
A Repair Method for Differential Evolution with Combined
Variants to Solve Dynamic Constrained Optimization

Problems

María-Yaneli Ameca-Alducin, Efrén Mezura-Montes and Nicandro Cruz-Ramírez
Artificial Intelligence Research Center, University of Veracruz

Xalapa, Veracruz, México
yaneliameca@gmail.com, {emezura,ncruz}@uv.mx

ABSTRACT
Repair methods, which usually require feasible solutions as
reference, have been employed by Evolutionary Algorithms
to solve constrained optimization problems. In this work,
a novel repair method, which does not require feasible so-
lutions as reference and inspired by the differential muta-
tion, is added to an algorithm which uses two variants of
differential evolution to solve dynamic constrained optimi-
zation problems. The proposed repair method replaces a lo-
cal search operator with the aim to improve the overall per-
formance of the algorithm in different frequencies of change
in the constrained space. The proposed approach is com-
pared against other recently proposed algorithms in an also
recently proposed benchmark. The results show that the
proposed improved algorithm outperforms its original ver-
sion and provides a very competitive overall performance
with different change frequencies.

CCS Concepts
•Computing methodologies → Genetic algorithms;
•Mathematics of computing → Continuous functions;

Keywords
Differential Evolution; Constraint-handling; Dynamic op-
timization

1. INTRODUCTION
Constrained optimization problems have been successfully

solved by Evolutionary Algorithms (EAs) [6, 12, 16]. Never-
theless, among the current trends which have attracted the
interest of researchers and practitioners is the presence of
dynamism in the fitness function and/or the constraints of
the optimization problem [13, 18]. This type of problems
is known as the Dynamic Constrained Optimization Pro-
blem (DCOP) [17, 18, 20, 22]. A DCOP can be seen as a

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

search problem where its fitness landscape and feasible re-
gion change through time. In their original versions, EAs
were not designed to deal with dynamic search spaces be-
cause they lacked mechanisms to detect search space changes
[18, 17]. Without loss of generality, a DCOP can be defined
as to:

Find ~x, at each time t, which:

min
~x∈Ft⊆[L,U]

f(~x, t)

where t ∈ N+ is the current time,

[L,U] = {~x = (x1, x2, ..., xD)|Li ≤ xi ≤ Ui, i = 1 . . . D}

is the search space,
subject to:

Ft = {~x|~x ∈ [L,U], gi(~x, t) ≤ 0, i = 1 . . .m,
hj(~x, t) = 0, j = 1 . . . p}

is called the feasible region at time t.
∀~x ∈ Ft if there exists a solution ~x∗ ∈ Ft such that

f(~x∗, t) ≤ f(~x, t), then ~x∗ is called a feasible optimal solu-
tion and f(~x∗, t) is called the feasible optima value at time
t.

Four types of DCOPs are defined: i) a static objective
function and static constraints (i.e. a static constrained op-
timization problem), ii) a dynamic objective function and
static constraints, iii) a static objective function and dy-
namic constraints, and iv) a dynamic objective function and
dynamic constraints.

In the specialized literature on DCOPs, the Genetic Algo-
rithm (GA) is the most popular EA, where different mech-
anisms to deal with fitness landscape and feasible region
changes have been considered, such as diversity maintenance
[4, 5, 17] and solution repair [18, 20, 22]. On the other
hand, recent meta-heuristic approaches like the Dynamic
Constrained T-Cell (DCTC), which is inspired by the T-
Cell model of the immune system[2], has been used to tackle
DCOPs. Another bio-inspired algorithm recently adapted to
solve DCOPs is the Gravitational Search Algorithm (GSA),
where a repair mechanism [22, 24] was also considered. Fur-
thermore, in [21], an algorithm that combined Differential
Evolution (DE) and a repair method was proposed in order
to produce better results. In another DE-based algorithm,
the combination of two DE variants, called Dynamic Dif-
ferential Evolution with Combined Variants (DDECV), was
proposed to solve DCOPs [1]. Among its added mechanisms
there was a local search operator to promote convergence to

the dynamic feasible region of the also dynamic search space.
However, such operator showed some limitations to generate
feasible solutions after a change [1]. On the other hand, the
above mentioned repair methods require feasible solutions as
reference to convert infeasible solutions into feasible ones.
This is the main motivation of this paper, where a novel
repair method, which does not require feasible solutions to
operate, and inspired by the differential mutation operator,
is proposed to promote a better overall performance of the
approach. A set of experiments focused on the frequency of
the change in the search space are carried out, because the
repair method has an important role for the algorithm to
recover after a change. The results obtained are compared
against several state-of-the-art approches to solve DCOPs.

The rest of the paper is divided as follows: Section 2 de-
tails DDECV, while Section 3 introduces the proposed repair
method. Section 4 presents the experiments and results ob-
tained by the algorithm in a benchmark recently proposed
[18]. Finally, Section 5 includes the conclusions and direc-
tions regarding future research.

2. DDECV ALGORITHM
DDECV is based on the combination of two well-known

DE variants, DE/rand/1/bin (base variant) and DE/best/-
1/bin (alternative variant) [1]. DE is a stochastic search
algorithm based on a set of solutions called vectors [23].
Such set is called population and each one of its vectors can
be represented as: ~xi,G, i = 1, . . . , NP , where ~xi,G is vec-
tor i at generation G, and NP represents the population
size. For both variants, each target vector ~xi,G generates
one trial vector ~ui,G by using a mutant vector ~vi,G. For
DE/rand/1/bin, the mutant vector is computed as in Equa-
tion 1, where ~xr0,G, ~xr1,G, and ~xr2,G are vectors chosen at
random from the current population (r0 6= r1 6= r2 6= i.
~xr0,G is known as the base vector and ~xr1,G, and ~xr2,G are
the difference vectors. F > 0 is a scale factor defined by the
user. For DE/best/1/bin the mutant vector is generated as
in Equation 2, where the only difference is the fact that the
base vector is the best solution in the current population
(represented as ~xbest,G).

