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1. Introduction

The fact that epidemic models consist of a system of non-linear differential

equations underlines the importance of having reliable methods for solving them.

This type of models can be integrated using any standard numerical method.

However, it is known that these algorithms can give some problems, such as

numerical instabilities, oscillations or false equilibrium states, among others.

This means that the numerical solution may not correspond to the real solution

of the original system of differential equations [3]. This is the reason why we

are interested in obtaining a continuous solution in the form of an analytical

approximation to the real solution. Among the different methods that have

been developed to obtain analytical approximations for the solution of a system

of ODEs, we can use the series method (SM) [4, 5, 6], homotopy perturbation

method [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20], homotopy analysis

method [2, 21], among others.

The epidemic model for smoking habit in Spain is a system of non-linear

differential equations without closed solution [1]. The interest of this model is

that it has been able to describe correctly the real evolution of the spread of

the smoking habit in Spain. It was constructed using real data for the initial

values and for the parameters of the system. Constant population is assumed

by taking birth and death rates equal and different from zero.

In this work, we propose the use of the series method to obtain an analyti-

cal approximation to the solution smoking habit model. Moreover, in order to

enlarge the domain of the power series, we propose the use of Padé and Laplace-

Padé resummation methods. The proposed solutions are compared with a HAM

solution reported in [2], resulting that the solution obtained with the series

method and treated with Laplace-Padé method generates the most accurate

reported approximated solution valid for t = [0,∞] years.

This paper is organized as follows. In Section 2, we provide a brief review of

the series method. Section 3 presents the basic concept of Padé and Laplace-

Padé resummation methods. In Section 4, we introduce the mathematical model

of the evolution of smoking habit in Spain. After that, we present the solution

obtained with the series method for the smoking habit model in Section 5. In

Section 6, we present the resulting power series solution. Next, Section 7 shows

results and discuss our findings. Finally, a concluding remark is given in Section

8.
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2. Basic concept of series method

It can be considered that a nonlinear differential equation can be expressed

as

(1) A(u)− f(t) = 0,

where A is a general operator and f(t) is a known analytic function of indepen-

dent variable t

The series method establishes that the solution of a differential equation can

be written as

(2) u =

∞
∑

i=0

uit
i,

where u0, u1, . . . are unknowns to be determined by series method.

The basic process of series method can be described as:

(1) Equation (2) is substituted into (1), then we regroup equation in terms

of t-powers.

(2) We equate each coefficient of the resulting polynomial to zero.

(3) The boundary conditions of (1) are substituted into (2) to obtain an

approximation for each initial condition.

(4) Aforementioned steps generates a nonlinear algebraic equation system

(NAEs) in terms of the unknowns of (2).

(5) Finally, we solve the NAEs to obtain u0, u1, . . ., coefficients.

3. Padé and Laplace-Padé resummation methods

Several approximated methods provide power series solutions (polynomial).

Nevertheless, sometimes, this type of solutions lacks of large domains of con-

vergence. Therefore, Padé [2, 22, 23, 24] and Laplace-Padé [25, 26, 27, 28, 29,

30, 31, 32, 33, 34] resummation methods are used in literature to enlarge the

domain of convergence of solutions.

On one side, the Padé resummation method consists of applying the Padé

approximant of order [N/M ] to the power series solution. N and M are arbi-

trarily chosen, but they should be of smaller value than the order of the power

series. On the other side, the Laplace-Padé resummation method for power

series solutions can be recast as follows:

(1) First, Laplace transformation is applied to power series (2).

(2) Next, s is substituted by 1/t in the resulting equation.

(3) After that, we convert the transformed series into a meromorphic func-

tion by forming its Padé approximant of order [N/M ]. N and M are

arbitrarily chosen, but they should be of smaller value than the order
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of the power series. In this step, the Padé approximant extends the

domain of the truncated series solution to obtain better accuracy and

convergence.

(4) Then, t is substituted by 1/s.

(5) Finally, by using the inverse Laplace s transformation, we obtain the

modified approximated solution.

