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Abstract

Software Module Clustering is a time-consuming task that aims to create a visual

description that matches the architecture defined for a system. Search Based Softawre

Engineering (SBSE) refers to Software Clustering as an NP-Hard Problem. Which

means that the search-space increases considerably as the size of the systems to cluster

grows. This means that search techniques, such as evolutionary algorithms, can be

used to find a solution. In this thesis a new genetic algorithm is proposed to solve the

Software Module Clustering Problem.

A hybrid encoding scheme is selected as the core of the proposal. Two different

crossover operators are used to exchange the information of the selected parents into the

offspring. An ad-hoc mutation operator is proposed based on corrective clustering and

the orphan adoption algorithm taken from the literature. Likewise the other proposals

in the literature, Modular Dependency Graphs (MDG) are selected as the input for the

algorithm designed.

The experimentation is conducted to evaluate the behavior of the proposed algo-

rithm and its robustness. The MDG of eight different systems are used as datasets for

testing the proposal. The results obtained show that the proposed algorithm, called

Hybrid Encoded Genetic Algorithm (HEGA), presents an improval in the results and

robustness compared to other algorithms proposed in the literature.
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Resumen

El agrupamiento de módulos de software, o clustering de software, es una tarea

laboriosa. Dicha tarea busca generar una descripción visual de un sistema que coincida

con su arquitectura. La ingeniería de software basada en búsquedas (SBSE) cataloga

este problema como NP-Duro. Es decir, que el espacio de búsqueda llega a ser muy

grande conforme crecen los sistemas a agrupar, que se vuelve necesario utilizar técnicas

de búsqueda como los algoritmos evolutivos para recorrerlo y encontrar una buena

solución al problema en un tiempo relativamente corto. En esta tesis se propone un

algoritmo genético para resolver el problema del clustering de software.

El algoritmo, llamado Algoritmo Genético de Codificación Híbrida (HEGA), está

formado por una representación de soluciones que consiste en una cadena binaria y un

vector de números enteros. Por lo mismo, se utilizan dos tipos distintos de operadores de

cruza para cada una de las partes de la solución. Se propone, además, un mecanismo

de mutación que está basado en el manejo de módulos omnipresentes tomado de la

literatura. A semejanza de otras propuestas, HEGA tiene como entradas Gráfos de

Dependencia Modular (MDG).

La experimentación llevada a cabo tiene el propósito de evaluar la robustez del

algoritmo y comparar si, en efecto, hay mejoría en los resultados en comparación con las

herramientas tomadas de la literatura especializada. Los resultados obtenidos muestran

que HEGA, en efecto, obtiene mejores resultados y es más robusto que otras propuestas

de la literatura que también utilizan algoritmos genéticos.
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Introduction

Nowadays, software systems require to have a systematic process to be developed

correctly and ensure the quality in the final result. Software Engineering (SE) is a

branch of computer science that focuses on the application of engineering principles

during the life cycle of the development of a software system [1]. In the software life

cycle, five main stages can be identified: Requirements, Design, Implementation, Test-

ing, and Maintenance. Within these stages there is a considerable number of situations

which require the software engineer to think in the most suitable way of balancing the

different goals and expectations given to a specific project. During the software life

cycle, the developer can think in questions such as What is the minimum number of

test cases to cover all features and branches in this system? or How should the sys-

tem’s components be divided to get the optimum traceability?. These questions can be

answered in the literature through empirical studies and specialized experimentation.

However, there is a crucial aspect to consider which is the time that these experiments

take to be completed through SE estimations alone. In recent years, there has been

an interest in reformulating software development activities and tasks as optimization

problems in order to help the developers find suitable solutions to these problems in a

considerably shorter period of time [2, 3]. Search-Based Software Engineering (SBSE) is

an approach that aims to apply Search-Based Optimization (SBO) techniques to solve

the problems that can be found during the software development life cycle.

SBSE has had a particular interest in software design and testing. During the design

stage, an important aspect to consider is the modularity of the system. This refers to the

3
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importance of partitioning the system’s architecture into small groups, called modules,

that implement similar functions and can be managed autonomously interfering the

least possible with other parts of the system itself. A Module Dependency Graph

(MDG) is a low-level visual representation of the relations between each component of

a system. It usually represents the distribution of the files that form the source code

of the system. The complexity of modularity relies on the number of artefacts that a

system has. The higher the number of components there is, the bigger the search space

to look for a suitable partition becomes [1, 2, 4]. Optimization problems can be divided

into two main categories: (1) those in which the final solution is represented in real

values, and (2) the ones that gather solutions represented in a discrete range of values.

Examples of the latter are the Combinatorial Optimization (CO) problems. Within

CO, it can be found a particular type of problem, the grouping problems. In these, a

set of items needs to be partitioned into a collection of subsets or groups so that each

item belongs to only one group. To seek the best possible distribution of such items

represents a challenge difficult to solve. This difficulty increases as the number of items

to group does [5].

Evolutionary Algorithms (EA) are stochastic search strategies that are inspired by

natural evolution. These methods implement some of the concepts found in organic

evolution, such as crossover, mutation and natural selection. In general terms, for an

EA to be considered as such, six factors must be present: (1) A representation of the

solutions, (2) A population of N potential solutions, (3) a fitness function, (4) a selection

mechanism, (5) variation operators, and (6) a survival mechanism [5, 6, 7]. A Genetic

Algorithm (GA) is one of the most popular EA used for solving optimization problems.

This implementation represents each solution as a string of elements, such as bits,

natural numbers, real numbers or even permutations. These representations are called

encoding schemes, and a solution correctly encoded shall be referred to as a chromosome.

The GA will base all of its computing on these chromosomes and the evaluation of the

fitness of each member of the population. GAs are one of the most popular search

techniques used in SBSE. The Software Module Clustering Problem (SMCP) has been

an optimization challenge for which multiple EAs have been proposed. The literature

shows that by using this type of algorithm, a good partition of a system can be found in
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a relatively short time. Through the years there has been an evolution on the approach

given to the SMCP. There are authors that deal with the problem as a Mono-Objective

one [8, 9, 10, 11], and others who represent it as a Many or Multi-Objective problem

[12, 13, 14, 15, 16, 17].

In recent years, software engineering problems require optimizing multiple objectives

that are often in conflict with each other. Within the MaSCMP category, two main

approaches can be found: the Maximizing Cluster Approach (MCA), and the Equal

Sized Cluster Approach (ECA). Both aim to solve the problem by maximizing the

Modularization Quality (MQ) ratio. However, they have certain differences in the

rest of the criteria to be considered, which will be discussed later in this work. The

MQ ratio is a real value which represents the level of cohesion and coupling in the

partition determined for an MDG [18]. The MCA is the most studied approach in

literature, which leaves a niche to be exploited. In this thesis, a genetic algorithm for

the automatic modularization of software systems is proposed. This method is capable

of finding partitions for a system that have a good modularization quality considering

an ECA approach.

1.1 Problem definition

Mapping the design decisions, such as modularity, into the source code of a software

system can become a challenging task. Software Modularization (SM) aims to find the

best way to group the components of the source code that have similar functionalities

to, then, validate that the system is being implemented according to the designed

modularity.To perform this task is time-consuming. Furthermore, SM increases its

complexity as the number of elements and relations in a system grows, not to mention

the problems that come out from adding new elements to a system that is already

being implemented. SBSE deals with this problem with search techniques such as

genetic algorithms. Nonetheless, the results are not absolute, and they should not be

treated as such since the search space is enormous and a better solution might always be

found. It is necessary to generate a solution that maximizes the modularization quality,

which depends directly on the cohesion and coupling within the system. A correctly
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partitioned system can be more understandable and its maintenance becomes more

straightforward [1]. It is true that not all systems are equally complex, which leads to

scalability problems within the different algorithms used for clustering software. This

means that a method that produces an optimal solution for a particular case might not

have the same outcome with larger and more complex systems [19].

1.2 Research Proposal

This work proposes an Evolutionary Algorithm with a single-objective multi-factor

fitness function for the segmentation of Module Dependency Graphs to find partitions

with a high Modularization Quality value (obtained by the TurboMQ function proposed

by Mancoridis) similar or higher than the results obtained from software clustering tools

found in the literature. This proposal will be shaped by:

• A genetic algorithm that can explore and exploit the search space.

• A novel encoding scheme that assists the convergence of the algorithm by reducing

the redundancy of the solutions.

• An objective function that considers the quality of the modularization, the level

of cohesion and coupling in the MDG, the number of clusters and their size.

1.3 Justification

During the construction of any software system it is important to determine whether

or not the source code reflects the decisions made in the design stage of the project

(see Section 2.1 for further comprehension). The latter contributes to the quality of the

final product in terms of Mainaintability1.

A good software design, among other features, should divide the components of

the system and group them properly. This has a direct impact on the implementa-

tion of the system. The SBSE is constantly in the quest of finding new methods and
1For further information related to the quality factors of a software system, see [20, pp. 398-414]

and standard ISO/IEC 25010:2011 [21]
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techniques to improve the execution of software engineering processes. For this pur-

pose, many optimization algorithms are used, such as genetic algorithms, combinatorial

optimization heuristic techniques, and grouping algorithms, among others. Although

Evolutionary Algorithms (EA) have shown promising results, most of the works found

in the literature present variations or the adaptiation of a similar encoding scheme to

specific constraints and domains. However, modern software systems present a higher

level of complexity, which leads to adapting the evolutionary approach with other local

search techniques in order to find better solutions that the EA alone cannot provide.

As systems grow in complexity, it becomes necessary to create better descriptions of

their functions and relations so that the development team can create and maintain

a product that meets the specifications, desires and expectations of the client and the

final users.

SBSE constantly searches for new ways to solve SE problems and for that reason,

many optimization techniques are used such as genetic algorithms, combinatorial opti-

mization heuristic techniques, grouping algorithms, among others [2]. From the Artifi-

cial Intelligence (AI) viewpoint, combinatorial optimization has attracted considerable

attention towards the solving of problems in a great variety of fields, from everyday-life

situations to complex engineering problems.

Lastly, it is important to mention that the literature shows that most of the al-

gorithms used for clustering software systems consider the difficulty of restricting a

single fitness function with multiple constraints instead of dealing with the problem as

a multi-objective optimization one. In the majority of documented cases in SE this

increases the complexity of the decision-making process at the end of the computation

to determine which of the found solutions is better than the rest [16].

1.4 Hypothesis

A Genetic Algorithm that implements a Multi-Factor fitness function, and a hybrid

encoding scheme, with an Equal-size Cluster approach applied to software module clus-

tering, can find partitions for Module Dependency Graphs with modularization quality

and cluster number values higher than other tools that implement the same type of
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algorithm, as well as smaller values in the difference between the size of the biggest and

the smallest cluster within the same partition.

1.5 Objectives

1.5.1 General Objective

To design a Genetic Algorithm capable of exploring a discrete search space to find

partitions for Module Dependency Graphs with a Modular Quality equal to or higher

than the results shown in proposals documented in the specialized literature.

1.5.2 Specific Objectives

1. Gather information on the state-of-the-art on search techniques, with emphasis

on genetic algorithms proposed for solving the SMCP.

2. Collect testing data sets used in the literature as well as software module clustering

tools that implement search algorithms.

3. Determine the most suitable variation operators and parameter values in order to

adjust them to the proposed objective function for generating results that meet

the desired conditions.

4. Compare the results obtained from the genetic algorithm with those computed

with proposals extracted from the state-of-the-art.

1.6 Contributions and knowledge dissemination

The main contribution of this research is a new proposal of a genetic algorithm with a

hybrid encoding scheme and a mutation operator that considers the clustering of om-

nipresent modules. However, two colateral works derived from the research made on

encoding schemes and their performance applied to combinatorial optimization prob-

lems are the following:
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• Juan Carlos B. Somohano-Murrieta, Héctor Gabriel Acosta-Meza, Efrén Mezura-

Montes; GradCAM integration in the evolutionary design of Dense Con-

volutional Networks for medical images classification; International Sem-

inar of Computational Intelligence (ISCI 2022); Tijuana, Mexico (online).

• Juan Carlos B. Somohano-Murrieta, Efrén Mezura-Montes, Marcela Quiroz-Castellanos;

A new solution encoding scheme for solving the Flexible Job-Shop

Scheduling Problem; Congress of Evolutionary Computation (CEC 2023);

Chicago, USA.

1.7 Document structure

This document is organized as follows:

• Chapter 1:The first chapter sets an initial background, and statements of the

problem; and describes the solution to be evaluated.

• Chapter 2: This chapter describes in detail the background of software clustering,

and how artificial intelligence is used to solve this problem

• Chapter 3: The third chapter describes the structure of the proposed algoritm,

its encoding, the objective function and the operators and mechanisms used for

the evolutionary process.

