
UNIVERSIDAD VERACRUZANA
INSTITUTO DE INVESTIGACIONES EN INTELIGENCIA ARTIFICIAL

DOCTORAL THESIS

A Study on Metaheuristic Approaches

for Single- and Multi-Objective Bilevel

Optimization

Jesús-Adolfo Mej́ıa-de-Dios

supervised by

PhD. Efrén Mezura-Montes

October, 2022

Acknowledgments

First of all, I would like to thank my advisor Dr. Efrén Mezura-Montes for his

personal and professional support, without his guidance, it would not have been

possible to complete my research works.

I would like to express my gratitude to Roćıo S.G. for giving me the courage to

accomplish academic activities that I would not dare without her support. Thank

you for understanding me without asking, for supporting me without asking, and

for loving me as I love you.

I would like to thank my family for their constant moral support in these difficult

times.

I want to thank the reviewers of this document, who kindly reviewed and sug-

gested changes that helped improve this work.

I want to thank all my professors who helped me achieve this work.

This research work has been possible thanks to the support from CONACyT through

a scholarship to pursue my Ph.D. studies.

i

ii

Abstract

Bilevel Optimization (BO) is an emergent research area due to its important prop-

erty to model instances where two optimization problems are nested in a hier-

archical structure. That is, a BO problem is an optimization problem with an-

other optimization problem as a constraint. The problem used as the constraint

is known as the lower-level problem, whilst the main optimization task is at the

upper level. Moreover, the goal of the BO problem is governed by the upper-level

problem but considers the lower-level optimality as part of the constraints.

In BO, a feasible solution is obtained by optimal solutions at the lower-level

considering also the corresponding equality and inequality constraints. Thus, a

BO problem is solved when the upper-level finds an optimal and feasible solution

for the upper level.

Different variants of BO problems emerge when the number of conflicting

objective functions are considered at each level. For instance, if the upper or lower

contains a multi-objective problem, then a multi-objective bilevel optimization

task is obtained. On the other hand, a single-objective bilevel task is defined if

two single-objective problems are nested, being this last one of the most studied

so far.

Although different solution approaches have been proposed from classical to

metaheuristic methods, BO still requires studies to improve the current state-

iii

of-the-art. Those broadly include theoretical studies and efficient solution ap-

proaches. This thesis is used to address the following three studies, (1) proposing

a bilevel metaheuristic able to solve optimization problems (considering accuracy,

feasibility, and efficiency) at the upper level, (2) a study and solution proposal for

the automated parameter tuning problem as the bilevel task to show how con-

venient becomes the application of bilevel models, and (3) the application of

a novel representation of solution for multi-objective bilevel optimization. The

studies are evaluated through multiple experiments by performing comparative

studies against state-of-the-art methods and using statistical tests to discuss the

results.

iv

Contents

Abstract iii

1 Introduction 3

1.1 Problem Statement . 4

1.2 Research Hypothesis . 5

1.2.1 Hypothesis #1 . 5

1.2.2 Hypothesis #2 . 5

1.2.3 Hypothesis #3 . 5

1.3 General Objective . 6

1.4 Specific Objectives . 6

1.5 Contributions . 6

1.6 Thesis Structure . 7

1.7 Publications . 9

2 Bilevel Optimization 13

2.1 Problem Definition . 14

2.2 Optimistic and Pessimistic Positions 16

2.2.1 Optimistic Position . 17

2.2.2 Pessimistic Position . 17

v

Contents

2.3 Feasibility . 17

2.4 Optimality Conditions . 18

2.5 Pseudo-Feasibility in Evolutionary Computing for BO 20

2.5.1 Implication of Pseudo-feasibility in Evolutionary Computing

for BO . 23

2.5.2 Pseudo-feasible Solution Detection Mechanism 24

2.6 Multi-Objective Bilevel Optimization 26

2.6.1 Problem Definition . 27

2.6.2 Optimistic and Pessimistic Scenarios 30

2.7 Bilevel Optimization Test Problems 31

2.7.1 SMD Test Suite . 31

2.7.2 PMM Test Suite . 32

2.8 Conclusions of the Chapter . 32

3 Literature Review 35

3.1 Single-Objective Bilevel Optimization 35

3.1.1 Single-Level Reduction . 37

3.1.2 Nested approach . 38

3.1.3 Surrogate Assisted Algorithms 39

3.2 Multi-Objective Bilevel Optimization 40

3.2.1 Classical Approaches . 41

3.2.2 Nested Multi-objective Metaheuristics 43

3.2.3 Non-nested Multi-objective Metaheuristics 44

3.3 Conclusions of the Chapter . 45

4 Nested-BCA: Preliminary Proposal 47

4.1 Introduction . 47

4.2 The Center of Mass Concept as a Variation Operator 48

4.2.1 Center of Mass Concept . 49

4.2.2 The Variation Operator: Unconstrained Case 50

4.2.3 The Variation Operator: Constrained Case 51

4.3 Generic Framework for Bilevel Optimization 53

4.3.1 Representation . 53

vi

Contents

4.3.2 Initialization . 54

4.3.3 Upper-Level Optimizer . 55

4.3.4 Lower-Level Optimizer . 56

4.4 Bilevel Centers Algorithm . 56

4.4.1 Upper-Level Variation Operator 57

4.4.2 Solving the Lower Level Problem 59

4.4.3 Adaptive Population Size Reduction 59

4.4.4 Parameters . 60

4.5 Experiments and Discussion . 60

4.6 Conclusions of the Chapter . 64

5 QBCA: BCA for Handling Pseudo-feasible Solutions 65

5.1 Baseline Solution Methodology . 66

5.1.1 Initial Population . 67

5.1.2 Upper-Level Optimizer . 69

5.1.3 Lower Level Optimizer . 69

5.1.4 Mechanism to Detect Pseudo-feasible Solutions 71

5.2 Computational Complexity . 72

5.3 Experiments and Discussion . 73

5.3.1 Experiment 1 . 74

5.3.2 Experiment 2 . 75

5.4 Conclusions of the Chapter . 78

6 Automated Parameter Tuning Via Bilevel Optimization 81

6.1 Introduction . 82

6.2 The Automated Parameter Tuning Problem 84

6.2.1 Performance Indicators . 86

6.2.2 The Automated Parameter Tuning Task as a BO Problem . . 86

6.3 Surrogate Model . 91

6.4 Proposed Approach . 92

6.4.1 BCAP Components . 94

6.4.2 Lower-Level Procedure . 95

6.4.3 Complete Algorithm . 96

vii

Contents

6.5 Experiments and Discussion . 96

6.5.1 Configuring ABC . 102

6.5.2 Configuring ECA . 103

6.5.3 Configuring DE . 104

6.5.4 Configuring PSO . 107

6.5.5 Configuring GGA-CGT . 107

6.6 Conclusions of the Chapter . 110

7 A Family Concept for Multi-Objective Bilevel Optimization 117

7.1 Introduction . 118

7.2 Family-based Representation . 118

7.2.1 Family of Solutions . 120

7.2.2 Ranking Families . 121

7.3 Proposed Method: SMS-MOBO . 122

7.3.1 Initialization . 123

7.3.2 Reproduction at Upper Level 123

7.3.3 Archiving Procedure . 123

7.3.4 Lower Level Optimizer . 123

7.3.5 Density Estimator . 125

7.3.6 Population Reduction . 126

7.4 Experiments and Discussion . 128

7.4.1 Parameter Settings . 128

7.4.2 Experimental Results . 129

7.5 Conclusions of the Chapter . 132

Conclusions and Future Work 135

Bibliography 155

A Optimization 157

A.1 Single-Objective Optimization . 157

A.1.1 Optimality Conditions . 161

A.1.2 Karush-Kuhn-Tucker Conditions 162

viii

Contents

A.1.3 Solutions Strategies . 163

A.2 Multi-Objective Optimization . 165

A.2.1 Multi-Objective Evolutionary Algorithms 168

A.2.2 Performance Indicators . 169

B Proofs of Theorems 173

C Test Problems 175

C.1 PMM Test Suite . 175

ix

Contents

x

List of Figures

1.1 The rest of the thesis is structured into two main parts: Background

and Contributions with their respective chapters. Finally, the con-

clusions and future work are given. 8

2.1 Diagram of a bilevel optimization problem and how a feasible so-

lution is evaluated, i.e., the leader takes a decision in Step 1, then

the follower takes her/his best decision based on her/his objec-

tives but considering the leader policy, finally the leader evaluates

her/his decision considering the response from follower. Here, y∗

is defined as in Equation (2.2). Note that (x, y∗) is a feasible solution. 15

2.2 Representing the feasible values in a bilevel space from the problem

stated in Equations (2.6)-(2.7) with X = Y = [−1, 1]. 21

2.3 Representing pseudo-feasible solutions. Here (w, z) and (x, z2) are

two pseudo-feasible solutions related to a feasible solution (x,y∗).

Note that ∥x−w∥ ≥ δ1 and ∥z2 − y∗∥ > 0 are illustrated. 25

2.4 Pareto-Optimal (PO) fronts from Example 2.3. The leader F -space

represents both the upper and lower PO fronts, as well as the rela-

tionship between the leader and the follower at various UL decision

vectors. 29

xi

List of Figures

4.1 Center of mass representation. The radius represents the mass

value which is associated with better values for the objective function. 50

4.2 Center of mass representation in constrained spaces. It can be

noted that feasible solutions have a larger mass even when there

are other solutions with better objective function values. 52

4.3 BCA diagram. Here, x1, . . . , xK are used to compute better upper-

level parameters p. Note that (xi, y∗i) and (p, q) represent feasible

solutions. 58

5.1 Initialization of the QBCA approach. First, an upper-level vector is

randomly generated, then the lower-level optimizer (ECA) is used

to approximate the corresponding LL solution which is later im-

proved using Nelder-Mead method. 67

6.1 Illustrating the objective function values for the APTP modeled as

a bilevel optimization task. 89

6.2 BCAP flowchart. The “approximate” step is used to save the com-

putational cost of calling the target algorithm whilst the “reevalu-

ation” stage is used to fix infeasible solutions. 111

6.3 Approximation to feasible solutions. In this figure the upper level

will only evaluate the instance I1 and will then save calls to the

algorithm to be fine-tuned. 112

6.4 Scheme of components required by IRACE to configure an algorithm.112

6.5 BCAP and IRACE Bayesian signed-rank test results when configur-

ing ABC. 113

6.6 Convergence graphs at the median configuration for ABC obtained

by BCAP and IRACE. y-axis shows the accuracy in log scale (for vi-

sualization purposes) whilst the x-axis shows the number of func-

tion evaluations. Each subplot contains the 31 convergence graphs

related to the 31 independent runs of ABC. Here, representative

test functions are considered. 113

6.7 BCAP and IRACE Bayesian signed-rank test results when configur-

ing ECA. 113

xii

List of Figures

6.8 Convergence graphs at the median configuration for ECA obtained

by BCAP and IRACE. Each subplot contains the 31 convergence

graphs related to the 31 independent runs of ECA. y-axis shows the

accuracy in log scale (for visualization purposes) whilst the x-axis

shows the number of function evaluations. Here, representative

test functions are considered. 114

6.9 BCAP and IRACE Bayesian signed-rank test results when configur-

ing DE. 114

6.10 Convergence graphs at the median configuration for DE obtained

by BCAP and IRACE. y-axis shows the accuracy in log scale (for vi-

sualization purposes) whilst the x-axis shows the number of func-

tion evaluations. Each subplot contains the 31 convergence graphs

related to the 31 independent runs of DE. Here, representative test

functions are considered. 115

6.11 BCAP and IRACE Bayesian signed-rank test results when configur-

ing PSO. 115

6.12 Convergence graphs at the median configuration for PSO obtained

by BCAP and IRACE. y-axis shows the accuracy in log scale (for vi-

sualization purposes) whilst the x-axis shows the number of func-

tion evaluations. Each subplot contains the 31 convergence graphs

related to the 31 independent runs of PSO. Here, representative

test functions are considered. 116

6.13 Optimal solution percentages when BCAP and IRACE independently

configure GGA-CGT to solve 1615 BPP instances (10 independent

runs). 116

7.1 Graphical representation of six families, the corresponding super

rank, and the ignored solutions. 119

7.2 Contribution of three different families with the same SR value. . . 127

7.3 Upper-level front at the median HV value by SMS-MOBO and BLEMO

solving problem TP1. 130

xiii

List of Figures

7.4 Upper-level front at the median HV value by SMS-MOBO and BLEMO

solving problem TP2. 131

7.5 Upper-level front at the median HV value by SMS-MOBO and BLEMO

solving problem DS1. 131

7.6 Upper-level front at the median HV value by SMS-MOBO and BLEMO

solving problem DS2. 132

7.7 Upper-level front at the median HV value by SMS-MOBO and BLEMO

solving problem DS3. 132

7.8 Upper-level front at the median HV value by SMS-MOBO and BLEMO

solving problem DS4. 133

A.1 A single-objective optimization problem is represented. Note that

X represents the search space, and x∗ is minimizing f on X. . . . 158

A.2 Illustrating the distribution of a Pareto-optimal front, the location

of the nadir, and ideal points. Also, it can be observed that the

Pareto-optimal front determines a convex region. Minimization is

assumed in this figure. 168

A.3 Main aspects when the generational distance (GD), inverted gener-

ational distance (IGD), and hypervolume indicator (HV) are com-

puted. 170

xiv

List of Tables

2.1 Properties related to each instance problem in the PMM test suite. . 32

3.1 Related work on nested approaches for single-objective bilevel op-

timization problems. Note that nested and surrogate approaches

are included. 40

4.1 Upper-level accuracy statistics by BCA were obtained from 31 in-

dependent runs. 61

4.2 Lower-level accuracy statistics by BCA were obtained from 31 in-

dependent runs. 62

4.3 Upper-level NFEs statistics by BCA were obtained from 31 indepen-

dent runs. 62

4.4 Lower-level NFEs statistics by BCA were obtained from 31 indepen-

dent runs. 63

4.5 Median NFEs values by BCA and BLEAQ obtained from 31 inde-

pendent runs. 63

4.6 Median accuracy values by BCA and BLEAQ obtained from 31 in-

dependent runs. 64

xv

List of Tables

5.1 QBCA, BLCMAES, and BLEAQ-2 Success rates when executed on

10-variable SMD test problems. 74

5.2 Results of 31 independent runs of QBCA and BLEAQ-2 on low-

dimensional PMM test functions. 76

5.3 Results of 31 independent runs of QBCA and BLEAQ-2 on high-

dimensional PMM test functions. 79

5.4 UL-LL error statistics were obtained from 31 independent runs of

QBCA, BLCMAES, and BLEAQ-2 in low-dimensional PMM test prob-

lems. UL-LL function evaluations in low-dimensional PMM test

problems. 80

5.5 UL-LL error statistics were obtained from 31 independent runs of

QBCA, BLCMAES, and BLEAQ-2 in high-dimensional PMM test prob-

lems. UL-LL function evaluations in high-dimensional PMM test

problems. 80

6.1 The first ten CEC 2017 test functions, where their search space is

bounded within [−100, 100]D and D = 10. Each function has a

shifted and rotated optimum to provide real-world problem prop-

erties. 100

6.2 Best configuration of each one of the ten independent runs by BCAP

and IRACE when configuring ABC. 103

6.3 The best configuration of each one of the ten independent runs by

BCAP and IRACE when configuring ECA. 105

6.4 The best configuration of each one of the ten independent runs by

BCAP and IRACE when configuring DE. 106

6.5 The best configuration of each one of the ten independent runs by

BCAP and IRACE when configuring PSO. 108

6.6 Best configuration of each one of the ten independent runs by BCAP

and IRACE when configuring GGA-CGT. Here, UI means unsolved

instances, i.e., number of instances where the global optimum was

not obtained. 109

xvi

List of Tables

7.1 Overall comparison of SMS-MOBO variants against BLEMO. Re-

sults in bold indicate that significant-differences are observed (con-

cerning the Kruskal-Wallis rank sum test). 130

xvii

List of Tables

List of abbreviations

Abbreviation Definition

BCA Bilevel Centers Algorithm

BLEAQ Bilevel Evolutionary Algorithm with Quadratic Approximations

BLEMO Bilevel Evolutionary Multi-objective Optimization

BO Bilevel Optimization

BOP Bilevel Optimization Problem

EA Evolutionary Algorithm

EC Evolutionary Computing

ECA Evolutionary Centers Algorithm

EQPSO Elite Quantum Behaved Particle Swarm Optimization

H-BLEMO Hybrid BLEMO

MOBO Multi-objective Bilevel Optimization

MOEA Multi-objective Evolutionary Algorithm

mf-BLEAQ BLEAQ based on multiple quadratic fibers

NSGA-II Non-domianted Sorting Genetic Algorithm

PMM Problem with Pseudo feasible solutions

QBCA Quasi-Newton Bilevel Centers Algorithm

SMD Test problem proposed by Sinha, Malo and Deb.

