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Objectives We tested this hypothesis assessing the 
effect of old-growth and secondary forest cover on 
the abundance and immature-to-female ratio (proxy 
of reproductive success) of two endangered primates: 
Geoffroy’ spider monkeys and black howler monkeys.
Methods We measured the response and predictor 
variables across 18 whole landscapes (landscape-
scale approach) in the Lacandona rainforest, Mexico. 
As there could be tipping points of forest loss beyond 
which species extinction is accelerated (extinction 
thresholds), we separately tested the linear and non-
linear effect of forest cover on each response, inde-
pendently for three spatial scales.
Results We found stronger and larger-scale nega-
tive responses to forest loss in spider monkeys than 
in howler monkeys. However, the data were better 
predicted by linear models, giving no support to the 
extinction threshold hypothesis. In both species, for-
est loss had stronger negative impacts on monkey 
abundance when considering old-growth forest, than 
when considering secondary forest cover, or total 
(old-growth + secondary) forest cover. Yet, the imma-
ture-to-female ratio was weakly related to forest cover 
in both species.
Conclusion Secondary forests seem to have a weak 
buffering effect in both species, possibly because they 
are relatively young (< 30 years old) and do not have 
large trees. This implies that old-growth forests are 
irreplaceable for preventing primate extirpation, espe-
cially for species with specialized diet and large spa-
tial requirements, such as spider monkeys.

Abstract 
Context Old-growth forest loss drives the global 
biodiversity crisis. Nevertheless, this impact could 
be buffered by the increasing expansion of secondary 
(regenerating) forests, which can provide supplemen-
tary habitat for wildlife.
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Introduction

The increasing demand for new agricultural lands 
is causing the loss of thousands of hectares of old-
growth tropical forests every day, with 2020 being the 
third most devastating year of this century (Global 
Forest Watch 2021). This global pattern of forest loss 
has become the greatest threat to biodiversity (Fahrig 
2003; Gibson et  al. 2011; Watling et  al. 2020), and 
affects key ecological processes for forest mainte-
nance and recovery (e.g. herbivory: Morante-Filho 
et  al. 2016; seed dispersal: San-José et  al. 2020). In 
some regions, the abandonment of agriculturally 
unproductive lands has led to the expansion of sec-
ondary forests, bringing some hope that such forest 
gains through regrowth could buffer or mitigate the 
current biodiversity crisis (Wright and Muller-Lan-
dau 2006). This can be particularly plausible in land-
scapes with low to intermediate level of disturbance 
(Melo et al. 2013), especially for species that are able 
to use resources from secondary forests, which is the 
case of many vertebrates (e.g. mammalian carnivores: 
Asensio et  al. 2009; Ferreira et  al. 2018; primates: 
Galán-Acedo et al. 2019b; bats: Farneda et al. 2015; 
Rocha et  al. 2018; amphibians and reptiles: Thomp-
son and Donnelly 2018; birds: Martin and Blackburn 
2014). However, the role of secondary forests in buff-
ering the negative impact of old-growth forest loss on 
biodiversity patterns and processes remains poorly 
known and debated, especially at the landscape scale 
(Wright and Muller-Landau 2006; Melo et  al. 2013; 
Smith et al. 2021).

While evaluating the response of forest species 
to landscape forest loss could seem unnecessary 
(i.e. anyone will predict the response to be nega-
tive), studies on this topic often show surprising 
results. For example, some species can persist in 
deforested landscapes, crowding in the remaining 
forest fragments (Ewers and Didham 2005). In fact, 
because of this “crowding effect”, the abundance of 
some forest-specialist species can increase in more 
deforested landscapes (e.g. Link et  al. 2010; Arce-
Peña et al. 2019; Vallejos et al. 2019; Gestich et al. 

2021). Moreover, species responses to forest loss 
are not always linear, as expected if the magnitude 
of population changes is proportional to the mag-
nitude of forest loss. Many species and communi-
ties show non-linear responses to old-growth forest 
loss because the loss of individuals and species can 
accelerate when forest loss exceeds a certain limit in 
the landscape (i.e. the so-called “extinction thresh-
old”; Lande 1987; Fahrig 1997). The direction 
(positive or negative) and strength of these linear 
and non-linear effects can depend on species traits, 
such as their habitat spatial requirements (Swift and 
Hannon 2010). Therefore, additional studies on this 
topic are needed to better understand the impact of 
forest loss on biodiversity, and thus inform manage-
ment and conservation strategies. This is particu-
larly urgent in endangered taxa, such as most pri-
mate species (Estrada et al. 2017).

