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In theoretical mechanics field, solutionmethods for nonlinear differential equations are very important becausemany problems are
modelled using such equations. In particular, large deflection of a cantilever beam under a terminal follower force and nonlinear
pendulum problem can be described by the same nonlinear differential equation. Therefore, in this work, we propose some
approximate solutions for both problems using nonlinearities distribution homotopy perturbationmethod, homotopy perturbation
method, and combinations with Laplace-Padé posttreatment. We will show the high accuracy of the proposed cantilever solutions,
which are in good agreement with other reported solutions. Finally, for the pendulum case, the proposed approximation was useful
to predict, accurately, the period for an angle up to 179.99999999∘ yielding a relative error of 0.01222747.

1. Introduction

Solving nonlinear differential equations is an important
issue in science because many physical phenomena are
modelled using such equations. During last century, the
approximate solution of such equations was a task per-
formed by hand usingmethods like the perturbationmethod.
Nowadays, symbolic software like Maple or Mathematica
allow researchers to calculate highly accurate approximate
solutions using newmethods like the homotopy perturbation
method (HPM) [1–38]. The HPMmethod is one of the most
famous analytic techniques for nonlinear differential equa-
tions, which is widely applied in science and engineering.

In [28, 39] was reported the nonlinearities distribution
homotopy perturbation method (NDHPM) as an extended

version of HPM that allows the distribution of the nonlin-
earities between the different iterations of HPMmethod.The
main advantage of this process is the increase in the number
of possible iterations by constructing easier to solve linear
equations for HPM procedure. Additionally, several works
reported that a Laplace-Padé posttreatment [40–49] of power
series solutions obtained by HPM can improve accuracy and
convergence to the exact solution. Therefore, in this work,
we propose the use of the aforementioned methods to obtain
approximate solutions for two nonlinear problems, related by
to same nonlinear differential equation. The first one is the
large deflection of a cantilever beam under a terminal fol-
lower force [50–55]. This kind of structures arises in marine
riser and other practical applications of civil engineering.
The mathematical formulation of such a problem yields a
nonlinear two-point boundary-value problem, which usually
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can be solved by numerical methods [50]. The second one is
the nonlinear pendulum problem [56–58], which is modelled
by the same equation of the Cantilever’s case study. The
pendulum or systems containing the pendulums are well-
studied complex phenomen [59]. For both problems, the
results exhibited high accuracy using our proposed solutions,
which are in good agreement to the results reported by other
works. In particular, for the pendulum case, we succeeded
to predict, accurately, the period until an initial angle up to
179.99999999

∘ achieving a relative error of 0.01222747.
This paper is organized as follows. In Section 2, the basic

idea of theHPMmethod is provided.We give an introduction
to NDHPM method in Section 3. In Section 4, the basic
concept of Padé approximants is explained.The Laplace-Padé
coupling with NDHPM and HPM methods is presented in
Section 5. In Sections 6 and 7, the cantilever and pendulum
problems are solved, respectively. In addition, a discussion on
the results is presented in Section 8. Finally, a brief conclusion
is given in Section 9.

2. Basic Concept of HPM

It can be considered that a nonlinear differential equation can
be expressed as

𝐴 (𝑢) − 𝑓 (𝑟) = 0, where 𝑟 ∈ Ω, (1)

having boundary condition as

𝐵(𝑢,
𝜕𝑢

𝜕𝜂
) = 0, where 𝑟 ∈ Γ, (2)

where 𝐴 is a general differential operator, 𝑓(𝑟) is a known
analytic function, 𝐵 is a boundary operator, Γ is the boundary
of domain Ω, and 𝜕𝑢/𝜕𝜂 denotes differentiation along the
normal drawn outwards from Ω [50]. The 𝐴 operator,
generally, can be divided into two operators, 𝐿 and𝑁, which
are linear and nonlinear operators, respectively. Hence, (1)
can be rewritten as

𝐿 (𝑢) + 𝑁 (𝑢) − 𝑓 (𝑟) = 0. (3)

Now, a possible homotopy formulation is

𝐻(V, 𝑝) = (1 − 𝑝) [𝐿 (V) − 𝐿 (𝑢
0
)]

+ 𝑝 (𝐿 (V) + 𝑁 (V) − 𝑓 (𝑟)) = 0, 𝑝 ∈ [0, 1] ,

(4)

where 𝑢
0
is the initial approximation for (3) which satisfies

the boundary conditions and 𝑝 is known as the perturbation
homotopy parameter.

For the HPMmethod [4–7], we assume that the solution
for (4) can be written as a power series of 𝑝

V = 𝑝
0

V
0
+ 𝑝
1

V
1
+ 𝑝
2

V
2
+ ⋅ ⋅ ⋅ . (5)

Considering that 𝑝 → 1, results that the approximate
solution of (1) is

𝑢 = lim
𝑝→1

V = V
0
+ V
1
+ V
2
+ ⋅ ⋅ ⋅ . (6)

The series (6) is convergent on most cases as reported in
[4, 7, 20, 21].

3. HPM Method with Nonlinearities
Distribution

Recent reports [28, 39] have introduced the NDHPM
method, which eases the searching process of solutions for (3)
and reduces the complexity of solving differential equations.
As first step, a modified homotopy is introduced:

𝐻(V, 𝑝) = (1 − 𝑝) [𝐿 (V) − 𝐿 (𝑢
0
)]

+ 𝑝 (𝐿 (V) + 𝑁 (V, 𝑝) − 𝑓 (𝑟, 𝑝)) = 0,

𝑝 ∈ [0, 1] .

(7)

It can be noticed that the homotopy function (7) is
essentially the same as (4), except for the nonlinear operator
𝑁 and the nonhomogeneous function 𝑓, which embeds
the homotopy parameter 𝑝. The arbitrary introduction of 𝑝
within the differential equation is a strategy to redistribute the
nonlinearities between the successive iterations of the HPM
method and, thus, increase the probabilities of finding the
sought solution.

