0	0	0	0	0	1	0	0
1	0	1/2	0	$^{-k}$	μ	1/2	0
0	0	0	0	0	0	0	1
1/2	0	1	0	1/2	0	$^{-k}$	μ

The eigenvalues of M_3 are $1/2(\mu \pm \sqrt{-4 - 4k + \mu^2})$ of multiplicity 2, $1/2(\mu \pm \sqrt{-4k + \mu^2})$ and $1/2(\mu \pm \sqrt{8 - 4k + \mu^2})$. Thus

$$k > max \left\{ \frac{1}{4}(\mu^2 - 4), \\ \frac{1}{4}(\mu^2), \frac{1}{4}(\mu^2 + 8) \right\}$$
$$= \frac{1}{4}(\mu^2 + 8) = 2.25$$

RESULTS AND CONCLUSIONS

RESULTS

- For the linear arrangement, where the fireflies only see one or two fireflies, the value of k = 1.868033989.
- For the square array type 1, k = 2.75.
- For the square array type 2, k = 2.25.
- For the linear array, where each receives three, k = 2.1322.

CONCLUSIONS

The value of k means the effort that each firefly makes to shine, this value increases when the number of competitors increases (fixed distance). In addition, it decreases when the distance between them is smaller (number of fixed competitors)

RESULTS AND CONCLUSIONS

RESULTS

- For the linear arrangement, where the fireflies only see one or two fireflies, the value of k = 1.868033989.
- For the square array type 1, k = 2.75.
- For the square array type 2, k = 2.25.
- For the linear array, where each receives three, k = 2.1322.

CONCLUSIONS

The value of k means the effort that each firefly makes to shine, this value increases when the number of competitors increases (fixed distance). In addition, it decreases when the distance between them is smaller (number of fixed competitors)

Oscillator communication

CIRCADIAN RYHTHM

ESCALANTE et al. (FIME-PR. UV)

Transition from youth to adult

CIRCADIAN RYHTHM

ESCALANTE et al. (FIME-PR. UV)

Synchronization of ultradian rhythms in a circadian rhythm

CIRCADIAN RYHTHM

ESCALANTE et al. (FIME-PR. UV)

μ , It is a parameter of communication efficiency between rhythms

$$\begin{aligned} \ddot{x}_1 &= \nu (1 - x_1^2) \dot{x}_1 - kx_1 + \mu (a_{12}x_2 + a_{13}x_3 + a_{14}x_4), \\ \ddot{x}_2 &= \nu (1 - x_2^2) \dot{x}_2 - kx_2 + \mu (a_{21}x_1 + a_{23}x_3 + a_{24}x_4), \\ \ddot{x}_3 &= \nu (1 - x_3^2) \dot{x}_3 - kx_3 + \mu (a_{31}x_1 + a_{32}x_2 + a_{34}x_4), \\ \ddot{x}_4 &= \nu (1 - x_4^2) \dot{x}_4 - kx_4 + \mu (a_{41}x_1 + a_{42}x_2 + a_{43}x_3). \end{aligned}$$

The coefficients a_{ij} in (5) they are given by the following matrix

$$\begin{bmatrix} -k & 1 & 1/\sqrt[4]{2} & 1\\ 1 & -k & 1 & 1/\sqrt[4]{2}\\ 1/\sqrt[4]{2} & 1 & -k & 1\\ 1 & 1/\sqrt[4]{2} & 1 & -k \end{bmatrix}.$$
 (6)

(5)

The **Liouville-Caputo** fractional derivative of order γ is defined by

$${}_{a}^{LC}\mathcal{D}_{t}^{\gamma}\{f(t)\} = \frac{1}{\Gamma(n-\gamma)} \int_{a}^{t} f^{(n)}(\theta)(t-\theta)^{n-\gamma-1} d\theta, \quad n-1 < \gamma \le n.$$
(7)

The **Liouville-Caputo** fractional derivative of order γ is defined by

$${}^{LC}_{a}\mathcal{D}^{\gamma}_{t}\{f(t)\} = \frac{1}{\Gamma(n-\gamma)} \int_{a}^{t} f^{(n)}(\theta)(t-\theta)^{n-\gamma-1} d\theta, \quad n-1 < \gamma \le n.$$
(7)

