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The microelectronics area constantly demands better and improved circuit simulation tools. Therefore, in this paper, rational
homotopy perturbation method and Boubaker Polynomials Expansion Scheme are applied to a differential equation from a
nonlinear circuit. Comparing the results obtained by both techniques revealed that they are effective and convenient.

1. Introduction

Industrial competition constantly pushes the area of elec-
tronic circuit design to the limits of technology. This has
caused a rapid growth in the levels of integration for inte-
grated circuits and the emergence of novel devices such
as single-electron transistors and memristors. Because of
this, the development and improvement of mathematical
and numerical tools, applied to circuit simulation for the
transient domain, are important. In the dynamic domain
(transient), the circuit analysis is carried out only numeri-
cally because the resulting differential equations are highly
nonlinear. Nevertheless, several methods are focused to find
approximate solutions to nonlinear differential equations
like homotopy perturbation method (HPM) [1–12], rational
homotopy perturbation method (RHPM) [5, 6], variational
iteration method (VIM) [13–16], and Boubaker Polynomials
Expansion Scheme (BPES) [17–36], among many others.
Therefore, we propose the comparison between RHPM and
BPES methods by solving the nonlinear differential equa-
tion that represents the dynamics of a nonlinear circuit.
The results should be a meaningful supply for monitoring
complex nonlinear circuits behaviours and responses. In

fact, the used protocols try to embed boundary conditions
instead of direct solving, as preceded in spectral or limit-cycle
bifurcations approaches.

This paper is arranged as follows. In Section 2, we present
the differential equation of a nonlinear circuit. Sections 3 and
4 present the fundamentals of RHPM and BPES methods,
respectively. The solutions obtained using both methods
are explained in Section 5. Comparisons between the two
methods and some other results presented in the recent
literature have been illustrated in Section 6. Conclusions will
be discussed in Section 7.

2. Nonlinear Circuit

The rapid increase in the number of transistors by integrated
circuit and the increase of complexity for the models (a result
of lowering the dimension of the components) results in a
complex calculation for the transient. Furthermore, the task
of tracing the transient for nonlinear circuits is a critical
and difficult task. In fact, commercial circuit simulators do
not provide any symbolic/analytic solution for the transient
of any given circuit. Instead, the simulator provides only
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Figure 1: Nonlinear RC circuit.

numerical data that allows circuit designers to explore a
limited range of dynamics of nonlinear circuits.

Consider the analysis of the nonlinear circuit depicted in
Figure 1 as a case study [37]. Let the branch relationship of the
nonlinear capacitor to be

𝑣 (𝑞) = 𝛼𝑞
3
, (1)

where 𝑣 is the voltage, 𝑞 is the charge of the capacitor, and 𝛼 is
a parameter of the capacitor.

By applying Kirchhoff Laws, we obtain the equation for
the transient

𝑑𝑞 (𝑡)

𝑑𝑡

+

1

𝑅

𝑣 (𝑞) = 𝑖 (𝑡) . (2)

Therefore,
𝑑𝑞 (𝑡)

𝑑𝑡

+

𝛼

𝑅

𝑞
3
(𝑡) = 𝑖 (𝑡) . (3)

If we consider the case for DC excitation, then 𝑖(𝑡) = 𝐼,
resulting in

𝑑𝑞 (𝑡)

𝑑𝑡

+

𝛼

𝑅

𝑞
3
(𝑡) = 𝐼, 𝑞 (0) = 0. (4)

3. Fundamentals of the Rational Homotopy
Perturbation Method

The rational homotopy perturbation method RHPM [5, 6]
can be considered as a combination of the classical perturba-
tion technique [38, 39] and the homotopy (whose origin is in
the topology) [40–42] but not restricted to a small parameter
like traditional perturbation methods. For example, RHPM
requires neither small parameter nor linearization, but only
few iterations to obtain accurate solutions.