Again, we establish that

V =
∞

∑

𝑖=0

V
𝑖
𝑝
𝑖

. (8)

Considering that 𝑝 → 1 turns out that the approximate
solution for (1) is

𝑢 = lim
𝑝→1

V =
∞

∑

𝑖=0

V
𝑖
. (9)

The convergence of the NDHPM method is exposed in
[28].

4. Padé Approximants

A rational approximation to 𝑓(𝑥) on [𝑎, 𝑏] is the quotient
of two polynomials 𝑃

𝑁
(𝑥) and 𝑄

𝑀
(𝑥) of degrees 𝑁 and 𝑀,

respectively. We use the notation 𝑅
𝑁,𝑀

(𝑥) to denote this
quotient. The 𝑅

𝑁,𝑀
(𝑥) Padé approximations to a function

𝑓(𝑥) are given by [49, 60]

𝑅
𝑁,𝑀

=
𝑃
𝑁
(𝑥)

𝑄
𝑀
(𝑥)

, for 𝑎 ≤ 𝑥 ≤ 𝑏. (10)

The method of Padé requires that 𝑓(𝑥) and its derivative
should be continuous at 𝑥 = 0. The polynomials used in (10)
are

𝑃
𝑁
(𝑥) = 𝑝

0
+ 𝑝
1
𝑥 + 𝑝
2
𝑥
2

+ ⋅ ⋅ ⋅ + 𝑝
𝑁
(𝑥) ,

𝑄
𝑀
(𝑥) = 𝑞

0
+ 𝑞
1
𝑥 + 𝑞
2
𝑥
2

+ ⋅ ⋅ ⋅ + 𝑞
𝑀
(𝑥) .

(11)

The polynomials in (11) are constructed so that 𝑓(𝑥) and
𝑅
𝑁,𝑀

(𝑥) agree at𝑥 = 0 and their derivatives up to𝑁+𝑀 agree
at 𝑥 = 0. For the case where 𝑄

0
(𝑥) = 1, the approximation

is just the Maclaurin expansion for 𝑓(𝑥). For a fixed value
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of 𝑁 + 𝑀 the error is the smallest when 𝑃
𝑁
(𝑥) and 𝑄

𝑀
(𝑥)

have the same degree or when𝑃
𝑁
(𝑥) has a degree higher than

𝑄
𝑀
(𝑥).
Notice that the constant coefficient of𝑄

𝑀
is 𝑞
0
−1. This is

permissible because it can be noted that 0 and𝑅
𝑁,𝑀

(𝑥) are not
changedwhen both𝑃

𝑁
(𝑥) and𝑄

𝑀
(𝑥) are divided by the same

constant. Hence, the rational function𝑅
𝑁,𝑀

(𝑥) has𝑁+𝑀+1

unknown coefficients. Assume that 𝑓(𝑥) is analytic and has
the Maclaurin expansion

𝑓 (𝑥) = 𝑎
0
+ 𝑎
1
𝑥 + 𝑎
2
𝑥
2

+ ⋅ ⋅ ⋅ + 𝑎
𝑘
𝑥
𝑘

+ ⋅ ⋅ ⋅ . (12)

And, from the difference 𝑓(𝑥)𝑄
𝑀
(𝑥) − 𝑃

𝑁
(𝑥) = 𝑍(𝑥)

⌈

∞

∑

𝑖=0

𝑎
𝑖
𝑥
𝑖

⌉⌈

𝑀

∑

𝑖=0

𝑞
𝑖
𝑥
𝑖

⌉ − ⌈

𝑁

∑

𝑖=0

𝑝
𝑖
𝑥
𝑖

⌉ = ⌈

∞

∑

𝑖=𝑁+𝑀+1

𝑐
𝑖
𝑥
𝑖

⌉ . (13)

The lower index 𝑗 = 𝑁 +𝑀 + 1 in the summation at the
right side of (13) is chosen because the first𝑁+𝑀 derivatives
of 𝑓(𝑋) and 𝑅

𝑁,𝑀
(𝑥) should agree at 𝑥 = 0.

When the left side of (13) ismultiplied out and coefficients
of the powers of 𝑥𝑖 are set equal to zero for 𝑘 = 0, 1, 2, . . . , 𝑁+

𝑀, this results in a system of𝑁 +𝑀 + 1 linear equations:

𝑎
0
− 𝑝
0
= 0,

𝑞
1
𝑎
0
+ 𝑎
1
− 𝑝
1
= 0,

𝑞
2
𝑎
0
+ 𝑞
1
𝑎
1
+ 𝑎
2
− 𝑝
2
= 0,

𝑞
3
𝑎
0
+ 𝑞
2
𝑎
1
+ 𝑞
1
𝑎
2
+ 𝑎
3
− 𝑝
3
= 0,

𝑞
𝑀
𝑎
𝑁−𝑀

𝑞𝑀−1𝑎𝑁−𝑀−1
 𝑎𝑁 − 𝑝𝑁 = 0,

(14)

𝑞
𝑀
𝑎
𝑁−𝑀+1

+ 𝑞
𝑀−1

𝑎
𝑁−𝑀+2

+ ⋅ ⋅ ⋅ + 𝑞
1
𝑎
𝑁
+ 𝑎
𝑁+2

= 0,

𝑞
𝑀
𝑎
𝑁−𝑀+2

+ 𝑞
𝑀−1

𝑎
𝑁−𝑀+3

+ ⋅ ⋅ ⋅ + 𝑞
1
𝑎
𝑁+1

+ 𝑎
𝑁+3

= 0,

...

𝑞
𝑀
𝑎
𝑁
+ 𝑞
𝑀
𝑎
𝑁+1

+ ⋅ ⋅ ⋅ + 𝑞
1
𝑎
𝑁+𝑀+1

+ 𝑎
𝑁+𝑀

= 0.

(15)

Notice that in each equation the sum of the subscripts on
the factors of each product is the same, and this sum increases
consecutively from 0 to 𝑁 + 𝑀. The 𝑀 equations in (15)
involve only the unknowns 𝑞

1
, 𝑞
2
, . . . , 𝑞

𝑀
and must be solved

first. Then, the equations in (14) are successively used to find
𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑁
[49].