Primates play essential functional roles in their 
habitat, and some of which (e.g. seed dispersal) are 
critical for enhancing forest regeneration (Chap-
man et  al. 2013; Arroyo-Rodríguez et  al. 2015). 
As ~ 90% of primates are arboreal and undertake 
most of their activities on the forest canopy (Galán-
Acedo et al. 2019c), they can be particularly suscep-
tible to forest loss (Galán-Acedo et  al. 2019b). In 
fact, forest loss is considered a major driver of pri-
mate population decline worldwide (Estrada et  al. 
2017; Chapman and Peres 2021). Paradoxically, 
most primate studies have assessed the impact of 
forest loss at the patch scale (i.e. forest patch size), 
not at the landscape scale (reviewed in Arroyo-
Rodríguez et  al. 2013a), and the few studies with 
a landscape approach are not conclusive (reviewed 
by Galán-Acedo et  al. 2019b). For example, there 
is evidence that landscape forest loss can negatively 
affect the density and abundance of some primate 
species (Blanco and Waltert 2013; Piel et al. 2015; 
Supriatna et  al. 2020), whereas other species seem 
to have larger populations in more deforested land-
scapes (e.g. Arroyo-Rodríguez et  al. 2013b). Fur-
thermore, primate studies usually assess the linear 
(proportional) effects of forest cover, overlooking 
potential extinction thresholds in the landscape. 
Finally, primate studies usually focus on the impacts 
of old-growth forest loss, overlooking the potential 
role of secondary forests in buffering the effects of 
old-growth forest loss on populations. Thus, addi-
tional studies are needed to assess the linear and 



Landsc Ecol 

1 3
Vol.: (0123456789)

non-linear effects of forest loss on primate popu-
lations, separately evaluating the influence of old-
growth and secondary forest cover.

In this study, we assessed the impact of landscape 
forest loss on the abundance and immature-to-female 
ratio (a proxy of reproductive performance) of black 
howler monkeys (Alouatta pigra) and Geoffroy´s 
spider monkeys (Ateles geoffroyi) in the Lacandona 
rainforest, Mexico. We separately evaluated primate 
responses to old-growth forest cover, secondary forest 
cover, and total (old-growth + secondary) forest cover 
to assess whether secondary forests could buffer the 
effect of old-growth forest loss. As there could be 
tipping points of forest loss beyond which species 
extinction is accelerated (i.e. extinction thresholds), 
we tested both the linear and non-linear effect of for-
est cover on each response. We ran all models inde-
pendently for forest cover values measured at three 
different (concentric) spatial scales. This allowed us 
to identify the scale at which each association was 
strongest, and thus increase the accuracy of inferred 
species-landscape relationships (Jackson and Fahrig 
2015).

As both species are strictly arboreal, and for-
est specialists (Galán-Acedo et  al. 2019c), we pre-
dicted that both responses are positively related to 
old-growth forest cover in both species. However, 
we expect that such responses will be likely stronger 
in spider monkeys than in black howler monkeys 
because the former is mostly frugivorous (Wallace 
2008; Mittermeier et al. 2013) and has a larger mean 
home range size (usually < 170  ha; Chaves et  al. 
2011a; Di Fiore et al. 2011) than the latter (< 30 ha; 
Fortes et  al. 2015; Galán-Acedo et  al. 2019a). Fol-
lowing this same rationale, if extinction thresholds 
cause non-linear responses to forest loss (Swift and 
Hannon 2010), we predict a relatively higher extinc-
tion threshold (i.e. lower tolerance to forest loss) in 
spider monkeys than in howler monkeys. Whatever 
the shape of the association (linear or non-linear), 
we could expect that, being a more mobile species, 
spider monkeys could interact with (and depend on) 
forest cover across larger scales than howler monkeys 
(Miguet et  al. 2016). Finally, as secondary forests 
can provide supplementary food resources for spider 
monkeys (Ramos-Fernández and Ayala-Orozco 2003; 
Arroyo-Rodriguez et  al. 2017) and howler monkeys 
(Dias et al. 2014), we also predicted a stronger effect 
of forest loss on both species when considering both 

old-growth and secondary forest cover, than when 
considering old-growth forest alone.

Methods

Study area

We conducted the study in the Lacandona region, 
located in the southern part of Chiapas, Mexico. 
The climate is hot and humid, with annual precipita-
tion averaging 2500–3500 mm, and average monthly 
temperatures of 24–26 °C (Carabias et al. 2015). The 
Lacandona region (13,000  km2) represents one of the 
largest areas of tropical rainforest in Mexico, and it 
is considered a priority area for the conservation of 
biodiversity in Mesoamerica (García del Valle et  al. 
2015). The Lacandona region is highly threatened 
by land-use change and other human related pres-
sures (Arriaga et  al. 2000; Carabias et  al. 2015). In 
particular, land-use change started in the late 1970s, 
and nowadays the remaining old-growth forest cover 
(≈ 37%) is embedded in a matrix of secondary forests, 
agricultural lands and human settlements (Carabias 
et  al. 2015; Lohbeck et  al. 2022). We sampled pri-
mates in two adjacent areas of the Lacandona region: 
the continuous forest of the Montes Azules Biosphere 
Reserve and the fragmented forest of the Marqués de 
Comillas region, which are separated by the Lacantún 
River (Fig. 1). The agricultural dynamics in the Mar-
qués de Comillas region have given place to relatively 
short-lived (range 2.7–25 years fallow age, mean 
9.7 years) secondary forests, which in 2017 cov-
ered ≈ 11% of this region (Lohbeck et al. 2022).