SPEA2 Improved Strength Pareto Evolutionary Algorithm

SMS-EMOA Multiobjective selection based on dominated hypervolume

SMS-MOBO Nested SMS-EMOA algorithm for multi-objective optimization

UL/LL Upper Level/Lower Level

1

List of Tables

2

Chapter 1

Introduction

Researchers from computer science have become interested in a novel category

of hierarchical optimization issues in recent years. This topic was first stated by

Von Stackelberg in 1934 and is now known as the Bilevel Optimization problem

[132].

The upper and lower level problems in a Bilevel Optimization (BO) problem

are nested optimization problems. As a result, BO has a hierarchical structure,

with a leader (upper-level authority) and a follower (lower level authority) play-

ing a sequential game, in which the leader makes an optimal decision based on

the best decisions that the follower can make, and such decisions can cause con-

flicts between both levels. In this approach, there is an optimal solution at the

lower level for every solution (decision vector) at the higher level for a BO is-

sue. Bilevel problems can be unconstrained, constrained, single-objective, multi-

objective, continuous or discrete, and so on, but they always have a nested opti-

mization problem as a constraint [13].

3

Chapter 1. Introduction

In general, the computing cost of solving a BOP is NP-hard [55]. [38]. How-

ever, problem transformation is not always viable when the objective functions or

constraints are not mathematically well-behaved. For those cases, metaheuristic

approaches can be used to approximate suitable solutions.

Designing metaheuristic algorithms to solve bilevel problems has been a chal-

lenging issue, due to computational effort required should be as reduced as pos-

sible. Moreover, it should be noted that the formalization of evolutionary bilevel

optimization is relatively new, making it a fertile area to do research where offer-

ing effective solutions for real problems is necessary.

This doctoral proposal focuses on the general case of bilevel optimization,

where a leader and a follower can give one or multiple conflicting objectives.

Firstly, proposing a metaheuristic to address single-objective bilevel optimization

problems, including the application in automated parameter tuning. Finally, a

novel representation of solutions is given in the context of multi-objective bilevel

problems.

1.1 Problem Statement

Bilevel Optimization has become an important and challenging issue in Evolu-

tionary Computation because different real-world problems define two nested op-

timization models that can be single- or multi-objective problems. Furthermore,

finding optimal feasible solutions to bilevel problems require high computational

resources.

Let us consider the principal-agent problem, a real-world problem used here

to exemplify how a bilevel optimization problem works. A principal subcontracts

a job to an agent and uses an incentive scheme that aligns the agent’s interests

with the principal. In contrast, the agent prefers to act in his interests rather than

the principal. In this example, the upper-level authority (principal) is looking for

the best decisions subject to the lower-level authority (agent) maximizing her/his

advantage, taking into account the incentive scheme provided by the principal.

4

Chapter 1. Introduction

In recent years different metaheuristic algorithms (including evolutionary al-

gorithms) have been extended to handle those hierarchical problems. However,

some important scenarios need to be addressed to improve the quality of out-

comes from bilevel metaheuristics. A study of bilevel metaheuristics in single and

multi-objective bilevel problems is required to improve the current state-of-the-

art.

1.2 Research Hypothesis

1.2.1 Hypothesis #1

A metaheuristic inspired by the center of mass concept as a variation operator

(referred to as BCA) can solve bilevel optimization problems. The algorithm per-

formance will be quantified in two ways, (1) considering the number of function

evaluations at the upper level (a lower value with respect to state-of-the-art al-

gorithms is expected), and the precision (either similar or even better value is

expected) concerning both levels.

1.2.2 Hypothesis #2

It can be possible to adapt mechanisms to BCA, in order to handle the pseudo-

feasible solutions from bilevel optimization problems that are affecting the per-

formance of Evolutionary Algorithms.

1.2.3 Hypothesis #3

A Multi-Objective Bilevel Optimization (MOBO) algorithm with a new represen-

tation of solutions based on a family concept can approximate optimal feasible

solutions with competitive hypervolume values regarding a state-of-the-art algo-

rithm.

5

Chapter 1. Introduction

1.3 General Objective

The main goal of this research is to perform a study on Bilevel Optimization using

the metaheuristics (BCA and MOBO algorithm) stated in the research hypotheses.

1.4 Specific Objectives

In order to develop this research proposal, the following specific objectives have

been considered:

1. To study some properties of bilevel optimization problems to identify the

most important.

2. To implement a suitable metaheuristic for single-objective bilevel optimiza-

tion problems such that is, at least, as accurate as other algorithms but with

less problem evaluations computed.

3. To test the efficiency of BCA in benchmark functions as well as in bilevel

problem from the automated parameter tuning.

4. To use a family concept to propose a multi-objective bilevel optimization

approach.

5. To perform the corresponding statistical test analyses to evaluate the above

mentioned hypotheses.

1.5 Contributions

The contributions of this thesis are given below:

• An updated literature review considering important concepts and solution

approaches for single- and multi-objective bilevel optimization.

6

Chapter 1. Introduction

• A nested approach based on the center of mass concept for solving single-

objective bilevel optimization problems.

• Mechanisms to mitigate the impact of misleading solutions in bilevel prob-

lems that affect the performance of current evolutionary approaches.

• A bilevel model and a solution approach for the automated parameter tun-

ing problem to configure metaheuristics with a reduced computational cost.

• A novel solution representation based on a family concept to solve multi-

objective bilevel optimization instances.

1.6 Thesis Structure

This thesis is structured in several chapters including theoretical background, lit-

erature review, and contributions. Figure 1.1 summarizes the main parts of this

work. Each chapter is described in the following list:

• Chapter 2 introduces the bilevel optimization problems. It also presents a

warning sign for evolutionary algorithms in bilevel optimization problems

related to misleading results that EAs report. Some examples are given to

illustrate this issue. Finally, some theoretical results are detailed to figure

out if recent EAs might report misleading solutions.

• Chapter 3 presents a literature review of BO solution approaches, from clas-

sical to metaheuristic algorithms.

• Chapter 4 presents the proposal of a physics-inspired algorithm based on the

center of mass concept (referred to as BCA) to deal with bilevel optimization

problems. A nested approach is considered in this chapter.

• Chapter 5 describes the improved version of the nested algorithm intro-

duced in Chapter 4 by implementing mechanisms to handle pseudo-feasible

solutions, which is useful to prevent reporting misleading results.

7

Chapter 1. Introduction

Background

Chapter 2
Bilevel Optimization

Chapter 3
Literature Review

Contributions

Chapter 4
Nested-BCA: Preliminary Proposal

Chapter 5
QBCA: BCA for Handling
Pseudo-feasible Solutions

Chapter 6
Automated Parameter Tuning
Via Bilevel Optimization

Chapter 7
A Family Concept for
Multi-Objective Bilevel Optimization

Conclusions and Future Work

Figure 1.1: The rest of the the-
sis is structured into two main
parts: Background and Con-
tributions with their respective
chapters. Finally, the con-
clusions and future work are
given.

• Chapter 6 addresses the automated parameter tuning problem via bilevel

optimization by using the BCA framework with surrogate models to han-

dle the high computational cost related to the automated parameter tuning

problem.

• Chapter 7 presents evolutionary mechanisms based on the family concept

to deal with multi-objective bilevel optimization problems.

• Finally, the conclusions and future work are given.

Moreover, three Appendices A-C, are given at the end of the document as

supplementary material. The first one includes theoretical background on opti-

mization, the second one contains mathematical proofs of theorems stated in this

8

Chapter 1. Introduction

work, and the last one contains some benchmark problems used in this thesis.

1.7 Publications

This section contains the research products derived from this work. The publica-

tions are divided in three parts, (1) journal papers, (2) conference papers, and

(3) book chapters.

Journal Papers

The list of journal publications is given below. Note that the corresponding Impact

Factor (IF) is also specified.

1. Jesus-Adolfo Mej́ıa-de-Dios, Efrén Mezura-Montes and Marcela Quiroz-Cas-

tellanos, Automated Parameter Tuning as a Bilevel Optimization Prob-

lem Solved by a Surrogate-Assisted Population-Based Approach, Ap-

plied Intelligence, 2021. https://doi.org/10.1007/s10489-020-02151-y.

Q2, IF 5.019. Related to Chapter 6.

2. Jesús-Adolfo Mej́ıa-de-Dios, Efrén Mezura-Montes, and Porfirio Toledo-Her-

nández, Pseudo-feasible Solutions in Evolutionary Bilevel Optimization:

Test Problems and Performance Assessment, Applied Mathematics and

Computation, Volume 412, 2021. https://doi.org/10.1016/j.amc.2021.

126577. Q1, IF 4.397. Related to Chapter 5.

3. Jesus-Adolfo Mej́ıa-de-Dios, Alejandro Rodŕıguez-Molina, and Efrén Mezura-

Montes, Multi-objective Bilevel Optimization: A Survey of the State-of-

the-Art, IEEE Transactions on Systems, Man, and Cybernetics - Systems

(second round of review). Q1. IF 11.471. Related to Chapter 7.

4. Jesus-Adolfo Mej́ıa-de-Dios and Efrén Mezura-Montes, Metaheuristics: A

Julia Package for Single- and Multi-Objective Optimization, The Journal

of Open Source Software (submitted). ISSN 2475-9066.

9

https://doi.org/10.1007/s10489-020-02151-y
https://doi.org/10.1016/j.amc.2021.126577
https://doi.org/10.1016/j.amc.2021.126577

Chapter 1. Introduction

5. Alejandro Rodŕıguez-Molina, Jesus-Adolfo Mej́ıa-de-Dios, and Efrén Mezura-

Montes, Evolutionary Semi-Vectorial Bilevel Optimization in the Me-

chanical and Control Design of Systems, IEEE Transactions on Cybernetics

(submitted). Q1. IF 19.118.

Conference Papers

1. Jesús-Adolfo Mej́ıa-de-Dios and Efrén Mezura-Montes. A physics-inspired

algorithm for bilevel optimization. In Power, Electronics and Computing

(ROPEC), 2018 IEEE International Autumn Meeting on, pages 1-6. IEEE,

2018. https://doi.org/10.1109/ROPEC.2018.8661368. Related to Chap-

ter 4.

2. Jesús-Adolfo Mej́ıa-de-Dios and Efrén Mezura-Montes, A Metaheuristic for

Bilevel Optimization Using Tykhonov Regularization and the Quasi-New-

ton Method, in Proceedings of the IEEE Congress on Evolutionary Compu-

tation, IEEE Press, Weillington, New Zealand, 2019. https://doi.org/10.

1109/CEC.2019.8790097. Related to Chapter 4.

3. Jesús-Adolfo Mej́ıa-de-Dios and Efrén Mezura-Montes, A Surrogate-Assisted

Metaheuristic for Bilevel Optimization, in Proceedings of the ACM Ge-

netic and Evolutionary Computation Conference (GECCO), Cancun, Mexico,

ACM Press, 2020. https://doi.org/10.1145/3377930.3390236. Related

to Chapter 6.

4. Jesús-Adolfo Mej́ıa-de-Dios and Efrén Mezura-Montes, Generating multi-

objective bilevel optimization problems with multiple non-cooperative

followers, in Companion Proceedings of the ACM Genetic and Evolution-

ary Computation Conference (GECCO), pages 187-188, Lille, France, ACM

Press, 2021. https://doi.org/10.1145/3449726.3459495. Related to Chap-

ter 7.

5. Jesús-Adolfo Mej́ıa-de-Dios, Alejandro Rodŕıguez-Molina, and Efrén Mezura-

Montes, A Novel Evolutionary Framework Based on a Family Concept

10

https://doi.org/10.1109/ROPEC.2018.8661368
https://doi.org/10.1109/CEC.2019.8790097
https://doi.org/10.1109/CEC.2019.8790097
https://doi.org/10.1145/3377930.3390236
https://doi.org/10.1145/3449726.3459495

Chapter 1. Introduction

for Solving Multi-objective Bilevel Optimization Problems, in Compan-

ion Proceedings of the ACM Genetic and Evolutionary Computation Con-

ference (GECCO), Boston, USA, ACM Press, 2022. https://doi.org/10.

1145/3520304.3529045. Related to Chapter 7.

Book Chapters

1. Sebastián-José de-la-Cruz-Mart́ınez, Jesús-Adolfo Mej́ıa-de-Dios, and Efrén

Mezura-Montes, Efficient Archiving Method for Handling Preferences

in Constrained Multiobjective Evolutionary Optimization, Handbook on

Decision Making-Volume 3: Trends and Challenges in Intelligent Decision

Support Systems, Springer-Verlag, 2022.

https://doi.org/10.1007/978-3-031-08246-7_5.

11

https://doi.org/10.1145/3520304.3529045
https://doi.org/10.1145/3520304.3529045
https://doi.org/10.1007/978-3-031-08246-7_5

Chapter 1. Introduction

12

Chapter 2

Bilevel Optimization

In recent years, researchers have become interested in a new type of optimization

problem. Von Stackelberg first proposed this problem in 1934, and it is now

known as the Bilevel Optimization (BO) problem [132]. Bilevel problems can

be unconstrained, constrained, single or multi-objective, continuous or discrete,

and so on, but they always have a nested optimization problem as a constraint

[13, 38]. This newly suggested hierarchical structure can be used to represent

decision-making processes in which a leader (higher-level authority) maximizes

its aims by limiting itself to the best decisions/solutions provided by a follower

(lower-level authority) [23, 131, 133].

The following section defines and describes a general BO problem with single-

objective functions at both levels.

13

Chapter 2. Bilevel Optimization

2.1 Problem Definition

Bilevel optimization is an optimization task that contains an optimization prob-

lem in the constraints that should be solved to approximate a feasible solution.

The main optimization task is the Upper-Level (UL) problem, while the nested

optimization problem is the Lower-Level (LL) problem. The following gives the

main definition of a BO problem [13, 38]:

Definition 2.1: Bilevel Optimization Problem

The 5-tuple (F, f, X, Y, R) is called a bilevel optimization problem where F

is the upper-level/leader’s objective function and the lower-level/follower’s

objective function is given by f . Then, the hierarchical optimization process

is formulated as follows:

Minimize

F (x, y), x ∈ X (2.1)

subject to:

y ∈ argmin
y∈Y
{f(x, y) : gj(x, y) ≤ 0, j = 1, . . . , J} (2.2)

Gl(x, y) ≤ 0, l = 1, . . . , L. (2.3)

whereGl and gj are the inequality constraints for the upper and lower levels,

respectively.

Single-objective bilevel optimization problems work on two functions F : X ×
Y → R and f : X × Y → R, known as the upper-level objective function (leader)

and lower-level objective function (follower), respectively. In this work, X ⊆ Rn

and Y ⊆ Rm are considered. Figure 2.1 shows a schematic diagram of a BO

problem and describes what occurs when two decision vectors are taken at the

upper level.

Hansen et al. investigated if BO problems are (strongly) NP-hard since as-

14

Chapter 2. Bilevel Optimization

Step 1

Step 3

Step 2

Figure 2.1: Diagram of a bilevel opti-
mization problem and how a feasible
solution is evaluated, i.e., the leader
takes a decision in Step 1, then the fol-
lower takes her/his best decision based
on her/his objectives but considering the
leader policy, finally the leader evalu-
ates her/his decision considering the re-
sponse from follower. Here, y∗ is defined
as in Equation (2.2). Note that (x, y∗) is
a feasible solution.

sessing a solution in most basic BO problems (unimodal linear programming at

both levels) is likewise NP-hard [55, 130]. Furthermore, many real-world issues

may be easily represented as BO problems [116], for example: taxation, border

security problems, transportation problems, machine learning algorithms tuning,

among others [9, 13, 116].

It is worth mentioning that, for a UL decision vector x, the LL can be rewritten

as set-valued mapping:

Ψ(x) = argmin
y∈Y

{f(x,y) : gj(x,y) ≤ 0, j = 1, 2, . . . , J} . (2.4)

The set-valued mapping Ψ(x) is commonly used to simplify notation and

states important properties on certain BO problems. For instance, the bilevel

problem given in Definition 2.1 can be rewritten as:

min
(x,y)∈X×Y

{F (x,y) : y ∈ Ψ(x), Gl(x,y) ≤ 0, l = 1, 2, . . . , L}. (2.5)

It is easy to determine that both problems are equivalent. The following section

15

Chapter 2. Bilevel Optimization

describes an important position that comes out due to the interaction between the

leader and its follower.

Example 2.1

This example is used to illustrate the main properties of a bilevel problem.

Minimize:

F (x, y) = x2 + y2, x ∈ X

subject to:

y ∈ argmin
y∈Y

{
f(x, y) = (x− y)2

}
,

where X = Y = R.

To solve this problem, assume that x is given by the leader, then the

lower-level minimum for f(x, y) = (x− y)2 is zero, which is obtained when

y = x. Thus, Ψ(x) = {x}, implies that

min
(x,y)∈X×Y

{F (x, y) : y ∈ Ψ(x)} = min
(x,y)∈X×Y

{F (x, y) = 2x2}.

Therefore, the optimal solution for this BO problem is obtained when x =

y = 0.

2.2 Optimistic and Pessimistic Positions

The interaction between leader and follower is an important aspect to consider in

bilevel models because the follower’s decisions may affect the upper level objec-

tive values.

