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A B S T R A C T   

Land use change is a major threat to species’ persistence. Yet, landscape attributes that shape populations remain 
poorly understood. Landscape-scale forest cover and matrix quality can favor population persistence, while forest 
fragmentation per se usually has weak effects on species. The impact of these spatial changes can, however, be 
influenced by the regional context. To test these hypotheses, we assessed the abundance and immature-to-female 
ratio (reproductive success) of two endangered howler monkeys species and their relationships with forest cover, 
matrix quality and forest fragmentation (forest patch density) in four Mexican regions with different defores
tation levels. Responses to landscape structure differed among regions. Forest loss was negatively related to 
primate abundance in two regions. Yet, in the most deforested region, forest loss was positively related to the 
immature-to-female ratio. Matrix quality was negatively related to monkey abundance and positively related to 
immature-to-female ratio in regions dominated by arboreal matrices. Fragmentation was negatively related to 
abundance but positively to immature-to-female ratio in the best preserved region, and negatively related to 
immature-to-female ratio in a region dominated by treeless matrices. Thus, given that the regional context in
fluences the effects that landscape attributes have on primates, different conservation strategies could help 
maintain the populations of these arboreal mammals in different regions. Preventing forest loss and restoring 
forest cover are paramount in highly deforested regions. Increasing matrix quality is highly valuable, especially 
in regions dominated by treeless matrices. Finally, increasing the number of patches through restoration can have 
better conservation outcomes in more forested regions.   

1. Introduction 

Human activities transform natural ecosystems into landscapes with 
different spatial structures (Song et al., 2018; Taubert et al., 2018). In 
the tropics, agriculture (crops and cattle pastures) is responsible for 73% 
of forest loss (FAO, 2016), threatening the persistence of forest-dwelling 
species (Newbold et al., 2015). During the last decades, biodiversity has 
been lost at such dramatic rates that our planet is believed to be expe
riencing the sixth mass extinction in its geologic history (Ceballos et al., 
2015). In this context, understanding the effects of landscape structure 
on wildlife is critical for designing effective management strategies that 

can facilitate species’ persistence in human-modified landscapes 
(Arroyo-Rodríguez et al., 2020). 

Studies that assess species responses to landscape structure are 
generally carried out at a single spatial scale (Fahrig, 2005; Galán-Acedo 
et al., 2019b). This approach has serious limitations as it can miss sig
nificant species-landscape associations if these are not measured at the 
appropriate scale (Arroyo-Rodríguez and Fahrig, 2014; Galán-Acedo 
et al., 2019b; Jackson and Fahrig, 2012, 2015). Thus, species-landscape 
associations need to be evaluated across different spatial scales to 
identify the ‘scale of effect’, i.e., the scale at which these associations are 
the strongest (Galán-Acedo et al., 2019b; Jackson and Fahrig, 2012). 
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Also, species-landscape associations can be affected by the regional 
context (e.g., land use history, regional forest cover), and hence, need to 
be evaluated in different regions (Lindenmayer et al., 2008; Pardini 
et al., 2010). However, as most studies are carried out in a single loca
tion, the role of the regional context in shaping species responses to 
landscape structure remains poorly known (Galán-Acedo et al., 2019b). 
Filling these gaps of information is particularly urgent for species 
strongly threatened with extinction, as is the case of most primates 
(Estrada et al., 2017). 

Primates play key roles in ecosystem functioning, acting as herbi
vores, seed dispersers, predators and prey, and even ecosystem engi
neers (Andresen et al., 2018; Estrada et al., 2017; Stevenson and 
Guzman-Caro, 2010). As a result of habitat loss, degradation, and 
hunting ~60% of primate species are currently threatened with 
extinction (Estrada et al., 2017). The loss or decline of primate pop
ulations will likely trigger cascading effects with long-term negative 
consequences for plant diversity, forest regeneration, and ecosystem 
resilience (Andresen et al., 2018; Culot et al., 2017; Marsh and 
Chapman, 2013). Because most primate studies have been conducted at 
the patch scale, our understanding of how landscape attributes, such as 
forest cover, matrix quality or forest fragmentation per se affect primate 
populations is still scarce. 

As most primates are forest-dependent (Galán-Acedo et al., 2019c), 
forest loss has strong negative effects on their distribution and abun
dance. Forest loss limits resource availability and connectivity, altering 
primate foraging behavior, and increasing the incidence of disease, 
competition, and stress (Arroyo-Rodríguez and Dias, 2010; Marsh, 
2003). In a recent review, Galán-Acedo et al. (2019b) found that forest 
loss generally has negative effects on several primate responses, 
including the abundance of individuals, species richness, and patch 
occupancy. Furthermore, forest loss is often correlated to increased 
human presence and thus higher hunting pressure, as demonstrated for 
several primate species in the Amazon (Parry and Peres, 2015). 

