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FIREFLIES

BIOLOGICAL ASSUMPTIONS AND CONSIDERATIONS OF

THE MATHEMATICAL MODEL

Natural rhythm on-off, Van der Pol oscillator
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BIOLOGICAL ASSUMPTIONS AND CONSIDERATIONS OF
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Number of competitors and distance to them
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FIREFLIES

BIOLOGICAL ASSUMPTIONS AND CONSIDERATIONS OF

THE MATHEMATICAL MODEL

Memory system: Fractional Differential Equations

ESCALANTE et al. (FIME-PR. UV) CF-MATHBIO OCTOBER 2019 3 / 29



FIREFLIES

ẍi = fi(xi, ẋi) +
∑
j 6=i

aijxj , (1 ≤ i, j ≤ 4),

fi(xi, ẋi) = µ(1− x2
i )ẋi − aiixi.

(1)

The parameter aij , is the influence firefly i experiencing due to the
brightness of the firefly j. Let be aii = k.

The system (1) is expressed in a canonical form using the change of
variables as follow: z1 = x1, z2 = ẋ1, z3 = x2, z4 = ẋ2, z5 = x3, z6 = ẋ3,
z7 = x4 and z8 = ẋ4, now the system is given by:

ż2i−1 = z2i, ż2i = f2i−1(z2i−1, z2i) +
∑
s 6=i

2j−16=2i−1

aisz2j−1,

1 ≤ s, i, j ≤ 4.

(2)
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FIREFLIES

SYSTEM OF FRACTIONAL DIFFERENTIAL EQUATIONS

C
0 D

γ
t z2i−1 = z2i,

C
0 D

γ
t z2i = f2i−1(z2i−1, z2i) +

∑
s6=i

2j−1 6=2i−1

aisz2j−1,

1 ≤ s, i, j ≤ 4.

(3)

The Liouville-Caputo operator defining the fractional derivative for
(γ > 0) as

C
0 D

γ
t f(t) =

1

Γ(n− γ)

∫ t

0

f (n)(η)

(t− η)γ−n+1
dη, (4)

where C
0 D

γ
t is a Liouville-Caputo fractional derivative with respect to t.

FIGURE: Arrangements
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FIREFLIES

LINEAR ARRAY. ONE OR TWO COMPETITORS

System linearization (3) around
of the equilibrium point 0 ∈ R8

in terms of the parameters k, µ
is defined by M1


0 1 0 0 0 0 0 0
−k µ 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 −k µ 1 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 −k µ 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 −k µ



The eigenvalues of M1 are
1/2(µ±

√
±2±

√
5− 4k + µ2).

Since a periodic phenomenon
modeled complex eigenvalues
are needed and therefore

k > max

{
1

4
(µ2 ± 2± 2

√
5)

}
=

1

4
(µ2 + 2 + 2

√
5)

≈ 1.868033989.
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FIREFLIES

SQUARE ARRAY. TYPE 1

System linearization (3) around
of the equilibrium point 0 ∈ R8

in terms of the parameters k, µ
is defined by M2


0 1 0 0 0 0 0 0
−k µ 1 0 1/2 0 0 0
0 0 0 1 0 0 0 0
1 0 −k µ 1 0 1/2 0
0 0 0 0 0 1 0 0

1/2 0 1 0 −k µ 1 0
0 0 0 0 0 0 0 1
1 0 1/2 0 1 0 −k µ



The eigenvalues of M2 are
1/2(µ±

√
−6− 4k + µ2),

1/2(µ±
√

10− 4k + µ2) and
1/2(µ±

√
−2− 4k + µ2) of

algebraic multiplicity 2. Thus

k > max

{
1

4
(µ2 − 6),

1

4
(µ2 + 10),

1

4
(µ2 − 2)

}
=

1

4
(µ2 + 10) = 2.75
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FIREFLIES