• Chapter 4: This chapter presents the results obtained from the experimentation,

as well as their analysis comparing them with the proposals taken from the liter-

ature.

• Chapter 5: The last chapter states the conclusions of this thesis and exhibits the

areas in which future research can enrich this work.



2

Theoretical Framework and

Background

In this chapter, a theoretical framework is presented to familiarize the reader with

the key concepts on which this thesis is based. This chapter introduces the main fields of

this research shall be introduced: Software Design with an emphasis on Modularization,

Evolutionary Algorithms, and Search-Based Software Engineering. Furthermore, this

chapter also presents a review of the state-of-the-art on genetic algorithms applied to

software module clustering.

2.1 Software Design

According to standard ISO/IEC/IEEE 12207:2017(E)[22], the Software life-cycle can

be described as a set of processes that describe the development of a software system

from the moment it is conceived as a necessity for solving a particular problem until

its disposal. Software engineering is the application of systematic methods, processes,

scientific and technological knowledge and expertise to the life-cycle of a software system

[1, 23]. According to [24], software engineering has four main disciplines in charge of

the four stages within the software life-cycle process. These disciplines are shown in

figure 2.1.

The design of a software system is one of four commonly accepted stages that form

the software life-cycle process. The software design can be seen as a set of two aspects:

10
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Figure 2.1: Software engineering disciplines applied to the software life-cycle described in [24]

(1) the process, and (2) the product. The process involves analyzing the requirements

elicited in a previous stage in order to set out the internal structure of the system,

its attributes and how they will be related at different levels of detail. These levels

of detail describe source code (functions, modules, and classes); files and subsystems;

and packages and components [25]. The main goal of the software design is to help the

developers to create a detailed description of the system. This description shall be used

as a guide for constructing the system and a reference for future engineers that helps to

understand the functioning and make the maintenance process more straightforward.

This description is called a Software Design Description (SDD) [26]. One important

aspect that gives importance to the SDD is communication. Communication is a process

that involves at least five main aspects: (1) Sender, (2) Receiver, (3) Message, (4)

Channel and (5) Code. The sender is the source of the message, and the receiver is

the destination of the latter. The code helps the sender and receiver to communicate,

the sender encodes the message and the receiver decodes it with the same reference

so that both understand the same thing. However, without a proper channel, the

message cannot reach its destination. The SDD works as a channel for the software

design team to communicate with the rest of the development team. Furthermore, an
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understandable SDD will help to communicate in the future with the people in charge

of the maintenance process.

The design stage is often underrated since a design specification is intended for

software engineers to understand and, thus, is not an essential part of the final product

for the client. Nonetheless, if a system is not correctly designed the consequences, which

will be interpreted as errors, will be noticed anyway, whether there is an SDD or not.

The difference shall be that with a proper SDD, the engineers will be able to identify

the problem more easily than without one [27].

Software design is, essentially, a problem-solving task, Budgen [27] expresses that

the design process can be reduced to describing the way in which a certain requirement

shall be met. The design specification is deeply related to the abstraction and how the

designer interprets the problem and its solution. So the design can only be judged as

useful or not by the context of the problem itself. However, according to McGlaughlin

[28] there are some aspects to consider to generate a good software design. For him, a

good design should:

• Implement all explicit requirements contained in the previous analysis and must

adjust all implicit requirements desired by the client.

• Be a guide readable and understandable by all the people that build, test, and

give maintenance to the system.

• Give a complete idea of the internal functioning of the system, the domain it is

located in, and its behavior.

2.1.1 Software Modularity

Divide et impera or divide and rule; this phrase is as ancient as mankind. It has

been proven over hundreds of years that dividing a larger force into small and isolated

groups exponentially increases the probability of victory. This strategy can be applied

to almost any situation. Complex problems are divided into smaller concerns in order

to be cleared out by a set of solutions, one for each concern. In the field of software

design, it is important that a design specification is understandable. Making a detailed
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description of the structure of a system becomes glaringly challenging as the complexity

of the latter increases [20]. One way to deal with complexity is to divide a system into

smaller groups called modules. This principle is called modularity, and it is an effective

mechanism in software design. A module is an implementation unit that arranges a set

of elements with common responsibilities. This means that each module unit should

include components, classes, and methods that assemble to meet the specification of a

requirement or related requirements [1, 29].

Coupling and Cohesion

Although any system can be divided into smaller components, the designer has to be

careful of grouping the elements that have similar objectives. The modularity of a

system is directly affected by the similarity that exists between the components inside

a single module, and the difference between a single module and the rest. The direct

relationship between the components of a module is called cohesion and the distance

among different modules is the coupling of a system. The higher the cohesion of a

module the better. On the opposite side, as the coupling between modules is reduced,

the modularity of a system will increase [20, 30, 31].

According to Budgen [27] and Pressman [20], it is highly desirable that a system’s

modularity has an increased level of functional cohesion. This means that all the ele-

ments inside a single module contribute to the execution of the same task. On the other

hand, logical cohesion is hardly recommended. This type of cohesion refers to elements

that perform logically similar operations but internally involve a different process. In

terms of coupling, there are also different types and each one has its own desirable rate.

In general terms, different elements that require sharing data and functions to complete

a task should be placed in the same module, this is called data coupling. Nonetheless,

the parameters of one module are not supposed to be known or shared by other modules

and should not be required to determine their actions, this can be called a Common-

environment coupling. The literature describes other types and levels of coupling in a

system, according to the different levels of detail that an SDD has1.

1For a more detailed description of the different levels of coupling nd cohesion in a system refer to
[27, pp. 75–80], [20, pp. 225–229], and [30, pp. 50–67]
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2.1.2 Software Clustering

Now that the concept of modularity and its importance in the understanding and

management of the system have been described, the process that involves the execution

of this property of software design will be explained. Clustering refers to the activity

of grouping software artifacts. At different levels, the clustering might be performed

over functions in the source code and group them into classes, files into packages and

components, or packages and classes into subsystems. This thesis shall focus on the

clustering of files into components. The reason for this is that the clustering process

is performed on the source code of the system, either because the system is going

through maintenance and there is no design document, or because the developers need

to evaluate if the code really meets the design and analysis performed on the system

[25, 32, 33].

The Software Module Clustering Problem (SMCP), sometimes called Software Mod-

ularization Problem, has become an active research area for software engineers. There

are several algorithms proposed in the literature for solving this problem, some of which

shall be discussed later in this document. Nonetheless, it is important to describe the

basic process, since all the proposed algorithms aim to automate this activity [34]. Ac-

cording to Sarhan et. al [35], the software clustering process can be divided into five

stages: First, a factbase needs to be extracted from the product. This factbase is the

input for any clustering process. In this case, the relationships between the different

artifacts of a system. This information is extracted from the source code. The simi-

larity evaluates the closeness between the different elements in the factbase. Once the

similarity is evaluated, the clusters need to be created by a suitable algorithm, there are

multiple algorithms that have been proposed, some of which shall be described further

in this document. Finally, the results obtained are compared and measured according

to the modularity of the outcome.

The clustering process of a system concerns the quality of the software design. As

mentioned previously, a modular design of a system is useful for simplifying its construc-

tion and maintenance. However, the evaluation of the quality of the design cannot be

completed without the final product. The modularity of a system is evaluated in terms
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of its coupling and cohesion, and these two aspects can be measured in the clustering

process so that an algorithm can differentiate between a suitable modularization and a

non-suitable one. But for this to happen, it is necessary to have a way of representing

and obtaining useful information about the relationships between the elements of a

system. These relationships and elements are obtained usually from the source code of

the software [2, 25, 34, 36].

Module Dependency Graphs

An important part of the clustering process is the representation of the artifacts that

need to be grouped. This representation will be useful for having a picture of the sys-

tem and will make the interpretation of its structure easier. That is why it needs to

be generated in a language-free way [10, 25]. During the design stage in the software

development process, it is important to understand correctly how a system is divided

in order to get the correct traceability between the architectural design and the distri-

bution of the system in lower levels. One of the most common ways to understand the

distribution of a system is by using directed graphs called Module Dependency Graph

(MDG). In such graphs, each module of a system is represented by a node, and the

relationships between those nodes are usually represented as directed edges [8].

Formally an MDG is defined as follows [37]: a graph G = (M,R) is an MDG if is

formed by two components M and R where: M is a set of named modules in a software

system, and R ⊆ M ×M is a set of ordered pairs ⟨u, v⟩ representing the relationship

between the module u and the module v. The MDGs can be classified as weighted and

unweighted. The first type has an importance value (a weight) associated with each

relationship between two artifacts, while the latter disregard this value. The MDGs

are the input to every modularization algorithm. The graph representation of a system

is helpful to understand its structure. The clustering process consists of dividing an

MDG with |V | modules into m non-overlapping partitions. As mentioned previously,

the SMCP can be applied at a low level in the software process, concerning artifacts

such as files and the relationships between them in terms of function calls and shared

data [9, 10, 37].

The complexity of the clustering process is in distributing all the modules in a
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(a) (b) (c)

Figure 2.2: An example of an MDG and two different potential partitions

suitable number of partitions, Figure 2.2 exemplifies this statement. A single MDG

such as the one in Figure 2.2(a) can be divided into different partitions, such as the

examples shown in Figures 2.2(b) and 2.2(c). Each partition has a different level of

modularization, depending on the intra-cluster and inter-cluster relationships between

the modules, and whether these relationships have an associated weight or not.

Omnipresent modules

An important aspect to consider during the clustering process is the presence of modules

and classes that are related to several parts of a system. These Omnipresent Modules

have a significant value since they are crucial parts of a system but cannot be easily

classified into a single group [38]. An omnipresent module can be a provider or a client

of the system. The latter means that it can either include only methods and processes

called by other modules (such as code libraries) or depend entirely on the other parts

of the system (such as a main module) [39, 40, 41].

The two most popular positions regarding omnipresent modules are either to remove

them before the clustering process or temporarily ignore them and take them up again

once the process is finished so that the process itself is not obstructed by them. One

of the first techniques for dealing with omnipresent modules was proposed by Müller

et al [38], they implemented an algorithm to classify these particular modules as noise
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in the recovery of software architecture. This algorithm removes the noise from the ar-

chitecture so that the system is recovered as close as possible to the desired structure.

Even hough the removal of omnipresent modules increases the quality of the obtained

clustering [42], some authors such as Zihua and Tzerpos [39], Patel et al [43], Kobayashi

et al [44] claim that omnipresent modules are important in the structure and decom-

position of a system’s architecture. These authors mention that a clustering algorithm

should be tolerant of omnipresent modules. Instead of removing the omnipresent mod-

ules from the modularization process, proposals have been made in recent years to give

them their own grouping process, either by separating them into their own cluster or by

reintegrating them at the end of the process into the cluster with which they are most

related. However, one of the main problems when temporarily removing omnipresent

modules and reinserting them at the end is to determine which cluster depends on each

omnipresent module the most [45].

Tzerpos and Holt [46] created one of the first clustering algorithms to consider

omnipresent modules, this algorithm is called Algorithm for Comprehension-Driven

Clustering (ACDC ). The authors proposed to identify the omnipresent modules such

as libraries and group them in a separated cluster so that the modularization process is

not affected by them. In 2005, Zhihua and Tzerpos proposed the FICABOO framework,

which is a mechanism based specifically on the reinsertion of omnipresent modules

when combined with a detection method [39]. The FICABOO framework is based on

the Orphan Adoption algorithm proposed by Tzerpos and Holt [47]. This algorithm

was initially proposed for the insertion of new modules (orphans) into the system or

to reorganize the modules’ distribution during an upgrade or in a maintenance stage.

The process consists of taking a module and inserting it in the cluster that maximizes

the quality of the modularization. The same principle can be applied to omnipresent

modules. If these are extracted from the initial partition of an MDG, they can be

reinserted following this algorithm. This is how the FICABOO framework works. A

variation of FICABOO is implemented in the algorithm proposed in this document.

The details will later be discussed in Section 3.3.4.
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2.2 Evolutionary Algorithms

In the rubric of computational intelligence, evolutionary algorithms have been one of

the most popular methods for solving different types of optimization problems. This

type of algorithm has proven to be particularly reliable for NP-Hard problems, those

which have a solution search space big enough to make an exhaustive search impracti-

cal. Evolutionary Algorithms (EA) are a computational allusion to biological evolution.