Due to deforestation and land-use change, primary primate habitat is 
reduced to forest remnants surrounded by an anthropic matrix. How
ever, as forest edges do not represent absolute barriers to animal 
movement, most species (including primates) can use to some extent the 
surrounding matrix (e.g., secondary vegetation, crops; Galán-Acedo 
et al., 2019a; Watling et al., 2011). Although the conservation value of 
the matrix for primates has not been thoroughly studied, there is evi
dence that primates can use anthropic land covers for travelling, resting, 
and/or foraging (Anderson et al., 2007; Blanco and Waltert, 2013; 
Galán-Acedo et al., 2019a). The ability of a species to use the matrix, 
however, depends on the ecological traits of primates as well as the 
matrix type. For instance, arboreal primates may be more prone to use 
arboreal matrices, such as agroforestry systems and secondary vegeta
tion, than treeless matrices, such as pastures and annual crops (Galán- 
Acedo et al., 2019a). 

Another common consequence of deforestation is forest fragmenta
tion. Although forest fragmentation per se (i.e., independent of forest 
loss) generally has weak or no effect on biodiversity (Fahrig, 2003), 
when significant, most responses (76%) to fragmentation per se are 
positive (Fahrig, 2017). Primates are no exception: a comprehensive 
review only detected seven studies assessing primate responses to 
landscape structure, and of these, three found no significant responses to 
fragmentation per se, and three reported positive effects (Galán-Acedo 
et al., 2019b). Among the mechanisms that can explain this pattern 
(reviewed by Fahrig et al. (2019), mean inter-patch distance typically 
decreases with increasing patch density, potentially increasing dispersal 
opportunities and resource availability through landscape supplemen
tation dynamics (Dunning et al., 1992; Asensio et al., 2009). Yet, given 
the small number of primate studies using a proper landscape design 
(Galán-Acedo et al., 2019b), our understanding on this topic is far from 
complete. 

Here, we evaluated the effects of three landscape structural attri
butes (forest cover, matrix quality, and forest fragmentation per se) on 

the abundance and immature-to-female ratio (a proxy for reproductive 
success) of howler monkeys (Alouatta palliata and A. pigra) inhabiting 
forest fragments in four rainforest regions of Mexico. Study regions 
differed in the time since the onset of human disturbance, the degree of 
deforestation, and the dominant type of anthropic land cover in the 
matrix. Prior to assessing the effects of landscape attributes on primates, 
we identified the scale of effect of each predictor on each response 
variable in each region (Galán-Acedo et al., 2018). As howler monkeys 
are arboreal, we expected that forest cover would be positively related to 
abundance and immature-to-female ratio. Additionally, as arboreal el
ements in the matrix (e.g., living fences, isolated standing trees, tree 
crops) can be used by arboreal primates for travelling, resting, and/or 
foraging (Blanco and Waltert, 2013; Galán-Acedo et al., 2019a), we 
predicted that howler monkey abundance and immature-to-female ratio 
could increase with the proportion of these elements in the matrix (i.e., 
higher matrix quality). Finally, following previous studies (Fahrig, 2017, 
2019; Galán-Acedo et al., 2019b), we predicted a non-significant or 
positive relationship between fragmentation per se and both responses. 

2. Methods 

2.1. Study regions 

We worked in four regions with different land-use change histories 
and deforestation levels in southeastern Mexico, all of which have 
tropical rainforest as the primary vegetation type, with similar hot and 
wet climate (Table 1; Fig. 1). For the purpose of our study, we defined 
each region as a ~116,000-ha territory. The region with the lowest 
deforestation level (LDL, ~50% of deforestation) is the Marqués de 
Comillas rainforest, whereas the region with highest deforestation level 
(HDL, ~95% of deforestation) is the 8th North region, both located in 
the state of Chiapas. The other two regions have intermediate defores
tation levels (IDL), Uxpanapa (IDL-1, ~70% of deforestation) and Los 
Tuxtlas (IDL-2, ~83% of deforestation), both in the state of Veracruz 
(Fig. 1). Deforestation began earlier in HDL (early 1950s), followed by 
IDL-1 (late 1950s), IDL-2 (1960s), and LDL (1970s). Arboreal matrix 
covers (e.g., rubber, orange, oil palm crops, secondary forest) are more 
common in the LDL and IDL-1 regions, while the IDL-2 and HDL regions 
are dominated by open matrices such as pastures and annual crops 
(Table 1). In 1998 there was a fire in IDL-1 in which 35,000 ha of forest 
were lost, of which 21% had regenerated by the time we conducted our 
study (Hernández-Gómez, 2014). As a consequence, this region is 
composed of old-growth forest patches embedded in a matrix of regen
erating vegetation and other land covers, such as arboreal crops, annual 
crops, and pastures. 

