
1

2

3

4

5

6

7

8

9

10

11

A B C D E F G H I

 ID API type Phase Specific activity
¿Artifact, tool,

technique,
guideline?

¿Affects
usability?

Name Description Notes

1
Web
services

Not mentioned
explicitly

Interface
description,
documentation

Artifact
Not mentioned
explicitly

Web Services Description
Language (WSDL)
documents

Documents that are supposed to describe the API.
Service descriptions are mostly brought down to Earth
using the Web Services Descrption Language (WSDL), an
XLM dialect sponsored by the W3C. These are crucial in
enabling third parties to make sense of services and
access them.

Las descripciones juegan un rol importane en
el descubrimiento de servicios.

2
RPC and
SOA web
services

Not mentioned
explicitly

Interface
description,
documentation

Artifact
Not mentioned
explicitly

Web Services Description
Language (WSDL)
documents

WSDL is the basic unit of RPC web services.
WSDL es la unidad básica de los servicios
RPC

3

APIs in
general,
but
includes
API
RESTful
example

Requirements,
design

Goals identification
Usage scenarios
identification
Resources
identification
Resources' actions
identification

Artifact,
technique

Not mentioned
explicitly, but it's
from a
consumer's
perspective

API's goal canvas (a table)
To collect users need. To identify an API's goal. To know
who are the users, what they can do and how they do it.

Table matching the process we have
discovered:
Whos where you list the API’s users (or
profiles)
Whats where you list what these users can do
Hows where you decompose each what in
steps what
Inputs (source) where you list what is needed
for each step and where does it come from
(to spot missing whos, whats or hows)
Output (usage) where you list what is returned
by each step and how it is used (to spot
missing whos, whats or hows)
Goals where your reformulate explicitly each
how + inputs +outputs in a concise way how
inputs outp

4

APIs in
general,
but
includes
API
RESTful
example

Requirements
APIs goals
identification

Technique

Not mentioned
explicitly, but it's
from a
consumer's
perspective

Questionary
To identify an API’s goals, list what users can roughly do
and decompose these actions in steps by examining how
they do it.

Answer the following questions:
What users can do?
How they do it?
What do they need to do it?
What do they get in return?
Where does the inputs come from?
How does the outputs be used?

5

APIs in
general,
but
includes
API
RESTful
example

Design
Identification of
resources and it's
actions

Guideline (cheat
sheet)

Not mentioned
explicitly

REST API and HTTP cheat
sheet

A resume of how to transpose API goals into REST
resources and actions and represent them using the HTTP
protocol.

6

APIs in
general,
but
includes
API
RESTful
example

Design Resources design Artifact
Not mentioned
explicitly

Table of resources
Describing concepts and their properties, gathering the
characteristics: name, type, if it's required, adding some
description.

.

7

APIs in
general,
but
includes
API
RESTful
example

Design
Parameters and
responses design

Artifact,
technique

Not mentioned
explicitly

Ad hoc diagrams of
responses and parameters

A same concept may have different representations in the
responses of an API depending on the context. An action’s
response may or may not return the exact concept (or
resource), its properties may or may not be adapted
(renamed, removed, reorganized).
Like for responses, a same concept may have different
representations in the parameters of an API depending on
the context. A parameter must only provide the needed
data but not more. It must not include data that are
exclusively handled by the backend.

.

8

APIs in
general,
but
includes
API
RESTful
example

Design
Verifying
parameter's data

Artifact,
technique

Not mentioned
explicitly

Flowchart for checking
parameters data sources

More detailed view of the input parameters. We must verify
again that all needed data can be provided by the cosumer.
Consumers must be able to provide all of a parameter’s
data either because they know the information themselves
or because the retrieve it from the API. If a data cannot be
provided, it can be the sign of a missing goal or provider’s
perspective.

.

9

APIs in
general,
but
includes
API
RESTful
example

Design
API documentation
as a description

Artifact, guideline
Not mentioned
explicitly

API description, following
a premade format like the
OpenAPI Specification
(OAS) for REST APIs

When it comes to describe precisely a programming
interface and especially it's data, it is more simple and
efficient to use a design tool such as an API description
format.
It is basically a text file containing data describing an API.
Provide some basic documentation in the form of
descriptions.
Such structured and standardized description can be used
in many ways and be of great help when designing an API.
The OAS is a standard and programming-language
agnostic REST API description format. Formerly known as
the Swagger Specification. An OAS document can be
written in YAML or JSON.