5. Laplace-Padé Posttreatment of Power Series
Solutions

The coupling of Laplace transform and Padé approximant
[40] is used to deal with the lost information of truncated
power series [41–49]. The process can be summarized as
follows.

(1) First, Laplace transformation is applied to a power
series solution obtained by HPM or NDHPM meth-
ods.

(2) Next, 1/𝑡 is written in place of 𝑠.

Undeformed position

Deformed position

𝑃
𝛼

𝑃𝛼

𝑠

𝑥

𝜃(0)

𝑦

Figure 1: A cantilever beam under terminal follower force.

(3) Afterwards, we convert the transformed series into a
meromorphic function by forming its Padé approxi-
mant of order [𝑁/𝑀].𝑁 and𝑀 are arbitrarily choses,
but they should be smaller than the power series
order. In this step, the Padé approximant extends
the domain of the truncated series solution to obtain
better accuracy and convergence.

(4) Then, 1/𝑠 is written in place of 𝑡.
(5) Finally, by using the inverse Laplace 𝑠 transformation,

we obtain the modified approximate solution.

The Laplace-Padé posttreatment of HPM and NDHPM
methods will be referred throughout the rest of this paper as
LPHPM and LPNDHPM, respectively.

6. Solution of Cantilever Problem

Beams subjected to follower load arise in many problems
of structural engineering like lumbar spine in biomechanics,
smart structures applications, and loads applied to struc-
tural components by cables in tension, among others. The
governing equations of such structures involve the effects
of nonlinearities due to large deformations and material
properties [50–55].

In this work, we study the large-deflection problem of
a cantilever beam under a tip-concentrated follower force
as depicted in Figure 1. The angle 𝛼 of inclination of the
force with respect to the deformed axis of the beam remains
unchanged during deformation. We assume that the center
of the Cartesian system ((𝑥, 𝑦)) is located at the fixed end
and 𝜃 is the local angle of inclination of the centroidal
axis beam. Therefore, the mathematical formulation of this
problem yields the following nonlinear two-point boundary-
value problem:

𝜃


+ 𝜆 sin [𝜃 + 𝛼 − 𝜃 (0)] = 0, 𝜃


(0) = 0, 𝜃 (1) = 0,

(16)

where prime denotes differentiation with respect to 𝜂. Addi-
tionally, the related dimensionless quantities are defined as

𝜂 =
𝑠

𝑙
, 𝜉 =

𝑥

𝑙
, 𝜁 =

𝑦

𝑙
, 𝜆 =

𝑙
2

𝑃

𝐸𝑙
, (17)
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Table 1: Terminal slope 𝜃(0) of cantilever beam under normal follower forces (𝛼 = 𝜋/2).

𝜆 𝜃(0)
∘ [51] S.M. [53] NDHPM (29) HPM (35) LPHPM (37) NDHPM (41) LPNDHPM (43) HPM [50]

0.7010 20 19.50 20.0016 19.9981 19.9981 19.998 19.9981 19.9981
1.4195 40 39.03 39.9784 39.9957 39.9958 39.9487 39.9957 39.9976
2.1755 60 58.61 59.9681 59.9964 59.9975 56.1523 59.9959 60.0066
2.9941 80 78.25 79.9905 79.9947 80.0057 −36.9334 79.9934 80.0233
3.9117 100 98.00 100.0498 99.9943 100.0610 −2104.49 99.9999 100.0504
4.9872 120 117.88 120.1375 120.001 120.2963 −33644.8 120.0574 120.0812
6.3339 140 137.93 140.2400 140.57 141.1245 −523001 140.3214 140.1092
8.2421 160 158.27 160.2464 221.529 163.5890 −1.13840𝑒 + 07 161.2001 160.1172
13.7500 180 179.97 178.7521 240146 179.1119 −5.39274𝑒 + 09 180.0345 179.8075

Table 2: Terminal slope 𝜃(0) and coordinates [𝜉(0), 𝜁(0)] of cantilever beam under normal follower forces (𝛼 = 𝜋/2).

Method D.M. [55] NDHPM (29) HPM [50] D.M. [55] NDHPM (29) HPM [50] D.M. [55] NDHPM (29) HPM [50]
𝜆 𝜃(0)

∘

𝜃(0)
∘

𝜃(0)
∘

𝜉(0) 𝜉(0) 𝜉(0) 𝜁(0) 𝜁(0) 𝜁(0)

2.00 55.48 55.44 55.48 0.7674 0.7677 0.7673 0.5738 0.5735 0.5739
4.00 101.78 101.84 101.84 0.3428 0.3419 0.3420 0.7862 0.7866 0.7864
8.00 157.94 158.20 158.06 −0.0739 −0.0765 −0.0749 0.6336 0.6323 0.6330
13.75 180.00 178.75 179.81 0.0000 0.0104 0.0019 0.4570 0.4577 0.4566
16.00 177.56 176.27 177.22 0.0910 0.1009 0.0938 0.4212 0.4215 0.4206
24.00 140.04 141.94 141.16 0.4348 0.4310 0.4320 0.1588 0.1732 0.1664
36.00 55.64 54.20 54.51 0.2855 0.2726 0.2740 −0.4546 −0.4619 −0.4608

where 𝑙 represents the length of the originally straight elastic
cantilever beam, 𝐸𝑙 is the flexural rigidity, 𝑠 is the arc length
measured from the tip, and 𝑃 is the terminal follower force
with constant angle 𝛼.