Study landscapes and forest cover estimation

The protocol used to select the studied landscapes 
is detailed elsewhere (Wies et  al. 2021), but a brief 
overview is given here. We generated a land cover 
map of the study region (Fig.  1) using Sentinel-2B 
satellite images (10-m resolution; 10% cloudiness; 
year 2019) and used QGIS v 2.18 (QGIS 2021) to 
generate raster layers and conduct an image interpre-
tation using georeferenced points of in situ supervised 
land cover classes (old-growth forest, secondary for-
est, human settlement, agricultural land, and cattle 
pasture). In particular, we applied a combination of 
bands that highlight forest cover (8, 4, 3 combinations 
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for Sentinel 2-B images). It is important to note that 
secondary forests in the region are forests regenerat-
ing after < 30 years of agricultural land abandonment 
(Wies et  al. 2021; Brindis-Badillo et  al. 2022; Loh-
beck et  al. 2022), so they are structurally different 
from old-growth forests; e.g. they have a higher abun-
dance of thinner trees, and lower total tree biomass 
(Poorter et al. 2016). This makes it relatively easy to 
differentiate from old-growth forests both in the field 
and from satellite images. As ‘landscape units’ can be 
simply defined as heterogeneous land areas contain-
ing a mosaic of land cover types (e.g., old-growth 
forest, secondary forest, agricultural lands) (Arroyo-
Rodríguez and Fahrig 2014), we selected 18 land-
scape units of 100  ha (1 × 1 km) each, maintaining 
a minimum distance of 4 km between them to avoid 
spatial overlap and autocorrelation (Holland et  al. 
2004). These landscape units encompassed the broad-
est range of deforestation in the region, with both the 
percentage of old-growth and secondary forest cover 
varying from 0 to 100% in 100  ha landscape units 

(Table  S1 in Supplementary Information). Using 
this wide environmental gradient is critically needed 
to make accurate landscape-scale inferences (Eigen-
brod et  al. 2011). The percentage of old-growth 
forest cover and the percentage of secondary for-
est cover was estimated in each landscape unit with 
FRAGSTATS v4 (McGarigal et al. 2002). As we did 
not know a priori the spatial scale that best predicted 
primate responses to forest cover (i.e., the “scale of 
effect”, sensu Jackson and Fahrig 2015), we measured 
forest cover at three different spatial scales, i.e. in 
concentric square landscapes of 1, 2, and 3  km2. We 
selected this range of scales following the SoE values 
documented for the study species in the Lacandona 
rainforest (Ordóñez-Gómez et al. 2015; Galán-Acedo 
et al. 2018). We used square landscapes instead of cir-
cular landscapes to follow the shape of the sampling 
area (see below), and thus keep the distance (and 
related confounding factors) from sampling sites to 
landscape edges constant around the entire sampled 
area across all sampled landscapes.

Fig. 1  Location of the 18 1-km2 study landscapes in the Marqués de Comillas region and the Montes Azules Biosphere Reserve 
within the Lacandona region, Mexico
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Study species

Two primate species occur in the study region: the 
black howler monkey and the Geoffroy´s spider mon-
key. Both species are diurnal and strictly arboreal. 
The black howler monkey has a folivore–frugivore 
diet, whereas spider monkeys are mostly frugivorous 
(Amato and Garber 2014; Dias and Rangel-Negrín 
2015). Black howler monkeys weigh around 5.7–6 kg 
(Kelaita et  al. 2011), hold home ranges of < 30  ha 
(Fortes et al. 2015), and tend to be sedentary and rela-
tively resilient to habitat changes (Arroyo-Rodríguez 
and Dias 2010). In contrast, spider monkeys are 
larger (weight = 7.5–8.2  kg; Garber et  al. 2005) and 
relatively more sensitive to habitat disturbance (Boyle 
and Smith 2010; Galán-Acedo et al. 2021). Both spe-
cies are classified as Endangered in the IUCN Red 
List, and their populations are declining (Cortés-Ortíz 
et al. 2020, 2021).