This technique is based on the postulate of Charles Darwin on the evolution of species

through natural selection. EAs take advantage of adaptative populations, which means

that instead of working on a unique solution, the EAs generate and modify a set of

potential solutions hrough a fixed number of iterations. Likewise the natural process

of evolution, each iteration involves a process of selection, reproduction, evaluation and

survival [56]. Between the 1960s and the 1970s three different search algorithm im-

plementations were developed: Evolutionary Programming (EP), Genetic Algorithms

(GAs), and Evolutionary Strategies (ES). These three algorithms were initially treated

independently. It was not until the late 1980s and early 1990s when the term Evolution-

ary Computing was properly coined. Since the 1990s, EP, GA, and ES have exchanged

ideas and techniques. David Fogel [50] expresses that these three algorithms have coex-

isted and interacted so closely that it is no longer possible to differentiate one algorithm

from another in terms of only the representation, the variation methods, the selection

mechanism, or any other factor. Nonetheless, their main differences now rely on their

structural behaviour and overall performance when they are applied to a particular

problem. For instance, ES models are strictly based on the extinction of the least fit

individual, while the GA systems are commonly generational. Apart from the vari-

ants previously mentioned, there are other more recent algorithms, such as Differential

Evolution (DE), Particle Swarm Optimization (PSO), and Estimation of Distribution

Algorithms (EDA). Although PSO does not implement an evolutionary process; since

rather than evolving, particles move across the space; in terms of algorithm design, it

has enough elements to be considered within the EA family [57], but it is classified as

a Swarm Intelligence approach.

In general terms, a typical evolutionary algorithm has four main characteristics:
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(1) All of them are population-based, as mentioned previously in this section, the EAs

iterate over a set of solutions rather than a single one; (2) They are stochastic, which

means that randomness has a crucial role in all the mechanisms within the models; (3)

They all have a survival mechanism, by evaluating an objective function each solution

is determined to be more suitable than other, following the evolutionary schema only

those solutions that are the most suitable will prevail; and (4) All of them can be used

in a wide variety of problems without changing their basic flow, meaning that these are

meta-heuristic techniques.

2.3 Genetic Algorithm

The Genetic Algorithm is a search technique proposed by Holland in 1975. It is one of

the most popular EAs, it has been widely used for solving a large number of optimization

problems. It emulates the principles of the Darwinian Theory regarding the survival

of the fittest [56, 58]. Likewise other EAs, a GA is population-based and requires a

selection method, crossover and mutation operators and a survival mechanism. The

core of a GA relies on its generational flow; typically in a GA all members of the

current population are dismissed and the offspring remains as the new population for

the next generation. However, elitism can be also applied to a GA. In this case, the

best solution of the current population is kept and reinserted into the new population.

The latter guarantees convergence assuming infinite time [50, 56, 59].

2.3.1 Encodings

The encoding in a GA is the genetic representation of the potential solutions for a

particular problem. An important aspect of an encoding scheme is the scope coverage.

This means that the encoding of a GA should be able to describe the search space and

describe all feasible solutions. Correctly representing the solutions is crucial in any GA.

The encoding scheme has the responsibility of determining the characteristics that the

algorithm will use to move across the search space [60].

Originally the GA only used binary representations, a string of bits that represented
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the main features of a solution [50]. Nonetheless, through the years other schemes that

are equally acceptable have been included in the compendium of available represen-

tations. The selection of the encoding depends strictly on the problem for which the

GA is to be designed. For example, binary representations are usually used when the

problem requires to be interpreted in terms of True/False values, while real-valued en-

codings are mostly used when the solution is intended to be shown in a continuous

space. According to Ronald [60], an encoding should:

1. Allow the exchange between genotype and phenotype in the minimum number

of steps so that the computational cost does not increase considerably when esti-

mating the fitness value.

2. Generate feasible solutions, if this is not possible in all cases, then the algorithm

must implement penalty strategies or repair mechanisms.

3. Reduce the isomorphism within the solutions as much as possible. This means, for

instance, dealing correctly with multiple genes that refer to the same phenotype

(redundancy).

4. Represent the problem at a proper level. It should be possible to represent a

complete set of potential solutions only with the rules and elements of the encoding

using values taken from an alphabet correctly defined.

More recently, there have been multiple proposals to combine different encoding

schemes. These hybrid representations are used often in the industry to solve problems

whose complexity level does not allow a simple representation to reach an acceptable

near-optimal solution. It is useful for partitioning a problem a represent different aspects

of the solution. However, conventional variation operators cannot be applied in the same

way. Variation operators (especially mutation) must be altered in order to diversify a

gene depending on the coding of that gene [61].

2.3.2 Selection mechanism

As part of the evolutionary process, new solutions must be generated from the current

population. It is necessary to determine which individuals will procreate the next gen-
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eration. Since the purpose of evolution is to improve the currently available solutions,

the fittest members have more relevance and the selection mechanisms have the incli-

nation to prefer them over the rest. However, likewise in nature, all members should

have the possibility to reproduce. That is why a stochastic component is usually added

to this process. The latter refers to two important aspects of selection in GA: Selection

pressure and Population diversity. A high selection pressure will tilt the search into the

fittest values, this might eventually diminish the diversity of the population. However,

a small pressure might cause the search to be fruitless. It is important that the selection

mechanism finds a balance between pressure and diversity, and this is directly related

to the encoding scheme used [14, 60, 61, 62]. In this section two of the most popular

selection mechanisms are presented in general aspects. For a more detailed explanation

of these and other selection mechanisms please refer to [63, pp. 117–121, & 163–192],

[7, pp. 80–87], and [62].

Tournament selection

In this mechanism, a group of µ individuals is selected from the population. These

selected solutions shall be evaluated according to the objective function. The fittest one

will be selected as a candidate for the crossover stage. The process shall be repeated

until the desired number of parents is selected. This mechanism has the advantage

that neither the worst solutions will be selected nor the best individual shall dominate

above all [64]. There are two versions of this selection mechanism: Deterministic, and

Stochastic. In the first one, the individual with the best fitness is always selected, whilst

in the latter, the fittest individual shall be selected with a probability p if and only if

random(U(0, 1)) ≤ p, if this condition fails, then the next k-th best individual shall be

selected with the same probability.

Proportional selection

In contrast with the previously-mentioned technique, in proportional selection, the

probability of an individual being chosen relies on the contribution of its fitness value

to the total fitness value of the population. This means that while the fittest individuals
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have more probabilities to be selected, the least fit ones are less likely to be chosen.

However, the probability of the latter is never 0. This value leads to obtaining the

expected number of copies of the individual to be selected for crossover. The probability

value of a selection candidate can be obtained with equation 2.1

psel =
fi
f̄

(2.1)

where fi is the fitness value of the individual and f̄ refers to the average fitness of the

population.

There are multiple implementations of this model, such as the Monte Carlo, also re-

ferred to as the Roulette method [65], the Stochastic Remain [64, 66], and the Stochastic

Universal Selection [63, p. 120; 57, p. 84; 62, p. 71].

2.3.3 Variation operators

The variation operators are another crucial part of any GA. Their objective is to ensure

that potentially-good areas are found in the search space (exploration) and are used

up as much as possible (exploitation). Eiben and Smith [57] express that the variation

operators depend on the selected encoding scheme. The Recombination and Mutation

mechanisms are used to find new solutions that lead the algorithm to a near-optimal

state. The convergence of the algorithm is directly affected by these operators. Since

genetic algorithms were initially conceived to be binary encoded par excellence, the

variation operators that are most commonly used (and subsequently adapted) deal

with the information of each chromosome at a low level.

Recombination

During the crossover of two selected solutions, called parent solutions, their informa-

tion is combined to create a new individual; a new potential solution that ought to

be different from both parents but keeping their phenotype characteristics encoded at

a genotype level. This means that, during recombination, each new solution should

not have additional information apart from the inherited by the parents. After ran-

domly choosing the two parents previously mentioned, the crossover is applied with a
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probability P (cr) called the crossover/recombination rate. There are different crossover

methods, Umbrakar and Seth [59] made a review on crossover operators used for GAs.

Among others, they mention some of the most common and simple mechanisms such

as the k-point crossover, which takes k random positions of each parent solution and

combines the information of both parents located within those positions; or the uniform

crossover, which ensures that the information included in the offspring is transmitted

by swapping the bits of both parents with a uniform probability U(0, 1).

Mutation

Once new solutions are generated, the mutation is applied with a probability P (m)

called the mutation rate. This process typically changes the information in the genotype

of a solution. The latter encourages the exploration of new areas within the search

space. Mutation can be seen as a background operator whose primary objective is to

ensure the variety of solutions [50, 58, 63]. There is an important concept for mutation

operators which is disruption. This is the ability of the operator to alter the features of

a solution. Rather than radically changing the fitness value of a chromosome, it should

mainly vary its characteristics. That is why in GAs it is common to use a low P (m),

since this guarantees that the final offspring solution shall preserve the majority of its

ancestors’ information [50, 57, 63].

2.3.4 Other components of the GA

Replacement

Similar to the selection process, the replacement or survivor selection mechanism needs

to identify the fittest individuals based on the objective function evaluation. This

follows the principles mentioned at the beginning of this section regarding the survival

of the fittest. A genetic algorithm is often generational, this means that every individual

in the current population is discarded and the offspring remains for the next generation.

However, there are some cases in which the best solution is kept and passed on to the

next generation in order to ensure the convergence of the algorithm.
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Initialization

The creation of the initial population in a genetic algorithm is performed typically by

random sampling of a variable. This means that each gene of the chromosome is pro-

duced in a repeated stochastic process. It is uncommon to design GA to assist the

initial population to converge towards good solutions [7, 57, 63]. However, real-world

optimization problems get more complex every day, and sometimes it becomes neces-

sary to optimize the performance of the GA. For instance, if an algorithm is supposed to

optimize the total work distribution among several machines with multiple constraints

(Optimal Job Scheduling), repairing solutions in the algorithm might represent a con-

siderable computational cost. Therefore, the algorithm can be encouraged to generate

only feasible solutions even from the initial population [67, 68].

Termination criteria

The standard criterion for terminating the execution of a genetic algorithm is the max-

imum number of generations. However, there are cases in which the algorithm can

have other termination criteria. For example, the genotype diversity measure of the

population, which allows to determine whether the average value of the fitness of the

population is improved significantly with respect to previous results or not. Eiben and

Smith [57, p. 34] mention that the real stopping criterion of a GA is reaching the opti-

mum value. Nonetheless, this condition is highly unlikely to be reached, since real-world

optimization problems typically do not have a known single optimal solution.

2.3.5 Standard Genetic Algorithm

Algorithm 1 includes the pseudocode of a standard GA.

2.4 Search-Based Software Engineering

Search-Based Software Engineering (SBSE) is a research field that has been gradually

gaining popularity. This approach focuses on solving software engineering problems

through Search-Based Optimization (SBO) algorithms [2]. During the development of
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Algorithm 1 Template of a Genetic Algorithm
Require: Population size Ps, number of generations GMAX , crossover rate CR, mu-

tation rate MR, fitness function f
Output: Fittest solution
1: Initialize population P with Ps random solutions
2: g ← 1
3: best← None
4: while g < GMAX do
5: for each indv ∈ P do
6: if f(indiv) ≥ f(best) then
7: best← indiv ▷ Obtain the fittest element of current generation
8: Apply the selection mechanism to obtain a set of Ps parents
9: while Offspring set off is not full do

10: Choose two parents pα and pβ
11: if random(U(0, 1)) ≤ CR then
12: Apply crossover operator to generate offspring oε and oγ.
13: else
14: oε ← copy(pα)
15: oγ ← copy(pβ)

16: for each o ∈ {oε, oγ} do
17: if random(U(0, 1)) ≤MR then
18: Apply mutation operator to offspring o

19: off ← {o}
⋃

off ▷ Add element to the offspring set
20: Evaluate all members of off
21: off ← {best}

⋃
off ▷ Preserve the best solution to the

next generation
22: Remove the least fit element of off ▷ elitism
23: P ← off
24: g ← g + 1

25: Evaluate all elements in final P
26: Return the fittest solution
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a software system, there are several situations that can be formulated as optimization

problems [36]. For instance, in the testing stage, a developer might want to know

the minimum number of test cases to execute that cover the totality of the system’s

functions or at least the largest possible amount. Harman et. al [2] provided an overview

of the applications and challenges of SBSE up to that moment. This is important

because most of the literature found that was published in more recent years departures

from this research. Harman mentioned that there are three main challenges when

applying search algorithms to software engineering: (1) Solution representation, (2)

Fitness evaluation, and (3) Change operators. the encoding of a solution is crucial

for designing the algorithm and will affect directly its performance. The complexity

of an SBSE algorithm can be seen in the difficulty of decoding a solution rather than

the algorithm itself. The function to optimize is particular to each problem. And

the definition of a fitness value can be quite a challenge since many problems in SE

require a subjective appraisal such as the opinion and feedback of the users. Finally,

one of the most difficult problems to deal with is deciding how to explore the search

space. Each algorithm might look for potential solutions in different ways. Each type

of algorithm has its own parameters and mechanisms and will find the best possible

solution according to such elements. This is why choosing a particular algorithm is

complicated and decisive. There are several fields within software engineering in which

search-based algorithms have been applied.

Software testing is the most popular stage in which SBSE has been implemented.