~vi,G = ~xr0,G + F (~xr1,G − ~xr2,G) (1)

~vi,G = ~xbest,G + F (~xr1,G − ~xr2,G) (2)

After the mutant vector ~vi,G is generated, for the two DE
variants discussed in this paper, it is combined with the
target vector ~xi,G by applying a crossover operator as shown
in Equation 3.

ui,j,G =

{
vi,j,G if(randj ≤ CR) or (j = Jrand)

xi,j,G otherwise
(3)

where CR ∈ [0, 1] defines the similarity between the trial
vector and the mutant vector, randj generates a random
number between 0 and 1, and j ∈ {1, . . . , D} is the j-th
variable of the D- dimensional vector. Jrand ∈ [1, D] is
an integer random number which ensures that at least one
element of the mutant vector is copied to the trial vector so
as to prevent copies of the target vector.

To end the process, the best vector, based on fitness, be-

tween the target and trial vector is chosen for the next gen-
eration as follows:

~xi,G+1 =

{
~ui,G if(f(~ui,G) ≤ f(~xi,G)),

~xi,G otherwise
(4)

DDECV, wich will be explained in detail so as to get a
self-contained paper, has three main elements: (1) change
detection, (2) exploration promotion, and (3) convergence
promotion. The last is the source of motivation of this re-
search and will be detailed later. Firstly, the change de-
tection and the exploration promotion mechanisms are de-
scribed below.

The change detection mechanism consists of solution re-
evaluation [25, 9]. At each generation, the first trial vector
and the trial vector at the middle of the current population
are evaluated and their objective function values and con-
straints values are compared against their previous values. If
any value is different, an indicator is activated. Lastly, the
best vector in the current population is stored in a mem-
ory file, called the memory population. This memory keeps
promising solutions that can be used after a change. The
goal of using the first vector and the one located at the mid-
dle of the population is to decrease the chances of missing
a change during a given generation. The pseudocode of the
change detection mechanism is detailed in Algorithm 1.

Algorithm 1 Change detection mechanism

Require: ~xi,t−1

1: Evaluate ~xi,t at time t
2: if any value is not the same as those of its previous

evaluation then
3: Copy the best vector in the population ~xbest,t to the

memory population
4: Reevaluate all vectors in the current population and

also in the memory population
5: eval = eval + current population size +

memory population size
6: end if

The exploration promotion mechanism is activated after
a successful change detection (see Algorithm 1), and here is
where the two DE variants are switched because DDECV
starts by using DE/rand/1/bin. However, after the change
detection, DE/best/1/bin is used instead for a number of
generations defined by the user (Genbest) and the F value
is increased (expanded F) during the same period of time
so as to promote exploration [14]. Furthermore, considering
that DE/best/1/bin is used, the best vector (which will be
the base vector for the differential mutation) can be chosen
from either the current population or the memory popula-
tion. The exploration promotion mechanism is outlined in
Algorithm 2.

To add more diversity to the population, a number of
IB randomly generated solutions, called immigrants [26],
are added to the population at the end of each generation.
However, the number of immigrants is increased (IA) during
the DE/best/1/bin operation so as to increase the diversiy
after a change. The worst individuals are replaced by the
immigrants to keep the population size fixed.

The set of three feasibility rules proposed by Deb [7] are
used in DDECV as selection criteria in Equation 4 and also

Algorithm 2 Exploration promotion mechanism

1: if counter for using DE/best/1/bin < Genbest then
2: Generate ~ui,t with Equation 2 with expanded F value

and Equation 3
3: else
4: Generate ~ui,t with Equations 1 and 3
5: end if
6: return ~ui,t

every time the best vector is selected. The rules are the
following:

1. Between two feasible vectors, the one with the best
objective function value is selected.

2. If one vector is feasible and the other one is infeasible,
the feasible vector is selected.

3. If both vectors are infeasible, the one with the lowest
sum of constraint violation is selected.

Finally, the convergence promotion is carried out by a lo-
cal search operator [10], which is applied to a randomly cho-
sen vector ~xrand,t from the current population. A randomly
chosen variable from ~xrand,t = (xrand,1,t, . . . , xrand,D,t) is
added with a random value δ ∈ [0, 1]. Such value is also
substracted to the variable, then two neighbors are gener-
ated. The interval [0, 1] is suitable for the benchmark used
in this work, but it can be changed for other problems. The
best vector, based on the three feasibility criteria above men-
tioned, among the original vector and the two neighbors is
chosen as the new starting point. The process is repeated
ILS (Iterations for Local Search) times, (user-defined param-
eter). The vector obtained by this mechanism replaces the
worst vector in the current population (see Algorithm 3).

Algorithm 3 Convergence promotion mechanism

Require: ~xrand,t

1: for c← 1 to ILS do
2: δ = random(0, 1)
3: ~xNi+,t = ~xrand,t

4: ~xNi−,t = ~xrand,t

5: Select randomly one variable xrand,j,t of ~xrand,t

6: xNi+,j,t+ = δ
7: xNi−,j,t− = δ
8: ~xrand,t=best(~xrand,t, ~xNi+,t, ~xNi−,t)
9: end for

10: Replace the worst vector in the population with ~xrand,t

The pseudocode of the complete DDECV for solving DCOPs
[1] is detailed in Algorithm 4.