This process is known as the Laplace-Padé series method (LPSM).

4. The model of the evolution of smoking habit in Spain

This model was presented in [1, 2] to describe and predict the evolution of the

smoking habit in Spain and to quantify the impact of the Spanish smoke-free

law of 2006.

The following system of ordinary differential equations models the dynamics

between the different subpopulations considered.

(3)

ṅ− µ(1 − n) + βn(s+ c) = 0,

ṡ− βn(s+ c)− ρe− αc+ (γ + λ+ µ)s = 0,

ċ− γs+ (α+ δ + µ)c = 0,

ė− λs− δc+ (ρ+ µ)e = 0,

where the dots denote differentiation with respect to t.

The subpopulations included in the model are: n is the proportion of the total

population who has never smoked, s is the proportion of people who smoke less

than 20 cigarettes per day, c is the proportion of individuals who smoke more

than 20 cigarettes per day and e is the proportion of ex-smokers.

The parameter µ denotes birth rate in Spain; β denotes the transmission

rate due to the social pressure to adopt smoking habit; ρ expresses the rate at

which ex-smokers return to smoking; α is the rate at which an excessive smoker

becomes a normal smoker by decreasing the number of cigarettes per day; γ

is the rate at which normal smokers become excessive smokers by increasing

the number of cigarettes per day; λ denotes the rate at which normal smokers

stop smoking and δ is the rate at which excessive smokers stop smoking. The

population is constant and it has been normalized to unity, then:

(4) n+ s+ c+ e = 1,

for any instant of time.



APPROXIMATED SOLUTIONS FOR MODEL OF SMOKING HABIT IN SPAIN5

The asymptotic behaviour of (3) is obtained considering ṅ = 0, ṡ = 0, ċ = 0,

and ė = 0, and solving the obtained system of equations, resulting two equilib-

rium points: SFE (smoking free equilibrium) and SEE (smoking endemic equi-

librium), which are SFE = (1, 0, 0, 0) and SEE = (n∗

SEE , s
∗

SEE, c
∗

SEE , e
∗

SEE)

where

(5)

n∗

SEE =

(

µ2 + (λ+ α+ δ + ρ+ γ)µ+ (α+ δ + γ) ρ+ (γ + λ) δ + λα
)

µ

β (α+ δ + µ+ γ) (ρ+ µ)
,

s∗SEE =
η2(α+ δ + µ)

η1
,

c∗SEE =
η2γ

η1
,

e∗SEE =
η2(λµ + (γ + λ)δ + λα)

η1(ρ+ µ)
,

with

(6)

η1 =

[

µ2 + (λ+ α+ δ + ρ+ γ)µ

+(λ+ ρ+ γ) δ + ργ + α (λ+ ρ)

]

(α+ δ + µ+ γ)β,

η2 = −

[

µ3 + (λ+ ρ− β + α+ δ + γ)µ2 +

(

(λ− β + γ + ρ)δ + (ρ− β)γ

+(λ− β + ρ)α− βρ

)

µ− βρ(α + δ + γ)

]

.

Studying the eigenvalues of the Jacobian matrix associated to the system (3)

we can analyze which one of the two equilibrium points is asymptotically stable

and which one is unstable. Moreover, since we are going to use the values of the

parameters given in [2], we can conclude that the point SEE is the stable one.

Therefore, our solution has to tend asymptotically to the SEE point. For more

details about this question, see [35].
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5. Approximated series solution

According to the series method, we propose the following solution of order m

(7)

n(t) =

m
∑

k=0

nkt
i, s(t) =

m
∑

i=0

sit
i,

c(t) =

m
∑

k=0

cit
i, e(t) =

m
∑

i=0

eit
i,

where the initial approximations are

(8)

n0 = n(0),

s0 = s(0),

c0 = c(0),

e0 = e(0).