2.2. Study species 

Howler monkeys are diurnal, arboreal, and forest specialist primates 
(Galán-Acedo et al., 2019c). In Mexico, where they reach their northern 
geographic distribution limit, two species occur: mantled howler mon
keys (Alouatta palliata) and black howler monkeys (Alouatta pigra). In 
Mexico, mantled howler monkeys have a mean home range of 13 ha 
(Cristóbal-Azkarate and Arroyo-Rodríguez, 2007), a mean group size of 
8 individuals (Cristóbal-Azkarate et al., 2017), and a body mass of 5.1 kg 
(Kelaita et al., 2011). Black howler monkeys have a mean home range of 
9.2 ha, a mean group size of 5.3 individuals, and a body mass of 6.6 kg 
(Kelaita et al., 2011). In both species, male and female juveniles and 
young adults commonly disperse to join existing groups or to form new 
groups with other individuals (Clarke et al., 1997; Clarke and Glander, 
2001; Dias et al., 2015). However, there is also evidence that in 
disturbed habitats they may remain in their natal groups (Dias et al., 
2015; Nidiffer and Cortés-Ortiz, 2015; Van Belle et al., 2012). Due to 
deforestation, howler monkey populations are declining in Mexico, and 
are currently classified as Engandered by the IUCN 2020 (The IUCN Red 
List of Threatened Species). Of the regions studied, A. pigra inhabits LDL, 
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Table 1 
Characteristics of the study regions in southeastern Mexico. Regions are ordered from least to most deforested: LDL (lowest deforestation), ILD-1 and ILD-2 (inter
mediate deforestation), and HDL (highest deforestation).   

LDL IDL-1 IDL-2 HDL 

Coordinates 90◦41′8.7′′W 16◦2′49.3′′N 94◦24′30.216′′W 17◦8′46.1′′N 98◦38′00′′W 18◦03′00′′N 93◦08′00′′W 17◦45′15′′N 
Mean annual temperature (◦C) 24 25 22 25 
Mean annual precipitation (mm) 2,143 3,640 4,900 2,600 
Onset of deforestation 1970’s 1950’s 1960’s 1950’s 
Dominant anthropic land covers in matrix Crops and cattle pastures Crops and cattle pastures Crops Crops 
Deforestation (%) ~50%a ~70%b ~83%c ~95%d 

References. 
a Zermeño (2008). 
b Hernández et al. (2013). 
c Castillo-Campos and Laborde (2004). 
d Anzures-Dadda and Manson (2007). 

Fig. 1. Location of the study regions in southeastern Mexico (a). Study regions are ordered from the least to the most deforested: (b) LDL, lowest deforestation level 
(Marqués de Comillas, Chiapas); (c) IDL-1, intermediate deforestation level (Uxpanapa, Veracruz); (d) IDL-2, intermediate deforestation level (Los Tuxtlas, Veracruz); 
and (e) HDL, highest deforestation level (8th North, Chiapas). The 12 forest patches in which primate response variables were measured in each region are shown in 
red. Forest cover is represented in dark green, open areas in light green, water bodies in blue and human settlements in white. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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whereas A. palliata is found in the other three. 

2.3. Study patches and primate surveys 

In each region, we randomly selected 12 old-growth isolated forest 
patches separated by at least 2.7 km from each other in three size cat
egories: 6 small patches (1–10 ha), 4 medium patches (11–50 ha), and 2 
large patches (51–100 ha). We selected these patch sizes to increase the 
probability of studying landscapes with different amounts of forest 
cover. As the most deforested region (HDL) had no large patches and few 
medium patches, we selected 10 small and 2 medium patches. Although 
the percentage of forest cover at the landscape scale also tended to be 
lower in this region, we were able to find a wide range of values 
(1.5–98.7%) for remaining forest cover (Galán-Acedo et al., 2018). 