3. DDECV+ REPAIR
Recalling from Section 1, the usage of repair methods has

been reported as constraint-handlers for DCOPs. The main
idea of a repair method is the use of a set with only feasible
solutions to serve as reference for infeasible solutions of the
current population and help them to become feasible [15,
18, 20, 21, 22].

In this work a novel but simple repair method is proposed
and added to DDECV (DDECV + Repair). The main dif-
ference with respect to other repair methods lies in the fact

Algorithm 4 DDECV algorithm

1: G=0
2: Create a randomly-generated initial population ~xi,G ∀i, i =

1, . . . , NP
3: Evaluate each ~xi,G ∀i, i = 1, . . . , NP
4: eval = eval+NP
5: while eval ≤Max eval do
6: for i← 1 to NP do
7: if i = 1 or i = NP/2 then
8: Change detection Mechanism (~xi,G) {Algorithm 1}
9: eval = eval+ 1

10: end if
11: ~ui,G = Exploration promotion mechanism {Algorithm

2}
12: eval = eval+ 1
13: if f(~ui,G) is better than f(~xi,G) based on the feasibility

rules then
14: ~xi,G+1 = ~ui,G

15: else
16: ~xi,G+1 = ~xi,G

17: end if
18: end for
19: Add IA or IB immigrants to the current population and

evaluate them
20: eval = eval+ IA(or + IB)
21: Convergence promotion mechanism {Algorithm 3}
22: eval = eval+ 2 ∗ ILS
23: G = G+ 1
24: end while

that DDECV + Repair does not use feasible vectors as ref-
erence, it is just based on the differential mutation operator.
For each infeasible vector, three new and temporal vectors
are generated at random with the only aim to apply the dif-
ferential mutation operator (see Equation 1) as if a mutant
vector is created in DE. At each generation, before the ap-
plication of the selection operator based on the feasibility
rules (see Equation 4) between the target and trial vectors,
if the trial vector is infeasible, the repair method is applied
until it is repaired or Repair Limit attempts are computed.
This can be seen in Algorithm 5. Considering the fact that
only the constraints are evaluated to check the feasibility of
a vector, the evaluations computed by the repair method are
not considered in the total evaluations made by the proposed
algorithm.

DDECV + Repair does not consider the convergence pro-
motion of its former version and the repair method is used
instead. The details of DDECV + Repair are shown in Algo-
rithm 6, where the repair method is remarked in boldface.

Algorithm 5 Repair Method

Require: ~ui,G {trial vector}
1: counter = 0
2: while ~ui,G is infeasible and counter ≤ Repair Limit do
3: Generate three random vectors (~ur0,G, ~ur1,G and

~ur2,G)
4: ~ui,G = ~ur0,G + F (~ur1,G − ~ur2,G)
5: counter = counter + 1
6: end while
7: Return ~ui,G

Table 1: Main features of the test problems [18].
Problem Obj. Function Constraints DFR SwO bNAO OICB OISB Path
g24 u Dynamic No Constraints 1 No No No Yes N/A
g24 1 Dynamic Static 2 Yes No Yes No N/A
g24 f Static Static 2 No No Yes No N/A
g24 uf Static No Constraints 1 No No No Yes N/A
g24 2* Dynamic Static 2 Yes No Yes and No Yes and No N/A
g24 2u Dynamic No Constraints 1 No No No Yes N/A
g24 3 Static Dynamic 2-3 No Yes Yes No N/A
g24 3b Dynamic Dynamic 2-3 Yes No Yes No N/A
g24 3f Static Static 1 No No Yes No N/A
g24 4 Dynamic Dynamic 2-3 Yes No Yes No N/A
g24 5* Dynamic Dynamic 2-3 Yes No Yes and No Yes and No N/A
g24 6a Dynamic Static 2 Yes No No Yes Hard
g24 6b Dynamic Static 1 No No No Yes N/A
g24 6c Dynamic Static 2 Yes No No Yes Easy
g24 6d Dynamic Static 2 Yes No No Yes Hard
g24 7 Static Dynamic 2 No No Yes No N/A
g24 8a Dynamic No Constraints 1 No No No No N/A
g24 8b Dynamic Static 2 Yes No Yes No N/A
DFR Number of disconnected feasible regions
SwO Switched global optimum between disconnected regions
bNAO Better newly appear optimum without changing existing ones
OICB Global optimum is in the constraint boundary
OISB Global optimum is in the search boundary
Path Indicate if it is easy or difficult to use mutation to travel between feasible regions
Dynamic The function is dynamic
Static There is no change
∗ In some change periods, the landscape either is a plateau or contains infinite number of optima

and all optima (including the existing optimum) lie in a line parallel to one of the axes

Algorithm 6 DDECV+Repair algorithm

1: G=0
2: Create a randomly-generated initial population ~xi,G ∀i, i =

1, . . . , NP
3: Evaluate each ~xi,G ∀i, i = 1, . . . , NP
4: eval = eval+NP
5: while eval ≤Max eval do
6: for i← 1 to NP do
7: if i = 1 or i = NP/2 then
8: Change detection Mechanism (~xi,G) {Algorithm 1}
9: eval = eval+ 1