Substituting (7) into (3), we obtain

(9)
m−1
∑

k=1

knkt
k−1 = µ

(

1−

m
∑

k=0

nkt
k

)

− β

(

m
∑

k=0

nkt
k

)(

m
∑

k=0

(sk + ck)t
k

)

,

m−1
∑

k=1

kskt
k−1 = β

(

m
∑

k=0

nkt
k

)(

m
∑

k=0

(sk + ck)t
k

)

+ ρ

m
∑

k=0

ekt
k + α

m
∑

k=0

ckt
k
− (γ + λ+ µ)

m
∑

k=0

skt
k,

m−1
∑

k=1

kckt
k−1 = γ

m
∑

k=0

skt
k
− (γ + δ + µ)

m
∑

k=0

ckt
k,

m−1
∑

k=1

kekt
k−1 = λ

m
∑

k=0

skt
k + δ

m
∑

k=0

ckt
k
− (ρ+ µ)

m
∑

k=0

ekt
k.

Next, we equate the terms of the same order, resulting

(10)

n1 = µ(1− n0)− βn0(s0 + c0),

s1 = βn0(s0 + c0) + ρe0 + αc0 − (γ + λ+ µ)s0,

c1 = γs0 − (γ + δ + µ)c0,

e1 = λs0 + δc0 − (ρ+ µ)e0,

and

(11)

2n2 = −µn1 − β [n0(s0 + c0) + n1(s0 + c0)] ,

2s2 = β [n0(s0 + c0) + n1(s0 + c0)] + ρe1 + αc1 − (γ + λ+ µ)s1,

2c2 = γs1 − (γ + δ + µ)c1,

2e2 = λs1 + δc1 − (ρ+ µ)e1,

for powers t0 and t1, respectively.
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For the rest of coefficients, we find the following recursive formula

(12)

nk+1 =
1

1 + k



−µnk − β

m
∑

p=k

np(sk−p + ck−p)



,

sk+1 =
1

1 + k



β
m
∑

p=k

np(sk−p + ck−p) + ρek + αck − (γ + λ+ µ)sk



,

ck+1 =
1

1 + k
[γsk − (γ + δ + µ)ck] ,

ek+1 =
1

1 + k
[λsk + δck − (ρ+ µ)ek] ,

for k ≥ 1.

Therefore, (12) allows us to obtain the series solution in powers of t for any

order m.

6. Padé and Laplace-Padé resummation methods

In order to perform the resummation methods, we set the values of the pa-

rameters as in [2]: µ = 0.01 years−1, ρ = 0.0425 years−1, β = 0.0381 years−1,

β = 0.0381 years−1, α = 0.1244 years−1, γ = 0.1175 years−1, λ = 0.0498

years−1 and δ = 0.0498 years−1. Moreover, the initial conditions are chosen as:

n(0) = 0.5045, s(0) = 0.2059, c(0) = 0.1559 and e(0) = 0.1337, as reported in
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[2]. Then, from (12), we obtain the following solution 20th order approximation

(13)