Implementing different techniques and automated mechanisms to optimize the test case

generation process in order to meet qualities such as coverage, completeness, traceabil-

ity, etc [69, 70]. The test case and test data generation are crucial activities in software

development. While constructing a system, the developers intend to cover all the re-

quirements explicitly obtained from the analysis of the problem and the ones desired

implicit by the client and user. This is why it is important to test every single aspect

of the system in all combinations of scenarios available. However, in large systems,

this becomes a problem since testing every possibility might consume a considerable

amount of time and resources. That is why in SBSE aims to find a balance between

the test cases and the desired quality of the system [71, 72, 73]. Another topic area
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in which software engineers have applied SBO algorithms is software management, in

specific areas such as project planning, or cost/effort estimation [74, 75, 76]. This is

an important area not only in software development but in almost every sphere. Every

project has a finite amount of resources, a deadline, personnel to be placed, and so on.

Software projects are not different, and these resources require to be distributed and

correctly used in order to obtain the most benefit out of them [77, 78].

Besides these two vital aspects of the software life cycle, according to the literature,

[2, 3, 36, 79], software design and re-design assisted by search algorithms have gradually

gained special attention in the past two decades, despite the latter is also visualized

as a maintenance problem. Three of the most popular problems in this field solved

by search techniques are the software architecture design problem, the software quality

assessment, and the SMCP. Depending on the moment and the state of the software

system, it can be said that SMCP can be both a design and a re-design problem.

2.4.1 Software Modularization Quality

Jaccard coefficient

In 2003 Saeed et. al [80] made a review on software clustering techniques and combined

algorithms used in pure software engineering. They mentioned that the main property

that SE algorithms looked at in the modularization of a system was the correlation

between the different clusters. The authors mentioned various metrics such as the

euclidean distance, the Sorensen-Dice coefficient, the Jaccard coefficient, and the Cam-

berra metrics. However, they said that the Jaccard metric was the one that provided

the most suitable results. These coefficients can be obtained with equation 2.2; where,

given two entities ω1 and ω2, a represents all features present in both entities, b refers

to all the features present in ω1 but not in ω2, and c refers to the opposite of b. Finally,

for the evaluation to be completed, a fourth value d is needed to obtain. This value

represents the features absent in both entities ω1, and ω2 but present in other entities in

the same system. If this value is small enough then it can be omitted. However, if the

number of absent features is as large as a or b and c, then an equivalent metric might

be used, this equivalent metric is the pearson correlation coefficient ρ. The authors



28 2.4. Search-Based Software Engineering

exposed that ρ is equivalent to J(ω1, ω2) when defined as shown in equation 2.3.

J(ω1, ω2) = a/(a+ b+ c) (2.2)

ρ =
ad− bc√

(a+ b)(c+ d)(a+ c)(b+ d)
(2.3)

Even though these metrics prove to be useful, the complexity of the evaluation of

the correlation/distance between clusters grows exponentially as the complexity of the

system does so. Nowadays software systems present an enormous number of modules

and dependencies, which makes them unsuitable to use an algorithm with just such

metrics.

BasicMQ

Compared to other fields of software engineering, search-based software clustering is a

relatively new research subject, first formulated by Mancoridis et. al between 1998 [37]

and 1999 [9]. The authors mentioned that, as seen in section 2.1.1, the modularization

level of a system is given by the relationships between each component inside the same

cluster and the association degree each cluster has with the rest. Nonetheless, the

problem was to define an equation to assign a value to the quality of the relationships

between the artifacts of a system. Mancoridis et al. [37] proposed a way to measure

the cohesion and the coupling of an MDG. They interpreted the relationships of the

modules inside a single cluster as the Intra-connectivity value given by equation 2.4,

and the coupling between two clusters as the Inter-connectivity of their relationships

shown by equation 2.5

Ai =
µi

N2
i

(2.4)

Ei,j =

0 if i = j

εi,j
2NiNj

if i ̸= j
(2.5)

where Ni are the number of modules in the cluster i, µi represents the number of
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the intra-edge dependencies (i.e., the number of directed edges between the modules

in the graph), the maximum number of intra-edge dependencies is given by N2
i , and

εi,j represents the number of dependencies between clusters i and j. With these two

equations, Mancoridis defined the value of the modularization quality as the result of

adding the values of each cluster’s intra-connectivity and the total amount of inter-

connectivity in the partition. Formally the value of the Modularization Quality (MQ):

Given a Module Dependency Graph divided into k clusters, the Modularization Quality

is evaluated through equation 2.6.

MQ =


1
k

∑k
i=1 Ai − 1

k(k−1)
2

∑k
i,j=1Ei,j if k > 1

A1 if k = 1

(2.6)

This quality measurement shall adopt values between −1 and 1, where a partition

with no intra-conectivity in its clusters shall have a quality value of −1 and one with-

out inter-connectivity relationships will adopt an MQ value of 1. Neither of these two

is desirable. This initial value of modularization quality will later be known as Ba-

sicMQ. This was the first approach proposed to evaluate the modularization degree as

an objective function to be optimized with search algorithms. Mancoridis tested this

proposal on different search algorithms and the results showed to be promising. This

modularization function was also used by Doval et al. [8] as the fitness function of their

implementation of a genetic algorithm for clustering software source code.

TurboMQ

In 2002 Mitchell [10] designed an improvement to BasicMQ that dealt with two main

problems, the lack of support for weighted graphs that BasicMQ has, and the compu-

tational complexity of the evaluation process. This new proposal was named TurboMQ.

Instead of dealing with the modularization value as a whole, this new proposal assigned

an individual value for each cluster called cluster factor. According to Mitchell, the

cluster factor CFi of each cluster i is given by a normalized value obtained from the

intra- and inter-cluster relationships. So, given an MDG partitioned into k clusters, the

modularization quality TurboMQ is obtained with equations 2.7 and 2.8. In this case,
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instead of dealing with the total amount of relationships, it evaluates each cluster indi-

vidually, with µi for the relationships inside the cluster i and εi,j, εj,i for the coupling

value between the clusters i and j respectively.

TurboMQ =
k∑

i=1

CFi (2.7)

CFi =


0 µi = 0

2µi

2µi+
k∑

j=1

j ̸=i

(εi,j+εj,i)

otherwise (2.8)

Mitchell proposed a third modularization quality function called Incremental Tur-

boMQ, which relies on the similarity between two partitions. This means that every

new solution obtained from a single partition will be evaluated in terms of the clus-

ters that were changed and will keep the cluster factors of those that did not change.

Mitchell proposed a complete search algorithm only to be used with this fitness func-

tion. However, this third objective function is rather uncommon to be found in the

literature.

Structural similarity

Although BasicMQ and TurboMQ have been the most popular used in recent years,

there are other metrics based on the similarity of the clusters in an MDG partition. One

of the most recent is a metric proposed by Huang and Liu [81]. The authors designed

a metric that considered certain aspects that, according to the authors, Mancoridis

omitted when he designed the BasicMQ. These aspects are the presence of global mod-

ules and the unidirectionality of the directed edges between the clusters. The first one

refers to those modules that are called from two different clusters and, hence, should

be grouped in a separate cluster alongside the rest of the global modules. The second

aspect mentioned by Huang and Liu is a direct property of the modularity of the soft-

ware design, which stipulates that the data should be protected and shared in a single

direction as much as possible for the software to be maintainable and meet the trace-

ability attributes [1, 26, 63]. The authors formulated the similarity metric based on the
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structural similarity coefficient proposed by Huang et. al [81] as a quality function in

community detection in network design. This metric was also used by Chenlong et. al

[82] in their genetic algorithm for discovering communities in signed social networks.

This metric considers a network as a weighted graph G = (V,E,w) which is similar to a

module dependency graph in software clustering. Huang and Liu adapted this similarity

metric in order to consider the weights and responsibilities implied in a module depen-

dency graph. The first step is to identify the global modules. Formally, Huang and Liu

defined this metric as follows: Given a modular dependency graph MDG = (V,E) and

a partition C = (C1, C2, . . . , Cm), a module v ∈ Ck, k = 1, 2, . . . ,m is called a global

module if it is called by modules in two different clusters appear from the one v belongs

to, and v calls no other module. According to the authors, this means that a global

module v must satisfy the following conditions:

∃u ∈ Cl, w ∈ Cj, l ̸= j ̸= k, | (−→u, v) ∈ E, (−−→w, v) ∈ E

¬∃x ∈ V | (−→v, x) ∈ E

Once the global modules are identified, these are allocated in a new cluster called Cglobal

and their relationships are removed from the original partition. So, a new partition

C ′ = (C ′
1, C

′
2, . . . , C

′
m) is generated. It is then that the similarity value between two

clusters u and v is obtained with equation 2.9 and 2.10. Where Γin(u) refers to the set

of all edges that are inside the same cluster and Γout(u) represents all the edges that

come out of the u to the rest of clusters.

s(u, v) =
∑

x∈Γin(u)∩Γin(v) w(−→u,x)·w(−→v,x)+
∑

x∈Γin(u)∩Γin(v) w(−→x,u)·w(−→x,v)√∑
x∈Γin(u)∪Γout(u)

(w(−→u,x)+w(−→x,u))
2
·
√∑

x∈Γin(v)∪Γout(v)
(w(−→v,x)+w(−→x,v))

2
(2.9)

w(−→u, x) · w(−→v, x) =

> 0 if −→u, x,−→v, x ∈ E

0 otherwise
(2.10)

Finally, this similarity value is calculated for every cluster and for the whole parti-

tion. These similarity values are normalized and the Tightness value is calculated. To
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obtain the modularization quality value as the sum of every Tightness value.

2.4.2 Software clustering algorithms

Mancoriodis initially proposed three different algorithms to deal with the SMCP: (1)

An exhaustive search algorithm, (2) A Hill Climbing algorithm and (3) A Simulated

Annealing algorithm. He also formulated the initial perspective of a Genetic Algorithm.

However it was later, Doval [8] and Mitchell [10] who propose the genetic approach for

solving the SMCP as a complement of this series of search algorithms proposed as part

of a software tool called Bunch, which shall be described later on section 2.4.5.

Exhaustive search

The first search technique applied to SMCP was an exhaustive search algorithm [10, 37].

As the name indicates, it evaluates all potential solutions within the whole search space.

This can be effective for small systems. Nowadays this technique is not suitable for the

complexity of the systems. Even Mitchel himself mentioned that this technique is only

useful for small systems since it has to search over a vast amount of solutions. In

the words of Mitchell himself, this algorithm has been used mostly for debugging and

testing the accuracy of the solutions found by other search algorithms.

Hill climbing

Another of the first proposed algorithms to solve the SMCP is the Hill Climbing Ap-

proach (HCA). It is a local search algorithm that starts with an arbitrary solution, in

this case, a random partition of an MDG, and then attempts to find a better solution in

a neighborhood that contains a threshold of a minimum number of different partitions.

Each neighbor changes significantly from the current solution and the algorithm should

evaluate all the MQ values in order to find the best of that neighborhood. If the change

produces a better solution, the new solution is as well changed incrementally until no

further improvements can be found [9]. There are two main variants of the traditional

HCA applied to SMCP, which are the Steepest Ascent Hill Climbing (SAHC) and the

Next Ascent Hill-Climbing (NAHC). The first one progressively creates a new partition
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based on a neighborhood created with a maximal neighboring partition (MNP) of the

current partition. This MNP is created by evaluating all partitions and selecting the

one with the highest MQ. On the other hand, the NAHC attempts to find a better

neighboring partition by randomly evaluating through the partitions formed from the

current one until it finds one with a larger MQ [83, 84]. A traditional implementation

of the HC algorithm applied to SMCP can be seen in algorithm 2.

Algorithm 2 Hill-Climbing algorithm applied to SMCP
Require: MDG = (M,R), Ps

Output: The best solution found θ
1: P ← {P1, P2, . . . , PPs|Pη = rndm(MDG)}
2: θ ← ∅
3: for each pi ∈ P do
4: let β be the neighborhood of pi
5: for each Ci in β do
6: repeat
7: Ci+1 ← rndm(N(Ci))
8: if MQ(Ci+1) > MQ(Ci) then
9: currentBest← Ci+1

10: until No better neighbor partition is found
11: if MQ(currentBest) > MQ(θ) then
12: θ ← currentBest

Simulated Annealing

A compliment to the hill climbing approach proposed by Mancoridis was the Simulated

Annealing (SA). This algorithm emulates the physical process of metallurgy in which

an object’s temperature is decreased while molding it until it reaches a desired state.