Son útiles desde el diseño hasta la
implementación.
Es simple y conveniente.
Es una manera amigable de compartir la
descripción.
Útil cuando se quiere obtener
retroalimentación.

10

APIs in
general,
but
includes
API
RESTful
example

Design
API documentation
as a description

Tool
Not mentioned
explicitly

Editor for writing OAS
documents

Editor wich handle this format, like the Swagger Editor (an
open source project).
Yon can use your favorite text editor.

12

13

14

15

16

17

18

19

20

21

22

23

24

A B C D E F G H I

11
WS-* web
services

Not mentioned Documentation Artifact, guideline
Not mentioned
explicitly

WSDL document

We can communicate protocol information to the
developers of a consumer application using written
documentation, or static contracts such as WSDL.
In the WS-* stack, the contract elements are typically
implemented using XML Schema, WSDL, etc.
The source of most complexity: the Web Services
Description Language, or WSDL. While WSDL pays lip
service to SOAP’s message-oriented processing model, in
fact it is mostly used as nothing more than a verbose
object interface definition language (IDL), which forces an
unsuitable RPC-like model of parameters, return values,
and exceptions onto Web
Services.

12
Web
services

Not mentioned
Service
documentation

Technique,
guideline

Not mentioned
explicitly

URI Templates

Various metadata technologies are used to describe
service contracts, including URI templates, which describe
syntatic patterns for the set of URIs that a service support.
Is human and machine-readable documentation.
For humans, a good URI template lays out a map of the
service with which we want to interact; for machines, URI
templates allow easy and rapid validation of URIs that
should resolve to valid addresses for a given service and
so can help automate the way clients bind services.
In practice, we prefer URI templates as means as internal
documentation for services, rather than as a contract
metadata.

.

13
Web-based
services

Not mentioned
Interface
description,
documentation

Artifact, guideline
Not mentioned
explicitly

WADL document (Web
Application Description
Language)

A WADL contract is an XML document that describes a set
of resources with URI templates, permitted operations, and
request-response representations. As you’d expect, WADL
also supports the HTTP fault model and supports the
description of multiple formats for resource
representations.

CRUD services are great candidates for
describing with WADL.

14
Web
services

Not mentioned URIs design Technique
Not mentioned
explicitly

URI Tunneling

HTTP integration option.
URI tunneling uses URI as a means of transferring
information across system boundaries by encoding the
information within the URI itself.

.

15
Web
services

Not mentioned
Service
documentation

Artifact
Not mentioned
explicitly

XML Template
For the documentation of the service, similar to WADL or
WSDL.

16
APIs
RESTful

Not mentioned
Interface
description,
documentation

 Tool
Not mentioned
explicitly

Swagger, RAML Interface definition language for RESTful APIs.

Some IDLs, such as Swagger, allow you to
define the format of request and response
messages.
Others, such as RAML, require you to use a
separate epecification such as JSON Schema
As well as describing APIs, IDLs typically have
tools that generate client stubs and server
skeletons from an interface definition.

17
RESTful
APIs

Several phases
since it's a
pattern: design,
implementation
, integration.

Architectural design
Guideline
(pattern)

Not mentioned
explicitly

API Facade Pattern

We recommend you implement an API façade pattern. This
pattern gives you a buffer or virtual layer between the
interface on top and the API implementation on the
bottom. You essentially create a façade – a
comprehensive view of what the API should be and
importantly from the perspective of the app developer and
end user of the apps they create.

Permite descomponer un problema grande en
problemas pequeños y más simples.
El patrón ofrece una capa virtual entre la
interfaz (arriba) y la implementación de la API
(abajo) Se crea una fachada de lo que la API
debería ser desde la perspectiva del
desarrollador cliente y los usuarios finales.

18
RESTful
APIs

Design Design point of view
Guideline,
collection of
design practices

Yes, it places
the success of
the developer
over and above
any other design
principle

Pragmatic REST

We call our point of view in API design “pragmatic REST”,
because it places the success of the developer over and
above any other design principle. The developer is the
customer for the Web API. The success of an API design is
measured by how quickly developers can get up to speed
and start enjoying success using your API.
This approach API design from the ‘outside-in’ perspective.
This means we start by
asking - what are we trying to achieve with an API?