Here, the reformulation (2.4)-(2.5) is used to describe the optimistic and pes-

simistic positions. As mentioned above, these positions emerge since the leader

can expect followers’ decisions that benefit, or not, its objectives.

16

Chapter 2. Bilevel Optimization

2.2.1 Optimistic Position

Here, the follower gives the leader those LL solutions that benefit the UL problem,

i.e, if the lower level contains multiple optimal solutions, it brings the leader those

solutions that minimize the UL objective function [104, 2].

Summarizing, if you assume that the LL problem contains multiple optimal

solutions, i.e., |Ψ(x)| ≥ 2, then an optimistic bilevel problem is on finding y ∈
argminy∈Ψ(x){F (x,y)} for a given x. It is worth noticing that most works assess

the optimistic position because several situations reflect it, but also because such

position does not introduce other requirements.

2.2.2 Pessimistic Position

Unlike the optimistic case, a pessimistic position occurs when the lower level has

multiple optimal solutions, i.e., |Ψ(x)| ≥ 2, and the leader assumes the worst

case, i.e., if the leader is minimizing its objective function, then for a given upper

level decision x, it is expecting those LL optimal solutions that leads to the worst

objective function values: y ∈ argmaxy∈Ψ(x){F (x,y)}.

It is important to note that the pessimistic position is, in general, less tractable

than the optimistic one, since it is a problem that in several cases is not well-

behaved because it introduces non-tractable functions during reformulations [83].

2.3 Feasibility

The feasibility and optimality notions in bilevel optimization are different con-

cerning single-level problems, since the leader requires that the follower makes

optimal decisions whilst the upper level is optimized. Part of the following results

and definitions are detailed in [38].

17

Chapter 2. Bilevel Optimization

Definition 2.2: Feasible Solution

A feasible solution for the bilevel optimization problem (Definition 2.1) is

obtained when x ∈ X, y ∈ Ψ(x), and Gl(x,y) ≤ 0 for l = 1, 2, . . . , L.

Note that a solution (x,y) ∈ X × Y satisfying only equality and inequality

constraints at each level (gj , Gl) is not necessarily a feasible solution because the

lower-level solution y has to be an optimal solution.

Definition 2.3: Optimal Feasible Solution

The point (x∗,y∗) ∈ X × Y is an optimal solution if y∗ ∈ Ψ(x∗) and

F (x,y) > F (x∗,y∗) for all (x,y) satisfying y ∈ Ψ(x).

Note that when you assume that Ψ(x) is a singular set (only contains one

element) for all x, then the unconstrained bilevel problem can be simplified as

minx∈X F (x,y(x)) where y(x) ∈ Ψ(x).

2.4 Optimality Conditions

This section gives two main results on optimality results, one to prove the exis-

tence of solutions for a class of bilevel problems and the second to state optimality

conditions based on the Karush-Kuhn-Tucker conditions.

Note that Mangasarian-Fromovitz constraint qualification (MFCQ) states that

the gradients of the equality constraints are linearly independent at y∗ and there

exists a vector d ∈ Rn, such that ∇gj(x,y∗)⊤d < 0 for all active inequality con-

straints and ∇hj(x,y∗)⊤d = 0 for all equality constraints.

Theorem 2.1: Existence

Assume that the problem in Definition 2.1 has a convex lower-level problem

18

Chapter 2. Bilevel Optimization

that satisfies MFCQ and has a unique optimal feasible solution for each x ∈ X.

Then the bilevel programming problem has a global optimal solution which is

also feasible.

The proof for this theorem is detailed in [38].

Theorem 2.1 proves the existence of optimal feasible solutions, particularly

for some bilevel programming problems. This is helpful since once the existence

is proved, then determining optimality conditions makes sense.

Theorem 2.2: Optimality Condition

Assume that the lower-level optimization corresponds to a convex optimization

problem for all x ∈ X for which the Mangasarian-Fromovitz constraint quali-

fication is satisfied at all points (x,y) ∈ X × Y with G(x,y) ≤ 0, y ∈ Ψ(y),

then the optimal solution from problem in Definition 2.1 is a feasible solution

for the following optimization problem:

min
x,y,λ,µ

F (x,y)

G(x,y) ≤ 0

∇yL(x,y,λ,µ) = 0

min{−g(x,y),λ} = 0

h(x,y) = 0,

where L(x,y,λ) = f(x, y) +
∑J

j=1 λjgj(x, y) +
∑L

l=1 µhj(x, y).

The proof of this theorem is detailed in [38].

Theorem 2.2 concludes that optimal feasible solutions from a bilevel opti-

mization problem are equivalent to a single-level optimization problem. At the

beginning, a single-level reduction can be suggested. However, the opposite di-

rection for Theorem 2.2 can be satisfied when the lower level is regular convex,

unimodal and strongly stable for all x ∈ X (see [38] for details).

19

Chapter 2. Bilevel Optimization

2.5 Pseudo-Feasibility in Evolutionary Computing for BO

Based on the fact that EAs are very competitive to solve complex optimization

problems, their comparison process plays an important role to assess their per-

formance and behavior. Comparing individuals within an EA is one of the most

significant components since it can bias the search towards promising regions

[11]. Therefore, EAs must have an appropriate selection criteria for determining

when one solution is better than another. We provide a solution analysis as a re-

sult of the foregoing in the context of bilevel optimization. After that, a discussion

about how EAs for BO should deal with problems as well.

Most of the concepts in this section were extracted from [33]. The discussion

is initialized by defining concepts on the objective space generated by objective

function values.

Definition 2.4: Bilevel Value

Assume an unconstrained bilevel optimization problem, then the point de-

noted as (f(x,y), F (x,y)) ∈ R2 will be called a bilevel value for some

(x, y) ∈ X × Y .

The collection of all bilevel values of a given bilevel optimization problem is

referred to as the bilevel space. A feasible solution can be used to obtain a feasible

bilevel value, which is described as follows.

Definition 2.5: Feasible Value

A feasible value is a bilevel value generated via a feasible solution and is

given by the following expression (f(x,y∗), F (x,y∗)) ∈ R2 for each y∗ ∈
Ψ(x).

As part of our research, in [33] the following bilevel optimization problem is

used to illustrate the above concepts.

20

Chapter 2. Bilevel Optimization

Example 2.2

Minimize

F (x, y) = sin2
(
x− y2

)
, (2.6)

subject to

y ∈ Ψ(x) = argmin
y∈Y

{
f(x, y) = y2 − x

}
, (2.7)

where X = Y = [−a, a] with a = 1.

Feasible Values

Optimal Feasible
Value Figure 2.2: Representing

the feasible values in a
bilevel space from the
problem stated in Equa-
tions (2.6)-(2.7) with X =
Y = [−1, 1].

Figure 2.2 shows the bilevel values distribution when feasible solutions are

evaluated for the bilevel problem in Example 2.2. This example is used to il-

lustrate that there exists infeasible solutions in objective space that are equal to

optimal feasible solutions in some bilevel problems. That is, in Example 2.2, the

set-mapping is Ψ(x) = {0} for all x ∈ X. Also, if y∗ ∈ Ψ(x), a feasible solution

is obtained. Thus, for y∗ ∈ Ψ(x) with x ∈ X fixed, then F (x, y∗) = sin2(x) and

f(x, y∗) = −x. Therefore, an optimal feasible solution is (x∗, y∗) = (0, 0), then

f(x∗, y∗) = 0 and F (x∗, y∗) = 0.

Moreover, in our same work in [33] we studied the case when f(x, y) = 0 and

F (x, y) = 0 even on infeasible solutions (x, y). This infeasible solution is a warn-

ing sign that bilevel values are not necessarily related to feasibility. The following

21

Chapter 2. Bilevel Optimization

theorem and corollary state mathematical results on “pseudo-feasibility”.

Theorem 2.3

Let (F, f, X, Y, R) be a BO problem such that f(x, ·) is non-injective for

the unique LL global solution y∗ ∈ Ψ(x), with x ∈ X fixed and F (x,y) =

Q(f(x,y)) where Q : Img(f) → R and Img(f) is the image of f . Then,

there exists (w, z) ∈ X × Y such that z /∈ Ψ(w), f(x,y∗) = f(w, z) and

F (x,y∗) = F (w, z).

The proof for this result is detailed in Proof B.1 in Appendix B.

Note that Theorem 2.3 establishes the properties of a bilevel optimization

problem that can contain a pseudo-feasible solution, i.e., proof the existence of

pseudo-feasibility in some problems. Besides, Theorem 2.3 sets the theoretical

groundwork for more sophisticated and interesting BO challenges, i.e., an upper-

level function F can be defined by adding different compositions of non-injective

lower-level functions. This is based on the notion that an injective function’s

translation is also injective.

Corollary 2.1

There exists a BO problem (F, f,X, Y,R) such that f(x∗, y∗) = f(x, y) and

F (x∗, y∗) = F (x, y) where (x∗, y∗) is an optimal feasible solution while

(x, y) is infeasible.

The proof for this result is detailed in Proof B.2 in Appendix B.

The result given by Corollary 2.1 states that there are bilevel optimization

problems such that the objective function values from each level (UL and LL)

on a feasible solution can be related to an infeasible solution but with the same

objective function values at both levels.

Based on those previous formal definitions and the examples shown, a pseudo-

feasible solution is defined as follows.

22

Chapter 2. Bilevel Optimization

Definition 2.6: Pseudo-feasible Solution

A solution (w, z) satisfying (f(w, z), F (w, z)) is a bilevel value and is called

pseudo-feasible, i.e., a pseudo-feasible solution takes the same UL and LL

objective function values that a feasible one. Also, we will say that pseudo-

feasible solution (w, z) is related to the feasible one (x,y∗).

Returning to Example 2.2, we can note in Equations (2.6)-(2.7) that the

leader’s objective function can be expressed as F (x, y) = Q(f(x, y)) whereQ(c) =

sin2(c). Also, f(x, z) = f(x, y∗) and F (x, z) = F (x, y∗) when z = ±
√
x for x > 0.

Therefore, an infeasible solution (x, z) is computed such that f(x, z) = 0 and

F (x, z) = 0. That is, (x, z) is a pseudo-feasible solution related to (x, y∗).

2.5.1 Implication of Pseudo-feasibility in Evolutionary Computing

for BO

The main issues on how pseudo-feasibility can affect evolutionary algorithms (and

metaheuristics in general) when solving BOPs are the following.

Another Source of Difficulty

Because the presence of pseudo-feasible solutions in a BO problem might lead

to inaccurate performance comparisons, two key issues must be addressed: (1)

procedures to detect pseudo-feasible solutions, and (2) generate test problems

where pseudo-feasible solutions are included.

Regarding the first point, depending on the characteristics of the BO problem,

the detection of pseudo-feasible solutions can be quite specific. For example, a

smooth and convex objective function at the lower level allows the application

of some optimality conditions to determine whether a solution is indeed feasible

or not [38]. However, designing a universal detection technique takes more time

23

Chapter 2. Bilevel Optimization

and effort. The second point is crucial because even when there are already ap-

proaches for constructing BO problems that have been published [114], pseudo-

feasible solutions are not yet considered. Furthermore, in those test problems

where the optimal solutions are known and there are pseudo-feasible solutions,

the performance measures currently utilized in the BO area could lead to mislead-

ing comparisons [125].

Unstable Comparison Among Algorithms

Firstly, consider two metaheuristic algorithms A1 and A2 which are used to solve

the bilevel problem given by Equations (2.6)-(2.7). Suppose that A1 and A2 are

always converging to (0, 0) and (1,−1), respectively. Note that, f(1,−1) = 0 and

F (1,−1) = 0. Moreover, if the procedure and criteria to compare algorithms in

[56] are adopted, we could say that A1 and A2 are not significantly different,

and both algorithms are capable of solving the aforementioned task. However, it

is clear that A2 converged to an infeasible solution, which is in fact far from the

true optimum. Hence, different comparison mechanisms should be considered to

avoid reporting misleading results.

2.5.2 Pseudo-feasible Solution Detection Mechanism

In [33], we characterized pseudo-feasible solutions for some bilevel optimization

problems where the lower-level objective function f(x, ·) has a unique global

optimal solution y∗ ∈ Ψ(x) for each x ∈ X. Besides, we proposed the following

two conditions for detecting pseudo-feasible solutions.

Condition 1: 

∥x−w∥ < δ1

∥z − y∗∥ ≥ δ2(x) > 0

|F (x,y∗)− F (w, z)| < ε1

|f(x,y∗)− f(w, z)| < ε2.

(2.8)

24

Chapter 2. Bilevel Optimization

Figure 2.3: Representing pseudo-feasible solutions. Here (w, z) and (x, z2) are
two pseudo-feasible solutions related to a feasible solution (x,y∗). Note that
∥x−w∥ ≥ δ1 and ∥z2 − y∗∥ > 0 are illustrated.

Condition 1 can be interpreted as follows: Given x and w close enough and z far

from y∗ ∈ Ψ(x), and F (x,y∗) = F (w, z), and f(x,y∗) = f(w, z), imply that the

objective function values associated to (w, z) are satisfying Definition 2.6, i.e.,

(w, z) is a pseudo-feasible solution.

Condition 2: 

∥x−w∥ ≥ δ1

∥z − z∗∥ ≥ δ2(w) > 0

|F (x,y∗)− F (w, z)| < ε1

|f(x,y∗)− f(w, z)| < ε2.

(2.9)

Note that Condition 2 is quite similar to Condition 1. However, the case where x is

different with respect to w is considered. Moreover, Figure 2.3 gives a geometric

interpretation of Conditions 1-2 by representing the variables space.

25

Chapter 2. Bilevel Optimization

In order to compute Condition 1 or Condition 2, four parameters δ1, δ2, ε1 and

ε2 have to be configured before numerically computing the conditions. It is worth

mentioning that ε1 and ε2 are related to the target accuracy. The configuration of

δ1 and δ2 can be carried out by using theoretical results such as the Mean Value

Theorem [30, 88, 123], which suggest that δ2 = ε2/M with |∂f(x,y)/∂yi| ≤ M ,

i = 1, . . . , Dll, for all y around y∗. As this last result cannot be applied in the

general case, then δ1 and δ2 are user-defined values at hand. Note that parameters

δ1 and δ2 are non-negative numbers and should be as small as possible to avoid

pseudo-feasible solutions, i.e., if a pair of solutions found (x,y∗), (w, z) satisfy

(2.8) with δ1 > 0 and δ2 > 0, then (w, z) is a pseudo-feasible solution. The

concept of pseudo-feasible solutions can be weakened (for applicability purposes)

by fixing values for δ1 and δ2.

There are other important properties related to Conditions 1 and 2 on improv-

ing the algorithms’ comparison when solving BO problems. The first condition,

in particular, can be useful for avoiding paired pseudo-feasible solutions offered

by the lower-level optimizer. The second condition can be used to determine if

a pseudo-feasible solution is related to two known feasible solutions, i.e., when

an algorithm is solving a test problem where the optimum feasible solution is

known, to determine whether the algorithm’s obtained solution is indeed feasible

and close to the optimum.

2.6 Multi-Objective Bilevel Optimization

Multi-objective Bilevel Optimization (MOBO) has become an important and chal-

lenging issue in evolutionary computation. The above is because different real-

world problems require a mathematical model that considers multiple conflict-

ing objective functions to be optimized simultaneously subject to another multi-

objective problem [116]. This nested structure provides an interesting model

to handle various engineering and scientific applications from optimization pro-

cesses, game-playing, optimal control, strategy development, transportation prob-

lems, among others [115, 116, 133].

26

Chapter 2. Bilevel Optimization

As mentioned before, a hierarchical structure is present in bilevel problems,

where the UL optimization problem moves its decision variables and objectives,

depending on the optimal solutions from a LL optimization problem. The bilevel

model is even more complicated to solve when multiple objectives are present

because an online decision-making process is required to handle the trade-offs

from the LL problem. MOBO problems have been addressed using different ap-

proaches, including classical methodologies (e.g., mathematical programming)

[43] and evolutionary approaches [116]. Particularly, the Evolutionary Computa-

tion community has proposed a variety of methods to tackle MOBO problems by

using both evolutionary and swarm intelligence algorithms with successful results

in test benchmarks and also in real-world problems [36, 77, 143].

2.6.1 Problem Definition

This section briefly describes Multi-Objective Bilevel Optimization (MOBO) and

its variant, Semi-Vectorial Bilevel Optimization (SVBO). A MOBO problem is a

bilevel optimization problem with one or two multi-objective optimization tasks

in a hierarchical framework [43, 39].

27

Chapter 2. Bilevel Optimization

Definition 2.7

Consider the following functions F : X × Y → RM , f : X × Y → Rm with

M,m positive integers such that M ≥ 2 or m ≥ 2. Then, the following

problem defines a MOBO problem: Minimize (UL)

F (x,y) = (F1(x,y), F2(x,y), . . . , FM (x,y)), x ∈ X (2.10)

subject to (LL):

y ∈ argmin
y∈Y


f(x,y) = (f1(x,y), . . . , fm(x,y)) :

gj(x,y) ≤ 0, j = 1, 2, . . . , J

 (2.11)

Gk(x,y) ≤ 0, k = 1, 2, . . . ,K; (2.12)

where Gk, gj : X × Y → R, represent the upper and lower-level constraints

(1 ≤ k ≤ K, 1 ≤ j ≤ J), respectively.