n(t) = 0.50450000− 0.0019993207t+ 0.00011026408t2− 0.0000036817027t3

+0.000000096547532t4− 0.0000000022242078t5+ 4.8437208× 10−11t6

−1.0350119× 10−12t7 + 2.1771775× 10−14t8 − 4.4505566× 10−16t9

+8.7339077× 10−18t10 − 1.6342918× 10−19t11 + 2.9017298× 10−21t12

−4.8437592× 10−23t13 + 7.4350914× 10−25t14 − 9.9258933× 10−27t15

+9.5586875× 10−29t16 + 1.2390588× 10−31t17 − 4.0553722× 10−32t18

+1.4784579× 10−33t19 − 4.0334550× 10−35t20,

s(t) = 0.20590000− 0.0044755390t+ 0.00024884128t2− 0.000012284248t3

+0.00000063314928t4− 0.000000032767620t5+ 0.0000000015631567t6

−6.6227760× 10−11t7 + 2.4834689× 10−12t8 − 8.3079136× 10−14t9

+2.5041966× 10−15t10 − 6.8647266× 10−17t11 + 1.7252816× 10−18t12

−4.0029155× 10−20t13 + 8.6247171× 10−22t14 − 1.7345687× 10−23t15

+3.2708638× 10−25t16 − 5.8059941× 10−27t17 + 9.7357472× 10−29t18

−1.5471402× 10−30t19 + 2.3368646× 10−32t20,

c(t) = 0.15590000− 0.0045235300t+ 0.00015367920t2+ 0.00000031038033t3

−0.00000037514280t4+ 0.000000028699268t5− 0.0000000015227668t6

+6.6309221× 10−11t7 − 2.4994901× 10−12t8 + 8.3579298× 10−14t9

−2.5157106× 10−15t10 + 6.8876090× 10−17t11 − 1.7294192× 10−18t12

+4.0098432× 10−20t13 − 8.6353979× 10−22t14 + 1.7360297× 10−23t15

−3.2724281× 10−25t16 + 5.8065162× 10−27t17 − 9.7320256× 10−29t18

+1.5455734× 10−30t19 − 2.3324180× 10−32t20,

e(t) = 0.13370000+ 0.010998390t− 0.00051278455t2+ 0.000015655570t3

−0.00000035455400t4+ 0.0000000062925616t5− 8.8827250× 10−11t6

+9.5354971× 10−13t7 − 5.7505700× 10−15t8 − 5.5106120× 10−17t9

+2.7801100× 10−18t10 − 6.5396364× 10−20t11 + 1.2357333× 10−21t12

−2.0840615× 10−23t13 + 3.2457857× 10−25t14 − 4.6820917× 10−27t15

+6.0836875× 10−29t16 − 6.4611765× 10−31t17 + 3.3288889× 10−33t18

+8.8347368× 10−35t19 − 4.1332500× 10−36t20.
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In order to enlarge the domain of convergence, we apply a Padé approximant

[36] to (13) to obtain

(14)

n(t)[8/8] =

(

0.50449998+ 0.017274274t− 0.00030937773t2

−0.000033327548t3− 0.00000097656272t4− 0.000000016082178t5

−0.00000000016936989t6− 1.1596923× 10−12t7

−4.3920197× 10−15t8
)

/∆1,

∆1 = 0.99999997+ 0.038203359t− 0.00068039852t2− 0.000069808996t3

−0.0000019762218t4− 0.000000032319349t5− 0.00000000033869281t6

−2.2556172× 10−12t7 − 8.5053029× 10−15t8,

s(t)[10/10] =

(

0.20590000− 0.12171188t− 0.0074901950t2

−0.000036696032t3+ 0.000021046910t4+ 0.0000011319850t5

+0.000000039940480t6+ 0.00000000071857987t7

+9.8768910× 10−12t8

+4.0691945× 10−14t9 + 1.7800146× 10−16t10
)

/∆2,

∆2 = 1.0− 0.56938483t− 0.049962802t2− 0.00051644392t3

+0.00011433093t4+ 0.0000075362210t5+ 0.00000024423564t6

+0.0000000047931141t7+ 5.6947603× 10−11t8 + 3.5636890× 10−13t9

+6.8478700× 10−16t10,

c(t)[7/7] =

(

0.15590000+ 0.015745924t+ 0.00076149012t2

+0.000027274768t3+ 0.00000056591323t4+ 0.0000000097728885t5

+5.8352741× 10−11t6 + 3.5093886× 10−13t7
)

/∆3,

∆3 = 0.99999999+ 0.13001574t+ 0.0076712060t2+ 0.00026738041t3

+0.0000059737020t4+ 0.000000085942960t5+ 0.00000000073959329t6

+2.9314471× 10−12t7,

e(t)[7/7] =

(

0.13370000+ 0.016494265t+ 0.0000086701166t2

−0.00000021344924t3− 0.000000044755062t4

−0.00000000087169957t5− 4.1776825× 10−12t6

−2.4269335× 10−14t7
)

/∆4,

∆4 = 1.0 + 0.041106021t+ 0.00051873320t2− 0.0000037076810t3

−0.00000020166319t4− 0.0000000029490808t5

−2.2606150× 10−11t6 − 8.7346224× 10−14t7,
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where different orders of Padé approximants are required in order to obtain the

best accuracy for each one of the variables.