The SA algorithm starts from an initial solution and improves it iteratively during

the annealing process. This process ios based on a neighborhood of solutions and the

algorithm selects the best one and compares its MQ to the current best solution. There

are some factors that affect the selection of a potential solution. First the temperature

of the system. In this case the value of the temperature t indicates the probability of

selecting the best solution once the neighborhood has been evaluated. The temperature

of the system is initially set t0 and decreases with a constant ratio α as the algorithm
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iterates until it reaches the froze temperature tf [10, 37, 85]. Algorithm 3 shows a

classic implementation of SA.

Algorithm 3 SA algorithm applied to SMCP
Require: MDG = (M,R),cooling ratio α, initial temperature t0, freeze temperature

tf , constant r, fitness function f
Output: The best solution found θ
1: θi ← rndm(MDG)
2: t← t0
3: while t > tf do
4: for ri ← 1, r do
5: θi+q ← variate(θi)
6: if MQ(θi+1) > MQ(θi) then
7: θi ← θi+1

8: else
9: δ ← ∆MQ(θi, θi+1)

10: p← U(0, 1) ▷ Uniformly Random probability
11: if p < e−δ/t then
12: θi ← θi+1

13: t← α ∗ t ▷ Adjust system temperature
14: θ ← θi

Swarm intelligence algorithms

In SBSE there is a special type of search algorithm that has been gaining popular-

ity for solving optimization problems. These are the Swarm intelligence optimization

algorithms. These algorithms base their solving on emulating the social behavior of

simple organisms where some kind of knowledge emerges [86]. This can be explained

with one of the most popular swarm optimization algorithms, the Ant Colony Opti-

mization, a single ant is usually not considered as intelligent, but a whole colony yes.

Through experience and proper communication, a whole colony can simulate intelligent

behavior. There have been multiple implementations of swarm optimization algorithms

applied to the clustering of software. Some of them are the firefly approach proposed

by Mamaghani and Hajizadeh [87], the grey wolf algorithm of Kumar et.al [88], the

artificial bee colony approaches of Chhabra et.al, and Amarjeet [89, 90, 91], and the

PSO implementation of Bishnoi and Singh, and Prajapati [92, 93, 94]. Each algorithm
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has its own functioning, however, they all share a similar behavior based on exploring

the search space with several agents and communicating the best solution found by

them, until a desired condition is reached.

2.4.3 Clustering with genetic algorithms

The Genetic Algorithm is, without doubt, one of the most popular approaches given

to the SMCP. There is an ongoing number of algorithms proposed in the literature

[4, 8, 10, 12, 15, 16, 17, 81, 95, 95, 96, 97, 98, 99, 100, 101, 102, 103]. In the following

lines some of the encodings and the operators that have been used in the different GAs

proposed shall be described. One particular aspect that all of them share in common

is that most of them follow the model proposed by Mitchell and Mancoridis, it is until

recent years that different operators or encodings have been proposed.

Encodings

In the literature there can be found that the most used encoding implements a list of

discrete integer values generally called Simple-Encoding [4, 8, 10, 12, 97, 100, 104]. In

this representation, each chromosome is a list of natural numbers in which each position

represents a module of the system, and the value is the label of the cluster assigned

to that position. For instance, a chromosome with 3 clusters and 6 modules would be

represented as follows:

S = 2, 2, 4, 3, 4, 2

This would be translated as three clusters with labels 2, 3, and 4, and each cluster

would be represented as follows:

C2 = {1, 2, 6}, C3 = {4}, C4 = {3, 5}

In 2005 Parsa and Bushehrian [11] proposed an encoding based on permutations, it

keeps the representation as a list of integers, but in this case the semantics of the

encoding is different. In this encoding, each chromosome C is a permutation of N

integers, where the ith gene of the chromosome rather than representing a partition
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assignment, it holds a value p where 1 <= p <= N . In order to assign the modules

to a partition the values of the chromosome are evaluated against their position in the

chromosome. If the value C(i) is higher or equal to i then a new cluster is created

and assigned the ith module. If the later condition is not satisfied then the module i

is assigned to the same cluster as the module with the same identifier as C(i). This

encoding can be represented in the following example:

C = 1, 5, 6, 3, 2, 4

This would be decoded into three clusters. These shall group the following modules:

C1 = {1}, C2 = {2, 5}, C3 = {3, 4, 6}

Another encoding scheme was proposed by Praditwong [101]. The author proposes

a grouping representation, in which each chromosome is defined as a list of variable

lengths in which each module is grouped according to the partition assigned to it. For

example, a candidate solution shall be represented as a list with three groups:

L1 = {{1, 3, 5}, {2, 4}, {6}}

This representation shows that the first cluster contains modules 1,3, and 5; modules

2 and 4 are assigned to cluster 2 and the remaining sixth module is grouped within

cluster 3. This representation describes the distribution of the partitions with no or

little necessity for decoding and repairing.

Tarchetti et al. [16] proposed an encoding based on binary strings, in which each

gene i is a binary number representing the number of clusters associated with the ith

module. According to the authors, this reduces the memory space required to allocate

each chromosome, since each element of the array occupies only
⌈
log2

|V |−1
2

⌉
bits of the

binary string, where V is the number of modules in the system.

There are other encoding schemes such as the vector-based encoding [15, 96, 98, 105],

which represent a solution as a sequence of operations listed in a N−dimensional vector.

However, these encoding schemes can only be used when there is a previously approved
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modularization, since they are used for re-modularization algorithms. Nonetheless, in

this thesis, only the search algorithms used for unsupervised clustering are considered.

Operators

Selection mechanisms According to literature, most authors have an inclination

for roulette, tournament, or Linear-Ranking [4, 8, 10, 11, 97, 98, 101, 104] as selection

mechanisms. However, there are some cases where, given the multi-objective nature

of the proposed algorithms only a single value is not enough to select the parents,

in which PESA’s mechanism[106], or an NSGA-II-based [14] selection mechanisms are

used [12, 16].

Crossover The crossover or recombination operators are directly related to the en-

coding used for the solutions. They have the responsibility of exploiting the search

space based on the exchange of characteristics between the selected parents. Since

each representation has its own range of operators. For example, when using Simple-

Encoding or a discrete representation in general a one-point recombination operator

is used [4, 8, 10, 11, 12, 16, 97, 104]. When it comes to a grouping representation,

Praditwong [101] proposed a crossover operator specially designed for grouping repre-

sentations which is similar to a 2-point crossover. Here, a subsection of each parent is

copied to the offspring in the same order (Parent1 to Child1 and Parent2 to Child2), the

rest is exchanged from each parent to the opposite offspring. Finally, the chromosomes

are repaired by deleting repeated elements.

Mutation In the literature, there is a large number of operators used for mutating

the offspring generated in the crossover process, since the mutation operators have the

purpose of exploring new regions of the search space. Used operators include: simple

mutation [11, 97], uniform mutation[4, 8, 10], swaping [99], min-cut and neighbourhood-

based operators [98], or even binary flip [16]. As can be seen, in terms of mutation, in

the literature authors do not have a particular preference for a single operator. However,

a special case is the GGA proposed by Praditwong [101], since, the author mentions

that for this particular case, a mutation operator was not considered. The author’s
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work shows that, empirically, the crossover operation already manages to explore and

exploit the search space.

2.4.4 Fitness in genetic algorithms applied to the SMCP

One of the main problems when designing a search algorithm in Software Engineering

is determining the fitness value and the function to be optimized. Recently Gupta

et. al [32] performed a review on the fitness functions that have been used in genetic

algorithms applied to the SMCP. Evidently, the most common value to be taken as the

fitness function is the modular quality, either the BasicMQ or the TurboMQ proposed

by Mitchell and Mancoridis. Nonetheless, Candela et al. [107] mentioned that just

focusing on coupling and cohesion when evaluating the modularization quality of a

partition is not enough. Indeed these are the two determining factors that affect the

fitness of a solution. However, over the years there have been proposals that enlighten

the need for other factors, such as the number of clusters, the number of modules

inside each cluster, and so on. That is why the following section will describe the main

approaches given to the clustering problem.

Clustering approaches

For many years the objective function and the modularity evaluation of a system were

taken as synonyms. However, through the years this has been changing. Morsali and

Keyvanpour [18] exposed that in recent years there have been three main approaches to

solve the SMCP, these are, the Mono-Objective Software Module Clustering Problem

(MoSMCP), the Multi-Objective Software Module Clustering Problem (MuSMCP) and

the Many-Objective Software Module Clustering Problem (MaSMCP) approaches. The

difference between these approaches, likewise in other NP-hard problems, is the number

of criteria that the algorithm deals with.

Regarding the MoSMCP there are two sub-approaches that can be considered: the

single-factor based and the multiple-factor based approach [32]. The mono-objective

single-factor fitness function takes only the modularization quality usually obtained

with equations 2.6, 2.7, or 2.9. However, there have been different proposals applied to
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the single-objective multiple-factor approach, which usually are based on ordered sums

of values associated with different objectives in the modularization evaluation. A good

example of this approach is the proposal of Harman et. al [108], which evaluates three

aspects: the cohesion of the system, the coupling unfitness, and the granularity of the

clusters; all of these have equal weights associated in a single function.

Coh(m) =

1 N(m) = 1

A(m)
N (m)·(N (m)−1)

otherwise
(2.11)

Cohesion(S) =

∑
m∈S C(m)

K
(2.12)

According to Harman, the cohesion of a single cluster is given by equation 2.11,

where A(m) represents the number of dependencies that come from other modules into

the module m, and N (m) represents the number of relationships that a module m has

with the rest of modules. The cohesion of the whole system is a sum of the individual

levels of cohesion as shown in equation 2.12. Harman defines coupling as a negative

value since the similarity between the clusters should be minimal, and is given by the

number of dependencies in a single cluster divided by the total possible number for the

network.

Another example of a fitness function that evaluates more aspects than just the

modularization quality is the one proposed by Prajapati and Chhabra [93], the authors

implemented a simplified version of the BasicMQ equation but taking into consideration

the number of modules and the total number of clusters that the system was divided

into. This can be seen in equation 2.13, where MDintra and MDinter represent the total

amount of dependencies inside each cluster and the total relationships between clusters

respectively; NC and NM are the number of clusters and the total amount of modules

to divide respectively; finally {α, β, γ} ∈ [0, 1] are constant relative importance values.

fitness =

(
MDintra

MDintra +MDinter

)α

∗
(

1

NC

)β

∗
(
NC

NM

)γ

(2.13)

In the literature, the Multi-Objective approach has been recently implemented,

since software systems often need to be optimized in several aspects that affect their
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modularity. Within this category there are two main approaches to be found: the

Maximizing Cluster Approach (MCA) and the Equal Sized Cluster Approach (ECA)

[104]. Both aim to solve the problem by maximizing the MQ value. However, they have

certain differences in the rest of the criteria to be considered. Both are multi-objective

approaches that have the main goal of evaluating the quality of the modularization to

get the maximum cohesion with the minimal coupling possible [10, p. 77]. MCA has

the following objectives:

1. Maximize MQ

2. Maximize cohesion

3. Minimize coupling

4. Maximize the number of clusters

5. Minimize the number of isolated clusters

Cohesion and coupling, as well as the MQ function, evaluate the quality of the solution,

the first objective maintains the distance between the modules inside a single cluster is

maximum, the second one ensures that the similarity between different clusters is min-

imum. The third objective measures the relationship between the first two objectives

and ensures it remains optimal. The fourth objective avoids all the modules to gather

together in a single cluster but has the risk of creating isolated clusters, which means

that a single module is placed in a single cluster without dependencies with the rest of

the modules. The fifth objective is responsible for minimizing the number of isolated

clusters.

On the other hand, the ECA approach does not look for minimizing the number

of isolated clusters, at least not directly. Instead, it looks for reducing the difference

between the number of modules inside the biggest cluster with the number of modules

inside the smallest one. According to Praditwong [103], the number of isolated clusters

in an ECA approach to be minimum is the outcome of satisfying the other objectives

of the approach:

1. Maximize MQ
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2. Maximize cohesion

3. Minimize coupling

4. Maximize the number of clusters

5. Minimize the difference between the biggest cluster and the smallest cluster

There is another multi-objective approach proposed by Sun et. al [109], in which

the authors, apart from evaluating the modularization quality through TurboMQ, also

evaluate the number of reversed edges. This last value helps define the unidirectionally

of the cluster, just as Huang et al mentioned previously in their research [81]. They

mention that this value is obtained with equation 2.14. Where L (Vi, Vj) represent the

inter-edge number between cluster i and j, and L(Vi, Vi) means the inter-edge number

between the cluster i and the rest of clusters; m denotes the total number of clusters.

fdir =
1

m+ 1

m∑
i=1

min
(
L (Vi, Vj) , L(Vi, Vi)

)
(2.14)

2.4.5 Software clustering tools

There have been some implementations of the search algorithms described above, these

implementations seek to give a moderate interface in order for the users to modularize

a system in fewer steps. Three of these tools will be described here, one of them is

the first tool ever to be proposed that implemented a genetic algorithm for clustering

software systems. This tool is called Bunch (1998). It is worth mentioning that Bunch

is still one of the most widely used tool for clustering and for comparing the results

obtained from other implementations. The second clustering tool to be compared with

the proposal documented here is called Draco Clustering Tool (DCT). In the literature,

at the moment when this research is made, this is the most recent tool that is publicly

available for clustering software systems that implements a genetic algorithm. The third

and last tool is one that implements a deterministic algorithm and aims to find better

solutions than those that implement a stochastic search. It is called Fast Clustering

Algorithm (FCA). This clustering tool, as far as this research gets, is a recently deployed
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system that does not implements a genetic algorithm, thus the results obtained from

its execution are suitable to be compared with the ones obtained from the proposal of

this document given its stochastic nature.