SQUARE ARRAY. TYPE 2

System linearization (3) around
of the equilibrium point 0 ∈ R8

in terms of the parameters k, µ
is defined by M3


0 1 0 0 0 0 0 0
−k µ 1/2 0 1 0 1/2 0
0 0 0 1 0 0 0 0

1/2 0 −k µ 1/2 0 1 0
0 0 0 0 0 1 0 0
1 0 1/2 0 −k µ 1/2 0
0 0 0 0 0 0 0 1

1/2 0 1 0 1/2 0 −k µ



The eigenvalues of M3 are
1/2(µ±

√
−4− 4k + µ2) of

multiplicity 2,
1/2(µ±

√
−4k + µ2) and

1/2(µ±
√

8− 4k + µ2). Thus

k > max

{
1

4
(µ2 − 4),

1

4
(µ2),

1

4
(µ2 + 8)

}
=

1

4
(µ2 + 8) = 2.25
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FIREFLIES

RESULTS AND CONCLUSIONS

RESULTS

For the linear arrangement, where the fireflies only see one or two
fireflies, the value of k = 1.868033989.
For the square array type 1, k = 2.75.
For the square array type 2, k = 2.25.
For the linear array, where each receives three, k = 2.1322.

CONCLUSIONS

The value of k means the effort that each firefly makes to shine, this
value increases when the number of competitors increases (fixed
distance). In addition, it decreases when the distance between them is
smaller (number of fixed competitors)
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CIRCADIAN RHYTHM

Oscillator communication
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CIRCADIAN RHYTHM

Transition from youth to adult
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CIRCADIAN RHYTHM

Synchronization of ultradian rhythms in a circadian
rhythm
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CIRCADIAN RHYTHM
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CIRCADIAN RHYTHM

µµµ, IT IS A PARAMETER OF COMMUNICATION EFFICIENCY

BETWEEN RHYTHMS

ẍ1 = ν(1− x2
1)ẋ1 − kx1 + µ(a12x2 + a13x3 + a14x4),

ẍ2 = ν(1− x2
2)ẋ2 − kx2 + µ(a21x1 + a23x3 + a24x4),

ẍ3 = ν(1− x2
3)ẋ3 − kx3 + µ(a31x1 + a32x2 + a34x4),

ẍ4 = ν(1− x2
4)ẋ4 − kx4 + µ(a41x1 + a42x2 + a43x3).

(5)

The coefficients aij in (5) they are given by the following matrix
−k 1 1/ 4

√
2 1

1 −k 1 1/ 4
√

2

1/ 4
√

2 1 −k 1

1 1/ 4
√

2 1 −k

 . (6)
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CIRCADIAN RHYTHM

The Liouville-Caputo fractional derivative of order γ is defined by

LC
a D

γ
t {f(t)} =

1

Γ(n− γ)

∫ t

a
f (n)(θ)(t−θ)n−γ−1dθ, n−1 < γ ≤ n. (7)

By changing the kernel (t− θ)−γ in (7) with the function exp(− γ
n−γ t)

and 1
Γ(n−γ) with M(γ)

n−γ , it is obtained the Caputo-Fabrizio fractional
derivative:

CF
a D

γ
t {f(t)} =

M(γ)

n− γ

∫ t

a
f (n)(θ) exp

[
− γ

n− γ
(t− θ)

]
dθ, n−1 < γ ≤ n.

(8)
Where M(γ) is a normalization function such that M(0) = M(1) = 1.
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CIRCADIAN RHYTHM

RHYTHMS: ELECTRORETINOGRAPHY (ERG) VS STAGES

OF CRAYFISH

FIGURE: µ = 0.5, γ = 0.9, 0.85, 0.8, 0.75.
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CIRCADIAN RHYTHM

FIGURE: µ = 0.8, γ = 0.9, 0.85, 0.8, 0.75.
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CIRCADIAN RHYTHM

FIGURE: µ = 1, γ = 0.9, 0.85, 0.8, 0.75.

ESCALANTE et al. (FIME-PR. UV) CF-MATHBIO OCTOBER 2019 16 / 29



CIRCADIAN RHYTHM

CONCLUSIONS

0 < µ < 0.7. Ultradian rhythms shown at this stage are clearly out
of synch.
0.7 < µ < 1. A low frequency rythm appears on which ultradian
rhythms can be observed that correspond to stage 1-2.
µ = 1. The crayfish is mature, the circadian rhythm is more
apparent. In fact, ultradian rhythms are synchronized in a single
circadian rhythm responsible for governing the metabolism of the
adult crayfish.
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DYNAMICS POPULATIONS