The problem in Definition 2.7 can be rewritten as follows:

Minimize F (x,y), x ∈ X, subject to y∗ ∈ Ψ(x) where

Ψ(x) = argmin
y∈Y


f(x,y) = (f1(x,y), . . . , fm(x,y)) :

gj(x,y) ≤ 0, j = 1, 2, . . . , J

 (2.13)

Note that the LL is represented here as the set-valued mapping Ψ for an UL deci-

sion vector x, which can help to describe both optimistic and pessimistic MOBO

instances.

It is worth mentioning that both levels have a multi-objective optimization

problem. Because the leader expects the follower to make judgments based on a

set of Pareto solutions, the feasibility concept varies from single-objective bilevel

optimization. As a result, MOBO problems are difficult to solve, and both opti-

28

Chapter 2. Bilevel Optimization

mistic and pessimistic formulations are difficult to solve [43, 120].

When m > 1, the feasibility concept in MOBO differs from that in Single-

Objective Bilevel Optimization (SOBO) since the leader might demand that the

follower make decisions based on a set of Pareto-optimal options.

Figure 2.4: Pareto-Optimal (PO) fronts from Example 2.3. The leader F -space
represents both the upper and lower PO fronts, as well as the relationship between
the leader and the follower at various UL decision vectors.

29

Chapter 2. Bilevel Optimization

Example 2.3

Firstly, let us assume that x ∈ X = [−1, 2], y = (y1, y2) ∈ Y = [−1, 2]2 which

are decision vectors for the following MOBO problem:

min
(x,y)∈X×Y

F (x,y) =

 (y1 − 1)2 + y22 + x2,

(y1 − 1)2 + y22 + (x− 1)2

 (2.14)

subject to:

y ∈ argmin
y∈Y

f(x,y) =
 y21 + y22,

(y1 − x)2 + y22


 . (2.15)

For a given value of x, this problem has numerous possible solutions, the

Pareto-optimal (PO) solutions from the LL problem y ∈ Ψ(x) = {(y1, y2) ∈
Y : y1 ∈ [0, x], y2 = 0}. Note that when the leader’s problem is optimized

with the LL decision vector y as part of the UL decision vector, an infeasible

UL PO front can be obtained. That is, putting z = (x,y) and optimizing F (z)

without considering the LL problem (see Fig. 2.4).

2.6.2 Optimistic and Pessimistic Scenarios

Because the leader can expect followers to make decisions that assist or hurt its

aims, optimistic and pessimistic viewpoints arise. When the LL problem contains

many optimal solutions, these places are likewise present in SOBO [116].

Moreover, the optimality conditions when the UL defines a MOP, generate

different definitions for the optimistic and pessimistic scenarios. Those MOBO

locations in [2] are defined as finding optimal viable solutions in the Inducible

Area (IR) or feasible region (x,y) ∈ IR = {(x,y) ∈ X × Y : y ∈ Ψ(x), Gk(x) ≤

30

Chapter 2. Bilevel Optimization

0, k = 1, . . . ,K} such that it is not another (x′,y′) ∈ IR such that F (x′,y′) ⪯
F (x,y) for the optimistic position and F (x,y) ⪯ F (x′,y′) for the pessimistic

MOBO.

2.7 Bilevel Optimization Test Problems

This section is used to describe different BO problems reported in the specialized

literature that are used to assess the algorithm performance. Here, two suite sets

are considered because they contain interesting properties related to real-world

problems.

2.7.1 SMD Test Suite

The SMD test problems were proposed in [112, 113, 114]. There are twelve test

functions in this test suite for box-constrained and constrained test problems. The

first eight SMD test issues were supplied to provide controlled difficulty scalability

at both levels. In addition, for each problem, the best solutions are provided.

The main properties of SMD test problems are identified, and some of the most

important are enumerated.

1. Multi-modality at upper level (SMD7 and SMD8).

2. Multi-modality at lower level (SMD3-SMD5 and SMD8).

3. Multiple global solutions (SMD6).

4. Inequality constraints and different properties associated to the objective

functions (SMD9-SMD12).

This test suite has been regularly used to test preliminary algorithm versions

by providing various sources of difficulty. Parameters in the SMD test problems

regulate issues like convergence and interaction between the higher and lower-

level problems.

31

Chapter 2. Bilevel Optimization

Upper Level Lower Level

Multimodal Differentiable Multimodal Differentiable

PMM1 No No No Yes

PMM2 No No No Yes

PMM3 No No Yes Yes

PMM4 No No Yes Yes

PMM5 No No Yes No

PMM6 Yes No Yes Yes

Table 2.1: Properties related to each instance problem in the PMM test suite.

2.7.2 PMM Test Suite

This subsection presents the PMM test suite, proposed in this thesis work (de-

tails in Appendix C), that contains six test problems for bilevel optimization. The

main source of difficulty in those problems is that related to pseudo-feasible so-

lutions, particularly at the optimal feasible solution. This test suite contains six

problems; Table 2.1 summarizes the main property related to each test problem

in the PMM test suite. Those test problems (named PMM1 to PMM6) are con-

structed so that the feasible optimum solution lies in x = (0, . . . , 0) ∈ [−10, 10]Dul

and y = (0, . . . , 0) ∈ [−10, 10]Dll (see Appendix C for more details). Also, each UL

problem is only differentiable on those feasible solutions.

2.8 Conclusions of the Chapter

This chapter introduced the bilevel optimization problem over continuous spaces

and how such problem is currently solved. Moreover, a warning sign for evolu-

tionary algorithms in bilevel optimization problems was presented. Such issue

is related to misleading results that metaheuristic algorithms can report. Some

examples were given to illustrate the defined pseudo-feasibility. Also, some theo-

retical results on bilevel optimization were discussed. Finally, two test problems

32

Chapter 2. Bilevel Optimization

sets for bilevel optimization, one designed as part of this thesis, were also included

in this chapter.

33

Chapter 2. Bilevel Optimization

34

Chapter 3

Literature Review

In this part, those BO solution approaches are reviewed by dividing bilevel prob-

lems regarding the number of objective functions at each level.

3.1 Single-Objective Bilevel Optimization

Regarding solution methods, many researchers have offered strategies for solving

bilevel problems due to the important properties that bilevel models can provide

[38, 109]. Such strategies include mathematical approaches from mathemati-

cal programming and Karush-Kuhn-Tucker conditions for single-level reduction.

Other strategies include metaheuristic approaches, such as genetic algorithms,

evolution strategies, and swarm intelligence [7, 40, 82], among others [43].

This part of the thesis document is on analyzing the context of metaheuristic ap-

proaches. The reader is referred to [38] for the analysis of classical approaches.

35

Chapter 3. Literature Review

As previously stated, the majority of research efforts for population-based

metaheuristics for solving BO problems are centered on evolutionary algorithms

and swarm intelligence. This inclination stems from the fact that those algo-

rithms have been successful in solving single-level optimization problems. How-

ever, depending on the number of evaluations, their computing cost in a bilevel

problem might be rather substantial, especially at the lower level of the BO prob-

lem. In contrast, combining population-based metaheuristics with mathematical

programming methods may provide efficient and accurate procedures with lower

computational costs [116, 125]. The following approaches have been identified

on the resolution of bilevel problems by using metaheuristic approaches.

1. Single-level reduction: This approach has two main stages, (1) reformu-

lating the bilevel problem into a single-level optimization task, (2) employ-

ing a metaheuristic to solve the transformed problem. Usually, in the first

stage, the Karush-Kuhn-Tucker conditions are used for the transformation

by assuming that the problem is mathematically well-behaved. As a conse-

quence, this strategy is restricted to differentiable functions [29, 38].

2. Nested approaches: Here, two metaheuristics (one for each level) are used

to solve each level sequentially. Besides, nested-based strategies can be

effective but with a high computational cost when objective functions are

expensive to calculate or when high-dimensionality is present.

3. Surrogate-assisted approaches: These approaches use the nested scheme

to solve problems. However, the lower-level problem is not solved by an-

other metaheuristic but using instead an approximate strategy to infer fea-

sible solutions during the process. Such approximate strategy is particularly

useful to save objective function evaluations.

4. Non-nested approaches: In this approach, the problem is solved using

single-level optimization metaheuristics and employing a priori information

of the lower-level problem to avoid evaluating it as in the nested scheme.

That is, the upper and lower-level problems are evaluated in a single step

without optimizing the lower-level as usual.

36

Chapter 3. Literature Review

3.1.1 Single-Level Reduction

Single-level reduction is an indirect method to solve BO problems because before

solving the problem, a transformation is required. Assuming that the lower-level

contains smooth constraints and objective function, then the BO problem can be

transformed into a single-level optimization problem. In most cases, the Karush-

Kuhn-Tucker conditions are used for such a purpose (when they apply), i.e., the

lower-level conditions convert the lower-level optimization problem into equality

and inequality constraints, providing a more tractable problem instance.

The following formulation is used to exemplify the result of transforming a

bilevel problem. Firstly, assume the BO problem in Definition 2.1, then the fol-

lowing reformulation is obtained when the KKT conditions can be used:

min{F (x, y) : x ∈ X, y ∈ Y }

subject to

Gk(x,y) ≤ 0,

∇yL(x,y,λ) = 0,

gj(x,y) ≤ 0,

λjgj(x,y) ≤ 0,

λj ≥ 0,

where k = 1, . . . ,K, j = 1, . . . , J and

L(x,y,λ) = f(x, y) +

J∑
j=1

λjgj(x, y).

This transformed problem is equivalent to a single-level constrained optimization

problem. Moreover, under certain assumptions, optimal feasible solutions for this

reformulation are solutions for the corresponding bilevel problem [109, 121].

37

Chapter 3. Literature Review

The specialized literature reports that single-level reduction is performed into

two main stages. The first one includes the single-level reduction strategy to

transform the problem into an equivalent single-level problem [38]. The second

one aims to optimize the transformed problem using an exact approach such as

branch-and-bound algorithms, interior region approaches, among others [38]. It

is common that the resulting single-level optimization problem can not be solved

by an exact approach, but metaheuristic approaches can be considered to approx-

imate optimal solutions [116]. Metaheuristic algorithms that solved transformed

problems have been proposed. For instance, in [135], the authors constructed

a specific two-objective optimization problem and proposed a new constraint-

handling technique to solve it. The proposed constraint-handling method can

handle linear and nonlinear constraints. Regarding particle swarm optimization,

in [69] the authors used the KKT condition for single level reduction, but the re-

sulting problem is smoothed by a Chen-Harker-Kanzow-Smale (CHKS) smoothing

function. Finally, the resulting problem is solved by a PSO algorithm.

3.1.2 Nested approach

Regarding the nested scheme, different metaheuristic algorithms have been adapted

to solve BOPs, e.g., Nested-DE [6], Nested-PSO [82], and BL-CMEA-ES [56] use

one EA to compute lower-level solutions for a decision vector generated by an-

other EA. Given the utilization of two nested EAs, a substantial computational cost

might be required in such approaches. In [125], two hierarchical optimization al-

gorithm approaches are described, the first one is based on repairing mechanisms

(one population with a follower as a constraint) and the second is a constructive

approach (two algorithms with separate populations). In both circumstances, an

algorithm must be chosen for each level, which is frequently a combination of an

EA and an exact approach, as previously discussed [57, 75].

38

Chapter 3. Literature Review

3.1.3 Surrogate Assisted Algorithms

Different population-based bilevel optimization algorithms that use metamodels

to lower the computing cost of objective function evaluations at both levels have

been reported in the specialized literature. Different EAs have been adapted to

address BOPs in the nested scheme in addition with surrogate-models. Due to the

high computational cost of such a strategy, it is customary to discover approximate

approaches to save function evaluations [64, 65]. Here, some representative al-

gorithms are described as follows.

Genetic algorithms that use some assistance are BLEAQ [118], BLEAQ-II [111],

and ε-KKT [121], which use two nested genetic algorithms with quadratic approx-

imation to the lower-level optimal solution to reduce the cost related to evaluating

the LL problem. They also use the well-known Sequential Quadratic Programming

(SQP) method to estimate lower-level optimum solutions in a local search.

Regarding different evolutionary algorithms to save evaluations, SABLA [64],

BLMA [66], and BLEGO [65] approaches employ two nested DE algorithms and

several surrogate models for the lower-level function. SABLA implements an In-

terior Point (IP) SQP method; BLMA uses Response Surface Models and Kriging;

and BLEGO uses a combination of DE, EGO, and Gaussian Process Models. Fi-

nally, Surrogate-assisted BIDE [7] is s different approach because it implements

two DE algorithms, one for each level, and updates the lower-level problem by

introducing a metamodel based on the k-nearest neighbors method.

Algorithms from nested and surrogate approaches are summarized in Table

3.1.

To sum up, multiple works on solving bilevel optimization problems by using

metaheuristic have been reported. However, to the best of the author’s knowl-

edge, the presence of pseudo-feasible solutions is taken into account. Finally, no

physics-based approaches have been considered in the solution of BOPs.

39

Chapter 3. Literature Review

Algorithm UL LL Description

Nested-DE
[6]

DE DE Differential Evolution search engine is
used at both level.

Nested-PSO
[82]

PSO PSO PSO search is performed at both levels up-
dating the particles regarding the corre-
sponding objective function.

BL-CMEA-
ES [56]

CMEA-ES CMEA-ES Use two nested Covariance Matrix Adap-
tation Evolutionary Strategies with mem-
ory sharing to reduce computational effort
when computing lower-level solutions.

BLDES [8] DE DE Use Radial Basis Functions, k-Nearest
Neighbors and Local Linear Regression to
approximate objective function values at
both levels.

ε-KKT
[121]

GA GA/SQP The objective functions and constraints
are approximated via quadratic and linear
mappings to reduce the number of func-
tion evaluations.

BLEGO
[65]

DE/EGO EGO Gaussian Process Model to approximate
objective function values at both levels.

BLMA [66] DE DE Response Surface Models and Kriging are
used to approximate feasible solutions.

SABLA [64] DE-IP DE-IP Sequential Quadratic Programming is used
to handle inaccurate solutions.

BLEAQ(-II)
[111, 118]

GA GA/SQP Approximations of the lower-level opti-
mization problem using SQP.

Surrogate-
assisted
BIDE [7]

DE DE Uses k-Nearest Neighbors as meta-model
to approximate lower-level solutions.

Table 3.1: Related work on nested approaches for single-objective bilevel opti-
mization problems. Note that nested and surrogate approaches are included.

3.2 Multi-Objective Bilevel Optimization

This section reviews the most relevant approaches for solving MOBO problems.

This part includes both classical and metaheuristic approaches.

40

Chapter 3. Literature Review

3.2.1 Classical Approaches

Different exact techniques have been developed to solve linear, convex, or qua-

siconcave MOBO problems by converting them to single-level optimization tasks

as a general framework. Four approaches have been identified: Fuzzy Methods,

Penalty Function Methods, Methods based on Karush-Kuhn-Tucker Conditions,

and Pareto Frontier Generators.

Fuzzy Methods

The proposal that uses fuzzy logic concepts to discover efficient solutions to MOBO

problems is referred here to as a fuzzy technique. For instance, in [110], one of

the first fuzzy-based approaches is described, in which the authors used a nested

task to solve a non-linear multi-objective bilevel decision-making problem. It fea-

tures an interactive algorithm based on the epsilon-constraint method as well as

fuzzy logic ideas like satisfactoriness for dealing with UL and LL preferences.

After that, in [142], a single-level reduction approach is described, as well as

the use of fuzzy logic ideas for single-level reduction to apply an interactive opti-

mization method. In this sense, in [144], another interactive solution is proposed,

this time using the satisfactoriness idea at the UL and a measurement function to

tackle the LL problem.

On the other hand, in [139], an alternative fuzzy-based solution called FTOP-

SIS is described, which employs preference ordering by similarity to the ideal

point and combines Taylor series and Karush-Kuhn-Tucker conditions to turn the

problem into a fractional programming problem.

Penalty Function Methods

The exact methods using a penalty function approach are, in general, devoted to

perform a level reduction by considering the LL functions at the UL as a penaliza-

tion term.

41

Chapter 3. Literature Review

Firstly, in [87, 138], the authors present a methodology for performing a

single-level reduction using an exact penalization function and then propose a

weighted-sum-based algorithm that handles the multiple objectives using the lin-

ear scalarization transformation.

Besides single-level reduction, penalty function methods are also used as a

constraint-handling technique. Some optimality conditions to transform the MOBO

problem into a single-level problem were provided in [137].

Methods based on Karush-Kuhn-Tucker Conditions

As previously stated, KKT conditions are commonly used for single-level reduc-

tion when the LL problem contains convex and smooth objective functions and

constraints. This allows using such conditions to propose exact methods to solve

MOBO problems.