To figure out how RHPM method works, consider a
general nonlinear equation in the form:

𝐴 (𝑢) − 𝑓 (𝑟) = 0, 𝑟 ∈ Ω (5)

with the following boundary conditions:

𝐵(𝑢,

𝜕𝑢

𝜕𝑢

) = 0, 𝑟 ∈ Γ, (6)

where 𝐴 is a general differential operator, 𝐵 is a boundary
operator, 𝑓(𝑟) is a known analytical function, and Γ is the
domain boundary for Ω.𝐴 can be divided into two operators
𝐿 and 𝑁, where 𝐿 is linear and 𝑁 nonlinear; from this last
statement, (5) can be rewritten as

𝐿 (𝑢) + 𝑁 (𝑢) − 𝑓 (𝑟) = 0. (7)

Generally, a homotopy can be constructed in the form [1–3]:
𝐻(𝑣, 𝑝) = (1 − 𝑝) [𝐿 (𝑣) − 𝐿 (𝑢0

)]

+ 𝑝 [𝐿 (𝑣) + 𝑁 (𝑣) − 𝑓 (𝑟)] = 0,

𝑝 ∈ [0, 1] , 𝑟 ∈ Ω,

(8)

where𝑝 is a homotopy parameter, whose values arewithin the
range of 0 and 1, 𝑢

0
is the first approximation for the solution

of (6) that satisfies the boundary conditions.
When 𝑝 → 0, (8) is reduced to

𝐿 (𝑣) − 𝐿 (𝑢
0
) = 0, (9)

where operator 𝐿 possesses trivial solution.
For 𝑝 → 1, (8) is reduced to the original problem

𝑁(𝑣) + 𝐿 (𝑣) − 𝑓 (𝑟) = 0. (10)
Assuming that the solution for (8) can be written as a power
series of 𝑝:

𝑣 =

𝑣
0
+ 𝑝𝑣
1
+ 𝑝
2
𝑣
2
+ ⋅ ⋅ ⋅

𝑤
0
+ 𝑝𝑤
1
+ 𝑝
2
𝑤
2
+ ⋅ ⋅ ⋅

, (11)

where 𝑣
0
, 𝑣
1
, 𝑣
2
, . . . are unknown functions to be determined

by the RHPM, and 𝑤
0
, 𝑤
1
, 𝑤
2
, . . . are known analytic func-

tions of the independent variable.
Substituting (11) into (8) and equating identical powers

of 𝑝 terms, it is possible to obtain values for the sequence
𝑣
0
, 𝑣
1
, 𝑣
2
, . . ..

When𝑝 → 1 in (11), it yields in the approximate solution
for (5) in the form:

𝑢 = lim
𝑝→1

(𝑣) =

𝑣
0
+ 𝑣
1
+ 𝑣
2
+ ⋅ ⋅ ⋅

𝑤
0
+ 𝑤
1
+ 𝑤
2
+ ⋅ ⋅ ⋅

. (12)

Convergence of RHPMmethod is studied in [5, 6].

4. Fundamentals of the Boubaker Polynomials
Expansion Scheme BPES

The Boubaker Polynomials Expansion Scheme BPES [17–
36] is a resolution protocol, which has been successfully
applied to several applied-physics and mathematical prob-
lems. The BPES protocol ensures the validity of the related
boundary conditions regardless of main equation features.
The Boubaker Polynomials Expansion Scheme BPES is based
on the Boubaker polynomials first derivatives properties:
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(14)

Several solutions have been proposed through the BPES
in many fields like numerical analysis [17–20], theoretical
physics [21–24], mathematical algorithms [25], heat transfer
[26], homodynamic [27, 28], material characterization [29],
fuzzy systems modelling [30–34], and biology [35, 36].

5. Application of RHPM and BPES

5.1. SolutionUsing RHPMMethod. Using (8), we establish the
following RHPM homotopy map:

(1 − 𝑝) (𝑣

− 𝑢


0
) + 𝑝(𝑣


+

𝛼
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𝑣
3
− 𝐼) = 0, (15)

where the trial function 𝑢
0
= 0.

Using (11), we propose the following rational solution:
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(16)

where 𝑤
0
= 1, 𝑤

1
= 𝑘
1
𝑥
3
, and 𝑤

2
= 𝑘
2
𝑥
6.

