Programa de estudio de experiencia educativa

I. Área académica

Área Académica Técnica

2.-Programa educativo

Ingeniería Ambiental

3.- Campus

Coatzacoalcos, Orizaba, Poza Rica, Xalapa

4.-Dependencia/Entidad

Facultad de Ciencias Químicas

6Nombre de la experiencia		7 Area de formación	
5 Código	educativa	Principal	Secundaria
AMIA 18013	Diseño de sistemas de tratamiento de aguas residuales	D	No aplica

8.-Valores de la experiencia educativa

Créditos	Teoría	Práctica	Total horas	Equivalencia (s)
5	2	I	45	Ninguna

9.-Modalidad

10.-Oportunidades de evaluación

Curso- Taller	ABGHJK= Todas
---------------	---------------

II.-Requisitos

Pre-requisitos	Co-requisitos
Diseño de Operaciones Unitarias Físicas Avanzadas	Ninguno

12.-Características del proceso de enseñanza aprendizaje

Individual / Grupal	Máximo	Mínimo
Grupal	40	10

I3.-Agrupación natural de la Experiencia educativa

14.-Proyecto integrador

Academia de Ingeniería Aplicada	No aplica
---------------------------------	-----------

15.-Fecha

Elaboración	Modificación	A probación
Enero 2020		Junio 2020

16.-Nombre de los académicos que participaron

Dr. Eric Pascal Houbron, Dra. Elena Rustrían Portilla, Dr. Michel de la Cruz Canul Chan

17.-Perfil del docente

Ingeniero Ambiental o Ingeniero Químico, preferentemente con grado de Maestría o Doctorado, con cinco años de experiencia como docente en educación superior y cursos de docencia y actualización periódica de la disciplina.

18Espacio	19Relación disciplinaria	
Intraprograma educativo	Interdisciplinario	

20.-Descripción

Esta Experiencia Educativa tiene como propósito acercar el estudiante de la ingeniería Ambiental al diseño adecuado de sistemas de tratamiento de aguas residuales considerando dos horas de teoría y una hora de práctica, con un total de 3 horas semanales. El estudiante debe manejar los conceptos teóricos y prácticos involucrados en el diseño de sistemas de tratamiento de aguas residuales, lo cual le permitirá diagnosticar la problemática y proponer soluciones adecuadas para la mitigación y control de la contaminación ambiental. Esto promueve la formación integral de los estudiantes, dentro de los objetivos del programa y perfil del egresado. Se evaluará mediante la aplicación de Exámenes parciales, reportes, exposiciones de investigación documental y desarrollo de un proyecto integrador, que cumplan con los criterios de puntualidad, creatividad, colaboración, responsabilidad y respeto.

21.-Justificación

El diseño de los sistemas de tratamiento de aguas residuales constituye una medida para disminuir el impacto ocasionado por el uso de las aguas. El Ingeniero Ambiental debe manejar los conceptos teóricos y prácticos involucrados en el diseño de sistemas de tratamiento de aguas residuales, lo cual le permitirá proponer soluciones adecuadas para la mitigación y control de la contaminación ambiental. Esto promueve la formación integral de los estudiantes, dentro de los objetivos del programa y perfil del egresado.

22.- Unidad de competencia

El estudiante aplica los conocimientos del diseño de plantas de tratamiento de aguas residuales mediante el análisis y síntesis de la información, interpretando y clasificando los resultados de problemas para construir soluciones alternas para remover los contaminantes presentes en el agua, con una postura de colaboración, responsabilidad y creatividad.

23.-Articulación de los ejes

Los estudiantes analizan y aplican los conceptos de los tratamientos de aguas residuales y la disposición de lodos, a través del análisis de información, solución de problemas y establecimiento de soluciones alternas, en un marco de responsabilidad, colaboración y creatividad.