The authors of [67, 68] proposed a hybrid approach to solve MOBO prob-

lems with stochastic UL variables in the objective functions, which was the first

application of KKT conditions in MOBO problems.

When the KKT conditions are used for reformulation, the transformed prob-

lem is not equivalent to the original bilevel programming problem, even for LL

convex problems [39]. However, there are alternatives to the KKT conditions,

such as using an optimal value function reformulation as detailed in [86], which

is particularly useful for semivectorial linear bilevel optimization problems that

are reformulated to single-level non-smooth optimization problems.

Classical Pareto Frontier Generators

Most traditional approaches recommend a priori preferences or interactive meth-

ods to approximate a solution in the Pareto-optimal set. However, some methods

attempt to approximate solutions (not just one) along the Pareto optimal front,

and these are referred to as Pareto Frontier Generators.

42

Chapter 3. Literature Review

This approach was discussed in [103], where a strategy to solve bilevel linear

multi-objective programming problems in two steps was defined.

The use of branch-and-bound strategies has been also used to handle bilevel

linear problems [3]. The UL in this situation is a MOP, while the LL is a single-

objective optimization problem.

3.2.2 Nested Multi-objective Metaheuristics

Evolutionary algorithms for MOBO have been proposed by extending Evolution-

ary Multi-objective Algorithms incorporating novel mechanisms to handle this hi-

erarchical structure.

For example, a popular algorithm, known as Bilevel Evolutionary Multi-objective

Optimization (BLEMO), uses two nested NSGA-II to approximate solutions for

MOBO problems [36]. Moreover, different variants of BLEMO were also de-

veloped. For instance, the Hybrid and Self Adaptive Bilevel Evolutionary Multi-

objective Optimization Algorithm (H-BLEMO) uses the SQP algorithm as a local

search mechanism to improve the BLEMO results [37]. Another example is the

Multi-objective Bilevel Evolutionary Algorithm based on multiple quadratic fibers

(mf-BLEAQ), which uses quadratic approximations to feasible solutions to save

function evaluations [119]. On the other hand, swarm-intelligence-based algo-

rithms have been proposed with competitive results [143].

BLEMO [36] utilizes a traditional representation of solutions, i.e., solutions

(x,y) ∈ X × Y are used as the base to carry out the variation operators. This

representation can be inefficient since solutions with different objective values

are represented by the same upper-level decision vector, promoting redundancy

and high memory usage. BLEMO also uses lower-level subpopulations (besides

the population) to save LL evaluations. Regarding H-BLEMO [37], its represen-

tation is similar to BLEMO but incorporates different mechanisms to reduce the

population size based on the problem dimension and inherits the same issues

observed in BLEMO. Moreover, mf-BLEAQ [119] mitigates the issues in BLEMO

43

Chapter 3. Literature Review

by incorporating sophisticated mechanisms when the subpopulations are gener-

ated. However, all solutions are always compared during the non-dominated sort

making it unable to reduce the computational effort. Regarding the PSO-based

algorithms, EQPSO [143] adopts the same strategy as BLEMO, and in turn, the

same related problems with the solution representation.

3.2.3 Non-nested Multi-objective Metaheuristics

The LL problem can be incorporated within the upper one under certain situa-

tions. As a result, the multi-objective bilevel model, turned into a multi-objective

single-level problem, can be solved using a single multi-objective metaheuristic

algorithm, referred to as non-nested multi-objective method.

As seen in [70], [79] and [80], the LL problem can be integrated into the UL

as constraints. The KKT conditions are used to achieve embedding in [79, 80],

while the primal and dual theory is used in [70]. All of these works use a

multi-objective metaheuristic optimizer with a constraint-handling technique to

discover a Pareto approximation once the MOBO problem is reduced to a simple

MOP. Moreover, in [70], [79] and [80], an alternative form of a Genetic Algo-

rithm (GA), Decomposition-based Constrained Multiobjective Differential Evolu-

tion (CMODE/D), and Non-dominated Sorting Genetic Algorithm (NSGA-II), and

a variation of the Multi-Objective Evolutionary Algorithm based on Decomposi-

tion (MOEA/D-DE) are respectively used.

Finally, in [20, 134], the LL problem is included in a new method. The objec-

tives of both levels become a fuzzy one in [20]. The updated fuzzy form of the

problem is then solved using a GA. Finally, the LL is not expressly integrated in

[134]. Even so, MOEA/D includes a new genetic operator to ensure that a solu-

tion meets the problem constraints, including those imposed by the LL problem.

44

Chapter 3. Literature Review

3.3 Conclusions of the Chapter

This chapter reviewed the most important works on single- and multi-objective

bilevel optimization. Regarding the single-objective case, three main approaches

have been identified: (1) single-level reduction strategies, (2) nested algorithms,

and (3) surrogate-assisted algorithms. The first approach uses the available math-

ematical properties to transform the bilevel model into a single-level problem,

whilst approaches (2) and (3) use a nested scheme to adapt an optimizer for

each level. Surrogate or meta-models in approach (3) are adopted to reduce the

computational cost of evaluating the objective functions.

It is worth mentioning that no studies were found on how pseudo-feasibility

can affect the two-level evolutionary approach in the current state of the art.

Besides, most of the works are adapting evolutionary algorithms and swarm in-

telligence methods to solve bilevel problems. Therefore, studies on the effect of

pseudo-feasibility can be carried out to analyze the performance in the presence

of pseudo-feasible solutions. Also, different algorithms such as physics-inspired

algorithms can be designed and studied in this context.

Regarding the studies on multi-objective bilevel optimization, three main so-

lution approaches are identified from this literature review: (1) Classical Ap-

proaches, (2) Nested Multi-objective Metaheuristics, and (3) Non-nested Multi-

objective Metaheuristics. Regarding classical approaches, it was observed that

most of the works use fuzzy-based methods to solve linear problems in compari-

son to penalty function methods and those using the KKT conditions for problem

transformation. Nested metaheuristics, on the other hand, are the most com-

monly used because the non-nested methods require a theoretical study to trans-

form the bilevel problems that can not be applied in most cases.

Moreover, the adapted multi-objective algorithms to handle multi-objective

bilevel problems use a traditional representation of solutions even when the hier-

archical structure can be better represented with a more sophisticated represen-

tation.

45

Chapter 3. Literature Review

46

Chapter 4

Nested-BCA: Preliminary Proposal

Information

Part of this chapter is based on the paper: Jesús-Adolfo Mej́ıa-de-Dios and

Efrén Mezura-Montes, A Physics-Inspired Algorithm for Bilevel Optimization,

in Proceedings of the 2018 IEEE International Autumn Meeting on Power,

Electronics and Computing (ROPEC), pages 1-6, IEEE Press, 2018, [89].

https://doi.org/10.1109/ROPEC.2018.8661368

4.1 Introduction

From the literature review mentioned before, regarding population-based meta-

heuristics for BO problems, most research efforts are focused on evolutionary

computation and swarm intelligence algorithms because they have been success-

47

https://doi.org/10.1109/ROPEC.2018.8661368

Chapter 4. Nested-BCA: Preliminary Proposal

fully applied to solve single-level optimization problems [19]. In recent years,

physics-inspired algorithms have become popular to solve complex single-level

optimization problems [58, 25]. It is worth mentioning that the algorithm per-

formance is quantified via numerical indicators such as accuracy (distance to the

true optimum), robustness, and rationality, among others [125]. Therefore, an

algorithm is said to be competitive if it reports results with the desired values of

the performance indicators.

One of the main motivations of this research work is derived from a compet-

itive physics-inspired algorithm named Evolutionary Centers Algorithm (ECA),

which was originally designed to solve global optimization (single-level) prob-

lems [90], but it is now extended and adapted to deal with BO problems. The

unconstrained nested scheme is considered at the beginning. This ECA extension

for solving BOPs is called Bilevel Centers Algorithm (BCA), and uses the search

elements provided by ECA, which is based on the center of mass concept for gen-

erating biased solutions from promising regions in the search space [90].

The rest of the chapter is organized as follows: Section 4.2 presents a varia-

tion operator using the center of mass concept. The proposed BCA is detailed in

Sections 4.3-4.4. After that, Section 4.5 shows the experimental design and the

corresponding results, and discusses BCA’s performance. A state-of-the-art algo-

rithm for BO is used for comparison purposes. The conclusions of this research

are described in Section 4.6.

4.2 The Center of Mass Concept as a Variation Operator

The center of mass has been used as a concept to propose a variation operator for

generating good candidate solutions for an optimization problem. The main idea

is to use the objective function values as the mass unit, and assume that desired

values correspond to a larger mass, i.e., a solution has a larger mass than another

one if the objective function is better in the first solution [93].

48

Chapter 4. Nested-BCA: Preliminary Proposal

4.2.1 Center of Mass Concept

Firstly, the center of mass concept is described. After that, the variation operator

based on the center of mass concept will be analyzed.

The center of mass is the unique point c such that the mass distribution U =

{u1, u2, . . . ,uK} in a space has the following property: The weighted sum of K

position vectors relative to this point is zero [90], i.e.

K∑
i=1

m(ui)(ui − c) = 0, implies c =
1

M

K∑
i=1

m(ui)ui, (4.1)

where m(ui) is the mass located in ui and M is the sum of the masses at each

point in U . It is worth noticing that m is a non-negative function. If the objective

function f is assumed non-negative and needs to be maximized, the mass func-

tion can be directly defined as m(u) := f(u). The following example is used to

illustrate the application of the center of mass concept in maximization problems.

Example 4.1

Assume you want to maximize

f(x) = 2 exp(−(x1 + 1)2 − (x1 + 1)2) + exp(−(x1 − 1)2 − (x1 − 1)2)

such that −5 ≤ x1, x2 ≤ 5. It can be noted that f is non-negative.

Now, consider the following mass distribution U = {(−1, 0), (1, 2), (0,−1),
(0.5, 0.5), (−1.6,−1), (1.5, 1)}. The corresponding masses are computed as

follows. Since f is non-negative, then the mass for each point is m(u) =

f(u), then the center of mass for U is given by the following expression.

c =
1

M

∑
u∈U

f(u) · u, with M =
∑
u∈U

f(u).

Figure 4.1 represents the mass associated with the Example 4.1.

49

Chapter 4. Nested-BCA: Preliminary Proposal

Figure 4.1: Center of mass rep-
resentation. The radius rep-
resents the mass value which
is associated with better values
for the objective function.

In a general optimization problem, the objective function is not necessarily

satisfying the non-negativity property. Therefore, the following translating and

escalating procedure has been proposed to use the center of mass concept in the

general minimization task. The mass calculation regarding a set U is obtained as

follows:

m(x) = 2

(
max
u∈U
|f(u)|

)
− f(x) (4.2)

From Equation (4.2) can be observed that m(x) is a non-negative function

satisfying m(x) is larger when f(x) is minimum, and vice versa. Those are the

desired properties for a general minimization problem.

4.2.2 The Variation Operator: Unconstrained Case

Now, the variation operator can be described. As mentioned in Subsection 4.2.1,

the center of mass provides a bias toward a solution that optimizes the objective

function. However, other aspects are considered, e.g., a suitable strategy to gen-

erate a new solution without promoting premature convergence. To tackle this

issue we propose the following formulation [93].

50

Chapter 4. Nested-BCA: Preliminary Proposal

Let P be a population with N individuals, and U ⊂ P with size K. Thus, a

candidate solution is determined by

xnew = x+ η(c− uworst), (4.3)

where x ∈ P is the solution used to compute a new candidate, and uworst is

computed as follows:

uworst ∈ argmin{f(u) : u ∈ U}.

A set of candidate solutions is generated as follows: For each x ∈ P , randomly

choose elements (without replacement) in P to compute U ⊂ P with size K and

a positive stepsize value η to compute xnew. At the end of that step, you will have

N new candidate solutions [93].

4.2.3 The Variation Operator: Constrained Case

The bias generated by the center of mass has been useful to solve unconstrained

problems [93]. However, poor performance can be observed in constrained op-

timization problems, due to the mass being particularly defined on the objective

function values. This section is used to propose a new definition for the mass to

also consider constrained problems.

Let P be a population with size N . Assume you are solving a constrained

optimization problem (Definition 1.1). The mass is computed as follows for all

solutions in P .

m(x) = 2

(
max
u∈U
|fc(u)|

)
− fc(x) (4.4)

where

fc(x) = f(x) + 2fmax · vio(x) (4.5)

vio(x) =
J∑

j=1

max{0, g(x)}+
K∑
k=1

|h(x)| (4.6)

51

Chapter 4. Nested-BCA: Preliminary Proposal

Note that vio(x) is the constraint violation sum, and fmax = maxx∈P f(x) is the

largest value of the objective function in the current population. Also, fmax is

used as penalty factor.

Moreover, the mass defined by Equations (4.4)-(4.6) satisfies the following

properties:

• It is a non-negative function. This property is a necessary condition to con-

struct a consistent solution.

• Equations (4.2) and (4.4) take the same value on feasible solutions. That

is, Equation (4.2) takes the same value as Equation (4.4) if x is feasible.

• Feasible solutions have a larger mass than infeasible solutions in the same

population. Also, with two solutions with the same constraint violation sum,

the mass will be reflected by the objective function values.

Figure 4.2: Center of mass
representation in constrained
spaces. It can be noted that
feasible solutions have a larger
mass even when there are
other solutions with better ob-
jective function values.

Returning to Example 4.1, the following constraints are incorporated to the

optimization problem: g1(x) = 1−x1−x2, g2(x) = x1+x2− 3. Figure 4.2 shows

the mass distribution for the constrained optimization problem.

Summarizing, the center of mass concept is used to propose a suitable varia-

tion operator which can be used to generate promising solutions in constrained

52

Chapter 4. Nested-BCA: Preliminary Proposal

and unconstrained problems. The Equation (4.3) will be used as variation op-

erator to generate a candidate solution for bilevel optimization, due to the mass

function m has been adapted for each optimization level.

4.3 Generic Framework for Bilevel Optimization

This section presents the components of an Evolutionary Bilevel Optimization

Algorithm (EBOA) [113, 116, 125]. Algorithm 1 summarizes each component.

Algorithm 1: Nested Algorithm.

1 Input: Upper and lower-level metaheuristics.
2 Output: Approximate optimal solution.
3 Initialize a population of UL vectors.
4 For each UL vector, solve the LL problem.
5 Evaluate UL objective function and constraints.
6 while stopping criteria is not met do
7 Generate new UL vectors from population.
8 For each UL vector, solve the LL problem.
9 Evaluate UL objective function and constraints.

10 Perform UL environmental selection to reduce population if necessary.

11 Report the best solution in population (regarding UL objective function).

4.3.1 Representation

Assuming the single-objective bilevel optimization case, a suitable encoding for

an EBOA is given by the mathematical representation of a solution, i.e., the pair

(x,y) ∈ X × Y can be useful at the beginning. Therefore, the population for a

BO problem can be defined as in Equation (4.7):

P = {(x1, y1), (x2, y2), . . . , (xN , yN)} ⊂ X × Y. (4.7)

Note that P is a finite subset of solutions contained in the search space X × Y .

Those solutions or individuals in the population should be feasible, but guarantee-

53

Chapter 4. Nested-BCA: Preliminary Proposal

ing feasibility is hard to meet. Here, feasibility means satisfying equality and in-

equality constraints but also the lower-level optimality, i.e., yi ∈ argmin{f(xi, y) :

y ∈ Y } for i = 1, . . . , N .

4.3.2 Initialization

For single-level optimization, the population is, in general, initialized at random

with uniform distribution of solutions in the search space [93]. The same occurs

for the bilevel case. That is, the decision variables at the upper-level are initialized

at random with uniform distribution within the corresponding search space (X).

After that, the lower-level decision variables are obtained from the lower-level

problem parameterized by the upper-level decision vector [116, 125, 90].

The following steps can be used to initialize a population with feasible solu-

tions (approximated).

• Step 1. Generate x1,x2, . . . ,xN at random (uniform distribution) at the

upper-level search space X.

• Step 2. For i = 1, 2, . . . , N , use xi to optimize lower-level problem parametrized

by xi, i.e., solve y∗
i ∈ argmin{f(xi, y) : y ∈ Y } using the Lower Level

Optimizer (Section 4.3.4).

• Step 3. Set the initial population as follows

P = {(x1, y
∗
1), (x2, y

∗
2), . . . , (xN , y

∗
N)}.

Note that Step 1 is not complicated to perform, whilst Step 2 can be the

most computationally demanding because it depends on those features of the LL

optimization problems. This computational effort is hard to avoid because the

initial population needs to reflect a suitable starting solution to avoid converging

into local optimal or infeasible solutions [116].

54

Chapter 4. Nested-BCA: Preliminary Proposal

4.3.3 Upper-Level Optimizer

Once the initial population has been generated, new upper-level candidate solu-

tions are computed to find promising solutions at the upper-level search space.