In [50] is reported that (16) can be reduced to an initial-
value problem by the following transformation:

𝜙 (𝜂) = 𝜃 (𝜂) + 𝛼 − 𝜃 (0) , (18)

resulting in the following initial value problem:

𝜙


+ 𝜆 sin (𝜙) = 0, 𝜙 (0) = 𝛼, 𝜙


(0) = 0, (19)

with the extra condition:

𝜙 (1) − 𝛼 + 𝜃 (0) = 0, (20)

where the slope of 𝜃(𝜂) can be obtained by using (18) and (20),
resulting in the following:

𝜃 (𝜂) = 𝜙 (𝜂) − 𝜙 (1) . (21)

Finally, the deformed curve of beamaxis can be calculated
from solution of the slope 𝜃(𝜂) as

𝜉 (𝜂) = ∫

1

𝜂

cos (𝜃) 𝑑�̃�,

𝜁 (𝜂) = ∫

1

𝜂

sin (𝜃) 𝑑�̃�.
(22)

6.1. Solution Obtained by Using NDHPMMethod. In order to
circumvent difficulties due to the nonlinear sin term of (19),

we propose to use a seventh-order Taylor series expansion,
resulting in the following:

𝜙


+ 𝜆(𝜙 −
1

6
𝜙
3

+
1

120
𝜙
5

−
1

5040
𝜙
7

) = 0,

𝜙 (0) = 𝛼, 𝜙


(0) = 0,

(23)

and by using (7) and (23), we establish the following homo-
topy equation:

(1 − 𝑝) (𝐿 (V) − 𝐿 (𝜙
0
))

+ 𝑝 (V


+ 𝜆(V −
1

6
V
3

+
1

120
V
5

𝑝 −
1

5040
V
7

𝑝
2

)) = 0,

(24)

where homotopy parameter 𝑝 has been arbitrarily embedded
into the power series of Taylor’s expansion, and linear
operator 𝐿 is

V


+ 𝜆V, (25)

and trial function 𝜙
0
is

𝜙
0
= 𝛼 cos (𝜆𝜂) . (26)
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Substituting (8) into (24) and reordering and equating
terms with the same 𝑝 powers, we obtain the following linear
set of differential equations:

𝑝
0

: V


0

+ 𝜆V
0
= 0, V

0
(0) = 𝛼, V



0

(0) = 0,

𝑝
1

: V


1

+ 𝜆V
1
−
1

6
𝜆V
3

0

= 0,

V
1
(0) = 0, V



1

(0) = 0,

𝑝
2

: V


2

+ 𝜆V
2
+

1

120
𝜆V
5

0

−
1

2
𝜆V
2

0

V
1
= 0,

V
2
(0) = 0, V



2

(0) = 0,

𝑝
3

: V


3

+ 𝜆V
3
−
1

2
𝜆V
0
V
2

1

−
1

5040
𝜆V
7

0

+
1

24
𝜆V
4

0

V
1
−
1

2
𝜆V
2

0

V
2
= 0,

V
3
(0) = 0, V



3

(0) = 0.

(27)

By solving (27), we obtain

V
0
= 𝛼 cos (�̂�𝜂) ,

V
1
= −

1

48
𝛼
3

(− cos (�̂�𝜂) +cos3 (�̂�𝜂) − 3 sin (�̂�𝜂) �̂�𝜂) ,

V
2
=

1

15360
𝛼
5

(23 cos (�̂�𝜂)

− 60cos2 (�̂�𝜂) sin (�̂�𝜂) �̂�𝜂

+ 15 sin (�̂�𝜂) �̂�𝜂 − 35cos3 (�̂�𝜂)

+12cos5 (�̂�𝜂) − 30 cos (�̂�𝜂) �̂�
2

𝜂
2

) ,

V
3
= −

1

5160960
𝛼
7

( − 593 cos (�̂�𝜂)

+ 1148cos3 (�̂�𝜂) − 609 sin (�̂�𝜂) �̂�𝜂

− 735cos5 (�̂�𝜂) + 1365 cos (�̂�𝜂) �̂�
2

𝜂
2

+ 180cos7 (�̂�𝜂) − 1260 sin (�̂�𝜂)

× �̂�𝜂cos7 (�̂�𝜂) 𝑥 + 2100cos2 (�̂�𝜂)

× sin (�̂�𝜂) �̂�𝜂 + 210 sin (�̂�𝜂) �̂�
3

𝜂
3

−1890�̂�
2

cos3 (�̂�𝜂) 𝜂2) ,
(28)

where �̂� = √𝜆.
Substituting solutions (28) into (8) and calculating the

limit when 𝑝 → 1 results in the third-order approximation:

𝜙 (𝜂) = lim
𝑝→1

(

3

∑

𝑖=0

V
𝑖
𝑝
𝑖

) = V
0
+ V
1
+ V
2
+ V
3
. (29)

6.2. Solution Calculated by Using HPM and LPHPMMethods.
By using (4) and (23), we establish the following homotopy
equation:

(1 − 𝑝) (𝐿 (V) − 𝐿 (𝜙
0
))

+ 𝑝 (V


+ 𝜆(V −
1

6
V
3

+
1

120
V
5

−
1

5040
V
7

)) = 0,

(30)

where linear operator 𝐿 is

V


, (31)

and trial function 𝜙
0
is

𝜙
0
= 𝛼. (32)

Substituting (5) into (30) and reordering and equating
terms with the same 𝑝 powers, we obtain the following set
of linear differential equations:

𝑝
0

: V


0

= 0, V
0
(0) = 𝛼, V



0

(0) = 0,

𝑝
1

: V


1

−
1

5040
𝜆V
7

0

−
1

6
𝜆V
3

0

+ 𝜆V
0
+

1

120
𝜆V
5

0

= 0,

V
1
(0) = 0, V



1

(0) = 0,

𝑝
2

: V


2

+
1

24
𝜆V
4

0

V
1
+ 𝜆V
1
−
1

2
𝜆V
2

0

V
1
−

1

720
𝜆V
6

0

V
1
= 0,

V
2
(0) = 0, V



2

(0) = 0,

...

(33)

By solving (33), we obtain

V
0
= 𝛼,

V
1
= (

1

10080
𝜆𝛼
7

+
1

12
𝜆𝛼
3

−
1

2
𝜆𝛼 −

1

240
𝜆𝛼
5

) 𝜂
2

,

V
2
= (−

1

1209600
𝜆
2

𝛼
11

−
1

1890
𝜆
2

𝛼
7

+
1

180
𝜆
2

𝛼
5

+
41

1451520
𝜆
2

𝛼
9

−
1

36
𝜆
2

𝛼
3

+
1

24
𝜆
2

𝛼 +
1

87091200
𝜆
2

𝛼
13

) 𝜂
4

,

... ,

(34)

where the subsequent iterations are calculated using Maple
CAS software.