Primate surveys in all regions were carried out by C.G-A and a field 
assistant with extensive experience in monkey surveys. To determine the 
presence of primates in each focal patch, we followed a sampling pro
tocol widely used in primatological studies. We walked slowly (~1–2 
km/h) inside and around each focal patch from 6 am to 5 pm, which 
encompasses the hours in which monkeys are active. We only worked 
during sunny days of the 2015 and 2016 dry seasons (January to June) 
to avoid the difficulties of detecting and counting monkeys under bad 
weather conditions. Loud call vocalizations helped us locate groups 
within patches. When we made visual contact with a group, we recorded 
its position with a GPS, and counted all individuals. Individuals were 
classified as adult males, adult females, juveniles, or infants (Domingo- 
Balcells and Veà-Baró, 2009; Rosales-Meda, 2003). We surveyed each 
patch once, but search times were proportional to patch size, with 3 
consecutive days for small patches, 5 days for medium patches, and 7 
days for large patches. This helped us reduce potential errors in popu
lation estimates, as counting all groups and individuals in large patches 
can be more difficult than in small patches. In total, we conducted 196 
sampling days (~1,900 h of field observations) and we walked 1,020 km 
(3.9 km to 84 km/patch). To avoid recording the same group or indi
vidual more than once, we identified each group according to its 
composition, location within the patch, and distinctive morphological 
characteristics of individuals (e.g., scars, the colour patterns on their 
hind legs and tails, Supplemental material Fig. S1). 

As response variables, we calculated the abundance (i.e., total 
number of individuals) and the immature-to-female ratio for each focal 
patch. Immature-to-female ratio is a proxy for successful reproduction (i. 
e., female fecundity and/or immature survival) commonly used in 
howler monkey studies (Arroyo-Rodríguez et al., 2013; Zucker and 
Clarke, 2003). Immatures individuals are juveniles and infants and the 
ratio was calculated considering the total number of immatures and 
adult females in each focal patch. 

2.4. Landscape metrics 

We obtained land-cover maps of circular landscapes surrounding the 
focal patches using radii in 100 m increments (up to a maximum radius 
of 1,300 m) measured from the geographic center of patches, using 
recent high-resolution Sentinel S2 satellite images (from 2015 and 
2016). We conducted a supervised land-cover classification with the 
software ENVI 5.0, using control points obtained through field obser
vations in each region. We distinguished seven types of land covers: (i) 
old-growth forest; (ii) secondary vegetation; (iii) connectors; (iv) arbo
real crops (e.g., rubber plantations); (v) annual crops and cattle pastures; 
(vi) human settlements; and (vii) water bodies (Fig. 1). We defined 
secondary forests as naturally regenerating vegetation following forest 
loss. To identify secondary vegetation, we monitored deforestation from 
1997 to 2017 in the four regions using Landsat images and the CLASlite 
software (Asner et al., 2009). Landscape classification performed well, 
with 90% of accuracy (Kappa index ≥0.9). 

We analyzed the effects of three landscape predictors: two metrics of 
landscape composition (forest cover and matrix quality) and one metric 

of landscape configuration (fragmentation per se). We chose these 
landscape predictors because they have been demonstrated to influence 
a variety of vertebrate taxa (Ewers and Didham, 2006; Smith et al., 
2011), including primates (Arroyo-Rodríguez et al., 2013; Galán-Acedo 
et al., 2019b; Thornton et al., 2011).We measured landscape predictors 
using the ArcGis 10.5 software with the Patch Analyst extension 
(Rempel et al., 2012). Forest cover was calculated as the percentage of 
old-growth forest in a landscape. To estimate matrix quality, we first 
ranked the quality of all land cover types that were not the original 
habitat of howler monkeys (i.e., old-growth forest), from 1 (lowest 
quality) to 6 (highest quality). We included water bodies because howler 
monkeys may use it for drinking (Almeida-Silva et al., 2005) or even 
swimming (Chaves and Stoner, 2010; Gonzalez-Socoloske and Snarr, 
2010). Our ranking was based on our understanding of the ability of 
howler monkeys to use different land covers in the matrix for feeding 
and/or travelling (Pozo-Montuy et al., 2013): 1 (water bodies), 2 
(human settlements), 3 (annual crops and cattle pastures), 4 (arboreal 
crops), 5 (connectors), and 6 (secondary vegetation). We then calculated 
a matrix quality index as [(1 × % of water bodies) + (2 × % of human 
settlements) + (3 × % of annual crops and cattle pastures) + (4 × % of 
arboreal crops) + (5 × % of connectors) + (6 × % of secondary vege
tation)]. To make this index independent of forest cover, we calculated 
all percentages considering the area covered by all land covers in the 
matrix, and not by total landscape area (Garmendia et al., 2013). This 
index varies between 100 (100% composed of water) and 600 (100% 
composed of secondary vegetation) and therefore is positively related to 
resource availability in the matrix and to matrix permeability (Gar
mendia et al., 2013). Finally, we measured fragmentation as forest patch 
density, i.e., the number of isolated forest patches (≥1 ha) within the 
landscape divided by total landscape area (n/ha). This is a widely used 
forest fragmentation metric, and we statistically controlled for the effect 
of forest cover (see the statistical analyses section), so that this variable 
can be considered a metric of fragmentation per se (Fahrig, 2017). 