10: end if
11: ~ui,G = Exploration promotion mechanism {Algorithm

2}
12: if ~ui,G is infeasible then
13: Repair Method(~ui,G) {Algorithm 5}
14: end if
15: eval = eval+ 1
16: if f(~ui,G) is better than f(~xi,G) based on the feasibility

rules then
17: ~xi,G+1 = ~ui,G

18: else
19: ~xi,G+1 = ~xi,G

20: end if
21: end for
22: Add IA or IB immigrants to the current population and

evaluate them
23: eval = eval+ IA(or + IB)
24: G = G+ 1
25: end while

4. EXPERIMENTS AND RESULTS

4.1 Experimental setup
DDECV + Repair was tested on eighteen benchmark prob-

lems. The main features of those problems are summa-
rized in Table 1 and the details can be found in [18, 19].
The results obtained by DDECV + Repair were compared
with those from state-of-the-art EAs in dynamic constrai-
ned optimization: (1) a GA with elitism, nonlinear ranking
parent selection, arithmetic crossover and uniform mutation
(GAElit) [18], (2) a GA similar to GAElit but with random
immigrants (RIGAElit) [18], (3) another version of GAElit
but with hypermutation (HyperMElit) [18], (4) a GA with
a traditional repair mechanism (GA + Repair) [18], (5) a
traditional differential evolution with an also traditional re-
pair mechanism (DE + Repair)[21], (6) the gravitational
search algorithm with a traditional repair mechanism (GSA
+ Repair) [22], and (7) the original DDECV [1] to analyze
the particular effect of the proposed repair method in this
algorithm.

Table 2 shows the settings for the benchmark problems.
Different change frequencies were tested (500, 1000 and 2000
evaluations), with a medium objective and constraint func-
tion change severity as suggested in [18]. DE + Repair
and GSA + Repair were compared with 1000 evaluations as
change frequency because no results were found for the re-
maining frequencies. The parameter values used by DDECV
and DDECV + Repair are listed in Table 3 and were taken
from [1] (with the exception of Repair Limit).

The offline error [3] was employed to measure the perfor-
mance of DDECV + Repair. The offline error is defined as
the average of the sum of errors in each cycle divided by
the sum of the number of cycles. The offline error is always
greater than or equal to zero. This latter value indicates a
perfect performance [17]. This measure is defined as:

Table 2: Parameter values for the test problems
taken from [18]

Number of runs 50

Number of changes 12

Frequency change 500, 1000, 2000 Evals.

Obj. function severity k 0.5

Constraint severity S 20

Table 3: DDECV and DDECV + Repair parameter
values taken from [1]

Pop size 25

Crossover CR = 0.8399

F before change F = 0.9644

F after change FA = 1.0820

Immigrants before change IB = 5

Immigrates after change IA = 3

Genbest 16

Iterations for local search ILS = 8 (only DDECV)

Repair Limit 100 (only DDECV + Repair)

offline error =
1

n

n∑
j=1

e(j)

where n is the number of cycles so far and e(j) denotes the
best error since the last change gained by the algorithm at
cycle j (see the next Equation).

e(j) = |f(~x∗, t)− f(~x, t)|

where f(~x∗, t) denotes the feasible global optima at time t
and f(~x, t) is the best solution found at generation G.

4.2 Results
The average and standard deviation values of the offline

error obtained per each compared algorithm in the set of
eighteen test problems are presented in Tables 4, 5, and 6
for change frequencies of 500, 1000 and 2000 evaluations,
respectively.

The statistical validation for all test functions was com-
puted with the non-parametric 95%-confidence Friedman
test and a post-hoc test (Bergmann-Hommels) [8]. Non-
parametric tests were adopted because the samples of runs
did not fit to a Gaussian distribution based on the Kolmogorov-
Smirnov test.

It was observed from the results in Table 4 (500 evalua-
tions for a change), and from the Friedman and Bergmann
- Hommels tests, that DDECV + Repair outperformed all
the compared algorithms but DDECV (i.e. no significant
differences in the complete set of test problems were ob-
served). Because of this, the 95%-confidence Wilcoxon test
was used to determine statistical differences per each test
problem between DDECV + Repair and DDECV. Based on
such results, DDECV + Repair outperformed DDECV in
fourteen test problems (g24 f, g24 2, g24 3, g24 3b, g24 3f,
g24 4, g24 5, g24 6a, g24 6b, g24 6c, g24 6d, g24 7, g24 8a,
g24 8b), while the original DDECV outperformed DDECV
+ Repair in four test problems (g24 u, g24 uf, g24 2u and
g24 1). The main feature of the first three test problems

Table 4: Average and standard deviation offline error values

obtained by DDECV + Repair and the compared algorithms

with a change frequency of 500 evaluations. Significant best

results, based on the 95%-confidence Wilcoxon test between

DDECV and DDECV+Repair are remarked in boldface.

Algorithms
Functions

G24 u G24 1 G24 f

GAElit 0.184(±0.035) 0.641(±0.057) 0.175(±0.083)

RIGAElit 0.235(±0.025) 0.496(±0.046) 0.266(±0.051)

HyperMElit 0.163(±0.026) 0.52(±0.065) 0.209(±0.053)

GA+Repair 0.500(±0.059) 0.264(±0.024) 0.077(±0.011)

DDECV 0.082(±0.011) 0.109(±0.067) 0.075(±0.019)

DDECV+Repair 0.086(±0.009) 0.117(±0.015) 0.048(±0.009)

G24 uf G24 2 G24 2u

GAElit 0.091(±0.022) 0.372(±0.05) 0.132(±0.017)

RIGAElit 0.125(±0.02) 0.325(±0.037) 0.146(±0.024)

HyperMElit 0.091(±0.012) 0.364(±0.043) 0.115(±0.016)

GA+Repair 0.358(±0.018) 0.298(±0.036) 0.354(±0.029)

DDECV 0.010(±0.005) 0.162(±0.032) 0.065(±0.005)

DDECV+Repair 0.016(±0.005) 0.137(±0.008) 0.088(±0.008)

G24 3 G24 3b G24 3f

GAElit 0.375(±0.049) 0.631(±0.084) 0.252(±0.058)

RIGAElit 0.436(±0.048) 0.545(±0.051) 0.264(±0.048)