19 Web APIs Design process

Includes steps:
Define business
objectives, outline
key user stories,
select technology
architecture, write
an API architecture,
validate your
decisions.

Guideline (design
process)

Yes
User-centric design
process (no specific
name)

Design process focused on the user experience to anchor
the design decisions.
It is designed to solicit feedback in a way that will result in
decisions that ultimately benefit the API user.

Includes a worksheet as an appendix.

20 Web APIs

Requirements
(part of the
"define
business
objectives"
phase)

Elicitation Technique

Not mentioned
expicitly, but it is
part of a user-
centric design
process

User stories

Write down some of the use cases that you expect your
API to fulfill.
Template:
As a [user type], I want [action] so that [outcome].

21 Web APIs Design
Interface
description,
documentation

Guideline, artifact

Not mentioned
expicitly, but it is
part of a user-
centric design
process

API specification

To think through your design thoroughly. It also serves as
an artifact that you can use to communicate with other
people, especially when you are soliciting feedback from
stakeholders. Finally, after you have reached agreement on
the spec, it serves as a contract, enabling you to build the
various parts of the API implementation in parallel.

We recommend using collaborative document-
editing software with version control and
commenting support. This is a great way to
boost participation, track feedback, and keep
everyone up to date with the latest chang

22 Web APIs Design Design validation Technique, tool Yes
Mocking data for
interactive user testing

We recommend using whatever tools are available to you
in order to test your design and gather the feedback you
need.

23 Web APIs Not mentioned Documentation Artifact Yes

Documentation: Getting
started, API reference
documentation, Tutorials,
FAQ section, Landing page,
Changelog, Terms of
Service, Samples and
Snippets, Code Samples,
etc.

Developer resources are a set of assets that you should
provide your developers so that they can improve how they
use your API.

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

A B C D E F G H I

24 Web APIs Planning
Definition of
business objectives

Task
Not mentioned
explicitly

Problem and impact
definition

Before you begin coding or writing your API specification,
take a moment to ask yourself two questions: what
problem are you trying to solve, and what is the impact you
want to have by building this API? The answers to both of
these questions must focus on the needs of the user as
well as the business you have created.

25 Web APIs Design Architectural design Task
Not mentioned
explicitly

Selection of technology
architecture

Picking the right paradigm and authentication system is so
important.
We pick our transport and our authentication mechanism.

26 Web APIs Planning

Establecimiento de
objetivo de negocio
y el plan para que la
API se alinee con el
enfoque general de
la empresa

Artifact
Not mentioned
explicitly

Plan para el programa de
API

Incluye respuesta a varias preguntas, como ¿qué sistemas
se van a exponer y dónde (y con quién) se encuentran?
Entre otras. Esto se hace para "clasificar" el tipo de API
que se va a construir, entre "pública" y "privada".
También se alineará el diseño de la API con los objetivos
de negocio para estar de acuerdo en los aspectos
siguientes:
• El estado final objetivo e ideal del programa
• Las tareas iniciales que permitirán a la organización
trabajar para lograr
estos objetivos
• Las métricas clave que se emplearán para calcular el
éxito
• Las tareas diarias continuas que permitirán al programa
seguir alcanzando objetivos

.

27 Web APIs Design Technique

Si, se centra en
la experiencia
del
desarrollador
cliente

Definición de perfiles de
desarrolladores cliente

Diseñar una persona (o grupo de personas) para definir el
tipo(s) de desarrolladores a los que va a dirigir las API.

28 APIs web Design Diseño de prototipo
Artifact,
technique

Si, se centra en
la experiencia
del
desarrollador
cliente

Prototipos, prototipado
Prototipo ligero basado en funciones o datos
“desechables”. Se busca retroalimentación del cliente.

29 Web APIs Design Diseño de prototipo Tool

Si, se centra en
la experiencia
del
desarrollador
cliente

Herramientas para la
creación de prototipos

Menciona Apiary, RAML y Swagger

30 Web APIs Design Architectural design Task
Not mentioned
explicitly

Elección del tipo de API

La elección de un tipo de API es una de las decisiones más
importantes que puede tomar un diseñador de interfaces.
Las decisiones de este tipo se verán afectadas de forma
inevitable por aspectos técnicos, como la naturaleza
específica de los recursos back-end mostrados o las
limitaciones de la organización de TI. Sin embargo,
también hay que tener en cuenta otros aspectos, como los
objetivos de negocio del programa de API o las
necesidades y preferencias de los desarrolladores
objetivo.