We followed Jackson and Fahrig (2015) to identify the scale at which 
the relationship between a landscape predictor and a species’ response is 
strongest, i.e., the scale of effect. We did this separately for each 
predictor-response combination in each region (Galán-Acedo et al., 
2018). Using regression analyses, we tested 13 scales, varying the radius 
of the circular landscapes (measured from the center of the focal patch) 
in 100 m increments, with the smallest radius being 100 m and the 
largest 1300 m (with no overlap between the radii of adjacent land
scapes). As suggested by Jackson and Fahrig (2015), the largest land
scape size (i.e., 531-ha landscape) was much larger than the home range 
of the studied species. The smallest radius (100-m radius) corresponds to 
a landscape of ~3 ha, which is smaller than the mean home range size of 
both species, but larger than the smallest forest patch inhabited by 
howler monkeys (i.e., ~1 ha; Arroyo-Rodríguez et al., 2008, 2013; Boyle 
and Smith, 2010). The scale of effect was the landscape size that yielded 
the strongest associations between each response variable and each 
predictor (Table A1; Galán-Acedo et al., 2018). 

2.5. Statistical analyses 

We used the software R ver. 3.0.1 for all analyses (R Core Team, 
2013). Analyses were conducted separately for each region. We assessed 
the collinearity among landscape predictors with the variance inflation 
factor (VIF) using the ‘car’ package (Fox et al., 2019). We found sig
nificant collinearity among predictors in the IDL-2 region, when 
assessing abundance. Thus, to assess the response of abundance to 
landscape structure in this region, we did not use the value of patch 
density at the best scale (scale of effect), but at the second best scale, at 
which we did not find collinearity among predictors (Table A1), i.e., all 
VIF values were <3.34 (Neter et al., 1996). 

To evaluate the effects of landscape variables on each response 
variable we built generalized linear models with the package ‘glmulti’ 
(Calcagno and de Mazancourt, 2010). We used an information-theoretic 
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approach and multimodel inference to assess the relative effect of each 
predictor on each response variable (Burnham and Anderson, 2002). For 
each response variable we constructed eight models, representing all 
combinations of the three explanatory variables plus the null model, 
which includes only the intercept. For each model we computed 
Akaike’s information criterion corrected for small samples (AICc), and 
we ranked the models from best to worst (Supplemental material 
Table S2). We used Akaike weights (wi) to evaluate the importance of 
each predictor and produce model-averaged parameter estimates 
(Anderson, 2007). We summed wi of ranked models until the total was 
>0.95 (Whittingham et al., 2005). The set of models for which Σwi is 
0.95 represents a set that has at least a 95% probability of containing the 
true best model (Whittingham et al., 2005). Following Crawley (2007), 
the goodness-of-fit of the models was estimated as: (deviance explained 
by the complete model/deviance explained by the null model) x 100. A 
given landscape variable was considered a relatively important predic
tor for a given response if the following four criteria were met: (i) the 
complete model in which such predictor appeared had a relatively high 
goodness-of-fit; (ii) the predictor showed a relatively high Σwi (i.e., 
considering all candidate model in which it appeared); (iii) it was pre
sent in at least one of the most plausible models (i.e., ΔAICc <2); and 
(iv) the model-averaged parameter estimate was higher than its un
conditional variance (i.e., it did not include zero). 

3. Results 

Of the 48 forest patches studied in the four regions, 29 (60.4%) were 
inhabited by howler monkeys, with a total of 579 individuals (range =
1–68 individuals per patch; Table 2). The highest values for both 
abundance and immature-to-female ratio were found in the region with 
lowest deforestation, followed by the region with highest deforestation 
(Table 2). 