HyperMElit 0.404(±0.05) 0.557(±0.088) 0.244(±0.051)

GA+Repair 0.063(±0.008) 0.184(±0.019) 0.035(±0.008)

DDECV 0.087(±0.024) 0.225(±0.07) 0.071(±0.025)

DDECV+Repair 0.062(±0.008) 0.147(±0.012) 0.028(±0.007)

G24 4 G24 5 G24 6a

GAElit 0.646(±0.075) 0.367(±0.029) 1.038(±0.157)

RIGAElit 0.542(±0.047) 0.287(±0.035) 0.534(±0.05)

HyperMElit 0.573(±0.075) 0.324(±0.039) 0.694(±0.071)

GA+Repair 0.143(±0.015) 0.196(±0.024) 0.616(±0.074)

DDECV 0.233(±0.081) 0.195(±0.033) 0.267(±0.114)

DDECV+Repair 0.143(±0.012) 0.140(±0.014) 0.083(±0.016)

G24 6b G24 6c G24 6d

GAElit 0.631(±0.057) 0.666(±0.052) 0.664(±0.075)

RIGAElit 0.436(±0.039) 0.443(±0.029) 0.512(±0.057)

HyperMElit 0.535(±0.039) 0.543(±0.051) 0.584(±0.041)

GA+Repair 0.567(±0.048) 0.518(±0.038) 0.475(±0.038)

DDECV 0.145(±0.029) 0.173(±0.048) 0.414(±0.083)

DDECV+Repair 0.098(±0.01) 0.090(±0.011) 0.196(±0.015)

G24 7 G24 8a G24 8b

GAElit 0.441(±0.053) 0.356(±0.028) 0.807(±0.056)

RIGAElit 0.565(±0.068) 0.405(±0.028) 0.758(±0.064)

HyperMElit 0.430(±0.062) 0.355(±0.028) 0.710(±0.071)

GA+Repair 0.134(±0.017) 0.341(±0.032) 0.380(±0.068)

DDECV 0.156(±0.038) 0.292(±0.035) 0.332(±0.108)

DDECV+Repair 0.134(±0.023) 0.257(±0.031) 0.189(±0.033)

(g24 u, g24 uf, g24 2u) is that they are unconstrained, and
the fourth one (g24 1) has a disconnected feasible region.
The better performance of the original DDECV in the first
three test problems can be understood due to the fact that
the local search used as convergence promotion (see Algo-
rithm 3) is precisely designed to improve good solutions
faster and the whole search space is feasible on those prob-
lems. However, in presence of constraints, DDECV + Repair
clearly performed better (except in test problem g24 1).

Table 5: Average and standard deviation offline error values

obtained by DDECV + Repair and the compared algorithms

with a change frequency of 1000 evaluations. Significant best

results, based on the 95%-confidence Wilcoxon test between

DDECV and DDECV+Repair are remarked in boldface.

Algorithms
Functions

G24 u G24 1 G24 f

GAElit 0.106(±0.035) 0.459(±0.057) 0.154(±0.083)

RIGAElit 0.149(±0.025) 0.346(±0.046) 0.178(±0.051)

HyperMElit 0.111(±0.026) 0.384(±0.065) 0.149(±0.053)

GA+Repair 0.468(±0.059) 0.226(±0.024) 0.041(±0.011)

DE+Repair 0.099(±0.01) 0.151(±0.024) 0.039(±0.022)

GSA+Repair 0.049(±0.004) 0.132(±0.015) 0.029(±0.012)

DDECV 0.050(±0.006) 0.109(±0.033) 0.029(±0.010)

DDECV+Repair 0.039(±0.007) 0.061(±0.01) 0.021(±0.006)

G24 uf G24 2 G24 2u

GAElit 0.063(±0.022) 0.288(±0.050) 0.073(±0.017)

RIGAElit 0.069(±0.02) 0.246(±0.037) 0.091(±0.024)

HyperMElit 0.053(±0.012) 0.253(±0.043) 0.068(±0.016)

GA+Repair 0.218(±0.018) 0.281(±0.036) 0.294(±0.029)

DE+Repair 0.057(±0.019) 0.191(±0.014) 0.141(±0.012)

GSA+Repair 0.047(±0.009) 0.182(±0.019) 0.196(±0.012)

DDECV 0.004(±0.002) 0.126(±0.030) 0.054(±0.004)

DDECV+Repair 0.009(±0.002) 0.062(±0.006) 0.036(±0.001)

G24 3 G24 3b G24 3f

GAElit 0.289(±0.049) 0.457(±0.084) 0.158(±0.058)

RIGAElit 0.308(±0.048) 0.386(±0.051) 0.167(±0.048)

HyperMElit 0.243(±0.05) 0.394(±0.088) 0.128(±0.051)

GA+Repair 0.156(±0.008) 0.171(±0.019) 0.025(±0.008)

DE+Repair 0.091(±0.012) 0.121(±0.019) 0.013(±0.009)

GSA+Repair 0.028(±0.004) 0.076(±0.009) 0.009(±0.007)

DDECV 0.057(±0.018) 0.134(±0.033) 0.032(±0.011)

DDECV+Repair 0.046(±0.006) 0.084(±0.006) 0.010(±0.002)
G24 4 G24 5 G24 6a

GAElit 0.453(±0.075) 0.266(±0.029) 0.674(±0.157)

RIGAElit 0.421(±0.047) 0.240(±0.035) 0.333(±0.050)

HyperMElit 0.426(±0.075) 0.248(±0.039) 0.491(±0.071)

GA+Repair 0.211(±0.015) 0.236(±0.024) 0.431(±0.074)

DE+Repair 0.121(±0.021) 0.121(±0.011) 0.047(±0.009)