Menciona que la elección del tipo de API se
hace después de la identificación de los
desarrolladores clientes.

31 Web APIs Design
Interface
description,
documentation

Artifact, guideline
Not mentioned
explicitly

API description using an
API description language,
such as RAML or Swagger

32 Web APIs All phases

Mentioned phases:
Domain analysis,
architectural design,
prototyping, building
API software for
production,
publishing the API.

Guideline
(methodology)

Yes
Outside-in + contract-first
methodology

This methodology is an outside-in approach and also
incorporates ideas of contract first design and simulation.
In this methodology, the contract is expressed in the form
of an API description. In each step of the methodology, an
API description is either created, refined or used -- the API
description is the red thread connecting all the steps of the
methodology.

33 Web APIs

Domain
Analysis (1st
phase of the
suggested
methodology)

Artifact
Not mentioned
explicitly

First version of API
description, is rather a
sketch than an
architecture

Defines the API resources, their vocabulary, and wich
operations will manipulate those resources.

34 Web APIs

Domain
Analysis (1st
phase of the
suggested
methodology)

Verfication of phase
"Domain Analysis"

Artifact,
technique

Yes Low-fidelity API prototype
The API prototype should be constructed automatically by
generating a simulation based on the API description.

35 Web APIs

Architectural
design (2nd
phase of the
suggested
methodology)

Architectural design
and detailed design

Artifact
Not mentioned
explicitly

API description refined, by
including architectural
decisions

An appropiate architectural design style should be chosen,
such as REST, RPC pr HATEOAS. Architectural decisions
should be made.
Once the bigger-picture, architectural design decisions are
nailed, detailed design decisions can be handled. These
design decisions include: Representations, Content type,
Parameters, HTTP methods, HTTP status codes,
Consistent naming

36 Web APIs

Prototyping
(3rd phase of
the suggested
methodology)

Artifact,
technique

Not mentioned
explicitly

High-fidelity prototipes

Prototyping is a preparation phase for the productive
implementation.
Since not every aspect of the API can be implemented, it is
important to identify critical aspects of the API, whose
feasibility needs to be assessed. The prototype
implementation will be tested by pilot consumers.

37 Web APIs

Prototyping
(3rd phase of
the suggested
methodology)

Verification of the
"Prototyping" phase

Technique Yes
Acceptance Tests with
Pilot Consumers

An acceptance test is a black-box testing method, where
users test if the specifications and requirements of a
system are met. Acceptance tests are used to verify the
completeness of a system. In our case, API consumers
test the API prototype.

38 Web APIs

Domain
Analysis (1st
phase of the
suggested
methodology)

Technique,
artifact

Not mentioned
explicitly

Sketching usage scenarios
The first step of a domain analysis phase is gaining some
clarity on the needs of the consumer and possible usage
scenarios. Sketching usage scenarios is a creative act.

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

A B C D E F G H I

39 Web APIs

Domain
Analysis (1st
phase of the
suggested
methodology)

Design of resources
Technique,
artifact

Not mentioned
explicitly

A resource taxonomy for
the given usage scenarios.

Shortlist the nouns that would make sense as resource, i.e.
nouns for which it would make sense to call operations for
create, read, update or delete.

40 Web APIs

Domain
Analysis (1st
phase of the
suggested
methodology)

Design of resources
Technique,
artifact

Not mentioned
explicitly

State diagrams

The resources in the taxonomy have some state and during
the execution of the app, the resource may change its state
and transition into a new state. You can express the states
and transitions in a state diagram

41 Web APIs

Architectural
design (2nd
phase of the
suggested
methodology)

Verification of the
"Architectural
design" phase

Technique Yes Simulation

A simulation should be used at this point to quickly verify
the effects of the architectural and detailed design
decisions. The following questions might
help: Is the API still easy to use? Is it still a small, agile and
usable API or did we create a monster API? Does this API
help us to realize our usage scenarios? Does the API follow
the architectural style selected?

42 Web APIs
Requirements
(not mentioned
by the author)

Requirements
specification

Technique,
artifact

Yes
Use cases definition with
user stories

Use cases are vital throughout the process of creating an
API. Once you’ve defined the business value you want to
address with the API and how you’re going to measure
success, the resulting use cases drive the rest of the
process.