Primate surveys and response variables

Surveys were conducted during the dry season (Feb-
ruary–June) of 2019, as it is easier to locate mon-
keys on sunny days (Galán-Acedo et al. 2018). Each 
landscape was surveyed by LLSB and a local guide, 
walking slowly (1 km/h) in a zigzag pattern to cover 
the whole landscape area (including all land cover 
types), totalling 312 km walked in the 18 landscapes. 
Walks were done during the morning (06:00–12:00) 
and in the afternoon (16:00–18:00), which coincides 
with the peak activity of primates (Galán-Acedo et al. 
2018). We used cues as vocalizations and traces of 
excrement and urine to locate primates. Once a group 
was found, we counted the number of individuals and 
classified them following commonly used age–sex 
categories: adult males, adult females, and immatures 
(i.e., subadults, juveniles, and infants). We also took 
note of distinctive features of individuals (e.g., scars, 
facial features) to avoid double-counting groups or 
individuals. For each landscape, we estimated the 
total number of individuals of each species and the 
immature-to-female ratio as a proxy of reproductive 
performance (Arroyo-Rodríguez et al. 2013b; Galán-
Acedo et al. 2018).

Data analyses

We assessed how the abundance of primates was 
related to forest cover assuming: (i) a linear associa-
tion modeled with generalized linear models (GLM), 
and (ii) a non-linear association modeled with four-
parameter logistic regressions, which follow an “s” 
shaped curve suitable for identifying critical thresh-
olds (Ficetola and Denoel 2009; Morante-Filho 
et  al. 2015). Following Morante-Filho et  al. (2015), 
we used the Akaike Information Criterion corrected 
for small samples (AICc) to compare the linear and 
non-linear models with a null model (including only 
the intercept). We first fixed a Poisson distribution 
error to the abundance GLMs, but after failing to 
correct models for overdispersion, we used a nega-
tive binomial error (Zuur et al. 2009). Regarding the 
immature-to-female ratio, we tested only two possible 
models: (i) a null model (including only the intercept) 
to test the absence of effects, and (ii) a GLM with 
binomial distribution which contains a default logistic 
regression tendency given by “probit” link function 
(Prasetyo et al. 2019). We selected a binomial distri-
bution for the immature-to-female ratio because the 
GLMs with a Gaussian error did not meet the normal-
ity assumption of residuals. We separately tested the 
models for old-growth forest cover and secondary for-
est cover. We adjusted one model per landscape scale 
(1, 2 and 3  km2), for a total of 7 models for abundance 
(null model + 3 linear models + 3 non-linear mod-
els) and 4 models for immature-to-female ratio (null 
model + 3 binomial models) per primate species. We 
then ranked each set of models following a decreas-
ing empirical support (i.e., lowest to highest AICc; 
Burnham and Anderson 2002) to identify which was 
the best predictive model of each response and at 
what scale. Finally, to assess whether secondary for-
ests could buffer the impact of old-growth forest loss 
on each response, we evaluated whether the effect 
size (i.e., parameter estimate or slope) and explana-
tory power (goodness-of-fit) of these best models 
increased when including total (old-growth + second-
ary) forest cover instead of old-growth forest cover 
alone. All analyses were conducted using R version 
4.0.4 (R Core Team 2020).
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Results

We recorded monkeys in most (14 of 18, 78%) land-
scapes. Yet, spider monkeys occupied a lower percent-
age of landscapes (8 of 18, 44.4%) than howler mon-
keys (14 landscapes, 78% Fig. 2). Primate occurrence 

in the top 10 deforested landscapes (< 40% remain-
ing total forest cover) was 3.5 times lower in spider 
monkeys (n = 2 landscapes) than in howler monkeys 
(n = 7; Fig. 2). In total, we recorded 196 spider mon-
key individuals: 50 adult males, 87 adult females, 
and 50 immatures (we could not identify the age–sex 

Fig. 2  Abundance of spider monkeys (a) and black howler 
monkeys (b) in each study landscape (panels on the left). In 
each species, the landscapes are ordered by decreasing abun-
dance. The percentage of old-growth and secondary forest 

cover remaining in each landscape is also indicated (on the 
right), but at different scales considering the scale of forest 
cover effect (i.e. spider monkeys = 2  km2, howler monkeys = 1 
 km2; see Table 1)
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class of 9 individuals). The mean (± SD) abundance 
of spider monkeys per landscape was 10.8 (± 19.6) 
individuals (range = 0–65 individuals), and the mean 
subgroup size was 4 (± 2.3) individuals. On the other 
hand, we recorded 409 howler monkey individuals 
(128 adult males, 168 adult females, and 133 imma-
tures), averaging 22.7 (± 24.7) individuals per land-
scape, and 5 (± 5.2) individuals per group. In general, 
most monkeys (543 of 605 individuals, 89.7%) were 
recorded in old-growth forest, but most (87%) of the 
62 sightings in the anthropogenic matrix occurred in 
secondary forests (51 howler monkeys and 3 spider 
monkeys). We also recorded seven howler monkeys 
in live fences, and one spider monkey was observed 
crossing a cattle pasture on the ground near an old-
growth forest.