GSA+Repair 0.073(±0.012) 0.153(±0.013) 0.033(±0.003)

DDECV 0.131(±0.032) 0.126(±0.019) 0.215(±0.067)

DDECV+Repair 0.088(±0.011) 0.078(±0.008) 0.036(±0.005)
G24 6b G24 6c G24 6d

GAElit 0.408(±0.057) 0.441(±0.052) 0.510(±0.075)

RIGAElit 0.309(±0.039) 0.325(±0.029) 0.342(±0.057)

HyperMElit 0.390(±0.039) 0.394(±0.051) 0.456(±0.041)

GA+Repair 0.427(±0.048) 0.390(±0.038) 0.354(±0.038)

DE+Repair 0.101(±0.012) 0.790(±0.010) 0.910(±0.011)

GSA+Repair 0.047(±0.003) 0.045(±0.004) 0.037(±0.007)

DDECV 0.108(±0.016) 0.128(±0.025) 0.288(±0.055)

DDECV+Repair 0.041(±0.010) 0.041(±0.01) 0.079(±0.006)
G24 7 G24 8a G24 8b

GAElit 0.316(±0.053) 0.266(±0.028) 0.662(±0.056)

RIGAElit 0.416(±0.068) 0.304(±0.028) 0.598(±0.064)

HyperMElit 0.315(±0.062) 0.279(±0.028) 0.608(±0.071)

GA+Repair 0.181(±0.017) 0.496(±0.032) 0.391(±0.068)

DE+Repair 0.033(±0.009) 0.217(±0.033) 0.227(±0.039)

GSA+Repair 0.018(±0.002) 0.202(±0.041) 0.192(±0.034)

DDECV 0.106(±0.022) 0.141(±0.025) 0.151(±0.058)

DDECV+Repair 0.107(±0.011) 0.138(±0.015) 0.074(±0.025)

The results in Table 5 (1000 evaluations for a change)
show that DDECV + Repair outperformed most of the com-
pared algorithms with the exception of DDECV and GSA
+ Repair based on the Friedman and Bergmann - Hommels
tests. Due to this, the 95%-confidence Wilcoxon test was
used again to validate statistical differences per each test
problem between DDECV + Repair and DDECV (the same
comparison was not made against GSA + Repair because the
results per each independent run were not available). Ac-
cording to those results, DDECV + Repair provided better
results in fifteen test problems (g24 u, g24 1, g24 f, g24 2,
g24 2u, g24 3, g24 3b, g24 3f, g24 4, g24 5, g24 6a, g24 6b,

g24 6c, g24 6d, g24 8b) and the original DDECV was bet-
ter in two test problems (g24 uf, g24 7). The first problem
(g24 uf) is unconstrained, and the second one (g24 7) has
a disconnected feasible region. In test problem g24 8a no
significant differences were observed.

Table 6: Average and standard deviation offline error values

obtained by DDECV + Repair and the compared algorithms

with a change frequency of 2000 evaluations. Significant best

results, based on the 95%-confidence Wilcoxon test between

DDECV and DDECV+Repair are remarked in boldface.

Algorithms
Functions

G24-u G24-1 G24-f

GAElit 0.065(±0.011) 0.332(±0.074) 0.092(±0.052)

RIGAElit 0.110(±0.014) 0.235(±0.038) 0.106(±0.037)

HyperMElit 0.072(±0.015) 0.289(±0.053) 0.084(±0.042)

GA+Repair 0.262(±0.04) 0.055(±0.012) 0.023(±0.006)

DDECV 0.030(±0.008) 0.066(±0.018) 0.016(±0.016)

DDECV+Repair 0.023(±0.003) 0.036(±0.010) 0.011(±0.004)

G24-uf G24-2 G24-2u

GAElit 0.032(±0.010) 0.183(±0.024) 0.049(±0.008)

RIGAElit 0.047(±0.015) 0.168(±0.023) 0.057(±0.011)

HyperMElit 0.028(±0.008) 0.172(±0.037) 0.044(±0.012)

GA+Repair 0.164(±0.054) 0.147(±0.022) 0.171(±0.040)

DDECV 0.002(±0.001) 0.071(±0.016) 0.031(±0.002)

DDECV+Repair 0.005(±0.001) 0.035(±0.007) 0.018(±0.001)

G24-3 G24-3b G24-3f

GAElit 0.164(±0.033) 0.320(±0.058) 0.072(±0.032)

RIGAElit 0.208(±0.026) 0.262(±0.024) 0.100(±0.026)

HyperMElit 0.168(±0.029) 0.288(±0.048) 0.082(±0.036)

GA+Repair 0.019(±0.004) 0.044(±0.009) 0.010(±0.003)

DDECV 0.032(±0.008) 0.078(±0.015) 0.017(±0.006)

DDECV+Repair 0.036(±0.002) 0.063(±0.009) 0.006(±0.001)

G24-4 G24-5 G24-6a

GAElit 0.333(±0.074) 0.196(±0.026) 0.408(±0.050)

RIGAElit 0.309(±0.037) 0.174(±0.022) 0.236(±0.026)

HyperMElit 0.287(±0.067) 0.182(±0.019) 0.287(±0.036)

GA+Repair 0.044(±0.009) 0.111(±0.023) 0.300(±0.054)

DDECV 0.073(±0.014) 0.081(±0.011) 0.103(±0.032)

DDECV+Repair 0.057(±0.005) 0.041(±0.004) 0.020(±0.004)

G24-6b G24-6c G24-6d

GAElit 0.274(±0.028) 0.282(±0.033) 0.318(±0.059)

RIGAElit 0.210(±0.025) 0.213(±0.027) 0.242(±0.027)