Substituting solutions (34) into (5) and calculating the
limit when 𝑝 → 1, we can obtain the 18th-order approxi-
mation:

𝜙 (𝜂) = lim
𝑝→1

(

18

∑

𝑖=0

V
𝑖
𝑝
𝑖

) . (35)
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Expression (35) is too long to be written here; neverthe-
less, it can be simplified if we consider a particular case. For
instance, when 𝛼 = 𝜋/2, it results in the following:

𝑢 (𝜂) = − 5.0091602 × 10
−5

𝜂
10

𝜆
5

− 3.7265881 × 10
−5

𝜂
4

𝜆
2

+ 0.004184205840𝜂
6

𝜆
3

+ 7.200012957 × 10
−17

𝜂
36

𝜆
18

− 0.4999215505𝜂
2

𝜆

+ 3.48692001 × 10
−9

𝜂
16

𝜆
8

− 4.36006 × 10
−12

𝜂
26

𝜆
13

− 1.4 × 10
−15

𝜂
34

𝜆
17

− 3.618364186 × 10
−7

𝜂
12

𝜆
6

+ 7.89 × 10
−14

𝜂
30

𝜆
15

− 2.448310334 × 10
−12

𝜂
24

𝜆
12

+ 2.455105652 × 10
−10

𝜂
22

𝜆
11

+ 0.0000008161908993𝜂
14

𝜆
7

− 1.686 × 10
−15

𝑥
32

𝜆
16

− 1.409132166 × 10
−8

𝜂
18

𝜆
9

+ 4.567238741 × 10
−11

𝜂
20

𝜆
10

+ 7.07 × 10
−14

𝜂
28

𝜆
14

+ 1.570796327 − 7.024412 × 10
−6

𝜂
8

𝜆
4

.

(36)

By using (36) and (21) we can calculate, approximately,
the deflection angle 𝜃(0); nevertheless, accuracy can be
increased applying the Laplace-Padé posttreatment. First,
Laplace transformation is applied to (36); then, 1/𝜂 is written
in place of 𝑠. Afterwards, Padé approximant [8/8] is applied
and 1/𝑠 is written in place of 𝜂. Finally, by using the
inverse Laplace 𝑠 transformation, we obtain the modified
approximate solution. For instance, for 𝜆 = 13.75, the result
of LPHPM is

𝑢 (𝜂) = − 0.1295812455566806

× 10
−3 exp (−5.536309139671352𝜂)

× cos (14.54887311024889𝜂)

+ 0.3532982009243434

× 10
−4 exp (−5.536309139671352𝜂)

× sin (14.54887311024889𝜂)

− 0.2686099209980136

× 10
−1 cos (8.783120641372600𝜂)

+ 1.597916481385812

× cos (3.150018868129787𝜂)

− 0.1295812455566806

× 10
−3 exp (5.536309139671352𝜂)

× cos (14.54887311024889𝜂)

− 0.3532982009243434

× 10
−4 exp (5.536309139671352𝜂)

sin (14.54887311024889𝜂) .
(37)

On one side, for 𝜆 = 13.75, the exact result is 𝜃(0) = 180∘
[51]. On the other side, by using (21), we can calculate the
deflection angle using (36) and (37) approximations, resulting
in 240146

∘ and 179.1119
∘, respectively. Therefore, for this

case, the Laplace-Padé posttreatment was relevant in order
to deal with the HPM truncated power series, resulting a
notorious increase of accuracy (see Table 1).

6.3. Power Series Solution by Using NDHPM and Laplace-
Padé Posttreatment. By using (7) and (23), we establish the
following homotopy equation:

(1 − 𝑝) (𝐿 (V) − 𝐿 (𝑢
0
))

+ 𝑝 (V


+ 𝜆(V −
1

6
V
3

𝑝 +
1

120
V
5

𝑝
2

−
1

5040
V
7

𝑝
3

)) = 0,

(38)

where homotopy parameter 𝑝 has been arbitrarily embedded
into the power series of Taylor expansion, linear operator 𝐿,
and trial function𝜙

0
are taken from (31) and (32), respectively.

Substituting (8) into (38), reordering and equating terms
with the same 𝑝 powers, we obtain the following set of linear
differential equations:

𝑝
0

: V


0

= 0, V
0
(0) = 𝛼, V



0

(0) = 0,

𝑝
1

: V


1

+ 𝜆V
0
= 0, V

1
(0) = 0, V



1

(0) = 0,

𝑝
2

: V


2

−
1

6
𝜆V
3

0

+ 𝜆V
1
= 0, V

2
(0) = 0, V



2

(0) = 0.

...

(39)

Solving (39), we obtain

V
0
= 𝛼,

V
1
= −

1

2
𝜆𝛼𝜂
2

,

V
2
=

1

24
𝜆
2

𝛼𝜂
4

+
1

12
𝜆𝛼
3

𝜂
2

,

...

(40)
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Table 3: Numerical comparison for �̂� of nonlinear pendulum. Considering 𝜆 = 1.

𝛼
∘

�̂� (55) HPM (50) LPHPM NDHPM (29)
1.00000000 1.5708262330620782 1.5708262330620789 1.5708262328912635 1.5708262330620782
10.00000000 1.5737921309247680 1.5737921309137186 1.5737904171285648 1.5737921309298985
50.00000000 1.6489952184785310 1.6489951818036827 1.6478388934763048 1.6489966814551095
100.00000000 1.9355810960047220 1.9356331885927838 1.9133053425965654 1.9345771658441948
120.00000000 2.1565156474996432 2.1562170331637955 2.1071446302159819 2.1435695247049310
130.00000000 2.3087867981671961 2.3080949709723178 2.2390737258149828 2.2708015298391809
140.00000000 2.5045500790016340 2.5047278166695662 2.4091002654586270 2.4052794658306813
150.00000000 2.7680631453687676 2.7723737183655317 2.6410091037967786 2.5354467979775911
160.00000000 3.1533852518878388 3.1570008973230000 2.9887412725547848 —
170.00000000 3.8317419997841462 3.8074862454595039 3.6247866486947020 —
175.00000000 4.5202232749476581 4.5078737329373597 4.2924790748606028 —
177.00000000 5.0298609371127860 5.0733536048198848 4.79490944850198683 —
179.00000000 6.127778824526868 4.631673755961933 5.88740406465829867 —
179.90000000 8.430255141254121 — 8.18871358260360318 —
179.99999000 17.64055690983073 — 17.3989702100090882 —
179.99999999 24.548351581120853 — 24.2491870075566718 —

Table 4: Relative error (RE) comparison for �̂� of nonlinear pendulum (see Table 3).