Complete models (those including the three landscape metrics) had 
relatively high explanatory power (31.6% to 78.1% of deviance 
explained), except for the models of abundance in IDL-1 and in HDL 
(Fig. 2). Values of model-averaged parameter estimates and uncondi
tional variances are in Table 3. In LDL, monkey abundance was posi
tively related to forest cover (Σwi = 0.7) and negatively related to matrix 
quality (Σwi = 0.7) and forest patch density (Σwi = 0.6; Figs. 2a, 3a, b), 
while immature-to-female ratio increased with matrix quality (Σwi =

0.8) and forest patch density (Σwi = 0.5; Figs. 2b, 3c). In IDL-1, matrix 
quality was also positively related to immature-to-female ratio (Σwi =

0.5; Fig. 2d). In IDL-2 abundance was positively related to forest cover 
(Σwi = 0.9) but negatively to matrix quality (Σwi = 0.5, Figs. 2e, 3d) and 
immature-to-female ratio was negatively related to patch density (Σwi =

0.9; Figs. 2f, 3e). Finally, in the most deforested region (HDL), 
immature-to-female ratio was negatively related to forest cover (Σwi =

0.6; Figs. 2h, 3f). 

4. Discussion 

Our findings indicate that howler monkey responses to landscape 
structure can depend on the regional context in which the landscape is 
embedded. As predicted, landscape forest cover was positively related to 
primate abundance, but only in two of the four regions. Contrary to our 
expectations, forest cover was negatively related to immature-to-female 
ratio in the region with highest deforestation level (HDL region). Also 
surprising was the fact that in HDL we recorded a similarly high number 
of inhabited patches (n = 9) as in the region with lowest deforestation 
level (LDL), and the second highest abundance of howler monkeys. On 
the other hand, matrix quality was negatively related to monkey 
abundance in LDL, and in a region with intermediate deforestation level 
(IDL-2), and positively related to the immature-to-female ratio in LDL 
and IDL-1. Finally, fragmentation was negatively related to abundance, 
but positively to immature-to-female ratio in the LDL region, and 
negatively related to immature-to-female ratio in ILD-2 (Table 3). 

Forest cover was positively related to monkey abundance in two 
regions (i.e., LDL and IDL-2). This is not surprising because forest cover 
determines the amount of habitat for arboreal mammals, and it is 
positively related to landscape connectivity and resource availability (e. 
g., food, shelter; Carretero-Pinzón et al., 2017; Fahrig, 2003, 2013; 
Marsh and Chapman, 2013). But why can forest cover be relatively more 
important for howler monkeys in IDL-2 than in IDL-1? Although these 
two regions have intermediate deforestation levels (83% and 70% of 
deforestation, respectively), matrix quality differs between them. The 
matrix in IDL-2 is mainly composed of pastures, which do not provide 
supplementary resources to howler monkeys, probably making them 
more dependent on variations in forest cover. In contrast, the matrix in 
IDL-1 includes arboreal elements (e.g., secondary vegetation, tree crops) 
that can be used as temporary and supplementary habitat (Asensio et al., 
2009; Galán-Acedo et al., 2019a; Pozo-Montuy et al., 2013). This can 
diminish primate dependence on forest cover, while strengthening the 
relationship with matrix quality (see below). 

Contrary to our expectations, in HDL (95% of deforestation) forest 
cover was negatively related to immature-to-female ratio. Howler 
monkeys are frequently considered to have high behavioral flexibility to 
cope with degraded habitats, adjusting, for instance, the size of their 
home ranges or activity budgets (Arroyo-Rodríguez and Dias, 2010). In 
mantled howler monkeys, juveniles and young adults of both sexes 
disperse away from their natal groups (Clarke et al., 1997; Clarke and 
Glander, 2001). However, evidence shows that howler monkeys could 
limit their dispersal in highly deforested landscapes, as these provide 
less opportunity for colonization by new groups (Arroyo-Rodríguez and 
Dias, 2010; Arroyo-Rodríguez et al., 2008). Furthermore, dispersal 
events in such landscapes can entail high mortality risks for individuals 
(Fahrig, 2002). Thus, to persist in highly deforested landscapes, mantled 
howler monkeys could be limiting their dispersal, which could increase 
the number of juveniles in the groups and therefore the immature-to- 
female ratio. Although this needs to be tested in future research, if 
confirmed, the lack of dispersal could pose serious conservation risks, as 
it associates with loss of genetic variability (Pope, 1996), disrupted 
metapopulation dynamics (Mandujano et al., 2004), infectious disease 
dynamics (Baudouin et al., 2019), and changes to biotic interactions that 
affect ecosystem structure and function (López et al., 2005). 