Linear vs. non-linear effects of forest loss on each 
primate species

We found that the effect of old-growth forest cover on 
the abundance of spider monkeys and howler mon-
keys was better predicted by linear models (Table 1). 
In particular, the abundance of both species increased 
with increasing old-growth forest cover in the land-
scape (panels a and c in Fig. 3), but spider monkeys 
were susceptible to forest spatial changes across 
larger scales (2  km2) than howler monkeys (1  km2; 
Table  1). In contrast, the abundance of both spe-
cies was weakly related to secondary forest cover 
(Table  2), and the immature-to-female ratio of both 
species was also weakly related to forest cover, irre-
spective of forest type (Tables 1, 2).

Fig. 3  The best statistical 
models (i.e. generalized lin-
ear models) describing how 
the abundance of monkeys 
related to landscape forest 
cover. We separately show 
the models for Geoffroy’s 
spider monkeys (a, b) and 
black howler monkeys (c, 
d), with panels on the left 
(a, c) showing responses to 
old-growth forest alone, and 
panels on the right (b, d) 
showing responses to total 
(old-growth + secondary) 
forest cover. Note that in 
the case of spider monkeys, 
we measured forest cover in 
2-km2 landscapes, whereas 
in howler monkeys forest 
cover was measured in 
1-km2 landscapes
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Effect of total forest cover on the abundance of 
primates

The negative impact of forest loss on the abundance 
of both species was stronger when considering 
old-growth forest cover alone, than when consid-
ering the sum of old-growth and secondary forest 
cover (Table  3; Fig.  3). For spider monkeys, the 
inclusion of total (old-growth + secondary) forest 
cover instead of old-growth forest cover decreased 
the effect size of forest cover (i.e., parameter esti-
mate) by 42% and the explanatory power of the 
model (i.e., pseudo-R2) by 37%. The same pattern 
emerged in howler monkeys, with the effect size 

decreasing by 29% and the explanatory power by 
20% (Table 3).

Discussion

This study is the first in using a landscape-scale 
approach to evaluate the linear and non-linear effects 
of forest loss on two endangered primates. To our 
knowledge, it is also the first to separately assess 
the effect of old-growth, secondary, and total (old-
growth + secondary) forest cover on primates—a 
novel contribution to assessing whether, as suggested 
in previous studies (Wright and Muller-Landau 2006; 

Table 1  Effect of old-growth forest cover on the relative abundance (Abu) and immature-to-female ratio (IFR) of two primate spe-
cies in the Lacandona rainforest, Mexico

The changes in abundance were assessed with a linear (generalized linear model, GLM) and a non-linear (logistic) model, whereas 
the immature-to-female ratio was assessed with a GLM with binomial distribution which follows a default logistic regression ten-
dency. We measured forest cover at three different scales (1, 2, and 3  km2, indicated in parenthesis) to identify the scale that yields 
the strongest species-landscape association. All models were compared with a null model, which included only the intercept. Models 
are ordered following a decreasing order of support (i.e. increasing Akaike Information Criterion corrected for small samples, AICc)
wi Akaike weight

Species Response Model AICc ∆AICc wi Pseudo-R2

Spider monkeys
Abu GLM (2  km2) 96.02 0.00 0.77 0.3

GLM (3  km2) 96.33 0.31 0.31 0.29
GLM (1  km2) 97.11 1.09 0.21 0.25
Null 98.39 2.37 0.23 0
Logistic (1  km2) 163.19 67.17 < 0.001 0.42
Logistic (2  km2) 166.20 70.18 0.00 0.41
Logistic (3  km2) 170.22 74.20 0.00 0.40

IFR Null 21.47 0.00 0.80 0
GLM (3  km2) 24.26 2.79 0.20 0.14
GLM (2  km2) 24.733 3.267 0.122 0.13
GLM (1  km2) 25.182 3.717 0.098 0.11

Black howler monkeys
Abu GLM (1  km2) 149.66 0.00 0.56 0.15

Null 150.10 0.44 0.44 0
GLM (2  km2) 150.35 0.70 0.23 0.12
GLM (3  km2) 150.97 1.31 0.17 0.09
Logistic (2  km2) 220.88 71.22 0.00 0.34
Logistic (3  km2) 223.61 73.95 0.00 0.33
Logistic (1  km2) 245.22 95.56 0.00 0.26