The three tools were obtained and tested with the datasets gathered for this research.

The proposal presented in this thesis shall be compared with the results obtained from

the tool described in the following lines. Although the evolution of the solutions cannot

be tracked without altering the source code of the tools, the final results can be presented

in terms of the values measured in this work. This validates the ground truth generated

by the tools mentioned. An important observation is that the documentation found for

two of these tools does not mention a mechanism to deal with omnipresent modules.

Bunch

Designed initially by Mancoridis et. al [9, 37] alongside the Drexel University Soft-

ware Engineering Research Group 2, Bunch Clustering Tool was the first GUI-guided 3

software tool created for clustering. Initially, it implemented an exhaustive search al-

gorithm, a hill-climbing approach, and a simulated annealing mechanism. Later, Doval

et. al [8] added to the algorithms portfolio the implementation of a Genetic Algorithm.

This tool was initially tested with 17 different systems with a variety of modules that

went from 13 nodes in the MDG extracted to 153 modules. The results were promising

at the time. The tool was improved over the years, new fitness functions like TurboMQ

[10] were added, and other variations of the HC algorithm as well. The authors initially

mentioned that the presence of omnipresent modules is one of the limitations to Bunch’s

automatic clustering capability. Later, they added a functionality to isolate these mod-

ules in order to make the clustering process easier but it reduces the modularization

quality value that can be obtained from a partition.

2https://drexel.edu/cci/research/research-areas/systems-and-software-engineering/
3A Graphical User Interface is the connection between the machine and the final user through visual

elements such as buttons, displays, text, and instructions

https://drexel.edu/cci/research/research-areas/systems-and-software-engineering/
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Draco Clustering Tool

The Draco Clustering Tool (DCT) [16] is a newly designed clustering tool based on a

multi-objective clustering algorithm that implemented an equal-sized clusters approach

(ECA) using the modularization quality evaluated by TurboMQ. They used the val-

ues for calibrating the parameters of the algorithm that were proposed by Candela et.

al [107] years before in the genetic algorithm they proposed. Given a software MDG

MDG = (V,E) with n = |V |, the Population Size (PS), Maximum Number of Genera-

tions (MG), Crossover Probability (CP), and Mutation Probability (MP) are described

as follows:

• PS =


2n if n ≤ 300

n if 300 < n ≤ 3, 000

n/2 if 3, 000 < n ≤ 10, 000

n/4 if n > 10, 000

• MG =


50n if n ≤ 300

20n if 300 < n ≤ 3, 000

5n if 3, 000 < n ≤ 10, 000

n if n > 10, 000

• CP =


0.8 if n ≤ 100

0.8 + 0.2(n− 100)/899 if 100 < n ≤ 1, 000

1 if n > 1, 000

• MP = 16
100

√
n

DCT implements the Non-dominated Sorting Genetic Algorithm (NSGA-II) in order

to perform the evolution of the population with a multi-objective approach. For further

details refer to the original paper and the algorithm’s definition in [14].

Fast Clustering Algorithm

The Fast Clustering Algorithm (FCA) proposed by Teymourian et. al [19] to cluster

large-scale systems. This method aims to maximize cohesion and minimize coupling

by using a matrix with neighboring scales, in which the values of the different related
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modules are shown when being neighbors inside the same cluster. After creating this

matrix, the values are normalized, since, according to the authors, when the number

of modules is large the total number of dependencies also grows. In order to attend to

this, the effect matrix is created, which normalizes the neighboring matrix and after

that, the nodes are ordered in a descendant way. The last n nodes are those with the

highest probability of belonging to another cluster if their effect value is below a certain

threshold.

To evaluate the modularization quality three formulas were used. The first one is

a modification of TurboMQ mentioned also by Mamaghani et. al [87]. The authors

mention that TurboMQ solves the two main problems related to BasicMQ which refer

to the management of weighted MDGs and the computational complexity of the evalu-

ation. This value is obtained with equation 2.15, here µi is the number of dependencies

inside the same cluster and εi,j is the number of dependencies between cluster i and j.

TurboMQ =
k∑

i=1

CFi

CFi =

 0 if µi = 0

2µi

2µi+
∑k

j=1(εi,j+εj,i)
otherwise

(2.15)

The second and third metrics do not affect directly the algorithm. Nonetheless,

they were used to evaluate the effectiveness of their proposal from the experts’ point

of view. The second metric used to evaluate the quality of the modularization was

the MoJoFM value, which is used to compare the generated clusters with those pre-

established by an expert. This metric can only be applied during a re-design activity in

the maintenance stage of the software life-cycle. The values are constrained between 0

and 100, the higher the value, the closest the distance between the clustering generated

by the computer and the expert opinion. The third and last metric is the cluster-to-

cluster coverage (C2C), which evaluates the accuracy at a component level between

an automatic-generated cluster and another considered as the objective to be reached

(ground-truth) 4.

Their proposal was tested with different datasets of multiple scales. Ten of them
4For more details about the definition and functioning of MoJoFM and C2C refer to [110, 111, 112]



Chapter 2. Theoretical Framework and Background 45

were open-source code projects which their corresponding MDG was generated using

software tools such as Understand5, or NDepend 6. Besides, they tested FCA with

more complex systems such as Firefox web browser and Chromium, as well as an Image

Segmentation tool (ITK).

5https://www.scitools.com/
6https://www.ndepend.com/

https://www.scitools.com/
https://www.ndepend.com/
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Hybrid-Encoded Genetic

Algorithm

The proposed genetic algorithm is called Hybrid Encoded Genetic Algorithm (HEGA),

as it is based on a hybrid representation of solutions formed by a binary string as well as

an integer vector; and the variation operators were selected based on the hybrid nature

of this encoding scheme. This shall be discussed in the following subsections.

3.1 Hybrid encoding scheme

The proposal of this thesis begins with the solution encoding. This representation is

formed by 2 parts, a binary string and a vector of integer values. The binary part of

the encoding represents the number associated to the modules in the graph, while the

integer part stands for the total number of modules inside each cluster. Each number

in the vector will take the first n modules in the binary string. For instance, take as an

example the graph shown in section 2.1.2 now seen in Figure 3.1. An encoded solution

will take the numbers of the modules {x|x ∈ [1, 8]} and translate them into a binary

string, the encoding process must make sure that the bits used for representing the first

part of the scheme use the minimum number of bits possible. In this case, the highest

number associated with a module is 8 whose binary value is 1000. The binary string

length is four, meaning that the numbers assigned to the modules will be represented

with 4 bits.

46
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Figure 3.1: MDG example

Figure 3.2: Encoding example for MDG

The algorithm must ensure that the values inside the vector sum exactly the number

of modules in the graph; no more and no less. If any of these constraints fail a repairing

process shall be needed. This is represented in Figure 3.2.

3.1.1 Solution decoding

For the solution decoding, the inverse process shall be executed, as can be seen in Figure

3.3, the binary part is decoded by separate. The algorithm should know the length of

the highest number of identification of the modules. This can be taken by summing

up the values in the integer vector since the modules are named progressively from 1

to n with n being the last module to be counted. Once having the maximum value

and, thus, the m bits necessary to represent it, then the binary string is divided into k

parts, each of length m. After that the binary representation is translated into a string

of numbers. Finally, with the values inside the vector the k numbers are grouped and

the partition is obtained as can be seen in Figure 3.4.
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Figure 3.3: Decoding process for an encoded solution

Figure 3.4: Decoded partition for the MDG

3.2 Fitness function

The fitness function is based on the ECA multiobjective approach but integrated into

a single-objective multi-factor fitness function. As seen in section 2.4.4, ECA approach

aims to optimize the modularization quality, as well as the number of clusters, the

cohesion, the coupling, and reduce as much as possible the difference between the

biggest cluster and the smallest one. That is why in the first part of the function

the TurboMQ value is evaluated, then the number of clusters is evaluated in terms of

the total number of modules in the graph; finally, the difference between the biggest

and the smallest cluster is taken as a negative value since the algorithm is trying to

minimize this part. A control value named θ is implemented. This value, obtained

empirically, regulates the fitness score of each solution to focus the importance level

in the modularization while maintaining the effects of the other factors whithin the

function. The fitness value can be obtained by Equations 3.1 – 3.4, where:

• nclus represents the number of clusters in the current partition

• ndep represents the total number of modules in the system
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• |clusmax| and |clusmin| represent the size of the biggest and the smallest cluster

respectively

f(mdg) = TurboMQ(mdg)θ +

(
1− θ

2

)
(NC −∆clus) (3.1)

NC =
nclus

ndep

(3.2)

∆clus =
|clusmax| − |clusmin|

ndep

(3.3)

θ =


1−

(
1

log2(ndep)

)2

if ndep < 10000

0.9 otherwise

(3.4)

3.3 Variation operators

3.3.1 Parent selection

In section 2.3.2 two of the most commonly used selection mechanisms were described.

HEGA implements the deterministic binary tournament selection for choosing the par-

ents that are more likely to generate better solutions for the next generation. The reason

behind this decision is that the characteristics of the solutions that have a higher fitness

value, such as the number of clusters and the distribution of modules inside those clus-

ters, are more likely to be present in solutions with a higher potential than in those with

a low MQ value. A deterministic tournament always chooses the best from the n solu-

tions selected. In order to enforce the search in a more efficient area, the best solutions

should be selected. Algorithm 4 shows the implementation of the binary tournament

used in HEGA.
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Algorithm 4 Binary Deterministic Tournament Selection
Require: Population Pop
Output: A list Parentpool with the best potential solutions for crossover
1: Parentpool
2: while size(Parentpool) < size(Pop) do
3: Randomly choose 2 elements from the population
4: α← the element with the highest fitness value
5: Parentpool ← Parentpool

⋃
{α} ▷ Add the element to the parent list

3.3.2 Crossover operators

The central part of any genetic algorithm is the information exchange to create new

individuals. HEGA is no different in that sense, for the recombination a single con-

ventional operator could not be used due to the hybrid nature of the encoding of the

solutions. For this reason, two crossover operators were used; one for the binary string

and another for the integer vector.

Binary Multivariate Crossover

For the binary string, the Multivariate Crossover Operator (MC) was selected, this

operator divides the parent string into n substrings. Then a random value γ is selected

for each substring. For each substring where the condition γ < Pc is met, a 1-Point

crossover mechanism is implemented, otherwise, the substrings are copied to the off-

spring without alterations. In HEGA, a modification to this operator is implemented,

since the binary string represents consecutive numbers, the size of the substrings is the

same, and the 1-Point crossover was replaced by an exchange of the full substring. This

means that if γ < Pc then the substring from the first parent is passed to the second

child otherwise it is copied into the first child.

1-Point crossover

The integer vector was also considered for the recombination, for this part of the so-

lution a simple 1-Point crossover operator was used. This is one of the most popular

mechanisms used in genetic algorithms. It consists in fragmenting the parents in a

single random point and combining the information at that point into the offspring.
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Given two parents α1 and α2, the first step to perform the 1-Point crossover is to select

a random point pi in which 0 < i ≤ n where n is the last position in the selected parent.

Then the information of α1 is copied into the first child up to the selected position, then

the information in α2 from pi and on is copied into the same child. For generating a

second offspring this process is repeated but with the parents in exchanged order.

3.3.3 Repair mechanism

One of the most frecuent problems in the execution of the experiment was the presence

of invalid solutions. Either the binary string stored duplicated numbers or higher values

than the number of modules, or the values inside the vector sum to have more modules

than the ones originally placed in the graph. Due to this, it was necessary to implement

a repair mechanism when the mutation process was completed.

For the binary string, the values were translated into integer numbers and those

positions that stored repeated or outranged values were replaced with the missing values

in random order. This can be seen in Figure 3.5. For the vector, the number of the

highest cluster will be iteratively reduced by 1 until the number of modules equals the

total in the graph as shown in Figure 3.6.