Moreover, the upper-level optimizer (leader) needs to handle preferences that fit

the problem application. For example, if the problem is on finding an optimistic

or pessimistic solution. The proposed upper-level optimizer is detailed in the fol-

lowing steps:

• Step 1. Generate UL candidate solutions: Regarding the generation of UL

candidate solutions, it is common to find that existent variation operators

are used for that purpose. Genetic operators such as the SBX crossover

and Polynomial Mutation [113], Differential Evolution operators, [7], flight

equations in PSO [82], among others, have been used to generate candidate

solutions at the upper level.

• Step 2. Handle lower-level optimal solutions: Here, the leader waits until the

lower-level optimizer reports its results to the leader. The leader must be

prepared if the follower reports a set of optimal solutions.

• Step 3. Evaluate upper-level objective function: Once the lower-level opti-

mizer reports its optimal solution, the leader can evaluate the upper-level

objective function.

• Step 4. Environmental selection: Once the approximated feasible solutions

have been generated and the upper-level function values are available, this

final step is used to save those solutions in the population that will be con-

sidered for the next generation.

It is worth mentioning that Step 2 requires a high computation cost due to

the resolution of the lower-level problems. A significant amount of research in

evolutionary bilevel optimization is devoted to reduce the computational cost as-

sociated with Step 2 by using sophisticated mechanisms for saving computational

55

Chapter 4. Nested-BCA: Preliminary Proposal

effort (see Section 3.1). In contrast, the remaining steps are not usually compu-

tationally demanding.

4.3.4 Lower-Level Optimizer

The lower-level algorithm, which must approximate lower-level optimal solutions

for a given upper-level decision vector (say x), is one of the most significant

components. The parameterized problem to be solved at the lower level is defined

as follows:

y∗ ∈ argmin{f(x, y) : y ∈ Y }

Such an optimization problem is a single-level optimization problem that can

be solved by classical or evolutionary approaches. The election of the optimizer is

important due to the high precision required in some applications [116]. Some of

the most popular algorithms for solving the lower-level instance are Differential

Evolution [7], Genetic Algorithms [113], Particle Swarm Optimization [82] and

Sequential Quadratic Programming [116].

4.4 Bilevel Centers Algorithm

Here, the Bilevel Centers Algorithm (BCA) is presented as an instance of the

framework above mentioned. BCA will use the variation operator based on the

center of mass concept (Section 4.2.1), and the lower-level optimizer will imple-

ment the Evolutionary Centers Algorithm [93].

BCA is based on the nested scheme described in Sections 3.1 and 4.3, i.e., an

upper-level optimizer generates UL solutions but lets a lower-level optimizer find

the corresponding lower-level optimal solution to create a feasible solution.

Algorithm 2 summarizes each component of the proposal and the next sub-

sections are used to detail each one of them. As it can be noted, the search at

both levels is based on the center of mass operator described in Section 4.2. BCA

56

Chapter 4. Nested-BCA: Preliminary Proposal

Algorithm 2: BCA pseudocode

1 N ← K ∗D
2 Initialize population P with N elements (Section 4.3.2)
3 while the end criterion is not achieved do
4 for each (x, y) in P do
5 Generate a subset U ⊂ P such that |U | = K
6 Calculate c using U with Equation (4.9)
7 η ← rand(0, ηmax)
8 Calculate p using Equation (4.8)
9 Find q ∈ argmin

z∈Y
f(p, z) by using Algorithm 3

10 if F (x, y) < F (p, q) then
11 Replace the worst element in P with (p, q).

12 Resize P with Equation (4.11).

13 Report the best solution in P

also incorporates a population size reduction to exploit regions of interest in the

search space.

4.4.1 Upper-Level Variation Operator

New candidate solutions are generated for each solution (xi, yi) ∈ P , a new

upper-level parameter is generated using Equation (4.8):

pi = xi + ηi(ci − uworst), (4.8)

where ci is the center of mass computed by Equation (4.9):

ci =
1

M

∑
(x,y)∈U

m(x, y) · x, M =
∑

(x,y)∈U

m(x, y), (4.9)

where m(x,y) is defined as in Equation (4.4) but replacing f in such expression

by Q(x, y) = F (x, y) + f(x, y), U ⊂ P such that |U | = K and uworst is the first

57

Chapter 4. Nested-BCA: Preliminary Proposal

coordinate of the worst element in U , see Equation (4.10).

uworst ∈ argmin{Q(u, y) : u ∈ Ui} (4.10)

Note that function Q(x, y) is utilized to direct the upper-level population to

areas where the upper-level objective function F (x,y) is maximized while the

lower-level function f(x,y) will control the bias to feasible solutions.

Figure 4.3: BCA diagram.
Here, x1, . . . , xK are used to
compute better upper-level pa-
rameters p. Note that (xi, y∗i)
and (p, q) represent feasible
solutions.

Therefore, the new generated solution is determined by (p, q) which may

replace the worst solution in P if it is better than (xi, yi). Here, the lower-

level solution q = argminz∈Y f(p, z) is obtained by applying the lower-level

optimizer outlined by Algorithm 3. Figure 4.3 shows a representation of BCA

solution update.

Due to this stochastic strategy, this variation operator can help the exploration-

exploitation process to avoid premature convergence because it combines the cen-

ter of mass as an attractor to promising regions of the search space but uses the

position of the worst solution as a reference to get far away from it [90]. Taking

this into account, the replacement operator works as follows: if (p, q) is better

than (x,y), then the worst element in P is replaced by (p, q).

58

Chapter 4. Nested-BCA: Preliminary Proposal

4.4.2 Solving the Lower Level Problem

In this part, the ECA algorithm [90] is used to approximate feasible solutions

with a limited number of evaluations at the lower-level. The procedure for the

implementation of the lower-level optimizer (ECA) is summarized in Algorithm

3.

Algorithm 3: Pseudocode Lower Level Optimizer ECA

1 Input: upper-level parameter p, K = 7, ηmax = 2
2 N ← K ∗D
3 Initialize a population P ⊂ Y with N elements
4 while the end criterion is not achieved do
5 for each y in P do
6 Generate a subset U ⊂ P with K solutions
7 Calculate c using U with (4.1)
8 η ← rand(0, ηmax)
9 Compute q using Equation (4.3)

10 if f(p, y) < f(p, q) then
11 Replace the worst element in P with q

12 Resize P with Equation 4.11

13 Report the best solution in P

4.4.3 Adaptive Population Size Reduction

The population size is reduced linearly (the worse members are removed). The

population size at the start is N(0) = K ∗D and the final population size N(T) =

2 ∗K (for successfully generating the center of mass). Thus, the population size

over time is as in given by Equation 4.11:

N(t) = KD − (KD − 2K)t

T
= K

(
D − (D − 2)t

T

)
, (4.11)

where t = 0, 1, 2, . . . , T and T is the maximum number of iterations.

59

Chapter 4. Nested-BCA: Preliminary Proposal

4.4.4 Parameters

BCA requires three input parameter values: stepsize ηmax, K, and the population

size N . Large K values offer fast convergence to local optima, which is useful

when dealing with multi-modality (useful for unimodal functions). Small values

(respect to the population size) of K are in general preferred on multi-modal

problems. As the step size is controlled by this option, ηmax mostly governs the

exploratory process. Preliminary investigations suggest using K = 7 and ηmax = 2

as parameter settings [94].

To evaluate the performance of BO algorithms, this proposed algorithm (Al-

gorithm 2) was utilized to solve a set of eight test problems. Those problem

instances were discussed in Chapter 2.

4.5 Experiments and Discussion

The following was the configuration used in BCA for the experiments. The limited

number of function evaluations has been used as a stopping criterion for this

preliminary proposal. For the upper level, the Number of Function Evaluations

(NFEs) was set as 500DUL = 2500, and the lower level to 500DUL ∗ 500DLL, i.e.,

6, 250, 000 NFEs for both levels. The remaining parameters were taken from the

suggested values in [90], but adapted for the corresponding decision variable at

the upper- and lower-level.

• Upper-level dimension DUL = 5

• Lower-level dimension DLL = 5

• Upper-level population size K ∗DUL

• Lower-level population size K ∗DLL

• K = 7

• ηmax = 2

60

Chapter 4. Nested-BCA: Preliminary Proposal

Best Median Mean Worst Std.

SMD1 1.51E–05 5.35E–05 5.28E–05 8.34E–05 1.90E–05

SMD2 1.50E–05 4.68E–05 5.88E–05 3.11E–04 5.13E–05

SMD3 1.57E–05 5.51E–05 2.40E–04 3.54E–03 6.60E–04

SMD4 4.09E–08 4.90E–05 6.20E–05 3.01E–04 6.70E–05

SMD5 2.30E–05 5.03E–05 4.78E–05 8.33E–05 1.74E–05

SMD6 1.57E–01 1.90E+01 2.59E+01 1.40E+02 2.95E+01

SMD7 9.34E–01 9.75E–01 1.19E+00 3.81E+00 6.00E–01

SMD8 1.58E–05 6.49E–05 1.83E–04 2.23E–03 4.11E–04

Table 4.1: Upper-level accuracy statistics by BCA were obtained from 31 indepen-
dent runs.

• Stop condition: BCA stopped when the accuracy (1×10−4) or the maximum

NFEs allowed were reached.

BCA was compared against a state-of-the-art evolutionary algorithm (BLEAQ)

for BO problems [116, 113]. The BLEAQ algorithm is based on quadratic approx-

imations of ideal lower-level variables concerning upper-level ones. As a result of

this method, BLEAQ can reduce NFEs while maintaining competitive outcomes.

The authors’ proposed parameters were used in BLEAQ [113, 116] and the stop-

ping criteria were maintained, but accuracy was set at 1 × 10−4 as in BCA. Both

algorithms were employed to solve each test problem 31 times.

The statistical results of the accuracy values produced by the proposed BCA

in the two levels of each BO test problem are presented in Tables 4.1 and 4.2,

blackincluding the best, median, mean, worst, and standard deviation values of

the obtained accuracy. In addition, Table 4.3 and 4.4 show the best, median,

mean, worst, and standard deviation values of the NFEs required to solve each

BO test problem using BCA. The median accuracy and NFEs at the upper and

lower levels needed by BCA are compared to the values produced by BLEAQ in

Tables 4.5 and 4.6. Moreover, the best value discovered is indicated by a boldfaced

result.

61

Chapter 4. Nested-BCA: Preliminary Proposal

Best Median Mean Worst Std.

SMD1 2.67E–06 2.06E–05 2.14E–05 4.75E–05 9.77E–06

SMD2 3.56E–06 1.81E–05 2.07E–05 4.60E–05 1.15E–05

SMD3 1.87E–07 2.24E–05 3.12E–04 4.31E–03 9.28E–04

SMD4 6.23E–06 3.65E–05 1.53E–04 7.96E–04 2.33E–04

SMD5 2.50E–06 2.01E–05 2.19E–05 4.55E–05 1.28E–05

SMD6 3.91E–04 2.86E–02 4.23E–02 1.84E–01 4.35E–02

SMD7 3.71E+02 3.74E+02 3.74E+02 3.75E+02 1.01E+00

SMD8 1.18E–06 2.33E–05 6.53E–05 7.93E–04 1.44E–04

Table 4.2: Lower-level accuracy statistics by BCA were obtained from 31 indepen-
dent runs.

Best Median Mean Worst Std.

SMD1 1244 1526 1539.42 1879 152.119

SMD2 1244 1481 1482.84 2501 220.7

SMD3 1365 1526 1647.84 2501 287.517

SMD4 1169 1435 1437.26 1800 131.393

SMD5 1317 1526 1554.42 1898 137.766

SMD6 2501 2501 2501 2501 0

SMD7 2501 2501 2501 2501 0

SMD8 1780 2219 2234.65 2501 206.959

Table 4.3: Upper-level NFEs statistics by BCA were obtained from 31 independent
runs.

BCA consistently achieves very competitive performance on all test instances

at both levels, as can be seen in Tables 4.1 and 4.2. Only in problem SMD7

BCA showed difficulties to solve it. Therefore, BCA had a comparable strong

performance in the upper level when it came to NFEs, as seen in Table 4.3. In

contrast, more variation in the number of NFEs was reported in Table 4.4 for the

lower level.

Regarding the comparison against the state-of-the-art algorithm, from Table

4.6, BCA outperformed BLEAQ in five BO test problems at the upper level and

62

Chapter 4. Nested-BCA: Preliminary Proposal

five BO test problems at the lower level.

Moreover, BCA successfully solved SMD1-SMD5 and SMD8 but could not

reach the global optimum (at median value) for SMD6-SMD7 in which the upper

and lower level have conflicting objectives, and both problems contain multiple

local optimums in the upper-level search space. This indicates that BCA can be

improved to handle multimodal problems, perhaps incorporating mechanisms to

promote the exploitation of promising regions at the upper-level search space.

Best Median Mean Worst Std.

SMD1 3110000 3815000 3848548.4 4697500 380298.6

SMD2 3110000 3702500 3707096.8 6252500 551750.7

SMD3 3412500 3815000 4119596.8 6252500 718793.3

SMD4 2922500 3587500 3593145.2 4500000 328481.3

SMD5 3292500 3815000 3886048.4 4745000 344415.4

SMD6 6252500 6252500 6252500 6252500 0

SMD7 6252500 6252500 6252500 6252500 0

SMD8 4450000 5547500 5586612.9 6252500 517397.6

Table 4.4: Lower-level NFEs statistics by BCA were obtained from 31 independent
runs.

Upper Level Lower Level

BCA BLEAQ BCA BLEAQ

SMD1 1526 1600 3815000 116088

SMD2 1481 1925 3702500 113504

SMD3 1526 1630 3815000 122542

SMD4 1435 1750 3587500 70906

SMD5 1526 3031 3815000 147289

SMD6 2501 1016 6252500 7055

SMD7 2501 2104 6252500 130195

SMD8 2219 5569 5547500 289886

Table 4.5: Median NFEs values by BCA and BLEAQ obtained from 31 independent
runs.

63

Chapter 4. Nested-BCA: Preliminary Proposal

Upper Level Lower Level

BCA BLEAQ BCA BLEAQ

SMD1 5.35E–05 9.91E–05 2.06E–05 6.72E–05

SMD2 4.68E–05 2.82E–04 1.81E–05 3.84E–04

SMD3 5.51E–05 4.96E–06 2.24E–05 6.26E–06

SMD4 4.90E–05 1.54E–04 3.65E–05 6.12E–04

SMD5 5.03E–05 1.62E–04 2.01E–05 3.08E–04

SMD6 1.90E+01 1.46E–13 2.86E–02 8.66E–16

SMD7 9.75E–01 9.76E–02 3.74E+02 1.25E+02

SMD8 6.49E–05 7.46E–03 2.33E–05 5.63E–03

Table 4.6: Median accuracy values by BCA and BLEAQ obtained from 31 indepen-
dent runs.

Furthermore, based on Table 4.5, BCA required fewer NFEs at the upper level

of six BO test instances. However, BLEAQ outperformed BCA in the number of

lower-level NFEs as indicated in the same Table 4.5.

4.6 Conclusions of the Chapter

The application of a physics-inspired method based on the center of mass (BCA)

to handle bilevel optimization problems was reported in this chapter. To locate

promising regions of the search space, both levels used a variation operator based

on the center of mass and a greedy replacement based on fitness. BCA is a basic

algorithm that just requires the user to fine-tune three parameters (the popula-

tion size, the size of the subset to compute the center of mass, and the stepsize

for the variation operator). Eight test problems were solved to compare the sug-

gested approach to a state-of-the-art evolutionary algorithm for BO in terms of

upper/lower level accuracy and function evaluations. Overall, the results suggest

that BCA was able to produce comparable accuracy results to those produced by

BLEAQ, despite requiring fewer evaluations at the upper level. In terms of the

number of evaluations computed at the lower level, BLEAQ outperformed BCA.

64

Chapter 5

QBCA: BCA for Handling

Pseudo-feasible Solutions

Information

Part of this chapter is based on the paper: Jesús-Adolfo Mej́ıa-de-Dios, Efrén

Mezura-Montes, and Porfirio Toledo-Hernández (2022). Pseudo-feasible so-

lutions in evolutionary bilevel optimization: Test problems and performance

assessment. Applied Mathematics and Computation, 412, 126577.

https://doi.org/10.1016/j.amc.2021.126577

To deal with bilevel optimization problems, this chapter proposes a population-

based metaheuristic technique named Quasi-Newton Bilevel Centers Algorithm

(QBCA). At the lower level, a quasi-Newton approach is used to deal with infea-

sible solutions. Representative test functions for bilevel optimization are used to

65

https://doi.org/10.1016/j.amc.2021.126577

Chapter 5. QBCA: BCA for Handling Pseudo-feasible Solutions

evaluate the performance of this approach (see [92]). The main mechanisms in

QBCA are focused on the approximation of feasible solutions and the avoidance

of pseudo-feasible solutions. QBCA has the following considerations:

• It adopts the first condition given in Section 2.5.2 to discard pseudo-feasible

solutions. Firstly, it is essential to introduce as many feasible solutions as

possible into the population (if exact feasible solutions cannot be generated,

the usage of metaheuristic approaches is suggested to approximate them).