IFR Null 26.09 0.00 0.73 0
GLM (1  km2) 28.06 1.97 0.27 0.07
GLM (2  km2) 28.453 2.365 0.158 0.1
GLM (3  km2) 28.781 2.693 0.134 0.1
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Melo et  al. 2013), secondary forests can buffer the 
negative impact of old-growth forest loss on biodi-
versity. Importantly, our findings do not support this 
hypothesis in Geoffroy´s spider monkeys and black 
howler monkeys of the Lacandona rainforest, as 
the impact of forest loss on monkey abundance was 
weaker when considering old-growth and secondary 
forest cover than when considering old-growth forest 
alone. In fact, the abundance of individuals was inde-
pendent of the percentage of secondary forest cover in 
the landscape, irrespective of the spatial scale. Inter-
estingly, old-growth forest loss caused a proportional 
(linear) population decline in both species, thus giv-
ing no support to the extinction threshold hypothesis 

(Swift and Hannon 2010). However, as predicted, we 
found stronger (and larger-scale) negative responses 
to old-growth forest loss in spider monkeys than in 
black howler monkeys, adding to an increasing body 
of literature demonstrating the high sensitivity of 
spider monkeys and other large-bodied and special-
ized mammals to habitat loss (Palmeirim et al. 2018; 
Laurindo et  al. 2019; Rios et  al. 2022). Finally, the 
fact that the immature-to-female ratio of both species 
was weakly related to forest cover could be consid-
ered good news, as it suggests that forest loss does 
not impact the reproductive performance of these 
species. Below, we discuss how these findings can be 
applied to design optimal landscape scenarios for the 

Table 2  Effect of secondary forest cover on the relative abundance (Abu) and immature-to-female ratio (IFR) of two primate species 
in the Lacandona rainforest, Mexico

The changes in abundance were assessed with a linear (generalized linear model, GLM) and a non-linear (logistic) model, whereas 
the immature-to-female ratio was assessed with a GLM with binomial distribution which follows a default logistic regression ten-
dency. We measured forest cover at three different scales (1, 2, and 3  km2, indicated in parenthesis) to identify the scale that yields 
the strongest species-landscape association. All models were compared with a null model, which included only the intercept. Models 
are ordered following a decreasing order of support (i.e., increasing Akaike Information Criterion corrected for small samples, AICc)
wi Akaike weight

Species Response Model AICc ∆AICc wi Pseudo-R2

Spider monkeys
Abu Null 98.39 0 1 0

Logistic (3  km2) 269.65 171.26 6E-38 0.02
Logistic (1  km2) 269.65 171.26 6E-38 0.02
Logistic (2  km2) 273.36 174.97 1E-38 0
GLM (1  km2) 512.24 413.85 1E-90 0.02
GLM (2  km2) 513.93 415.54 6E-91 0.01
GLM (3  km2) 518.85 420.46 5E-92 0.07

IFR Null 21.47 0 0.42 0
GLM (1  km2) 22.66 1.20 0.23 0.06
GLM (2  km2) 23.07 1.61 0.19 0.04
GLM (3  km2) 23.24 1.77 0.17 0.03

Black howler monkeys
Abu Null 150.10 0 0.56 0

GLM (3  km2) 152.64 2.53 0.16 0.18
GLM (2  km2) 152.79 2.69 0.15 0.01
GLM (1  km2) 152.95 2.85 0.14 0.00
Logistic (3  km2) 298.28 148.18 0 0.10
Logistic (2  km2) 312.24 162.14 0 0.05
Logistic (1  km2) 312.37 162.27 0 0.05

IFR Null 26.09 0 0.46 0
GLM (3  km2) 27.79 1.70 0.20 0.01
GLM (1  km2) 28.07 1.99 0.17 0.07
GLM (2  km2) 28.14 2.05 0.17 0.05
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conservation of these, and potentially other, endan-
gered forest taxa.

Contrary to our expectations, secondary forests 
do not appear to mitigate the negative impact of 
old-growth forest loss on the primate species stud-
ied here. As both species are known to be able to 
use food resources from secondary forests (Ramos-
Fernández and Ayala-Orozco 2003; Arroyo-Rod-
ríguez et  al. 2017; Galán-Acedo et  al. 2019b), we 
expected that this forest type could provide supple-
mentary habitat for them. Our findings partially sup-
port this, as most (87%) of the individuals observed 
outside old-growth forests, i.e. in the anthropogenic 
matrix (sensu Galán-Acedo et al. 2019b), occurred in 
secondary forests. However, we found no support to 
the idea that such temporary use of secondary forests 
is important enough to have a significant impact on 
primate populations. In particular, the abundance of 
both species decreased principally with the loss of 
old-growth forests, and the addition of secondary for-
ests to the models (i.e., considering total forest cover) 
decreased the effect size and explanatory power 
of the models by 20–42%. Such a lack of buffering 
effect can be related to the fact that in this recently 
deforested region, secondary forests are relatively 
young (< 30 years old) and of small stature (Brindis-
Badillo et al. 2022; Lohbeck et al. 2022). This limits 
the occurrence of top food tree species (reviewed by 
González-Zamora et al. 2009), such as Dialium guia-
nense (Fabaceae), Brosimum alicastrum (Moraceae), 
Ampelocera hottlei (Ulmaceae), and Guarea glabra 
(Meliaceae), which are among the 10 most abundant 
and widely distributed species in old-growth forests 
of the study region (Navarrete-Segueda et  al. 2017) 
but are rarely present in secondary forests (Brindis-
Badillo et  al. 2022). Therefore, although monkeys 

may supplement their diet in secondary forests, espe-
cially with some light-demanding trees (e.g., Bursera 
simaruba, Cecropia spp.; Cristóbal-Azkarate and 
Arroyo-Rodríguez 2007), the populations of both spe-
cies are mainly shaped by the amount of old-growth 
forest in the landscape.