Figure 3.5: Repair mechanism for the binary part

Figure 3.6: Repair mechanism for the integer vector part
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3.3.4 Mutation operator

The mutation operator used for this work is not a conventional one. A single conven-

tional operator alone could not help the algorithm to search for better solutions in the

search space. It was noticed during the experimentation that, with a single mutation

operator either for the integer vector or the binary string, the fitness values were not

improved. Even a mutation operator of each part of the representation used at the same

time did not improved considerably the results. Furthermore, it became increasingly

probable to obtain redundant solutions in the population. To solve this, a mutation

mechanism was implemented based on the FICABOO framework [39, 112]. This frame-

work was initially proposed by Zhihua and Tzerpos to be used as a complement to any

generic clustering algorithm once the process was complete. As mentioned in Section

2.1.2, it is advisable to deal with omnipresent modules in the clustering process rather

than removing them or creating a whole new cluster. Nonetheless, the recent liter-

ature shows that recently proposed algorithms either fail to provide a mechanism to

cluster omnipresent modules or removes them completely. The proposals that have a

mechanism suitable for omnipresent modules apply them after the clustering process

is complete. Therefore, it was decided to include an omnipresent module clustering

mechanism as part of the evolutionary process. The mutation mechanism proposed is

described below.

The first step is to extract the omnipresent values from the Module Dependency

Graph. The next step is to run the clustering algorithm selected. Finally, the om-

nipresent modules are reinserted in the resultant partition using the Orphan Adoption

Mechanism (OAM) [47]. This mechanism was proposed by Tzerpos and Holt in 1997 as

a clustering tool for inserting new modules into a system or reorganizing its structure.

An orphan is a newly introduced module that is yet to be classified into a cluster.

The orphan adoption algorithm evaluates the dependency between the different clusters

in a system and the modules to be inserted. Once this process is complete, the algorithm

places the new module in the cluster that depends more on it or vice versa. Tzerpos and

Holt determined that there are two possible processes in which the orphan adoption

mechanism can be applied. The first one is called incremental clustering, an orphan
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adoption applied to this type of module will insert it in an already existing cluster

avoiding diminishing the modularization quality. The second process to apply an orphan

adoption mechanism is when a structural change is needed in the system, either for a

newer version of the system or for redistributing the current one. This process will most

certainly need to move a module from one cluster to another one, similar to kidnapping

it from its parent subsystem, and hence making it an orphan The process of readopting

this kidnapped module into a new cluster is called corrective clustering.

HEGA implements a mutation mechanism that is based on FICABOO and the

Orphan adoption mechanism. Once the crossover process is finished and the offspring is

generated and correctly repaired, the mutation mechanism identifies the global modules

within the current MDG partition. These modules are identified according to the

definition proposed by Huang and Liu [81]. They say that a module m is considered

global if it has a dependency in at least two different clusters other than the one that m

belongs to, and either no module is called by m or m is not called by any other module.

These modules are obtained for each partition (each solution in the population).

Once the omnipresent modules are identified, the dependency to all the clusters

inside the partition is calculated by obtaining a dedication score which is a normalization

of the score proposed by Kobayashi et al [44] which evaluates the number of modules

inside the same cluster that depend on another module. This can be obtained with

Equation 3.5; where fanin(B) represents the number of incoming edges from cluster A

to module B, and ndep is the total number of modules inside the system.

D(A,B) =
fanin(B)

ndep

(3.5)

Once this value is obtained for all of the omnipresent modules detected, each one

should be inserted in the cluster that has the highest potential to improve the gen-

eral MQ value. This could be determined by evaluating the TurboMQ value obtained

from inserting each omnipresent module in each cluster. However, this process is com-

putationally expensive when a system is partitioned into a large number of clusters.

That is why it was determined that only the clusters with the highest dedication score

value obtained for each module would be used. Once these Γ clusters are selected, each
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module is evaluated and inserted in the cluster that increases the most the modulariza-

tion value. It can be the case that the general modularization quality is not improved

but rather diminished by this process, if that happens then the omnipresent module is

returned to its cluster of origin.

Finally, once all the omnipresent modules are evaluated and reinserted in the par-

tition a final MQ evaluation is made. If the value of the modularization of the new

partition is better than the original, then the mutation is performed; otherwise, the so-

lution is left unchanged in the population. This last part of the mechanism can lead to

the solution not being modified at all despite entering the mutation process. However,

this is only the case when the omnipresent modules are located already in the best pos-

sible cluster for the general MQ value. After some experiments were performed, it was

noticed that 75% of the individuals selected for mutation process were indeed changed

for a system that has 13 modules only, and it grows as the numbers of modules and

clusters increase. A further description on this particular testing is detailed in section

4.4. The last system that was tested with HEGA had almost 100 modules and 90%

of individuals selected for mutation were changed, which means that as the number of

modules increases so does the probability of requiring corrective clustering to obtain

better solutions. The mutation mechanism used can be seen in Algorithm 5.

3.4 Methodology

The parameters used for the algorithm are based on the ones used for Draco Clustering

Tool [16], and proposed in [111]. The population’s size and the stochastic behavior

of the algorithm are directly related to the size of the MDG. However, a modification

was made to improve the results obtained for this algorithm. The parameters were

calibrated empirically and later with iRACE. The values that showed the best results

were selected to be part of the algorithm and are presented in Figure 3.7. Where MG is

the maximum number of generations, PS the number of solutions per each generation,

CP the crossover probability, and MP the mutation probability.

In the first stage of the research, the experimentation was based on finding the most

suitable variation operators for the algorithm. Five different crossover operators for the
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Algorithm 5 Omnipresent modules corrective clustering algorithm
Require: A partitioned graph
Output: A new partition with omnipresent modules reorganized
1: Obtain MQ of the original partition
2: Extract the omnipresent and global modules of the partition and store them in a

pool GP
3: for each mod ∈ GP do
4: Calculate the dedication score DS with each cluster
5: Select the Γ clusters with the highest DS
6: for each γi ∈ Γ do
7: Calculate TurboMQ with and without mod ∈ γi
8: Calculate ∆MQ

9: Insert mod in the cluster with the highest ∆MQ

10: if No cluster increases the MQ value (All ∆’s are negative) then
11: Insert the module in the cluster of origin
12: Evaluate MQ′ of the resultant partition
13: if MQ′ > MQ then
14: The individual is replaced with the new partition
15: else
16: The new partition is rejected

binary part were tested alongside three different operators for the integer vector used.

The binary crossover was tested with: a) Count-Preserving Crosover (CPX), b) One

Point Crossover (1PX), c) Uniform Crossover (UX), d) Multivariate Crossover (MC) and

e) Random Respectful Crossover (RRC). These operators were taken from Umbarkar

and Seth [59]. The integer crossover process was tested with a) One Point Crossover,

b) Exchanging the integer vectors on to the offspring, and c) Reversing the order of

the values on to the offspring. To determine the best combination of operators, each

binary operator was tested with each integer operator. The algorithm was executed 31

times for each combination which means a total amount of 465 experiments. Initially,

the parameters were calibrated with different values obtained from [9, 19]. MG and

PS were tested with three different values each, CP and MP were tested with other 2

possibilities. Overall, a total amount of 4650 experiments were executed.

After experimenting with different combinations of the operators and values for the

parameters, the Multivariate Crossover and One Point Crossover operators were chosen

for the recombination of the binary string and the integer vector respectively. These
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MG =


50n n ≤ 300

20n 300 < n ≤ 3000

5n 3000 < n ≤ 10000

n n > 10000

PS =


2(n+ 1) x ≤ 50

n 50 < x ≤ 300

n/2 300 < x ≤ 1000

n/4 x > 1000

CP =


0.78 n ≤ 100

0.78 + 0.2(n− 100)/899 100 < n < 1000

1 otherwise

MP =
16

72 log2 (n)

Figure 3.7: Parameters determined for testing HEGA

were described in section 3.3.2.

For this research, three tools were used to generate the ground truth, Bunch [9],

Draco Clustering Tool (DCT) [16], and Fast Clustering Algorithm (FCA) [19]. The

first two are stochastic tools since both implement a genetic algorithm. On the other

hand, FCA is a deterministic tool, since it obtains the same solution for the same input.

This tool in particular is going to be used as a reference only, but the main comparison

and results shall be considered with Bunch and Draco. These tools have been tested

with a wide range of systems and have obtained good results. That is why they were

chosen to be compared with the results obtained by HEGA; Bunch as one of the initial

proposals for solving this problem, and Draco as one of the most recent tools.

The algorithm was coded in Python, using Anaconda environment and different

libraries to improve performance and cache managing. The algorithm was tested with

eight different systems (see Table 3.1), using their corresponding MDG. These were

taken from the repositories available for building the same tools that were used as

ground truth for HEGA. The systems have different number of modules and depen-

dencies. Also, the largest MDGs used have numerical values associated with each edge
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Name Nodes Dependencies
Compiler 13 32
Mtunis 20 57
Ispell 24 103
RCS 29 163
Bison 37 179
Icecast 60 650
Gnupg 88 601
Inn 90 624

Table 3.1: Systems used for testing HEGA

between the nodes of the graph. This refers to the relevance of the relationship between

two modules in the system. Finally, the experiments were executed on a personal com-

puter with an Intel®Core i7-10750H CPU, 2.60GHz frequency and 16GB Memory.
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Results and discussion

The experiments are performed for 31 executions of each stochastic algorithm to be

compared (Bunch, DCT and HEGA). Additionally, a comparison with the execution of

the FCA tool is documented as a reference with respect to a deterministic process. The

executions within the median of the fitness function are used to generate the convergence

plots (see Figs. 4.5 - 4.12 ). The fitness function and the values it is formed by, are

plotted independently, and the results of all algorithms are compared. The results are

shown below as follows: First the quality of the modularization obtained by HEGA is

compared with the other algorithms. Then, the secondary factors that were evaluated

within the fitness function (Nclus and ∆clus) are also analyzed. Later, the convergence

graphs are presented. Finally, some last analysis on the mutation process is explained.

4.1 MQ values comparison

The first and most important value to consider is the quality of the modularization that

is obtained after executing the clustering process. In this case, for each system in the

dataset the best result, the average modularization value and the standard deviation

are documented in Table 4.1. On the other hand, Figure 4.1 shows a more graphical

description of the behavior of the algorithm during its best execution. It can be noted

that HEGA obtains a better result compared to the other tools. It reaches either the

same result or a better one. The only exception to this rule in this experiment is

the system Bison. The latter is a constant in all the experiments performed. Table

58
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4.1 shows that both, the best result and the average behavior by HEGA were better

than Draco’s and Bunch’s. The results, as seen in the standard deviation, are close to

each other. This and the results obtained from the Kurskal-Wallis test, which shall be

discussed below, indicate that HEGA is a robust algorithm. And the approach leads

to significantly better solutions.

System Bunch DCT HEGA
Best MQ Avg Std Best MQ Avg Std Best MQ Avg Std

Compiler 1.5064 1.45037 0.024975 1.506494 1.371443 0.092085 1.506494 1.475749 0.030765
Mtunis 1.7548 1.22414 0.126371 2.286561 2.042981 0.162533 2.314461 2.219911 0.059808
Ispell 2.0320 1.34070 0.418088 2.267942 2.020409 0.145860 2.275870 2.127648 0.098751
RCS 1.7116 1.18121 0.079552 2.180971 1.933686 0.157196 2.199284 2.009264 0.120137
Bison 1.3256 1.19570 0.079552 2.56962 2.25499 0.155455 2.3198760 2.0964519 0.159823
Icecast 1.5655 1.06934 0.147194 2.448062 2.247255 0.130605 2.493417 2.1861290 0.185231
Gnupg 1.8964 1.32461 0.174920 4.166358 3.854349 0.377434 4.166358 3.915400 0.251278
Inn 2.5364 1.04359 0.090239 5.499570 3.873823 0.510533 5.505172 4.523417 0.140021

Table 4.1: Best results obtained in 31 executions of HEGA compared with 31 executions of
the two stochastic tools used: Bunch and Draco Clustering Tool

Compiler Mtunis Ispell RCS Bison Icecast Gnupg Inn
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

B
es

t
M

Q
va

lu
e

Bunch DCT HEGA

Figure 4.1: Best MQ values obtained by HEGA, Bunch and Draco (The higher, the better)

Now the Kurksal-Wallis and the Bonferroni post-hoc tests are applied to the re-

sults. This specific non-parametric tests were chosen beacuse three different samples of

results are to be compared. The Kruskal-Wallis test is performed with a significance
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level α = 0.05. Figure 4.2 shows that that there is a significant difference in the de-

pendent variable between the groups obtained from Bunch and HEGA. The confidence

intervals obtained for DCT and HEGA show that the groups obtained by DCT do not

have mean ranks significantly different from HEGA. However, more robustness in the

general performance of the algorithm can be seen in the behavior of HEGA compared to

DCT. The results of the statistical test indicate a competitive performance by HEGA

against other algorithms in the literature for clustering software systems, by obtaining

modularization quality values in a narrower range.