HyperMElit 0.234(±0.019) 0.249(±0.034) 0.281(±0.030)

GA+Repair 0.306(±0.030) 0.287(±0.042) 0.263(±0.024)

DDECV 0.053(±0.008) 0.063(±0.013) 0.139(±0.027)

DDECV+Repair 0.026(±0.005) 0.022(±0.004) 0.044(±0.003)

G24-7 G24-8a G24-8b

GAElit 0.217(±0.047) 0.232(±0.023) 0.499(±0.048)

RIGAElit 0.303(±0.043) 0.269(±0.017) 0.496(±0.042)

HyperMElit 0.253(±0.036) 0.237(±0.013) 0.463(±0.052)

GA+Repair 0.050(±0.015) 0.247(±0.020) 0.136(±0.035)

DDECV 0.062(±0.014) 0.072(±0.032) 0.078(±0.032)

DDECV+Repair 0.057(±0.005) 0.075(±0.015) 0.041(±0.012)

As it can be seen in Table 6 (2000 evaluations for a change)
and based on the Friedman and Bergmann - Hommels tests,
DDECV + Repair outperformed all the compared algorithms,
except DDECV. As in the previous two cases, the 95%-
confidence Wilcoxon test was used to determine statistical
differences per each test problem between DDECV + Repair
and DDECV. It was observed in the results that DDECV
+ Repair outperformed DDECV in fifteen test problems
(g24 u, g24 1, g24 f, g24 2, g24 2u, g24 3b, g24 3f, g24 4,
g24 5, g24 6a, g24 6b, g24 6c, g24 6d, g24 7, g24 8b) and
the original DDECV was better in just one test problem
(g24 uf). The main feature of this problem is that it is

unconstrained. In test problems g24 3 and g24 8a no signif-
icant differences were observed.

Finally, to get insights of the effectiveness of the repair
method, the averages of successful applications, where a suc-
cessful application means that a feasible solution was ob-
tained from an infeasible one, for each test problem, and
for each frequency, are reported in Table 7. In all the cons-
trained problems the simple repair method based on the
differential mutation, and with no help of feasible solutions,
was very successful, even in those problems where the offline
error was not as good as expected (i.e. test problems with a
disjoint feasible region). Such good performance may be due
to the fact that the feasible region of the original static test
problem (g24) [11], which is the base of all the benchmark,
covers about 79% of the whole search space.

Table 7: Average successful application of the proposed

repair method with change frequency of 500, 1000 and 2000

evaluations. Only constrained problems are included.

Functions
Frequencies

500 Evals 1000 Evals 2000 Evals

g24 1 1.0 1.0 1.0

g24 f 1.0 1.0 1.0

g24 2 1.0 1.0 1.0

g24 3 0.99 0.99 0.99

g24 3b 0.99 0.99 0.99

g24 3f 0.99 0.99 0.99

g24 4 0.99 0.99 0.99

g24 5 0.99 0.99 0.99

g24 6a 1.0 1.0 1.0

g24 6b 1.0 1.0 1.0

g24 6c 1.0 1.0 1.0

g24 6d 1.0 1.0 1.0

g24 7 0.99 0.99 0.99

g24 8b 1.0 1.0 1.0

5. CONCLUSIONS
A simple repair method based on the differential muta-

tion operator was proposed and added to the DDECV algo-
rithm to solve dynamic constrained optimization problems.
The main difference of the repair method is that it does
not require feasible solutions to operate. Instead, random
solutions are generated to apply the differential mutation
operator a number of attempts defined by the user. Such
repair method replaced the convergence promotion mecha-
nisms in the original DDECV. DDECV + Repair was tested
in a recently proposed benchmark with eighteen test prob-
lems at different change frequency values (500, 1000 and
2000 evaluations). The offline error was the value adopted
to measure the performance of the proposed improved algo-
rithm. Six algorithms (including GAs, DE, GSA, some of
them with traditional repair methods), besides the original
DDECV version, were used for comparison purposes.

The overall results showed that DDECV + Repair im-
proved the results of its previous version and also outper-
formed most of the compared al gorithms, regardless of the
change frequency. The exception was with a frequency of
1000 evaluations, where DDECV + Repair was as good as
GSA + Repair. However, GSA + Repair uses a traditional
repair method which requires feasible solutions, while the
proposed algorithm only uses the differential mutation with
random solutions for the same purpose. Finally, some dif-
ficulties to get good offline error values were found in test
problems with a disjoint feasible region.

For future work, the repair method will be re-visited so as
to (1) analyze the negative effect of a disjoint feasible region,
and (2) add it some knowledge to improve its performance.
Finally, other test problems with smaller feasible regions will
be sought so as to test the repair method in those situations.

6. ACKNOWLEDGMENTS
The authors acknowledge the valuable help and comments

provided by Prof. Swagatam Das. The first author acknowl-
edges support from the Mexican Council for Science and
Technology (CONACyT) to pursue graduate studies at the
University of Veracruz. The second author acknowledges
support from CONACyT through project No. 220522.

7. REFERENCES
[1] M.-Y. Ameca-Alducin, E. Mezura-Montes, and

N. Cruz-Ramirez. Differential evolution with combined
variants for dynamic constrained optimization. In
Evolutionary Computation (CEC), 2014 IEEE
Congress on, pages 975–982, July 2014.

[2] V. Aragón, S. Esquivel, and C. Coello. Artificial
immune system for solving dynamic constrained
optimization problems. In E. Alba, A. Nakib, and
P. Siarry, editors, Metaheuristics for Dynamic
Optimization, volume 433 of Studies in Computational
Intelligence, pages 225–263. Springer Berlin
Heidelberg, 2013.