Now, we apply the Laplace-Padé resummation method to n(t) from (13).

First, Laplace transformation is applied to (13) and then 1/t is written in place

of s in the equation. Afterwards, Padé approximant ([6/5] for n(t) and s(t), [5/4]

for c(t) and e(t)) is applied and 1/s is written in place of t. Finally, by using the

inverse Laplace s transformation, we obtain the modified approximated solution

(15)

n(t)[6/5] = 0.51086151

−0.59911800× 10−4 exp(−0.21704764t) cos(0.034646335t)

+0.83968340× 10−4 exp(−0.21704764t) sin(0.034646335t)

+0.47169326× 10−3 exp(−0.20129121t)

+0.024786891 exp(−0.091934389t)

−0.031560192 exp(−0.011358812t),

Next, we apply the same procedure for the rest of the variables of (13), re-

sulting

(16)

s(t)[6/5] = 0.15307771+ 0.001406921 exp(−0.30192977t)

+0.57701934× 10−4 exp(−0.28788644t)

+0.037344784 exp(−0.09336449t)

+0.54005316× 10−2 exp(−0.083974802t)

+0.86123492× 10−2 exp(−0.010908388t),

c(t)[5/4] = 0.097900879− 0.0014605035 exp(−0.30159029t)

−0.68930622× 10−3 exp(−0.18863972t)

+0.054460116 exp(−0.092296567t)

+0.56888175× 10−2 exp(−0.011874625t),

e(t)[5/4] = 0.23775395+ 1.8641738× 10−8 exp(−0.58305125t)

+0.21834747× 10−3 exp(−0.19187867t)

−.12182142 exp(−0.092205964t)

+0.017549108 exp(−0.010961758t).

7. Discussion

Figures 1-4 show a comparison between the Fehlberg fourth-fifth order Runge-

Kutta method with degree four interpolant (RKF45) [37, 38] solution (built-in

function of Maple software) for the dynamics of smoking habit in Spain (3) and

the analytic approximations (13), (14), (15) and (16). Moreover, in order to

obtain a good numerical reference the accuracy of RKF45 was set to an absolute

error of 10−7 and relative error of 10−6.
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The SM solution (13) is easily obtained by a straightforward procedure. How-

ever, as depicted in figures 1-4 and Table 1, the power series solution diverge

for large periods of time. Therefore, Padé resummation method was successfully

applied to power series (13), resulting in a good agreement with RKF45 results

for a period of 200 years.

In order to enlarge the convergence even more, Laplace-Padé resummation

method was applied to (13), resulting a good accuracy of the approximation

for a period longer than 200 years. Moreover, from Table 1, we can observe a

comparison of the exact asymptote (5) of model (3) and the proposed approxi-

mations evaluated at t = ∞, resulting that LPSM solution is the most accurate

approximation in the range of t = [0,∞] years. To illustrate this, we plot in

Figure 5 a comparison between the LPSM solution, the HAM-Padé result [2]

and the exact solution for s(t).

Finally, as aforementioned, the resummation methods are a powerful tool to

enlarge the domain of convergence of power series solutions that can accurately

describe asymptotic non-linear problems like the evolution of the prevalence of

the smoking habit in Spain.

Figure 1. Solution of series method with 20 terms

for n(t) (diamonds), RKF45 solution (diagonal cross),

SM-Padé solution (solid line) and LPSM solution

(dots)
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Figure 2. Solution of SM method with 20 terms

for s(t) (diamonds), RKF45 solution (diagonal cross),

SM-Padé solution (solid line) and LPSM solution

(dots)