We substitute (16) into (15), regroup, and equate terms
with identical powers of 𝑝. In order to fulfil boundary
condition of (16), it follows that 𝑣

0
(0) = 0, 𝑣

1
(0), . . . for the

homotopy map.
The results are recast in the following systems of differen-

tial equations:
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Solving (17) yields
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Substituting (18) into (16) and calculating the limit
when 𝑝 → 1, we obtain the seventh-order approximation:
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(19)

If we consider 𝑅 = 1/20, 𝐼 = 10, and 𝛼 = 40 as reported in
[37], it is possible to obtain the adjustment parameters using
the procedure reported in [6, 12], resulting in 𝑘

1
= 36289 and

𝑘
2
= 4471843.

5.2. Solution Using the Boubaker Polynomials Expansion
Scheme BPES. The Boubaker Polynomials Expansion
Scheme BPES is applied to (4) using the setting expression:
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Using the properties provided by (13), boundary conditions
are verified in advance of the resolution process. The system
in (16) is reduced to
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Boundary conditions become redundant since they are
already verified by the proposed expansion, consecutively,
and thus, majoring and integrating along the given inter-
val for the time variable 𝑡 transform the problem in a
linear system with unknown real variables: 𝜆

𝑘
|
𝑘=1...𝑁0

. Cal-
culations are reduced to approximately (8𝑁

0
)
3arithmetical

operations. Solutions are obtained by using the Householder
[39, 40] algorithm detailed elsewhere and are denoted
by 𝜆(sol.)
𝑘
|
𝑘=1...𝑁0

. The final solution is given as
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6. Results and Discussion

From Table 1, we can observe that RHPM solution (19) and
BPES solution (22) are in good agreement with the numerical
results obtained using Fehlberg fourth-fifth-order Runge-
Kutta method with degree four interpolant (RKF45) [43, 44]
(built-in function of Maple software). In order to guarantee
a good numerical reference, RKF45 is configured using an
absolute error of 10−7and a relative error of 10−6. The power
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Table 1: Numerical comparison of proposed solutions and RKF45 solution of (4).

𝑡 q(t) (RKF45) RHPM BPES
𝑁
0
= 37 𝑁

0
= 107 𝑁

0
= 113

0.00 0.00000 0.00000 0.00000 0.00000 0.00000
0.01 0.098066 0.098070 0.09436 0.09456 0.09827
0.02 .17475 0.17481 0.17123 0.17395 0.17513
0.03 .21314 0.21388 0.21051 0.21266 0.21394
0.04 0.22656 0.22802 0.22669 0.22557 0.22775
0.05 0.23054 0.23005 0.22678 0.23009 0.23076
0.06 0.23165 0.23235 0.22346 0.23056 0.23246

of RHPM method is based on the capability of rational
expressions containing a huge amount of information of
dynamics from asymptotic problems.

Moreover, convergence of the BPES algorithm has been
obtained for moderate values of 𝑁

0
(𝑁
0
< 120), since,

as mentioned above, boundary conditions were verified in
advance of the resolution process. Both methods generated
analytical expressions useful for other analysis like circuit
power consumption; such analytical expressions can provide
more information about the nature and behaviour of cir-
cuits than numerical integration schemes with variable step
size [41, 44–46]. Nonetheless, semianalytical techniques like
RHPM and BPESmay be combined with numerical methods
[43–46] to improve the simulation tools of VLSI circuits.

7. Conclusion

In this paper, powerful analytical methods like rational
homotopy perturbation method (RHPM) and Boubaker
Polynomials Expansion Scheme (BPES) are presented to
construct semianalytical solutions for the transient of a
nonlinear circuit. The results exhibited that both techniques
are powerful, obtaining highly accurate analytical expressions
for the transient of a simple test circuit. While RHPM yielded
accurate and reliable results, BPES exhibited the advantage
of ensuring the validity of boundary conditions regardless
of main equation features. This feature made the protocol
yielding faster and provided more convergent solutions than
many numerical integration schemes with variable step size.
Further work is necessary to extend the use of both methods
for larger circuits.
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L. Hernández-Mart́ınez, and A. Sarmiento-Reyes, “Modified
HPMs inspired by homotopy continuation methods,” Mathe-
matical Problems in Engineering, vol. 2012, Article ID 309123,
19 pages, 2012.