By changing the kernel $(t - \theta)^{-\gamma}$ in (7) with the function $\exp(-\frac{\gamma}{n-\gamma}t)$ and $\frac{1}{\Gamma(n-\gamma)}$ with $\frac{M(\gamma)}{n-\gamma}$, it is obtained the **Caputo-Fabrizio** fractional derivative:

$${}_{a}^{CF}\mathcal{D}_{t}^{\gamma}\{f(t)\} = \frac{M(\gamma)}{n-\gamma} \int_{a}^{t} f^{(n)}(\theta) \exp\left[-\frac{\gamma}{n-\gamma}(t-\theta)\right] d\theta, \quad n-1 < \gamma \le n.$$
(8)

Where $M(\gamma)$ is a normalization function such that M(0) = M(1) = 1.

Rhythms: Electroretinography (ERG) vs Stages of crayfish

FIGURE: $\mu = 0.5, \gamma = 0.9, 0.85, 0.8, 0.75.$

FIGURE: $\mu = 0.8$, $\gamma = 0.9, 0.85, 0.8, 0.75$.

Figure: $\mu = 1$, $\gamma = 0.9, 0.85, 0.8, 0.75$.

CONCLUSIONS

- $0 < \mu < 0.7$. Ultradian rhythms shown at this stage are clearly out of synch.
- $0.7 < \mu < 1$. A low frequency rythm appears on which ultradian rhythms can be observed that correspond to stage 1-2.
- $\mu = 1$. The crayfish is mature, the circadian rhythm is more apparent. In fact, ultradian rhythms are synchronized in a single circadian rhythm responsible for governing the metabolism of the adult crayfish.

DYNAMICS IN NATURAL TIME

Interaction of three species: Pollinators, plants, herbivores

ESCALANTE *et al.* (FIME-PR. UV)

DYNAMICS IN NATURAL TIME

Persistence of a Hopf bifurcation

ESCALANTE et al. (FIME-PR. UV)

DYNAMICS IN NATURAL TIME

The mathematical model it is by Fractional derivatives to include ecological hypotheses

ESCALANTE *et al.* (FIME-PR. UV)

DEFINITION

Caputo fractional derivative with order α for a function $f \in \mathcal{AC}^m[0,T], T > 0$ with absolutely continuos derivative up to order m-1 and with absolutely continuos *m*-derivative is defined as

$${}^{C}D^{\alpha}_{t_{0}}f(t) = \frac{1}{\Gamma(m-\alpha)} \int_{t_{0}}^{t} (t-\tau)^{m-\alpha-1} f^{(m)}(\tau) d\tau.$$
(9)

where $0 \le m - 1 < \alpha \le m$, $m \in \mathbb{Z}^+$, and $t = t_0$ is the initial time and $\Gamma(\cdot)$ is the Gamma function. $f^{(m)}$ is the derivative of f of order m.

To keep the dimensionality of the system of fractional differential equations, we introduce a parameter ν , named "natural time", in the following way. The specific value that the natural time takes depends on each investigation, this should be a unit defined by the own biological rhythms of the studied system.

$$\frac{df}{dt} \simeq \frac{1}{\nu^{1-\alpha}} \frac{d^{\alpha}f}{dt^{\alpha}}, \qquad m-1 < \alpha \le m, \quad m \in \mathbb{Z}^{+}.$$

$$= \frac{1}{\nu^{1-\alpha}} CD_{t_{0}}^{\alpha}f(t), \qquad (10)$$

SYSTEM OF FRACTIONAL DIFFERENTIAL EQUATIONS

The system is derived on some plausible and widely supported ecological hypothesis. Respectively: *x*-pollinator, *y*-plants and *z*-herbivores.