In contrast to what could be expected from the 
extinction threshold hypothesis (Swift and Hannon 
2010), the abundance of primates was better predicted 
by linear models. Extinction thresholds are usually 
caused by exponential changes in habitat configura-
tion (e.g., increased interpatch isolation distance) in 
landscapes with < 10–30% habitat amount (Andren 
1994; Swift and Hannon 2010). Thus, the lack of 
an extinction threshold would be related to the fact 
that, as demonstrated in previous studies with pri-
mates (Arce-Peña et  al. 2019) and other vertebrates 
(arboreal mammals: Cudney-Valenzuela et  al. 2022; 
birds: Carrara et  al. 2015; amphibians and reptiles: 
Russildi et  al. 2016), habitat configuration changes 
in this region has weak effects on biodiversity. How-
ever, we found some evidence that population decline 
could be accelerating in the top most deforested land-
scapes (< 30–40% of remaining total forest cover), as 
these landscapes were almost empty of spider mon-
keys. This is consistent with previous studies on the 
population collapse of different species in landscapes 
with < 30% of natural habitats (e.g. Rybicki and Han-
ski 2013; reviewed by Arroyo-Rodríguez et al. 2020, 
2021). Therefore, our findings add some preliminary 
support to the idea that we must preserve at least 40% 
of forest cover in the landscape to prevent the extinc-
tion of forest-specialist species (Arroyo-Rodríguez 
et  al. 2020, 2021). Such extirpation of spider mon-
key populations could be related to the fact that, in 
the Lacandona region, there is a sharp decline in the 

Table 3  Effect of forest cover on the abundance of spider monkeys and black howler monkeys separately assessing the effect of old-
growth forest (OGF) alone, and total (old-growth + secondary) forest cover (OGF + SF)

We show the parameter estimates of the models with 95% confidence intervals (and associated p-values), along with the pseudo-R2 
as a measure of goodness-of-fit of the models

Species Model Estimate 2.5% CI 97.5% CI p Pseudo-R2

Spider monkeys
OGF 2-km2 0.071 0.014 0.136 0.001 0.30
OGF + SF 2-km2 0.041  − 0.002 0.102 0.020 0.19

Black howler monkeys
OGF 1-km2 0.024 0.000 0.053 0.039 0.15
OGF + SF 1-km2 0.017  − 0.002 0.039 0.066 0.12
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population of top food trees in landscapes with < 40% 
forest cover (Brindis-Badillo et  al. 2022). However, 
additional studies are needed to better understand the 
minimum habitat amount required for the persistence 
of this and other primate species, especially because 
the long life spans of primates can promote time-
delayed responses to habitat modifications (extinction 
debts) (Jackson and Sax 2010).

Importantly, multiple lines of evidence support the 
hypothesis that howler monkeys are relatively more 
resistant to old-growth forest loss than spider mon-
keys. First, forest loss showed weaker effects (i.e., 
lower regression slope and explanatory power in the 
models) on howler monkeys than spider monkeys. 
Second, howler monkeys were present in all occu-
pied landscapes, and landscape occupancy in the top 
10 most deforested landscapes (< 40% of remaining 
total forest cover) was 3.5 times higher in howler 
monkeys (n = 7 landscapes) than in spider mon-
keys (n = 2). Finally, although most monkeys were 
recorded in old-growth forests, most individuals (58 
of 62, 94%) observed in the anthropogenic matrix 
were howler monkeys. This is not surprising, as 
howler monkeys are known to be relatively tolerant to 
habitat disturbance (reviewed by Arroyo-Rodríguez 
and Dias 2010), being usually present in forest frag-
ments where other primate species (e.g. Ateles spp.) 
have disappeared (Estrada and Coates-Estrada 1996; 
Gilbert 2003). Such a relatively high tolerance to 
forest loss has been associated with several ecologi-
cal aspects, including high dietary flexibility, the use 
of energy-saving activity budgets, small home range 
sizes, and a high ability to move among forest frag-
ments in fragmented landscapes (Arroyo-Rodríguez 
and Dias 2010). Together, these ecological traits can 
help to explain why in moderately deforested regions, 
such as the Lacandona rainforest, howler monkeys 
appear to cope with forest loss more successfully than 
spider monkeys.