• Once the population has been generated, if the first condition is not sat-

isfied, then (x,y) is not replaced by the new generated solution (w, z),

because (w, z) can be a pseudo-feasible solution and must be discarded.

• Individuals in population P ⊂ X × Y should be reevaluated by performing

improvement procedures in a solution x to approximate the corresponding

y ∈ Ψ(x) by a global search.

Taking into account the above considerations, the following section is used

to detail the baseline methodology to adapt BCA for handling pseudo-feasible

solutions.

5.1 Baseline Solution Methodology

As a first step, the unconstrained BO problem (F, f, X, Y, R) is considered,

and a population with N feasible solutions is given by: P = {(xi, yi) ∈ X ×
Y : xi ∈ X, yi ∈ Y, i = 1, . . . , N}, where each xi ∈ X has a corresponding

yi ≈ y(xi) ∈ Ψ(xi), which is an approximation of a feasible solution. Note that

(xi, yj) for i ̸= j could not be a feasible solution.

66

Chapter 5. QBCA: BCA for Handling Pseudo-feasible Solutions

Improve using Nelder-Mead method
Upper Level Parameters

Lower Level Parameters

Feasible region

Choose an UL vector

Optimize using ECA

Figure 5.1: Initialization of the QBCA approach. First, an upper-level vector is
randomly generated, then the lower-level optimizer (ECA) is used to approxi-
mate the corresponding LL solution which is later improved using Nelder-Mead
method.

5.1.1 Initial Population

The QBCA method should start with K feasible solutions, i.e., a completely fea-

sible population. For such a task, an EA called ECA [90] is used to approximate

feasible solutions with a limited number of function evaluations at the lower level.

After that, the result is refined by using a heuristic method.

The QBCA population initialization is represented in Figure 5.1 and summa-

rized in the following steps.

• Step 1. Set the initial population P = ∅.

• Step 2. Generate N vectors {x1, . . . ,xN} uniformly at random in the UL

search space X.

• Step 3. Randomly choose K (K < N) UL vectors to generate the set U =

{x1, . . . ,xK} ⊂ P ,

• Step 4. For each element x ∈ U , use ECA (limited to 1000Dll LL function

evaluations) to solve problem min{f(x,y) : y ∈ Y } and choose the best

67

Chapter 5. QBCA: BCA for Handling Pseudo-feasible Solutions

Dll + 1 solutions.

• Step 5. Improve each solution by using the above Dll + 1 results and the

Nelder-Mead method with adaptive parameters [52] (with α = 1 for the

reflection, β = 1 + 2/Dll for the expansion, γ = 0.75 − 1/(2Dll) for the

contraction, and δ = 1 − 1/Dll for the shrink step) to generate the approx-

imate K solutions (x,y). Details of the Nelder-Mead method are found in

Algorithm 4. The main idea is to improve each xi by calling the Nelder-

Mead method to minimize fp(·) = f(xi, ·) for 1 ≤ i ≤ K. Nelder-Mead

method stopped when the mean distance between the current solution and

the centroid was less than 1× 10−8.

• Step 6. For each N − K remaining UL solutions, apply the lower-level

optimizer defined in Section 5.1.3.

• Step 7. Evaluate the solutions generated in steps 4-6 and insert them in P .

Algorithm 4: Nelder-Mead algorithm with adaptive parameters α = 1,
β = 1 + 2/Dll, γ = 0.75− 1/(2Dll) and δ = 1− 1/Dll.

1 Input. An objective function fp and a simplex ∆ = {x1, y2, . . . ,yDll
}.

2 while the end criterion is not achieved do
3 Put yc ← 1

Dll

∑Dll
i=1 yi be the centroid of the best Dll solutions.

4 Sort. Evaluate fp at solutions of ∆ and sort them such that
fp(y1) ≤ fp(y2) ≤ · · · ≤ fp(xDll+1).

5 Reflection. Calculate the reflection point yr ← yc + α(yc − yDll+1).
6 Expansion. If fp(yr) < fp(y1) then compute the expansion point

ye = yc + β(yr − yc). If fp(ye) < fp(yr), replace yDll+1 with ye ;
otherwise replace yDll+1 with yr.

7 Outside Contraction. If fp(yn) ≤ fp(yr) < fp(yDll+1), compute the
outside contraction point yoc ← yc + γ(yr − yc). If fp(yoc) ≤ fp(yr),
replace yDll+1 with yoc ; otherwise go to step 9.

8 Inside contraction. If fp(yr) ≥ fp(yDll+1), compute the inside
contraction point yic ← yc − γ(yr − yc). If fp(yic) < fp(yDll+1),
replace yDll+1 with yic ; otherwise, go to step 9.

9 Shrink. For 2 ≤ i ≤ Dll + 1, translate yi ← y1 + δ(yi − y1).

10 Return y1

68

Chapter 5. QBCA: BCA for Handling Pseudo-feasible Solutions

5.1.2 Upper-Level Optimizer

Once the initial population is available, new UL decision vectors in X are gen-

erated by a variation operator inspired in the center of mass and presented in

[90, 92]. To compute the center of mass in a minimization problem, the follow-

ing strategy is adopted: mF (x,y) = 2
[
max(u,v)∈U |F (u,v)|

]
− F (x,y). where

U ⊂ P is generated by choosing its elements uniformly at random. Here, mF

defines a non-negative function on a finite set U such that small values of F (x,y)

represent larger values of mF (x,y).

If it is the case that in both levels there are maximization problems with

non-negative objective functions (assumptions of ECA [90]), then mF (x,y) =

F (x,y).

cX =
1

W

∑
(x,y)∈U

mF (x, y) · x, W =
∑

(x,y)∈U

mF (x, y), (5.1)

Note that, cX is biased toward smaller F values with respect to U . According to

that behavior, a new UL vector is generated as in (5.2):

p = x+ ηX(cX − uworst), (5.2)

where ηX ∈ (0, ηmax] and ηmax is the user-defined stepsize, and (uworst,y) ∈
argmax{F (x,y) : (x,y) ∈ U}. This new vector p is indeed generated by a

current-to-center-like direction (refer to [90, 92]). It can be noted that p repre-

sents a new candidate solution at the UL. However, it is necessary to approximate

the corresponding q∗ ∈ Ψ(p), then the next section is devoted to the approxima-

tion of this feasible solution.

5.1.3 Lower Level Optimizer

The LL optimizer uses the population P = {(xi,yi) : i = 1, 2, . . . , N}. Considering

the information provided by the current distribution of feasible solutions in P ,

new vectors qc are produced using the center of the mass variation operator. The

69

Chapter 5. QBCA: BCA for Handling Pseudo-feasible Solutions

modified vector is then used as the initial solution of a local optimizer, such as the

Quasi-Newton method in our context.

The center of mass for the LL is defined on V ⊂ P in (5.3):

yc =
1

W

∑
(x,y)∈V

mf (x, y) · y, with W =
∑

(x,y)∈V

mf (x, y), (5.3)

where each mass value is computed as usual:

mf (x,y) = 2

[
max

(u,v)∈V
|f(u,v)|

]
− f(x,y).

As can be seen, (5.3) may be an infeasible solution. A Quasi-Newton approach is

then utilized to move such solution near the feasible region.

When the objective function is smooth enough, this mathematical program-

Algorithm 5: BFGS-LL: Quasi-Newton method for the lower-level prob-
lem. This method finds a local optima of the lower-level function
fp(·) = f(p, ·) given the upper-level solution p ∈ X.

1 Input. Initial solution yc ∈ Y , upper-level solution p ∈ X, objective
function fp(y) = f(p,y).

2 Set H0 to a positive definite matrix (identity matrix I)
3 Put q0 ← yc and k ← 0
4 while the end criterion is not met do
5 hk ← −Hk∇fp(qk)
6 Compute γk ← argmin fp(qk + γkhk).
7 qk+1 ← qk + γkhk

8 if f is not differentiable at (p, qk+1) then
9 Stop

10 zk ← ∇fp(qk+1)−∇fp(qk)
11 Ak ← I − (hT

k zk)
−1hkz

T
k

12 Hk+1 ← AkHkA
T
k + γk(h

T
k zk)

−1hkh
T
k which is a positive definite

matrix and satisfies the secant condition Hk+1zk = γkhk

13 k ← k + 1

14

15 Return qk

70

Chapter 5. QBCA: BCA for Handling Pseudo-feasible Solutions

ming methodology (Quasi-Newton method) is extensively employed for numer-

ical optimization, and empirical results imply that it can be useful in practice

[49, 78, 84]. Here, the proposal utilizes a modified Broyden-Fletcher-Goldfarb-

Shanno (BFGS) algorithm, denoted as BFGS-LL, detailed in [92] and included

in Algorithm 5. The update consists in using yc as an initial point to the clas-

sical BFGS to minimize function f(p, ·) by approximating local gradients. The

resulting optimal solution is therefore denoted as q. BFGS-LL stopped when the

maximum number of lower-level functions evaluations (1000) was reached or

∥∇fp(qk)∥ ≤ 10−8 or ∥fp(qk)− fp(qk−1)∥ = 0 or ∥qk − qk−1∥ = 0.

5.1.4 Mechanism to Detect Pseudo-feasible Solutions

Here, the pseudo-feasible solution detection mechanism is implemented as fol-

lows: a solution (p, q) is better than (x,y) if the first condition in Section 2.5.2

is not satisfied and F (p, q) < F (x,y) (see line 13 in Algorithm 6). That is, (p, q)

is NOT better than (x,y) if F (p, q) ≥ F (x,y) or the following (Condition 1) is

satisfied: 

∥x− p∥ < δ1 and

∥y − q∥ ≥ δ2 and

|F (x,y)− F (p, q)| < ε1 and

|f(x,y)− f(p, q)| < ε2.

(5.4)

where δ1, δ2, ε1 and ε2 are parameters given by the user. For simplicity (and

applicability purposes) such values can be fixed within (0, 1].

Finally, the complete algorithm to solve BO problems is summarized in Al-

gorithm 6. To avoid convergence to local optima, QBCA executes ECA (limited

to 1000Dll LL function evaluations) on all solutions in the population every 10

iterations to update them and improve the search by applying the Nelder-Mead

method as in Section 5.1.1. The stopping criteria implemented for Algorithm 6 is

related to the maximum-number of upper-level function evaluations (see Section

5.3).

71

Chapter 5. QBCA: BCA for Handling Pseudo-feasible Solutions

Algorithm 6: QBCA pseudocode. The suggested parameter values are
K = 3, ηmax = 2, δ1 = δ2 = 10−2.

1 Choose K, ηmax, δ1 and δ2.
2 Set N ← K ∗D and t← 0
3 Initialize population P ⊂ X × Y with N elements
4 while the end criterion is not achieved do
5 t← t+ 1 for each (x, y) in P do
6 Generate U ⊂ P and V ⊂ P with |U | = |V | = K
7 Choose ηX and ηY
8 Compute cX using U
9 p← x+ ηX(cX − uworst)

10 Calculate yc using V with (5.3)
11 q is calculated using yc and the BFGS-LL method
12 if (p, q) is better than (x, y) then
13 Replace the worst element in P with (p, q).

14 if t mod 10 = 0 then
15 Reevaluate the best solution (wbest, zbest) in P to obtain

(xbest,ybest).
16 if (wbest, zbest) and (xbest,ybest) satisfies the rule 1 in Section 2.5.2

then
17 Reevaluate the entire population P

18 Report the best solution in P

5.2 Computational Complexity

Regarding the computational complexity of QBCA (Algorithm 6), it is difficult

to determine the complexity due to the different mechanisms implemented in

QBCA, which have not yet been studied regarding the cost. However, it can be ap-

proximated this calculation in the worst case. The upper-level variation operator

(lines 6-10 in Algorithm 6) requires O(ND), the BFGS-LL (line 11 in Algorithm

6) requires O(D2
ll) computations [78], where Dll is the number of lower-level

variables. Assuming that the lower-level optimizer (lines 14-17 in Algorithm 6)

requires O(NllDll, Tll) computations, where Nll is the lower-level population size,

and Tll is the number of lower-level iterations. Therefore, the overall complexity

of one iteration of Algorithm 6 is O(NllDll, Tll +D2
ll +ND).

72

Chapter 5. QBCA: BCA for Handling Pseudo-feasible Solutions

5.3 Experiments and Discussion

This section contains two studies for the QBCA performance assessment. Two

state-of-the-art algorithms, BLCMAES and BLEAQ-2, are considered in this chap-

ter since their empirical results demonstrate that they are effective to solve dif-

ferent test problems [56, 111]. The main goal of these experiments is to answer

the following question: are both state-of-the-art algorithms reporting misleading

solutions? The QBCA ability to detect pseudo-feasible solutions is also analyzed.

BLCMAES implements a CMA-ES algorithm at each level to transfer knowl-

edge from an upper-level CMA-ES to a lower-level CMA-ES in a hierarchical

scheme, and it approximates a distribution sharing mechanism. BLEAQ-2, on

the other hand, is an EA for solving BO problems and can use quadratic func-

tions to approximate the mapping Ψ and save lower-level function evaluations

[114, 113].

Both the scalable SMD test suite and the PMM test functions were used to test

QBCA, BLEAQ-2, and BLCMAES. The SMD test functions were recently presented

to provide controlled scaling of challenges (such as multimodality and nonconvex-

ity) at both levels. Because the lower-level objective functions are low-bounded

and such a minimum is attained if and only if the solution is feasible, the SMD

test problems do not offer pseudo-feasible solutions associated with the optimal

feasible solution.

After that, a comparison with QBCA is conducted to assess the success of the

rules for avoiding pseudo-feasible solutions, i.e., QBCA should not report mis-

leading solutions. The first experiment evaluates the performance of the three

algorithms mentioned above on SMD test issues, while the second exposes the

performance of the two state-of-the-art evolutionary algorithms on the PMM test

problems.

Algorithm 6 has been implemented in the Julia Programming Language [16],

and the codes of BLCMAES and BLEAQ-2 were downloaded from the authors’

websites. Also, The maximum number of function evaluations and the number of

73

Chapter 5. QBCA: BCA for Handling Pseudo-feasible Solutions

iterations are limited to 106. BFGS-LL terminates if ∥∇fp(qk)∥ ≤ 10−8 or ∥fp(qk)−
fp(qk−1)∥ = 0 or ∥qk − qk−1∥ = 0.

5.3.1 Experiment 1

Here, low and high-dimensional versions of the SMD test suite are considered.

The low-dimensional problems consist of 5 variables where Dul = 2 and Dll = 3.

The high-dimensional SMD instances consider 10-dimensional problems where

Dul = 5 and Dll = 5. The description for the SMD test suite can be found in

Appendix C.

The parameters adopted for QBCA were K = 3, the stepsize parameters ηX ∈
(0, ηmax] with ηmax = 2 and δ1 = δ2 = 10−2. It is worth mentioning that K and

ηmax values were found by the automated parameter tuning strategy developed

in [94] and detailed in Chapter 6, whilst δ1, δ2 are tolerance values related to

the desired accuracy. QBCA stopped if the desired accuracy was obtained or

the maximum number of functions evaluations (NFEs) for the upper level was

reached. BLCMAES and BLEAQ-2 adopted the settings provided by their authors

Instance QBCA BLCMAES BLEAQ-2 QBCA BLCMAES BLEAQ-2

SMD1 100% 100% 100% 100% 100% 100%

SMD2 100% 100% 100% 100% 100% 100%

SMD3 100% 100% 100% 100% 100% 100%

SMD4 100% 100% 100% 100% 100% 100%

SMD5 100% 100% 100% 100% 100% 100%

SMD6 71% 100% 100% 3% 100% 100%

SMD7 97% 58% 100% 81% 6% 100%

SMD8 100% 100% 100% 100% 87% 100%

Table 5.1: QBCA, BLCMAES, and BLEAQ-2 Success rates when executed on 10-
variable SMD test problems.

74

Chapter 5. QBCA: BCA for Handling Pseudo-feasible Solutions

[111, 56]. Those settings were fixed for all experiments.

The desired accuracy was fixed to ε1 = 1×10−2 and ε2 = 1×10−3 for the upper

and lower level, respectively. The NFEs were 2500 for low-dimensional functions

and 3500 for high-dimensional instances. Each algorithm limited the lower-level

function evaluations according to its mechanisms.

The success rates of QBCA, BLCMAES, and BLEAQ-2 in terms of intended

accuracy at the upper and lower levels are shown in Table 5.1. It should be noted

that QBCA performs similarly to BLEAQ-2 in most circumstances, while BLEAQ-2

outperforms QBCA in SMD6 and SMD7 cases, and QBCA outperforms BLCMAES

in most cases. In this context, a successful run is one in which at least one feasible

solution is found in NFEs.

5.3.2 Experiment 2

This experiment is carried out to show how unfeasible solutions might be mis-

takenly considered as feasible optimal solutions supplied by state-of-the-art EAs.