DYNAMICS IN NATURAL TIME

Interaction of three species: Pollinators,
plants, herbivores
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DYNAMICS POPULATIONS

DYNAMICS IN NATURAL TIME

Persistence of a Hopf bifurcation
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DYNAMICS POPULATIONS

DYNAMICS IN NATURAL TIME

The mathematical model it is by Fractional
derivatives to include ecological hypotheses
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CIRCADIAN RHYTHM

DEFINITION

Caputo fractional derivative with order α for a function
f ∈ ACm[0, T ], T > 0 with absolutely continuos derivative up to order
m− 1 and with absolutely continuos m-derivative is defined as

CDα
t0f(t) =

1

Γ(m− α)

∫ t

t0

(t− τ)m−α−1f (m)(τ)dτ. (9)

where 0 ≤ m− 1 < α ≤ m, m ∈ Z+, and t = t0 is the initial time and
Γ(·) is the Gamma function. f (m) is the derivative of f of order m.
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CIRCADIAN RHYTHM

To keep the dimensionality of the system of fractional differential
equations, we introduce a parameter ν, named “natural time”, in the
following way. The specific value that the natural time takes
depends on each investigation, this should be a unit defined by
the own biological rhythms of the studied system.

df

dt
' 1

ν1−α
dαf

dtα
,

=
1

ν1−α
CDα

t0f(t),

m− 1 < α ≤ m, m ∈ Z+. (10)
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CIRCADIAN RHYTHM

SYSTEM OF FRACTIONAL DIFFERENTIAL EQUATIONS

The system is derived on some plausible and widely supported
ecological hypothesis. Respectively: x-pollinator, y-plants and
z-herbivores.

1

ν1−α
dαx

dtα
= bx(k − x) +

g(z)k2σµ
2xy

1 + φσµ2y
,

1

ν1−α
dαy

dtα
=
g(z)k1σµxy

1 + φσµ2y
− γy − m1yz

y2

c + y + a
,

1

ν1−α
dαz

dtα
=

m2yz
y2

c + y + a
− δz.

(11)

where x(0) ≥ 0, y(0) ≥ 0, z(0) ≥ 0, and g(z) measures the reduction
rate of pollinator visits, which depends on the herbivore population
density
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CIRCADIAN RHYTHM

STABILITY ANALYSIS

M(x, yz) = b(k − 2x) + µk2yh2(y) µk2xh3(y) 0
k1yh2(y) k1xh3(y) +m1y(2y + c)h6(y)−m1zh5(y)− γ −m1yh5(y)

0 m2zh5(y)−m2yz(2y + c)h6(y) −m2yh5(y)− δ



with h1(y) = yσφµ2 + 1, h2(y) =
g(z)σµ

h1(y)
, h3(y) =

h2(y)

h1(y)
,

h4(y) = y2 + cy + ac, h5(y) =
c

h4(y)
, h6(y) =

h5(y)

h4(y)
.
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CIRCADIAN RHYTHM

TABLE: Equilibrium points of the system (11)

x y z Plausible

0.6666 -2.0 0 ×
0 22.4888 -187.4066 ×
0 0.1778 -1.4822 ×

0.9664 -0.1141 0 ×
2.9183 0.1778 1.0702 X

0 0 0 ×
5.4238 22.4888 -169.7203 ×

0 -0.5 0 ×
2 0 0 ×
0 -2.0 0 ×

4.5353 1.3141 0 ×

ESCALANTE et al. (FIME-PR. UV) CF-MATHBIO OCTOBER 2019 23 / 29



CIRCADIAN RHYTHM

N(p) =

 −3.7695 14.3579 0
0.3388 −1.0776 −0.3874

0 2.9263 −0.0002

 (12)

λ1 = −4.9544

λ2 = 0.0536 + 0.9271 i

λ2 = 0.0536− 0.9271 i

(13)

When α ∈ (0, 0.9625], p is a spiral stable. For α ∈ (0.9625, 1] system
has a limit cycle.
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CIRCADIAN RHYTHM

FIGURE: Spiral
FIGURE: Limit Cycle
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CIRCADIAN RHYTHM

CONCLUSIONS

Stability in both cases is plausible from the ecological perspective.
Varying the order of derivation causes a Hopf fork to appear.
The derivation orders can be different between equations in the
numerical method used.
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