The fact that forest loss impacted spider monkeys 
across larger spatial scales than howler monkeys also 
supports our expectations. Theory predicts that the 
scale of landscape effect on biodiversity is driven by 
species mobility, with the more mobile species inter-
acting with (and depending on) environmental vari-
ables across larger scales (reviewed by Jackson and 
Fahrig 2015; Miguet et al. 2015). As home range size 
is positively related to dispersal distance in mammals 
(Bowman et  al. 2002), it is usually used as a good 

proxy of species mobility (Jackson and Fahrig 2015). 
In this sense, as the home range of spider monkeys 
is notably larger than that of howler monkeys (see 
above), it is not surprising that spider monkeys are 
more strongly affected by forest cover across larger 
scales than howler monkeys. In fact, the scales of 
effect observed in howler monkeys (1-km2 landscape, 
or landscapes of 564-m radius) and spider monkeys 
(2  km2, or 798-m radius) are similar to those reported 
in previous studies (howler monkeys: 500-m radius, 
Carretero-Pinzon et  al. 2017; 710–711  m, Galán-
Acedo et al. 2018; spider monkeys: 633 m, Ordóñez-
Gómez et al. 2015; 558 m, Galán-Acedo et al. 2018). 
This implies that conservation strategies for these two 
endangered species will be likely more effective if 
planned and implemented at these scales.

Finally, but contrary to our expectations, the 
immature-to-female ratio of both species seems to 
be weakly related to forest cover. This finding could 
be considered good news, as it suggests that forest 
loss does not impact the reproductive performance 
of these species. However, care should be taken with 
this interpretation since the observed immature-to-
female ratio in all landscapes (mean and range val-
ues: howler monkeys = 0.74, 0.40–1.50; spider mon-
keys = 0.67, 0.33–1.00) was lower than expected 
from their life-history parameters. In particular, inter-
birth intervals are approximately 15 months in black 
howler monkeys (Dias et al. 2015) and 32 months in 
Geoffroy’s spider monkeys (Shimooka et  al. 2008). 
As the individuals of both species usually disperse 
from their natal groups at 4–5 years (Di Fiore et  al. 
2011; Dias et al. 2015), on any particular year, each 
howler monkey female could co-reside with up to 
four offspring (i.e., a newborn, two juveniles, and one 
subadult) and a spider monkey female with two (i.e., 
a newborn and a juvenile). Immature-to-female ratios 
would then reach up to 4 in howler monkeys and 2 
in spider monkeys. These are obviously theoretical 
(potential) values, as they do not take into account 
that infant mortality by natural causes (e.g. predation, 
accidental injuries, and aggression from conspecifics; 
see Shimooka et al. 2008; Van Belle et al. 2010) can 
lead to the loss of ≈ 25% of immature in howler mon-
keys (Dias et al. 2015) and ≈ 17% in spider monkeys 
(Shimooka et  al. 2008). Anthropogenic disturbances 
can also affect these numbers because if females do 
not meet their energetic requirements (e.g., because 
of food scarcity; Rangel-Negrín et  al. 2018a), 



 Landsc Ecol

1 3
Vol:. (1234567890)

conceptions are less likely, and interbirth intervals 
increase (Rangel-Negrín et  al. 2018b). Therefore, 
additional long-term monitoring of these popula-
tions is needed to better understand if the relatively 
low values of immature-to-female ratio in the entire 
region are caused by natural or anthropogenic factors, 
and why this population parameter is independent of 
the remaining forest cover in the landscape.

In summary, our findings indicate that second-
ary forests cannot mitigate the negative impact of 
old-growth forest loss on two Mexican primates in 
the Lacandona rainforest. Therefore, in agreement 
with Gibson et al. (2011), old-growth forests appear 
to be irreplaceable for preserving tropical biodiver-
sity. This is particularly true in species with spe-
cialized diets and high habitat spatial requirements, 
such as spider monkeys. In fact, the extirpation 
of spider monkeys in most of the landscapes with 
< 40% forest cover supports the idea that at least 
40% old-growth forest cover should be maintained 
in the landscape to prevent the extinction of this for-
est species (Arroyo-Rodríguez et al. 2020, 2021). In 
this sense, it is worth highlighting that the remain-
ing old-growth forest in the Lacandona region is 
within this threshold, so stopping deforestation 
is a top priority for conserving these endangered 
primates in the region. As both spider monkeys 
(Chaves et al. 2011b; González-Zamora et al. 2014) 
and howler monkeys (Arroyo-Rodríguez et al. 2015) 
are important seed dispersers and play a key role for 
forest recovery in preserved and degraded forests, 
preserving old-growth forests is not only paramount 
for preventing primate extirpation, but for maintain-
ing their important functional role in the ecosystem.
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