$$\frac{1}{\nu^{1-\alpha}} \frac{d^{\alpha}x}{dt^{\alpha}} = bx(k-x) + \frac{g(z)k_{2}\sigma\mu^{2}xy}{1+\phi\sigma\mu^{2}y},$$

$$\frac{1}{\nu^{1-\alpha}} \frac{d^{\alpha}y}{dt^{\alpha}} = \frac{g(z)k_{1}\sigma\mu xy}{1+\phi\sigma\mu^{2}y} - \gamma y - \frac{m_{1}yz}{\frac{y^{2}}{c}+y+a},$$

$$\frac{1}{\nu^{1-\alpha}} \frac{d^{\alpha}z}{dt^{\alpha}} = \frac{m_{2}yz}{\frac{y^{2}}{c}+y+a} - \delta z.$$
(11)

where $x(0) \ge 0, y(0) \ge 0, z(0) \ge 0$, and g(z) measures the reduction rate of pollinator visits, which depends on the herbivore population density

STABILITY ANALYSIS

$$\begin{split} M(x,yz) = & \\ \begin{bmatrix} b(k-2x) + \mu k_2 y h_2(y) & \mu k_2 x h_3(y) & 0 \\ k_1 y h_2(y) & k_1 x h_3(y) + m_1 y (2y+c) h_6(y) - m_1 z h_5(y) - \gamma & -m_1 y h_5(y) \\ 0 & m_2 z h_5(y) - m_2 y z (2y+c) h_6(y) & -m_2 y h_5(y) - \delta \end{bmatrix} \end{split}$$

with
$$h_1(y) = y\sigma\phi\mu^2 + 1$$
, $h_2(y) = \frac{g(z)\sigma\mu}{h_1(y)}$, $h_3(y) = \frac{h_2(y)}{h_1(y)}$,
 $h_4(y) = y^2 + cy + ac$, $h_5(y) = \frac{c}{h_4(y)}$, $h_6(y) = \frac{h_5(y)}{h_4(y)}$.

ESCALANTE et al. (FIME-PR. UV)

x	y	z	Plausible
0.6666	-2.0	0	×
0	22.4888	-187.4066	×
0	0.1778	-1.4822	×
0.9664	-0.1141	0	×
2.9183	0.1778	1.0702	\checkmark
0	0	0	×
5.4238	22.4888	-169.7203	×
0	-0.5	0	×
2	0	0	×
0	-2.0	0	×
4.5353	1.3141	0	×

TABLE: Equilibrium points of the system (11)

$$N(p) = \begin{bmatrix} -3.7695 & 14.3579 & 0\\ 0.3388 & -1.0776 & -0.3874\\ 0 & 2.9263 & -0.0002 \end{bmatrix}$$
(12)

$$\lambda_1 = -4.9544$$

$$\lambda_2 = 0.0536 + 0.9271 i$$

$$\lambda_2 = 0.0536 - 0.9271 i$$
(13)

When $\alpha \in (0, 0.9625]$, p is a spiral stable. For $\alpha \in (0.9625, 1]$ system has a limit cycle.

CIRCADIAN RHYTHM

FIGURE: Limit Cycle

FIGURE: Spiral

CONCLUSIONS

- Stability in both cases is plausible from the ecological perspective.
- Varying the order of derivation causes a Hopf fork to appear.
- The derivation orders can be different between equations in the numerical method used.

BIBLIOGRAPHY I

- [1] JE Escalante-Martínez, JF Gómez-Aguilar, C Calderón-Ramón, A Aguilar-Meléndez, P Padilla-Longoria. Synchronized bioluminescence behavior of a set of fireflies involving fractional operators of Liouville?Caputo type. International Journal of Biomathematics, 11, 2018.
- [2] JE Escalante-Martínez, JF Gómez-Aguilar, C Calderón-Ramón, A Aguilar-Meléndez, P Padilla-Longoria. A mathematical model of circadian rhythms synchronization using fractional differential equations system of coupled van der Pol oscillators. International Journal of Biomathematics, 11, 2018.
- [3] Garrappa, R. *Numerical solution of fractional differential equations: a survey and a software tutorial.* Mathematics, **6(2)**, 16, 2018.

- [4] J.F. Gómez-Aguilar, J.J. Rosales-García, J.J. Bernal-Alvarado, T. Córdova-Fraga, R. Guzmán-Cabrera. *Fractional mechanical* oscillators. Rev. Mex. Fís, **58**, 348-352, (2012).
- [5] Podlubny I. *Fractional differential equations*. Academic Press, New York, (1999).
- [6] Oldham K.B., Spanier J. *The fractional calculus*. Academic Press, New York, (1974).