[3] J. Branke and H. Schmeck. Designing evolutionary
algorithms for dynamic optimization problems. In
A. Ghosh and S. Tsutsui, editors, Advances in
Evolutionary Computing, Natural Computing Series,
pages 239–262. Springer Berlin Heidelberg, 2003.

[4] H. Cobb. An investigation into the use of
hypermutation as an adaptive operator in genetic
algorithms having continuous, time-dependent
nonstationary environments. Technical report, Naval
Research Lab Washington DC, 1990.

[5] H. Cobb and J. Grefenstette. Genetic algorithms for
tracking changing environments. In S. Forrest, editor,
ICGA, pages 523–530. Morgan Kaufmann, 1993.

[6] C. A. Coello Coello. Theoretical and Numerical
Constraint Handling Techniques used with
Evolutionary Algorithms: A Survey of the State of the
Art. Computer Methods in Applied Mechanics and
Engineering, 191(11-12):1245–1287, January 2002.

[7] K. Deb. An efficient constraint handling method for
genetic algorithms. Computer Methods in Applied
Mechanics and Engineering, 186(24):311–338, 2000.

[8] J. Derrac, S. Garćıa, D. Molina, and F. Herrera. A
practical tutorial on the use of nonparametric
statistical tests as a methodology for comparing
evolutionary and swarm intelligence algorithms.
Swarm and Evolutionary Computation, 1(1):3–18,
2011.

[9] M. du Plessis. Adaptive Multi-Population Differential
Evolution for Dynamic Environments. PhD thesis,
Faculty of Engineering, Built Environment and
Information Technology, University of Pretoria, April
2012.

[10] S. Hernandez, G. Leguizamon, and E. Mezura-Montes.
A hybrid version of differential evolution with two

differential mutation operators applied by stages. In
Evolutionary Computation (CEC), 2013 IEEE
Congress on, pages 2895–2901, 2013.

[11] J. J. Liang, T. Runarsson, E. Mezura-Montes,
M. Clerc, P. Suganthan, C. A. Coello Coello, and
K. Deb. Problem definitions and evaluation criteria for
the CEC 2006 special session on constrained
real-parameter optimization. Technical report,
Nanyang Technological University, Singapore,
December, 2005.

[12] E. Mezura-Montes, editor. Constraint-Handling in
Evolutionary Optimization, volume 198 of Studies in
Computational Intelligence. Springer-Verlag, 2009.

[13] E. Mezura-Montes and C. A. C. Coello.
Constraint-handling in nature-inspired numerical
optimization: Past, present and future. Swarm and
Evolutionary Computation, 1(4):173–194, 2011.

[14] E. Mezura-Montes, M. E. Miranda-Varela, and R. del
Carmen Gómez-Ramón. Differential evolution in
constrained numerical optimization. an empirical
study. Information Sciences, 180(22):4223–4262, 2010.

[15] Z. Michalewicz and G. Nazhiyath. Genocop iii: a
co-evolutionary algorithm for numerical optimization
problems with nonlinear constraints. In Evolutionary
Computation, 1995., IEEE International Conference
on, volume 2, pages 647–651 vol.2, Nov 1995.

[16] Z. Michalewicz and M. Schoenauer. Evolutionary
Algorithms for Constrained Parameter Optimization
Problems. Evolutionary Computation, 4(1):1–32, 1996.

[17] T. Nguyen, S. Yang, and J. Branke. Evolutionary
dynamic optimization: A survey of the state of the
art. Swarm and Evolutionary Computation, 6(0):1 –
24, 2012.

[18] T. Nguyen and X. Yao. Continuous dynamic
constrained optimization: The challenges. IEEE
Transactions on Evolutionary Computation,
16(6):769–786, 2012.

[19] T. Nguyen and X. Yao. Evolutionary optimization on
continuous dynamic constrained problems - an
analysis. In S. Yang and X. Yao, editors, Evolutionary
Computation for Dynamic Optimization Problems,
volume 490 of Studies in Computational Intelligence,
pages 193–217. Springer Berlin Heidelberg, 2013.

[20] T. T. Nguyen and X. Yao. Benchmarking and solving
dynamic constrained problems. In Evolutionary
Computation, 2009. CEC ’09. IEEE Congress on,
pages 690–697, 2009.

[21] K. Pal, C. Saha, and S. Das. Differential evolution and
offspring repair method based dynamic constrained
optimization. In B. Panigrahi, P. Suganthan, S. Das,
and S. Dash, editors, Swarm, Evolutionary, and
Memetic Computing, volume 8297 of Lecture Notes in
Computer Science, pages 298–309. Springer
International Publishing, 2013.

[22] K. Pal, C. Saha, S. Das, and C. Coello-Coello.
Dynamic constrained optimization with offspring
repair based gravitational search algorithm. In
Evolutionary Computation (CEC), 2013 IEEE
Congress on, pages 2414–2421, 2013.

[23] K. Price, R. Storn, and J. Lampinen. Differential
Evolution A Practical Approach to Global
Optimization. Natural Computing Series.
Springer-Verlag, 2005.

[24] E. Rashedi, H. Nezamabadi, and S. Saryazdi. Gsa: A
gravitational search algorithm. Information Sciences,
179(13):2232 – 2248, 2009.

[25] H. Richter. Detecting change in dynamic fitness
landscapes. In Evolutionary Computation, 2009. CEC
’09. IEEE Congress on, pages 1613–1620, 2009.

[26] Y. Shengxiang. Memory-based immigrants for genetic
algorithms in dynamic environments. In Proceedings of
the 2005 conference on Genetic and evolutionary
computation, GECCO ’05, pages 1115–1122, New
York, NY, USA, 2005. ACM.