𝛼
∘

�̂� (55) R.E. HPM (50) R.E. LPHPM R.E. NDHPM (29)
1.00000000 1.5708262330620782 −4.355𝑒 − 16 1.087𝑒 − 10 −3.247𝑒 − 20

10.00000000 1.5737921309247680 7.021𝑒 − 12 1.089𝑒 − 06 −3.260𝑒 − 12

50.00000000 1.6489952184785310 2.224𝑒 − 08 0.0007012 −8.872𝑒 − 07

100.00000000 1.9355810960047220 −2.691𝑒 − 05 0.01151 0.0005187
120.00000000 2.1565156474996432 0.0001385 0.02289 0.006003
130.00000000 2.3087867981671961 0.0002996 0.03019 0.01645
140.00000000 2.5045500790016340 −7.097𝑒 − 05 0.03811 0.03964
150.00000000 2.7680631453687676 −0.001557 0.0459 0.08404
160.00000000 3.1533852518878388 −0.001147 0.05221 —
170.00000000 3.8317419997841462 0.00633 0.05401 —
175.00000000 4.5202232749476581 0.002732 0.05038 —
177.00000000 5.0298609371127860 −0.86468𝑒 − 2 0.4671132𝑒 − 1 —
179.00000000 6.127778824526868 0.244151 0.3922706𝑒 − 1 —
179.90000000 8.430255141254121 — 0.28651749𝑒 − 1 —
179.99999000 17.64055690983073 — 0.1369703𝑒 − 1 —
179.99999999 24.548351581120853 — 0.01222747 —

where the subsequent iterations are calculated using Maple
CAS software.

Substituting solutions (40) into (8) and calculating the
limit when 𝑝 → 1, we can obtain the 18th-order approxi-
mation:

𝜙 (𝜂) = lim
𝑝→1

(

18

∑

𝑖=0

V
𝑖
𝑝
𝑖

) . (41)

Expression (41) is too long to be written here; neverthe-
less, it can be simplified considering a particular case. For
instance, a terminal follower normal angle 𝛼 = 𝜋/2, resulting

𝜙 (𝜂) = 4.222646520 × 10
−42

𝜆
18

𝜂
36

+ 1.140293002

× 10
−24

𝜆
17

𝜂
34

+ 4.131839790 × 10
−17

𝜆
16

𝜂
32

+ 1.098177235 × 10
−12

𝜆
15

𝜂
30

+ 7.059044113

× 10
−10

𝜆
14

𝜂
28

+ 5.042078503 × 10
−8

𝜆
13

𝜂
26

+ 8.416343250 × 10
−7

𝜆
12

𝜂
24

+ 4.617471554

× 10
−6

𝜆
11

𝜂
22

+ 9.600210952 × 10
−6

𝜆
10

𝜂
20

+ 7.77303550 × 10
−6

𝜆
9

𝜂
18

+ 2.32539526
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× 10
−6

𝜆
8

𝜂
16

+ 1.0311191 × 10
−6

𝜆
7

𝜂
14

− 3.576556 × 10
−7

𝜆
6

𝜂
12

− 5.00915992

× 10
−5

𝜆
5

𝜂
10

− 7.024403934 × 10
−6

𝜂
8

𝜆
4

+ 4.184205821 × 10
−3

𝜂
6

𝜆
3

− 3.726587

× 10
−5

𝜆
2

𝜂
4

− 0.4999215505𝜆𝜂
2

+ 1.570796327.

(42)

In order to increase accuracy of 𝜃(0), (42) is transformed
by the Padé approximation and Laplace transformation. First,
Laplace transformation is applied to (42) and then 1/𝜂

is written in place of 𝑠. Then, Padé approximant [8/8] is
applied and 1/𝑠 is written in place of 𝜂. Finally, by using
the inverse Laplace 𝑠 transformation, we obtain the modified
approximate solution. For example, given 𝜆 = 13.75, the
resultant LPNDHPM approximation is

𝑢 (𝜂) = − 0.1295804634 × 10
−3 exp (−5.536309145𝜂)

× cos (14.54887309𝜂)

+ 0.3532927940 × 10
−4 exp (−5.536309145𝜂)

× sin (14.54887309𝜂)

− 0.2686099338 × 10
−1 cos (8.783120717𝜂)

+ 1.597916481 cos (3.150018864𝜂)

− 0.1295804634 × 10
−3 exp (5.536309145𝜂)

× cos (14.54887309𝜂)

− 0.3532927940 × 10
−4 exp (5.536309145𝜂)

× sin (14.54887309𝜂) .

(43)

Now, by using (21), we can calculate 𝜃(0) for (42) and
(43) approximations. Results for NDHPM and LPNDHPM
are −5.39274𝑒(+9)∘ and 180.0345∘, respectively (see Table 1).
In fact, for𝜆 = 13.75, the exact result is 𝜃(0) = 180∘; therefore,
the Laplace-Padé after-treatment was a key factor to increase
accuracy of NDHPM truncated power series.

7. Solution of Nonlinear Pendulum

The pendulum [56–58] of Figure 2 can be modelled by
(19). Nevertheless, we need to redefine the variables and
parameters of (19), resulting in the following:

𝜙


+ 𝜆 sin (𝜙) = 0, 𝜙 (0) = 𝛼, 𝜙


(0) = 0, (44)

considering

𝜆 =
𝑔

𝐿
, (45)

where prime denotes differentiation with respect to time 𝑡, 𝐿
is the length of the pendulum, 𝑔 is acceleration due to gravity,
and 𝛼 is the initial angle of displacement 𝜙.