[12] H. Vazquez-Leal, R. Castaneda-Sheissa, U. Filobello-Nino, A.
Sarmiento-Reyes, and J. S. Orea, “High accurate simple approxi-
mation of normal distribution integral,”Mathematical Problems
in Engineering, vol. 2012, Article ID 124029, 22 pages, 2012.

[13] Y. Khan, H. Vázquez-Leal, L. Hernandez-Mart́ınez, and N.
Faraz, “Variational iteration algorithm-II for solving linear and
non-linear ODEs,” International Journal of the Physical Sciences,
vol. 7, no. 25, pp. 3099–4002, 2012.

[14] J. H. He, “Variational iteration method—a kind of non-linear
analytical technique: some examples,” International Journal of
Non-Linear Mechanics, vol. 34, no. 4, pp. 699–708, 1999.



Journal of Electrical and Computer Engineering 5

[15] J. H. He, “Variational iteration method—some recent results
and new interpretations,” Journal of Computational and Applied
Mathematics, vol. 207, no. 1, pp. 3–17, 2007.

[16] J. H. He, “Variational iteration method for autonomous ordi-
nary differential systems,” Applied Mathematics and Computa-
tion, vol. 114, no. 2-3, pp. 115–123, 2000.

[17] M. Agida andA. S. Kumar, “A Boubaker polynomials expansion
scheme solution to random Love’s equation in the case of a
rational Kernel,” Electronic Journal of Theoretical Physics, vol. 7,
no. 24, pp. 319–326, 2010.

[18] A. Yildirim, S. T. Mohyud-Din, and D. H. Zhang, “Analytical
solutions to the pulsed Klein-Gordon equation using Modified
Variational Iteration Method (MVIM) and Boubaker Polyno-
mials Expansion Scheme (BPES),” Computers and Mathematics
with Applications, vol. 59, no. 8, pp. 2473–2477, 2010.

[19] J. Ghanouchi, H. Labiadh, and K. Boubaker, “An attempt to
solve the heat transfer equation in a model of pyrolysis spray
using 4q-orderm-boubaker polynomials,” International Journal
of Heat and Technology, vol. 26, no. 1, pp. 49–53, 2008.

[20] S. Slama, J. Bessrour, K. Boubaker, and M. Bouhafs, “A
dynamical model for investigation of A3 point maximal spatial
evolution during resistance spot welding using Boubaker poly-
nomials,”TheEuropean Physical Journal Applied Physics, vol. 44,
no. 3, pp. 317–322, 2008.

[21] S. Slama, M. Bouhafs, and K. B. Mahmoud, “A boubaker
polynomials solution to heat equation for monitoring A3 point
evolution during resistance spot welding,” International Journal
of Heat and Technology, vol. 26, no. 2, pp. 141–146, 2008.

[22] S. Lazzez, K. B. Ben Mahmoud, S. Abroug, F. Saadallah, and M.
Amlouk, “A Boubaker polynomials expansion scheme (BPES)-
related protocol for measuring sprayed thin films thermal
characteristics,” Current Applied Physics, vol. 9, no. 5, pp. 1129–
1133, 2009.

[23] T. Ghrib, K. Boubaker, and M. Bouhafs, “Investigation of ther-
mal diffusivitymicrohardness correlation extended to surface-
nitrured steel using Boubaker polynomials expansion,”Modern
Physics Letters B, vol. 22, no. 29, pp. 2893–2907, 2008.

[24] S. Fridjine, K. B. Ben Mahmoud, M. Amlouk, and M. Bouhafs,
“A study of sulfur/selenium substitution effects on physi-
cal and mechanical properties of vacuum-grown ZnS1-xSex
compounds using Boubaker polynomials expansion scheme
(BPES),” Journal of Alloys and Compounds, vol. 479, no. 1-2, pp.
457–461, 2009.
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