(a) Compiler (b) Mini Tunis (c) Ispell

(d) RCS (e) Bison (f) Icecast

(g) Gnupg (h) Inn

Figure 4.2: Comparison of the general behavior of HEGA, Draco and Bunch according to the
Kruskal-Wallis test after 31 executions of each algorithm

As part of the experiments, HEGA was evaluated against a deterministic algorithm,

in this case FCA [19]. The results are shown in table 4.2. The table shows the compar-

ison between the best result obtained by HEGA and the only result FCA gives. Due

to the stochastic nature of HEGA, it is not possible to evaluate the statistical differ-

ence between its results and the results obtained from FCA. Nonetheless, it can be



Chapter 4. Results and discussion 61

seen that HEGA presents competitive results when compared against a deterministic

process. Acording to the literature, FCA proposes a clustering process that only takes

into consideration whether there is a relation between the clusters or not. It does not

consider if there is a weight associated. HEGA does consider this feature and presents,

in some cases, better results than FCA.

System FCA HEGA
Compiler 1.494950 1.506494
Mtunis 2.45714 2.3144610
Ispell 2.043700 2.275870
RCS 1.953801 2.199284
Bison 2.49790 2.3198760
Icecast 1.791809 2.493417
Gnupg 3.126215 4.166358
Inn 5.81838 5.505172

Table 4.2: Best results obtained in 31 executions of HEGA compared with the stochastic tool:
Fast Clustering Algorithm
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Figure 4.3: Best MQ values obtained by HEGA compared to FCA (The higher, the better)
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4.2 Secondary factors comparison

As mentioned in Section 3.2, the solutions were evaluated with a single-objective multi-

factor fitness function. The quality of the modularization was already documented in

the previous section. The MQ Value has the highest importance, however, the number

of clusters and the ∆clus value are also relevant for the approach in which the algorithm

is inspired (ECA, see Section 2.4.4). It is worth mentioning that, even though HEGA is

not initially proposed as a Multi-Objective approach, it does considers multiple factors

to form a single objective function. That is why it becomes necessary to evaluate each

of these factors and compare them among the algorithms to observe their impact on

the behavior of the clustering process.

System Bunch DCT HEGA
clusmax clusmin ∆clus clusmax clusmin ∆clus clusmax clusmin ∆clus

Compiler 3.16 2 0.0893 4.13 1.97 0.16625 4.16 2.16 0.15384
Mtunis 13.32 5.10 0.41129 4.61 1.74 0.14354 4.45 2.35 0.10483
Ispell 13.42 1.45 0.49865 4.87 1.84 0.12634 4.90 2.03 0.11962
RCS 16.68 1.13 0.53615 4.97 1.65 0.1145 7.35 1.67 0.195773
Bison 16.68 1.13 0.42022 5.35 1.45 0.10549 6.04 2.23 0.10297
Icecast 27.94 1.03 0.44838 9.87 1.45 0.14032 10.23 2.45 0.12967
Gnupg 33.95 1.00 0.37445 6.58 1.06 0.06268 7.01 3.21 0.04318
Inn 36.25 1.06 0.39103 8.16 1.19 0.07741 9.22 3.08 0.06819

Table 4.3: Average size of the biggest cluster (clusmax), the smallest (clusmin) and their ∆
value after 31 executions of HEGA, Bunch and DCT.

System Bunch DCT HEGA
Compiler 4.84 4.48 4.16
Mtunis 3.35 5.21 5.84
Ispell 6.35 8.19 8.26
RCS 4.45 10.29 9.52
Bison 6.90 13.00 11.75
Icecast 16.74 16.10 18.27
Gnupg 14.10 29.16 29.48
Inn 15.85 30.19 31.25

Table 4.4: Average number of clusters obtained after 31 executions by HEGA, Bunch and
DCT

Table 4.3 shows the comparison of the average values of the difference between the
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biggest and the smallest cluster obtained with HEGA, Bunch and DCT. The results

show that in most cases HEGA presents a better distribution of the modules, as the

difference value ∆clus is smaller. Table 4.4 shows that the average number of clusters

is also better, in most cases, for HEGA. This behavior suggests that HEGA presents

a competing and solid algorithm for clustering software systems in a way that suits

good for maximizing the number of clusters and minimizing the difference between the

biggest and the smallest cluster. Finally, Figure 4.4 provides a graphical representation

of the average values obtained by each algorithm and shows the comparison among

them.

0 0.1 0.2 0.3 0.4 0.5

Compiler

Mtunis

Ispell

RCS

Bison

Icecast

Gnupg

Inn

Average ∆clus value

HEGA DCT Bunch

(a) Difference value ∆clus between the biggest
cluster and the smallest one (the lower the value,
the better the modularization)

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30 32.5

Compiler

Mtunis

Ispell

RCS

Bison

Icecast

Gnupg

Inn

Average cluster number

HEGA DCT Bunch

(b) Number of clusters obtained (the higher the
value, the better the modularization)

Figure 4.4: Average results of the secondary factors obtained after 31 executions by HEGA,
Draco and Bunch

4.3 Convergence analysis

One of the main parts of the analysis of any genetic algorithm is the behavior shown by

the convergence of the results. Figures 4.5 - 4.12 show two subfigures each. The first

subfigure shows the convergence of the execution in the median of the fitness value,

while the second one shows the behavior, during that same execution, of the factors
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(a) (b)

Figure 4.5: Convergence graph of the fitness value (a), and the factors that are evaluated in
the fitness function (b) refering to the median execution of HEGA for Compiler

(a) (b)

Figure 4.6: Convergence graph of the fitness value (a), and the factors that are evaluated in
the fitness function (b) refering to the median execution of HEGA for Mini Tunis

that compose the fitness function (see Section 3.2). The graphs point out that HEGA

has a similar behavior with all the systems. It is made clear that the fitness final score

improves as the values of the factors are modified. The variations in the fitness are the

result of the control value θ applied to the total sum (see Section 3.2).

There are some cases in which the variations of the factors are difficult to notice

since they happen in a relatively fast period of time amongst generations. In those

cases figures like Figure 4.8 provide a zoom effect on the interest areas where most of

the variations occur. The average convergence speed of HEGA shows that not only

the fitness value, but also the quality of the modularization is improved with small

variations in the number of clusters and the ∆clus value.
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(a) (b)

Figure 4.7: Convergence graph of the fitness value (a), and the factors that are evaluated in
the fitness function (b) refering to the median execution of HEGA for Ispell

(a) (b)

Figure 4.8: Convergence graph of the fitness value (a), and the factors that are evaluated in
the fitness function (b) refering to the median execution of HEGA for RCS

(a) (b)

Figure 4.9: Convergence graph of the fitness value (a), and the factors that are evaluated in
the fitness function (b) refering to the median execution of HEGA for Bison
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(a) (b)

Figure 4.10: Convergence graph of the fitness value (a), and the factors that are evaluated in
the fitness function (b) refering to the median execution of HEGA for Icecast

(a) (b)

Figure 4.11: Convergence graph of the fitness value (a), and the factors that are evaluated in
the fitness function (b) refering to the median execution of HEGA for Gnupg

(a) (b)

Figure 4.12: Convergence graph of the fitness value (a), and the factors that are evaluated in
the fitness function (b) refering to the median execution of HEGA for Inn
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4.4 Omnipresent modules corrective clustering algo-

rithm evaluation

One last experiment was performed in order to evaluate the robustness of HEGA. Due

to the unconventional nature of the proposed mutation operator (see Section 3.3.4), a

strict analysis was required since the main goal of the mutation process in a genetic

algorithm, once the offspring is selected, is to alter the information in the genes of the

solution. However, the proposed operator for the mutation process has the probability

of rejecting the mutated solution based on the evaluation made after the process. HEGA

was executed 31 times to evaluate the performance of the operator. The results shown

below refer to the average number of solutions mutated in each generation.

75.54%

24.46%

Mutated
Not mutated

(a) Compiler

76.09%

23.91%

Mutated
Not Mutated

(b) Mtunis

81.29%

18.71%

Mutated
Not Mutated

(c) Ispell

85.93%

14.07%

Mutated
Not Mutated

(d) RCS

85.55%

14.45%

Mutated
Not Mutated

(e) Bison

88.77%

11.23%

Mutated
Not Mutated

(f) Icecast

88.81%

11.19%

Mutated
Not Mutated

(g) Gnupg

90.83%

9.17%

Mutated
Not Mutated

(h) Inn

Figure 4.13: Average percentage of mutated offspring per generation, after 31 executions of
HEGA for each of the systems evaluated
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Figure 4.13 shows that there is a considerable percentage of the offspring that is not

mutated even if they are selected for the process. This percentage tends to decrease as

the size of the system (the number of modules to be grouped) increases. For example,

Figure 4.13(a) shows that, for the system compiler, almost 25% of the selected solutions

are not mutated, whilst for the case of Inn (Figure 4.13(h)) just over 9% of the selected

solutions is not altered. This leads the analysis of the experiments to conclude that,

for larger systems, the percentage of unaltered selected offspring will be irrelevant or

zero.
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Conclusions

In this thesis, the automatic clustering of software systems has been explored with a

genetic algorithm. The main goal established at the beginning of this document was to

propose a genetic algorithm that was capable of partitioning Module Dependency Graph

(MDG) in such a way that the resultant modularization quality could be improved

when compared with the values shown in the speciallized literature. It was documented

in Chapter 2 that genetic algorithms have been widely used for solving the Software

Module Clustering Problem (SMCP).

To solve the problem stated in Chapters 1 and 2, this document presented the design

of a Genetic Algorithm with a Single-Objective Multi-Factored fitness function which

evaluates the quality of the modularization alongside the number of clusters and the

difference between the biggest and the smallest cluster. These factors are similar to the

Multi-Objective approach given to the SMCP which evaluates an Equal-sized Cluster

approach. As shown in Chapter 2, modularity is a desired feature in any software

system. It refers to the distribution of the components of the constructed product. A

good distribution means that the system will be more understandable and, thus, it will

be easier to maintain. The problem appears when there is no available documentation

and, therefore, the distribution of the components cannot be known. It is necessary to

implement a clustering process to determine the architecture of the system based on

the relationships among the components of the system.

The proposed algorithm (HEGA) implemented a hybrid encoding of the solutions.

The encoding scheme is formed by a binary string which represents the id of every

69
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module in the system; and an integer vector that refers to the size of each cluster

formed with the numbers in the binary string. Therefore, it was necessary to use two

different operators for the crossover process: one for the the binary string and another

for the integer vector. HEGA also implemented a mutation operator based on the

evaluation of omnipresent modules and corrective clustering, which improved most of

the individuals selected for this process. As shown in Section 4.4, the risk of having

individuals selected for mutation and not modified gets diminished as the number of

clusters and modules grows.

HEGA was tested using eight different systems of different sizes. These systems are

part of the most commonly used datasets for testing software clustering tools. After

multiple executions of the algorithm proposed in this document, and based on the

analysis of the comparison with other clustering tools obtained from the literature, it

can be concluded that HEGA presents a similar behavior compared to Draco Clustering

Tool, and improved the results shown by Bunch tool. The proposed algorithm reaches

to more solid results, as documented in Chapter 4. The latter can be noticed in the

standard deviation obtained from the results of the executions. Also the values obtained

from the Kruskal-Wallis test show that the values obtained from the modularization

between HEGA and Bunch are significantly different. Also; when comparing HEGA

and Draco, although the results are not significantly different, their values tend to be

more robust, which gives a higher level of trust and more reliability towards HEGA.

As part of the evaluation of HEGA, another comparison was made. This time the

average execution of HEGA was compared to the behavior of a deterministic clustering

tool called Fast Clustering Algorithm (FCA). The results obtained showed that HEGA

presents an acceptable performance despite being a stochastic algorithm. There is

an important matter to consider, which refers to FCA not considering omnipresent

modules and weighted MDGs. This gives an advantage to HEGA over FCA. Finally,

it can be concluded that the hypothesis formulated at the beginning of this document

was accepted. HEGA is capable of finding good partitions of Modular Dependency

Graphs in such a way that the modules are equally distributed without significantly

diminishing the quality of the modularization.
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Future work

As further work on this research, more experiments and derived proposals can be im-

plemented. Firstly, an implementation of HEGA in a Multi-Objective scenario is pro-

posed. HEGA, despite having a Single-Objective approach, presents a competitive

behavior against MO algorithms such as Draco. Therefore, extending this algorithm

into a Multi-Objective approach should follow.

Another objective to be met as further work should be to apply HEGA to bigger

systems. Open-source software apps such as mozilla browser tend to be formed by a

large number of modules and, thus, can contribute to the evaluation of HEGA.

Finally, further variants of HEGA are encouraged to be implemented, with other

operators for crossover and mutation, as well as different selection mechanisms in order

to evaluate and improve the robustness and results obtained by the algorithm.
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