Figure 3. Solution of series method with 20 terms

for c(t) (diamonds), RKF45 solution (diagonal cross),

SM-Padé solution (solid line) and LPSM solution

(dots)
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Variable Exact (5) SM (13) SM-Padé (14) LPSM (15), (16) HAM [2] HAM-Padé [2]

n(∞) 0.51143607 −∞ 0.50450001 0.51085122 −∞ 0.51073075

s(∞) 0.15308033 −∞ 0.20590000 0.15322657 +∞ 0.57420183

c(∞) 0.097648961 +∞ 0.15590000 0.097900879 −∞ 0.08620481

e(∞) 0.23783464 −∞ 0.13370000 0.23775484 −∞ 0.24404096

Table 1. Exact and approximations of asymptote for model of smoking habit in Spain.
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Figure 4. Solution of series method with 20 terms

for e(t) (diamonds), RKF45 solution (diagonal cross),

SM-Padé solution (solid line) and LPSM solution

(dots)

Figure 5. Comparison between LPSM solution (cir-

cles), HAM-Padé solution (dots) and RKF45 solution

(solid line) for s(t).

8. Concluding remarks

In this paper, powerful analytical methods SM, SM-Padé and LPSM methods

are applied to construct approximated analytical solutions for the model of the

evolution of smoking habit in Spain. The series method (SM) provides solutions
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in the form of fast convergent series with easily computable components. After

that, we applied Padé and Laplace-Padé resummation methods to successfully

enlarge domain of convergence. The numerical experiments and error analysis

are presented to support the theoretical results. Our solutions agree well with the

pure numerical solutions and are better than the approximated solution obtained

using HAM-Padé approximant in [2]. Finally, the comparison tables also show

that LPSM provides the most accurate solution for a period of t = [0,∞] years.
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[15] H. Vázquez-Leal, R. Castañeda-Sheissa, U. Filobello-Niño,

A. Sarmiento-Reyes, and J. Sánchez-Orea, High accurate simple ap-

proximation of normal distribution related integrals, Mathematical Prob-

lems in Engineering, 2012 (2012), p. 22 pages.

[16] H. Vazquez-Leal, U. Filobello-Nino, R. Castaneda-Sheissa,

L. Hernandez-Martinez, and A. Sarmiento-Reyes, Modified hpms

inspired by homotopy continuation methods, Mathematical Problems in En-

gineering, 2012 (2012), p. 19 pages.

[17] U. Filobello-Nino, H. Vazquez-Leal, R. Castaneda-Sheissa,

A. Yildirim, L. Hernandez-Martinez, D. Pereyra-Diaz, A. Perez-

Sesma, and C. Hoyos-Reyes, An approximate solution of blasius equa-

tion by using hpm method, Asian Journal of Mathematics and Statistics, 5

(2012), pp. 50–59.

[18] H. Koak, A. Yildirim, D. Zhang, and S. Mohyud-Din, The compara-

tive boubaker polynomials expansion scheme (bpes) and homotopy perturba-

tion method (hpm) for solving a standard nonlinear second-order boundary

value problem, Mathematical and Computer Modelling, 54 (2011), pp. 417

– 422.

[19] U. Filobello-Nino, H. Vazquez-Leal, Y. Khan, R. Castaneda-

Sheissa, A. Yildirim, L. Hernandez-Martinez, J. Sanchez-Orea,

R. Castaneda-Sheissa, and F. R. Bernal, Hpm applied to solve non-

linear circuits: a study case, Appl. Math. Sci., 6 (2012), pp. 4331–4344.

[20] Y. Khan, H. Vazquez-Leal, and L. Hernandez-Martinez, Removal

of noise oscillation term appearing in the nonlinear equation solution, Jour-

nal of Applied Mathematics, (2012), pp. 1–9. doi:10.1155/2012/387365.

[21] Y. Tan and S. Abbasbandy, Homotopy analysis method for quadratic

riccati differential equation, Communications in Nonlinear Science and Nu-

merical Simulation, 13 (2008), pp. 539 – 546.



APPROXIMATED SOLUTIONS FOR MODEL OF SMOKING HABIT IN SPAIN17

[22] B. Raftari and A. Yildirim, Series solution of a nonlinear ode arising in
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