The relatively high abundance of howler monkeys in HDL was also 
surprising. This finding does not support the extinction threshold hy
pothesis, which predicts that populations can decrease sharply in land
scapes with <10–30% of remaining habitat (Andren, 1994; Swift and 
Hannon, 2010). The persistence of monkeys in a landscape with only 5% 
of forest cover can be explained by the high behavioral flexibility of 
howler monkeys which may allow them to accumulate individuals in 
forest patches (Bicca-Marques, 2003; Arroyo-Rodríguez and Dias, 2010). 
This crowding effect has been suggested as a key mechanism for 
explaining the abundance of other tropical forest-specialist species in 
fragmented forest landscapes, including non-volant mammals 

Table 2 
Results of howler monkey surveys in each study region (n = 12 forest patches per 
region). LDL = region with lowest deforestation level, IDL-1 = intermediate 
deforestation level 1, IDL-2 = intermediate deforestation level 2, HDL = highest 
deforestation level. Total and range values per patch (in parentheses) are 
indicated.   

LDL IDL-1 IDL-2 HDL 

Primate species A. pigra A. palliata A. palliata A. palliata 
# Occupied patches 9 6 5 9 
Abundance 244 (4–68) 51 (3–12) 116 (1–51) 168 

(10–47) 
Immature-to-female 

ratioa 
1.26 
(0.67–2) 

0.61 (0–1) 0.33 
(0–0.52) 

0.69 
(0.5–1) 

# Groups 44 (0–15) 6 (0–1) 11 (0–5) 13 (0–13) 
Mean group size 5.26 (2–11) 8.50 

(3–12) 
10.18 
(2–17) 

12.92 
(2–25)  

a Considering only patches occupied by at least one adult female. 
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(Laurance, 1994), terrestrial rodents (Arce-Peña et al., 2019a), and 
howler monkeys (Terborgh et al., 2001; Arce-Peña et al., 2019b). 
Crowding can, however, have negative consequences. In howler mon
keys, high population densities have been associated with reduced food 
availability and reproduction, and increased inter- and intra-specific 
food competition (Arroyo-Rodríguez and Dias, 2010; Cristóbal-Azka
rate and Arroyo-Rodríguez, 2007; Rose et al., 2003). Thus, this region 
may be facing an extinction debt (Tilman et al., 1994), as howler 
monkeys have a long life-span (>30 years) and slow life-histories (e.g., 
mean interbirth interval of 22 months in A. palliata and 18 months in 
A. pigra: Rangel-Negrín et al., 2016; Rangel-Negrín et al., 2018) – a 
hypothesis that needs to be tested through long-term monitoring. 

Interestingly, matrix quality was negatively related to monkey 
abundance in LDL and IDL-2. These apparently counterintuitive findings 
could be interpreted as a positive effect of matrix quality. Landscapes 
with high quality matrices have higher availability of arboreal covers (e. 
g., successional vegetation, riparian corridors or arboreal crops), which 
increase landscape connectivity and offer dispersal opportunities for 
arboreal species (Anderson et al., 2007; Blanco and Waltert, 2013; 
Galán-Acedo et al., 2019a). Thus, howler monkeys in landscapes 
dominated by these matrices may leave forest patches more frequently 
to use resources from the matrix, which may explain a lower number of 
individuals in patches surrounded by higher quality matrices. 

Opposite to abundance, matrix quality was positively related to 
immature-to-female ratio in regions LDL and IDL-1. These two regions 
have higher quality matrices than the other two regions (i.e., structur
ally more similar to species’ natural habitat; Fahrig et al., 2011), such 
that monkeys can more easily move and find food resources (Asensio 
et al., 2009; Galán-Acedo et al., 2019a; Pozo-Montuy et al., 2013; 
Watling et al., 2011). This, in turn, could increase survival rates of 
immature individuals, and thus the immature-to-female ratio. 

Supporting this possibility, Reider et al. (2018) found in their meta- 
analysis that species-area relationships are shallower (less extinction 
driven) where matrix quality is higher, likely because of the supple
mentary resources provided by the matrix. This process, called land
scape supplementation (Dunning et al., 1992), presumably plays an 
important role for the persistence of primates in altered landscapes 
(Asensio et al., 2009; Galán-Acedo et al., 2019a; Pozo-Montuy et al., 
2013). 