𝜙(𝑡) 𝜙(𝑡) = 𝛼

𝐿

Figure 2: A nonlinear pendulum.

Taking into account the above considerations and substi-
tuting 𝜂 = 𝑡 into (29), results that the approximate solution
(29) obtained by using NDHPM can be considered, also, as
the solution 𝜙(𝑡) of the nonlinear pendulum problem (44).

7.1. Solution Obtained by Using HPM and Laplace-Padé
Posttreatment. Although approximate solutions (35) and (41)
possess good accuracy for cantilever problem, we need to
increase the order of Taylor expansion for the sin term in (23)
to obtain a highly accurate solution for pendulum problem,
compared to other reported solutions [50–55]. Therefore, we
propose to use a 22th-order Taylor series expansion of sin
term, resulting in the following:

𝑃 (𝜙) = 𝜙


+ 𝜆(𝜙 −
1

6
𝜙
3

+
1

120
𝜙
5

−
1

5040
𝜙
7

+
1

362880
𝜙
9

−
1

39916800
𝜙
11

+
1

6227020800
𝜙
13

−
1

1307674368000
𝜙
15

+
1

355687428096000
𝜙
17

−
1

121645100408832000
𝜙
19

+
1

51090942171709440000
𝜙
21

) = 0,

(46)

where initial conditions are 𝜙(0) = 𝛼 and 𝜙(0) = 0.
A homotopy formulation that can generate a power series

solution for this problem is

(1 − 𝑝) (𝐿 (V) − 𝐿 (𝜙
0
)) + 𝑝 (𝑃 (V)) = 0, (47)

where linear operator 𝐿 and trial function 𝜙
0
are taken from

(31) and (32), respectively.
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Substituting (5) into (47) and reordering and equating
terms with the same 𝑝-powers, we obtain the following set
of linear differential equations:

𝑝
0

: V


0

= 0, V
0
(0) = 𝛼, V



0

(0) = 0,

𝑝
1

: V


1

+ 𝜆(V
0
−
1

6
V
0

3

+
1

120
V
0

5

−
1

5040
V
0

7

+
1

362880
V
0

9

−
1

39916800
V
0

11

+
1

6227020800
V
0

13

−
1

1307674368000
V
0

15

+
1

355687428096000
V
0

17

−
1

121645100408832000
V
0

19

+
1

51090942171709440000
V
0

21

) = 0,

V
1
(0) = 0, V



1

(0) = 0,

...
(48)

by solving (48), we obtain

V
0
= 𝛼,

V
1
= (−

1

2
𝛼 +

1

12
𝛼
3

−
1

240
𝛼
5

+
1

10080
𝛼
7

−
1

725760
𝛼
9

+
1

79833600
𝛼
11

−
1

12454041600
𝛼
13

+
1

2615348736000
𝛼
15

−
1

711374856192000
𝛼
17

+
1

243290200817664000
𝛼
19

−
1

102181884343418880000
𝛼
21

) 𝜆𝑡
2

,

...
(49)

where the subsequent iterations are calculated by usingMaple
CAS software.

Substituting solutions (49) into (5) and calculating the
limit when 𝑝 → 1, we can obtain the 12th-order approxi-
mation:

𝜙 (𝑡) = lim
𝑝→1

(

12

∑

𝑖=0

V
𝑖
𝑝
𝑖

) . (50)

Expression (50) is too large to be written here; never-
theless, it can be simplified considering particular cases. For

example, if we consider 𝛼 = 1∘ and 𝜆 = 1, we get the following
results:

𝜙 (𝑡) = 0.0174532925200 − 0.00872620321865𝑡
2

+ 0.000727072847969𝑡
4

− 2.42099213449 × 10
−5

𝑡
6

+ 4.28299598028 × 10
−7

𝑡
8

− 4.35845271451

× 10
−9

𝑡
10

+ 5.75330823834 × 10
−12

𝑡
12

+ 1.31315973780 × 10
−12

𝑡
14

− 5.55443572871

× 10
−14

𝑡
16

+ 1.62530684769 × 10
−15

𝑡
18

− 3.65740303058 × 10
−17

𝑡
20

+ 6.06029996445

× 10
−19

𝑡
22

− 5.08850528365 × 10
−21

𝑡
24

.

(51)

Now, (51) is transformed by the Laplace-Padé posttreat-
ment. First, Laplace transformation is applied to (51) and then
1/𝑡 is written in place of 𝑠. Then, Padé approximant [4/4]
is applied and 1/𝑠 is written in place of 𝑡. Finally, by using
the inverse Laplace 𝑠 transformation, we obtain the modified
approximate LPHPM solution:

𝜙 (𝑡) = − 2.76933314632 × 10
−8 cos (2.99987437966𝑡)

+ 0.0174533202134 cos (0.999980961654𝑡) .
(52)

Equation (52) is more compact and computationally
efficient than power series solution (51). Thus, (52) can be
used when accurate and handy expressions are needed. This
process can be repeated for different values of 𝛼 and 𝜆.

We can express pendulum period in terms of

𝑇 = 4√
1

𝜆
𝐾 (𝜖) , 𝜖 = sin(𝛼

2
) , (53)

where 𝐾 is the complete elliptic function of the first kind
formulated as

𝐾 (𝜖) = ∫

𝜋/2

0

1

√1 − 𝜖
2sin2𝜃

𝑑𝜃, 0 ≤ 𝜖 < 1. (54)

For comparison purposes, we will normalize the value of
𝑇 to

�̂� =

√𝜆

4
𝑇 = 𝐾 (𝜖) . (55)

Finally, �̂� is calculated for some values of𝛼 in Tables 3 and
4.