24.-Saberes

Teóricos	Heurísticos	Axiológicos
Antecedentes del diseño de Planta de tratamiento de Aguas residuales • Determinación de gastos de diseño.	 Analiza y sintetiza información Interpretación y clasificación de 	 Se responsabiliza a entregar sus proyectos o tareas en
 Diagramas de flujo de trenes típicos de tratamiento. 	resultados de los problemas	tiempo y forma.
 Análisis de alternativas del sistema de tratamiento. 	 Construcción de soluciones 	Presenta formas
 Marco legislativo en materia de tratamiento y reúso de agua residual. 	alternativas • Comunica	creativas a la solución de problemas
Diseño del subsistema de tratamiento primario	efectivamente de forma oral y escrita	Realiza trabajo
 Rejillas Desarenadores Estructuras para la medición de caudales. 		en colaboración con sus compañeros
 Tanques de igualación. Sedimentadores primarios 		
Diseño del subsistema de tratamiento secundario		
Sistemas de lodos activados.		

 Digestión anaerobia 	
Estanques y lagunas.	
Discos biológicos.	
Filtros percoladores.	
Humedales artificiales.	
Sedimentadores secundarios	
Diseño del subsistema de	
tratamiento terciario	
 Remoción de Nitrógeno 	
 Remoción de fosforo 	
 Desinfección de efluentes 	
Tratamiento y disposición de	
lodos	
 Principio de conservación de 	
masa para bio-sólidos.	
 Espesadores. 	
 Digestión de lodos. 	
 Deshidratación de lodos. 	
 Composteo de lodos. 	

25.-Estrategias metodológicas

26.-Apoyos educativos

Materiales didácticos	Recursos didácticos
TIC's	Video-Proyectores
Audiovisual	

 Revistas científicas 	• Computadoras con conexión a
Antología	internet
Artículos	Laboratorio
 Modelos 	Pintarrón
• Libros	Marcadores
	Borrador
	Software

27.-Evaluación del desempeño

Evidencia (s) de desempeño	Criterios de desempeño	Ámbito(s) de aplicación	Porcentaje
Exámenes parciales		Aula	40 %
Reporte y exposición de investigación documental	Orden, claridad y suficiencia	Aula Centro de cómputo Biblioteca	30 %
Proyecto integrador	Pertinencia, fluidez, creatividad	Aula Biblioteca	30 %

28.-Acreditación

Para acreditar esta EE el estudiante deberá haber presentado con idoneidad y pertinencia cada evidencia de desempeño, es decir, que en cada una de ellas haya obtenido cuando menos el 60%, además de cumplir el porcentaje de asistencia establecido en el estatuto de alumnos 2008.

29.-Fuentes de información

Básicas

- Amador-Díaz, A., Veliz-Lorenzo, E., y Bataller-Venta, M. (2015). Tratamiento de lodos, generalidades y aplicaciones. *Revista CENIC Ciencias Químicas*, 46(1), 16-25.
- Greer C. W. (2004). Microscale and Molecular Assessment of the Impacts of Nickel, Nutrients and Oxygen Level on the Structure and Function of River Biofilm Communities. Appl. Environ. Microbiol. 70: 4326-4339.
- Hernández-García A., Buitrón Méndez H., G., Lopez-Vazquez M., y Cervantes Carrillo F. (2017) Tratamiento biológico de aguas residuales: principios, modelación y diseño. IWA publishing.
- Moletta R. (2002) Gestion des problèmes environnementaux dans les industries agroalimentaires. Collection Sciences et Techniques Agroalimentaires. Editions Tec et Doc. Paris, France. 600pp.
- Ramalho R. (2012). *Introduction to wastewater treatment processes*. Elsevier.
- Rao D.G., Senthilkumar R., Byrne J.A., y Feroz S. (2012). Wastewater treatment: advanced processes and technologies. CRC Press.

- Romero Rojas, J. A. (2004). Tratamiento de aguas residuales, teoría y principios de diseño. Bogotá, CO, Escuela Colombiana de Ingenieros.
- Samer M. (2015). Wastewater treatment engineering. BoD–Books on Demand.
- Tchobanoglus G., Burton F., y Stensel H.D. (2003). Wastewater engineering: treatment and reuse. American Water Works Association Journal, 95(5), 201.

Complementarias

- Al-Kdasi, A., Idris, A., Saed, K., y Guan, C. T. (2004). Treatment of textile wastewater by advanced oxidation processes—a review. *Global nest: the Int. J*, 6(3), 222-230.
- Biblioteca Virtual UV
- Moran, S. (2018). An Applied Guide to Water and Effluent Treatment Plant Design. Butterworth-Heinemann.
- Richard Stuetz. (2009). Principles of water and wastewater treatment processes. London, New York. IWA Pub., 2009