The effect of forest fragmentation was important in two of the four 
regions. This landscape variable was negatively related to the abun
dance of howler monkeys and positively related to immature-to-female 
ratio in the best-preserved region (LDL, ~50% deforestation). Similar to 
the negative effect of matrix quality discussed above, it is possible that 
the high density of forest patches in this well-preserved region is asso
ciated with a decrease in patch isolation (Fahrig, 2003, 2013). Such 
spatial configuration can favor inter-patch movements, allowing for a 
more evenly distribution of individuals across the landscape and 
reducing population density in the focal patches. This, in turn, could 
increase the survival of immature individuals, and thus the reproductive 
rate in this region. If this were the case, the negative association between 
forest fragmentation and monkey abundance in LDL would not imply a 
negative effect of fragmentation on monkey population dynamics. 
However, the immature-to-female ratio was also negatively associated 
to fragmentation in IDL-2, which had 83% of deforestation. Because the 
matrix in IDL-2 is mainly composed of open areas, and little forest cover 
remains, fragmentation in this region could increase howler monkeys’ 
exposure to different threats, such as hunting and illegal trade. 

5. Conservation implications 

Even though our sample size to detect inter-regional differences was 

Fig. 2. Predictor variables included in the set of 
models for which Σwi was 0.95, for the two response 
variables of howler monkeys, abundance (left) and 
immature-to-female ratio (right). We assessed four 
regions: LDL, lowest deforestation level, IDL-1, in
termediate deforestation level 1, IDL-2, intermediate 
deforestation level 2, HDL, highest deforestation 
level. The importance of predictor variables is rep
resented by the length of bars, which corresponds to 
the sum of Akaike weights (Σwi). The percentage of 
deviance explained by each complete model is indi
cated in each panel. Positive (green bars) or negative 
(red bars) responses to each predictor are indicated. 
The gray bar represents a case in which the uncon
ditional variance was higher than the model- 
averaged parameter estimate, indicating that such 
parameter can include zero (i.e., a null effect). (For 
interpretation of the references to colour in this 
figure legend, the reader is referred to the web 
version of this article.)   
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relatively low (12 landscapes per region), our findings showed that 
species’ responses to changes in landscape structure are influenced by 
the regional context. Thus, whereas some effects of the regional context 
might have gone undetected due to small sample size, the effects that we 
did detect can give us valuable insights that can inform management 
decisions. Forest fragmentation generally shows weaker effects in re
gions with high quality matrices or in strongly deforested regions. This 
could imply that in such regions, conservation plans may improve 
howler monkey maintenance through preventing forest loss and 
increasing forest cover (i.e., restoration). The spatial configuration of 
the remaining forest might be relatively more important in regions with 
high forest cover and low quality matrices. Improving matrix quality 
with arboreal elements could also be an effective management strategy, 
especially for arboreal mammals, such as most primates. Although the 
study species seem to be relatively resilient to forest loss, with the most 
deforested region showing a high number of individuals, we believe that 
this pattern could be related to time-lagged responses to habitat loss 
(Metzger et al., 2009; Arce-Peña et al., 2019b; but see Alcocer-Rodríguez 
et al., 2020). Thus, additional long-term studies are needed to better 
understand the impact of extreme deforestation on the persistence of 
these and other species that seem resistant to forest loss. Increasing the 
sample size in each region could also be valuable to improve the pre
dictive power of the models, and to allow for the inclusion of additional 
predictor variables (e.g., landscape connectivity, land-use history) that 

can also drive primate population dynamics in fragmented forests. These 
improvements to the methods used here could contribute to increasing 
our understanding of how primate populations may be able to persist in 
the long term in fragmented rainforests. 
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Region/predictors Abundance Immature-to-female ratio 

β UV β UV 

LDL 
Forest cover  0.023  0.0002  − 0.002  0.00007 
Matrix quality  − 0.007  0.00002  0.005  0.000008 
Patch density  − 0.419  0.131  0.145  0.038  

IDL-1 
Forest cover  − 0.00008  0.00002  0.002  0.00002 
Matrix quality  − 0.0003  0.0000009  0.002  0.000006 
Patch density  0.0002  0.003a  0.002  0.001  

IDL-2 
Forest cover  0.045  0.0003  0.0009  0.000003 
Matrix quality  − 0.011  0.0001  − 0.00003  0.0000003 
Patch density  − 0.143  0.123  − 0.116  0.003  

HDL 
Forest cover  − 0.006  0.0002  − 0.021  0.0004 
Matrix quality  0.0008  0.000002  − 0.0005  0.000005 
Patch density  − 0.038  0.009  − 0.016  0.003  

a Cases in which the unconditional variance (UV) was higher than the model- 
averaged parameter estimates (β). 
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Hernández-Gómez, I.U., 2014. Evaluación de la transformación del paisaje para la 
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