8. Numerical Simulation and Discussion

8.1. Cantilever Problem. Structures subjected to follower
forces have been reported by several researchers [50, 55]. In
this work, we propose the solution for large deflections of a
cantilever beam subjected to a follower force reported in [55].
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Figure 3: Terminal slope versus follower force for various angles of
inclination 𝛼.
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Figure 5: Deflection curves beam axis under follower force 𝜆 = 16

for various angles of inclination 𝛼.

Therefore, by using approximate solution (29) and (21), we
show in Figure 3 the relationship between terminal slope 𝜃(0)
and load parameter 𝜆 for some values of deflection angle in
the range 𝛼 ∈ (0

∘

, 180
∘

). Flutter instability occurs, and the
maximum value of terminal slope is approximately 𝜃(0) = 2𝛼
as reported in [50, 55].

On one side, considering a fixed value for 𝛼 = 𝜋/4,
we show in Figure 4 the deformed curves of a beam under
different values of load parameter𝜆. First, the cantilever beam
is a straight line, and it is deformed gradually as the amplitude
of the end-concentrated follower force increases, until the
curvature of the beam is notorious for 𝜆 = 24. Additionally,
when the load parameter is larger than the flutter load, the
beam deforms towards the opposite direction as reported in
[50]. On the other side, we consider a fixed value for load
parameter 𝜆 = 16 and different values of 𝛼 as shown in
Figure 5, resulting that the deflection and terminal slope 𝜃(0)
are influenced by the angle 𝛼 of follower force producing a
notorious bending as 𝛼 increases reaching the extreme case
at 𝛼 = 𝜋/2.

Considering a normal angle 𝛼 = 𝜋/2, we show in Table 1
the terminal slope 𝜃(0) (using (21)) versus different values of
load parameter 𝜆. In such table, we compare the proposed
solutions (29), (35), (41), LPHPM/LPNDHPM approxima-
tions (see (37), and (43)) to exact solution [51], a shooting
method solution [53], and HPM solution reported in [50].
Our proposed approximate solutions are in good agreement
with the other reported approximations. In particular, (29)
and LPNDHPM approximations (see (43)) exhibited the
best accuracy of all proposed solutions of this work, with a
similar accuracy compared to the results reported in [50].
Furthermore, we showed in Table 2, the terminal slope 𝜃(0)
and coordinates [𝜉(0), 𝜁(0)] (see (22)) of cantilever beam
under normal follower forces (𝛼 = 𝜋/2), resulting that
our proposed solution (29) exhibited an accuracy in good
agreement with the values obtained by a direct method
(D.M.) [55] and the results reported in [50]. For this work, the
cantilever beam is considered elastic and ideal; then, Figures
4 and 5 present an ideally deformed beam. Further work
should be performed in order to include nonideal effects due
to material characteristics of cantilever.

From above, we can conclude that the deflection and
terminal slope are governed by the deflection angle and
magnitude of the follower force.This means that the bending
of the beam becomes more notorious as the deflection angle
or the magnitude of the follower force increases [50].

8.2. Pendulum Problem. On one hand, in [56, 58] the authors
achieve approximate solutions for pendulum period, with
relative error <2% for 𝛼 ≤ 130

∘, and <1% for 𝛼 ≤ 150
∘,

respectively. On the other hand, in Table 3 and Table 4 we
show a comparison between �̂�, 𝑇/4 calculated using (29) and
(50) and approximations calculated by LPHPM procedure
explained in Section 7.1 (considering 𝜆 = 1). The value �̂�
is obtained, applying Newton-Raphson method to equation
𝜙(𝑡) = 0, that is, calculating the first crossing of 𝜙(𝑡) by zero
since the initial angle 𝜙(0). In Table 4, we show the relative
error (RE) for the range of 𝛼 ∈ (0

∘

, 180
∘

), resulting that
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our proposed solutions are in good agreement with exact
results. Furthermore, LPHPM solution can predict the �̂� for
𝛼 = 179.99999999

∘ exhibiting a RE of 0.01222747, which is
highly accurate compared to the results obtained in [56, 58].

The coupling of Laplace-Padé and HPM method was a
key factor to increase the accuracy range until 𝜙(0) value
is really close to 180∘. Laplace-Padé posttreatment was able
to deal with the truncate power series, in order to obtain
better accuracy for angles close to 𝛼 = 180

∘ although
the behaviour was different for small values of 𝛼. However,
in general terms, the Laplace-Padé posttreatment generates
handy and computationally more efficient expressions (see
(51) versus (52)). Furthermore, we can appreciate from Tables
3 and 4 that HPM and NDHPM methods do not present
useful �̂� values for 𝛼 > 150

∘ and 𝛼 > 179
∘, due to numerical

noise of the proposed approximations. Fortunately, LPHPM
approximations achieve a good accuracy within the range
1
∘

≤ 𝛼 ≤ 179.99999999
∘. From the above discussion

we can conclude that, as the initial angle of displacement
𝛼 approximates to the vicinity 180∘, the pendulum period
increases notoriously.

Finally, further research should be done in order to obtain
approximate solutions of the pendulum problem involving
additional nonlinear effects like friction and mass, among
others.

9. Conclusions

In this paper we presented the solution for two nonlinear
problems related by the same differential equation. The first
one was the large deflection of a cantilever beam under a
terminal follower force. The second one was the nonlin-
ear pendulum problem. We proposed a series of solutions
obtained byNDHPM,HPM, and combinationswith Laplace-
Padé posttreatment. For both problems, results exhibited
high accuracy, which are in good agreement with the results
reported by other works. In particular, for the pendulum
case, we succeeded to predict, accurately, the period for an
initial angle up to 179.99999999

∘. By means of two case
studies, we confirmed that NDHPM, HPM, LPNDHPM, and
LPHPMare powerful and usefulmethods; all of them capable
of generating highly accurate approximations for nonlinear
problems.
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Sarmiento-Reyes, and J. Sanchez Orea, “High accurate simple
approximation of normal distribution integral,” Mathematical
Problems in Engineering, vol. 2012, Article ID 124029, 22 pages,
2012.

[28] H. Vázquez-Leal, U. Filobello-Niño, R. Castañeda-Sheissa,
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