43 Web APIs
Design (not
mentioned by
the author)

Technique
Not mentioned
explicitly

Ad-hoc diagrams for the
client and API interaction

To represent the complete set of interactions with the API
system.

Example in page 32

44 Web APIs
Design (not
mentioned by
the author)

Technique
Not mentioned
explicitly

API calls table
To show each call to the API and a description of what it
does.

Example in page 33

45 Web APIs
Design
(Schema
modeling)

Interface
description

Guideline,
technique

Not mentioned
explicitly

Schema modeling

Contract describing what the API is, how it works, and what
the endpoints are going to be. Think of it as a map of the
API, a user-readable description of each endpoint, which
can be used to discuss the API before any code is
written. Like a functional specification, this document
describes how the API will behave.

46 Web APIs
Several phases,
since it's a
methodology

Includes: creation of
the functional
specification,
schema model
(design document),
acceptance criteria
and unit tests,
development
iterations.

Guideline
(methodology)

Not mentioned
explicitly

Design-driven
methodology

You’ll create your functional specification document. In
parallel or shortly after, the schema model is created with
use cases. Before developing, you create acceptance
criteria for developers to work against along with the unit
tests. Only then do you start with development. Instead of
developing the entire system at once, you can parallelize
and have different engineers working on different use
cases so that they can deploy the API. I

47 Web APIs
Planning,
requirements

Specification Artifact
Not mentioned
explicitly

Functional specification

It will help the developers and other stakeholders
understand the goals of the project.
Answer at least the following questions: what problem is
the project solving? What is the business value? What are
the metrics and use cases? What resources are needed or
available? what does "done" look like? what could go
wrong?

48 Web APIs Design
Verification of
design

Technique Yes
Acceptance tests and use
cases

Acceptance criteria are critical to verify that you’re making
the use cases as easy as designed and not getting off
track.

49 Web APIs
Not mentioned
explicitly

Defining the value of
the API

Task
Not mentioned
explicitly

Determining business
value

Understanding and communicating the APIs business
value to your company, including goals to measure sucess,
is critical.

50 Web APIs
Not mentioned
explicitly

Defining the value of
the API

Task
Not mentioned
explicitly

Establishing metrics Determinate how to measure the success of your platform.

51 Web APIs
Not mentioned
explicitly

Interface
description

Tool
Not mentioned
explicitly

Schema modeling
frameworks: RAML and
OpenAPI (previously
Swagger)

These are two of the main schema modeling frameworks.

52 Web APIs
Not mentioned
explicitly

Documentation Artifact Yes
Documentation: Reference
documentation, workflows
and tutorials

The second pillar of developer experience is
documentation. Documentation convers a wide range of
different methods to help developers understand the
platform, work with it, and suceed in integrating the API
into their own system.

53 Web APIs
Requirements,
design

Recomendations Guideline Yes Best practices
Building an API is easy. Designing a usable, flexible,
long-lasting API is hard. The author presents a set of
guidelines to consider when designing a web API.

54 Web APIs Design Documentation Tool Yes RAML and Swagger/OAI

As we start to plan our API, it's important to understand
how our users will interact with the API and how they'll use
it in conjunction with other services. Be sure to use tools
like RAML or wagger/OAI during this process to involve
your users, provide mock APIs for them to interact with,
and to ensure your design is consistent and meets their
needs

55
APIs in
general

Design Recomendations Guidelines Yes
Best practices for API
design

Includes a set of best practices for several API
characteristics, including consistency, good
documentation, understability, and some others.

56
APIs in
general

Design Recomendations Guidelines Yes Guidelines for API design

This manual gathers together the key insights into API
design that were discovered through many years of
software development on the Qt application development
framework at Trolltech (now part of Nokia). When
designing and implementing a library, you should also keep
other factors in mind, such as efficiency and ease of
implementation, in addition to pure API considerations.

57
RESTful
APIs

Design Recomendations Guidelines

Yes, some of the
practices are
focused on
usability issues

Best practices for RESTful
web services during design

Best practices for RESTful web services will be presented
in detail so that they can be easily applied during the
design phase of such web services.

59

A B C D E F G H I

58
APIs in
general

Design Recomendations Guidelines Yes Guidelines

Few guidelines to use when designing an API.
Being aware of these guidelines and taking them explicitly
into account during design makes it much more likely that
the result will turn out to be usable.