Low and high-dimensional PMM test problems are considered in this study, i.e.,

the low-dimensional problems consider Dul = 2, Dll = 3 and Dul = 5, Dll = 5

for the high-dimensional problems. The following statement is used to test if a

solution is near to a feasible optima: the solution (x, y) is close to the feasible

optimal solution if ∥x−x∗∥ < δ1 and ∥y− y∗∥ < δ2 with y∗ ∈ Ψ(x). For simplicity

δ1 = δ2 = 2× 10−1 was considered and fixed for all experiments.

Here, a misleading run occurs when the algorithm, at the end, reports a so-

lution that satisfies: ∥x − x∗∥ < δ1, ∥y − y∗∥ ≥ δ2, |F (x, y) − F (x∗, y∗)| < ε1

and |f(x, y) − f(x∗, y∗)| < ε2. A Non-Convergent (NC) run is when the al-

gorithm was unable to find a solution with the desired accuracy in NFEs, i.e.,

|F (x, y) − F (x∗, y∗)| ≥ ε1 or |f(x, y) − f(x∗, y∗)| ≥ ε2. A successful run, on

the other hand, is obtained when the algorithm reports a correct and feasible

solution. Similarly to the other measures, the successful rate is the number of

successful runs divided by the total number of runs.

75

Chapter 5. QBCA: BCA for Handling Pseudo-feasible Solutions

Algorithm Instance Misleading NC Success

QBCA

PMM1 0 0 100

PMM2 0 0 100

PMM3 0 0 100

PMM4 0 3 97

PMM5 3 0 97

PMM6 6 0 94

BLCMAES

PMM1 0 0 100

PMM2 0 0 100

PMM3 0 0 100

PMM4 16 0 84

PMM5 0 0 100

PMM6 29 61 10

BLEAQ-2

PMM1 23 74 3

PMM2 0 0 100

PMM3 13 6 81

PMM4 10 26 64

PMM5 6 3 91

PMM6 19 61 20

Table 5.2: Results of 31 independent runs of QBCA and BLEAQ-2 on low-
dimensional PMM test functions.

Tables 5.2 and 5.3 present the measured results (misleading runs, non-convergent

runs, and successful rate) of 31 independent runs by each compared algorithm for

the low and high-dimensional PMM test problems, respectively. Moreover, Tables

5.4 and 5.5 detail the error statistics and the number of functions evaluations for

low and high-dimensional PMM test problems.

As can be seen in Tables 5.4 and 5.5, accuracy should be evaluated in terms

76

Chapter 5. QBCA: BCA for Handling Pseudo-feasible Solutions

of bilevel values and their corresponding vectors of parameters at both levels to

avoid unfair comparisons and produce reliable findings.

It is also worth mentioning that BLCMAES produced misleading outcomes in

both low and high instances; for example, Table 5.3 shows that BLCMAES con-

verged to pseudo-feasible solutions in PMM4 test problem in several runs. Ac-

cording to the empirical findings, BLCMAES is unsuitable for multimodal LL sce-

narios. Furthermore, based on Table 5.2, BLEAQ-2 reports an important amount

of pseudo-feasible solutions in low-dimensional test problems and is unable to

converge in high-dimensional PMM problems (Table 5.3). QBCA, on the other

hand, avoided pseudo-feasible solutions in most low-dimensional PMM instances

and was able to solve high-dimensional PMM1-PMM5 test problems.

QBCA is able to successfully resolve instances even in the presence of mislead-

ing solutions, as the results suggest. The benefits and strengths of our approach

are described below according to the characteristics of each function:

• UL-Unimodal/LL-Unimodal: These problems are not that difficult to solve

(as suggested by the results) because there is only one optimal solution at

both levels. For this reason, QBCA resolved the PMM1-PMM2 instances.

• UL-Unimodal/LL-Multimodal: Bilevel evolutionary algorithms can con-

verge to local optima when one of the two levels presents some multimodal-

ity. When the lower level contains multiple local optima, then the lower

level can produce infeasible solutions regarding the bilevel problem. For

this reason, the evolutionary algorithms with which QBCA was compared

reported misleading solutions or converged to infeasible solutions. Even

some QBCA runs did not report convergence to the global optimum.

• UL-Multimodal/LL-Unimodal: If the lower level is unimodal, but the up-

per level contains multiple local optima, then the algorithms can easily con-

verge to a feasible local optimum. For this reason, QBCA (and the rest of

the bilevel algorithms) did not report optimal feasible solutions in the high

dimensional PMM6 instance due to the strong multimodality. Moreover,

77

Chapter 5. QBCA: BCA for Handling Pseudo-feasible Solutions

BLEAQ-II and BL-CMEAES also failed to solve PMM3-PMM6 instances. A

mutation with a higher degree of disruption can be provided for the upper

level to improve the performance of the algorithms.

• UL-Multimodal:/UL-Multimodal: One of the most difficult bilevel prob-

lems to solve is those that present multi-modality at both levels, and it

can be even more difficult if both levels conflict. For this type of instance

(PMM6), the algorithms must handle the upper level’s optimality and the

feasibility obtained when the lower level is solved. Note that QBCA can

solve this type of instance for low-dimensional problems; however, for high-

dimensional problems (PMM6), QBCA loses the ability to report optimal

solutions, although it does not report misleading solutions, which can be

useful for those seeking feasibility.

5.4 Conclusions of the Chapter

In this chapter, to prevent misleading results caused by pseudo-feasible solutions,

a baseline approach with the rules presented in Chapter 2 was provided. The

results obtained in the experiments revealed that two state-of-the-art algorithms

are subject to report pseudo-feasible solutions. On the other hand, QBCA coupled

with the pseudo-fesible solution detection mechanism was able to report highly

competitive results while avoiding pseudo-feasible solutions.

78

Chapter 5. QBCA: BCA for Handling Pseudo-feasible Solutions

Instance Misleading NC Success

QBCA

PMM1 0 0 100

PMM2 0 0 100

PMM3 0 0 100

PMM4 0 0 100

PMM5 0 0 100

PMM6 0 100 0

BLCMAES

PMM1 0 13 87

PMM2 0 100 0

PMM3 0 0 100

PMM4 58 6 36

PMM5 32 0 68

PMM6 23 77 0

BLEAQ-2

PMM1 3 94 3

PMM2 0 100 0

PMM3 6 87 7

PMM4 0 100 0

PMM5 0 97 3

PMM6 0 100 0

Table 5.3: Results of 31 independent runs of QBCA and BLEAQ-2 on high-
dimensional PMM test functions.

79

Chapter 5. QBCA: BCA for Handling Pseudo-feasible Solutions

QBCA BLCMAES BLEAQ-2

∥x− x∗∥ ∥y − y∗∥ ∥x− x∗∥ ∥y − y∗∥ ∥x− x∗∥ ∥y − y∗∥

Median Std. Median Std. Median Std. Median Std. Median Std. Median Std.

PMM1 2.07E-02 7.08E-03 1.25E-06 1.38E-04 1.04E-03 7.05E-04 3.42E-04 3.83E-04 5.71E-01 6.95E-01 2.76E-01 2.06E+00

PMM2 1.95E-02 7.88E-03 1.88E-09 4.14E-09 8.41E-04 3.04E-04 5.52E-04 3.53E-04 5.53E-04 8.83E-03 2.36E-06 8.93E-05

PMM3 2.22E-02 7.13E-03 1.30E-08 4.63E-08 1.06E-03 7.68E-04 1.24E-03 1.10E-03 2.60E-02 7.42E-02 4.97E-02 1.78E-01

PMM4 2.30E-02 1.85E-02 6.77E-07 9.54E-04 1.07E-03 4.09E-01 4.94E-04 4.08E-01 3.43E-02 6.22E-01 8.60E-03 6.27E-01

PMM5 2.36E-02 1.75E-01 1.22E-06 1.78E-01 1.11E-03 7.69E-04 5.36E-03 4.67E-03 3.34E-02 1.76E-01 3.76E-02 1.83E-01

PMM6 1.54E-02 1.20E-01 6.60E-10 2.47E-01 9.95E-01 3.91E-01 6.25E-01 4.32E-01 3.25E-01 4.37E-01 6.30E-01 7.20E-01

QBCA BLCMAES BLEAQ-2

UL LL UL LL UL LL

Median Std. Median Std. Median Std. Median Std. Median Std. Median Std.

PMM1 2.04E+02 3.71E+01 8.15E+04 1.37E+04 1.18E+03 9.24E+01 6.80E+04 6.93E+03 1.06E+03 3.90E+02 8.36E+03 2.10E+03

PMM2 2.15E+02 4.21E+01 2.52E+04 2.68E+03 3.11E+02 3.37E+01 2.18E+04 1.76E+03 4.12E+02 2.50E+02 4.47E+04 4.77E+02

PMM3 2.13E+02 4.79E+01 2.64E+04 3.06E+03 4.23E+02 2.88E+01 2.35E+04 1.48E+03 7.45E+02 4.17E+02 9.33E+04 1.17E+04

PMM4 2.05E+02 5.97E+01 3.15E+04 1.85E+04 5.64E+02 2.88E+02 3.88E+04 1.19E+04 8.78E+02 3.24E+02 8.51E+04 1.21E+04

PMM5 3.12E+02 8.49E+01 4.75E+04 2.27E+04 4.36E+02 4.45E+01 2.43E+04 2.32E+03 5.63E+02 1.83E+02 7.01E+04 7.52E+03

PMM6 6.00E+02 1.99E+02 1.82E+05 7.00E+04 1.04E+03 2.69E+02 5.21E+04 8.78E+03 1.08E+03 4.56E+02 8.33E+04 1.17E+04

Table 5.4: UL-LL error statistics were obtained from 31 independent runs of
QBCA, BLCMAES, and BLEAQ-2 in low-dimensional PMM test problems. UL-LL
function evaluations in low-dimensional PMM test problems.

QBCA BLCMAES BLEAQ-2

∥x− x∗∥ ∥y − y∗∥ ∥x− x∗∥ ∥y − y∗∥ ∥x− x∗∥ ∥y − y∗∥

Median Std. Median Std. Median Std. Median Std. Median Std. Median Std.

PMM1 2.73E-02 4.70E-03 4.71E-07 1.42E-05 6.74E-03 1.93E+00 3.81E-03 2.96E+00 8.56E-01 6.71E-01 7.32E-01 2.12E+00

PMM2 2.29E-02 5.49E-03 8.34E-06 1.55E-04 8.82E+00 3.32E+00 6.18E+00 3.03E+00 1.39E+01 3.38E+00 1.53E+01 4.61E+00

PMM3 2.75E-02 4.35E-03 1.97E-06 3.35E-06 1.47E-03 7.21E-04 1.41E-03 8.36E-04 3.61E-01 5.96E-01 5.83E-01 1.41E+00

PMM4 2.68E-02 6.13E-03 1.24E-07 1.57E-04 9.97E-01 6.31E-01 9.95E-01 5.92E-01 1.79E+00 8.63E-01 1.70E+00 8.51E-01

PMM5 2.82E-02 3.50E-03 1.35E-03 1.47E-03 3.14E-03 4.97E-01 4.41E-02 4.81E-01 1.41E+00 6.52E-01 1.21E+00 6.43E-01

PMM6 1.19E+00 4.61E-01 1.59E+00 6.98E-01 1.43E+00 4.14E-01 1.07E+00 4.98E-01 2.22E+00 7.70E-01 1.61E+00 1.05E+00

QBCA BLCMAES BLEAQ-2

UL LL UL LL UL LL

Median Std. Median Std. Median Std. Median Std. Median Std. Median Std.

PMM1 1.24E+03 9.74E+01 6.29E+05 8.12E+04 3.50E+03 6.81E+02 3.30E+05 6.58E+04 1.62E+03 4.45E+02 1.51E+04 2.46E+03

PMM2 2.04E+03 1.48E+02 1.42E+06 1.48E+05 3.50E+03 9.04E+02 2.65E+05 6.83E+04 1.51E+03 4.27E+02 7.19E+04 5.59E+03

PMM3 1.27E+03 1.24E+02 2.42E+05 2.03E+04 1.16E+03 5.61E+01 1.01E+05 4.79E+03 1.76E+03 5.17E+02 1.52E+05 1.37E+04

PMM4 1.46E+03 1.79E+02 7.42E+05 2.50E+05 2.55E+03 9.14E+02 2.35E+05 6.29E+04 2.02E+03 6.12E+02 1.13E+05 1.65E+04

PMM5 1.82E+03 2.47E+02 9.91E+05 1.64E+05 1.83E+03 6.36E+02 1.54E+05 3.42E+04 1.94E+03 7.16E+02 1.23E+05 1.69E+04

PMM6 3.50E+03 0.00E+00 2.91E+06 5.70E+04 2.91E+03 5.14E+02 2.22E+05 3.11E+04 2.24E+03 6.26E+02 1.06E+05 1.59E+04

Table 5.5: UL-LL error statistics were obtained from 31 independent runs of
QBCA, BLCMAES, and BLEAQ-2 in high-dimensional PMM test problems. UL-
LL function evaluations in high-dimensional PMM test problems.

80

Chapter 6

Automated Parameter Tuning Via

Bilevel Optimization

Information

Part of this chapter is based on the paper: Jesus-Adolfo Mej́ıa-de-Dios, Efrén

Mezura-Montes and Marcela Quiroz-Castellanos (2021). Automated param-

eter tuning as a bilevel optimization problem solved by a surrogate-assisted

population-based approach. Applied Intelligence, 51(8), 5978-6000.

https://doi.org/10.1007/s10489-020-02151-y

The automated parameter tuning problem (APTP) is modeled as a bilevel op-

timization problem in this chapter. To begin, the main definitions and theoreti-

cal results are presented to formalize the APTP in the framework of bilevel opti-

mization. To spot potential regions in the parameter search space, the obtained

81

https://doi.org/10.1007/s10489-020-02151-y

Chapter 6. Automated Parameter Tuning Via Bilevel Optimization

bilevel optimization problem is solved using an adapted BCA combined with sur-

rogate models. The suggested parameter tuner is tested on four typical numerical

optimization metaheuristics on a collection of well-known and challenging test

problems. Furthermore, a competitive algorithm for a well-known combinatorial

optimization problem is also set up (considering a large benchmark suite). The

experimental results are compared to those of Iterated Racing for Automatic Al-

gorithm Configuration (also known as IRACE), a state-of-the-art parameter tuning

approach. The results were validated by the Bayesian signed-rank statistical test.

6.1 Introduction

Identifying the conditions that promote the performance of search algorithms is

one of the most important challenges in their development. As such algorithms

are parameterized, the challenge is to discover a parameter setting that results in

a suitable algorithmic behavior. Almost all metaheuristic approaches fall within

this category. Because they offer a fair trade-off between efficacy and runtime,

these approaches have proven to be particularly able to handle NP-hard problems.

However, it is generally recognized that, in contrast to traditional exact methods,

those approaches typically have parameters to fine-tune, and those values have

a significant impact on the algorithm’s final performance. The goal of parameter

configuration can be accomplished in one of two ways: (a) offline, where the

objective is to achieve an initial parameter setting before the optimization process

begins (also known as parameter fine-tuning); or (b) online, where the parameter

values are adjusted whilst the algorithm is running (also known as parameter

control).

Many challenging search problems are frequently solved by algorithms con-

figured by values, in which the user must identify configurations that allow the

algorithm to perform properly [42]. In other words, the effectiveness of an algo-

rithm is greatly influenced by its parameter values, which is a difficult challenge

to solve in a variety of fields (e.g., evolutionary computation, machine learning,

etc.) [59].

82

Chapter 6. Automated Parameter Tuning Via Bilevel Optimization

Traditional methodologies such as the brute force approach [42, 140], race-

based methods [18, 85], population-based strategies [122, 141], and develop-

ing specific frameworks have been used to tackle the parameter tuning problem

[60, 61, 44]. Traditional processes, in general, are limited to a few parameters of

the algorithm to be set (target algorithm), because they may involve exhaustive

searches for parameters of the target algorithm over discretized domains. Fur-

thermore, those strategies are incompatible with expensive target algorithms. On

the other hand, evolutionary parameter tweaking techniques have been presented

with promising results [42].

One of the most popular parameter tuners was presented in [85], which in-

cludes the iterative race-based technique (IRACE). Such approach can identify

good enough configurations while simultaneously minimizing the computational

cost of invoking the algorithm to be configured by performing statistical checks.

That is why it was chosen as a reference algorithm in this study.

The parameter tuning problem has been represented as a bilevel optimization

task in recent years [116], with a hierarchical structure assisting in the construc-

tion of successful techniques to configure algorithms. Sinha et al. [117], for exam-

ple, represented the parameter tuning problem as a bilevel optimization problem,

which they addressed via an evolutionary bilevel algorithm. Furthermore, Ander-

sson et al. [4, 5] used a bilevel optimization strategy to improve the efficiency of

evolutionary algorithms by modifying and adjusting their parameters, despite the

high computational cost of this tuning work.

In light of the foregoing, this chapter focuses on proposing a competitive al-

ternative to address the automated parameter tuning problem by utilizing a novel

bilevel optimization model, as well as considering an algorithm that incorporates

a mechanism to reduce the computational load associated with this process by

utilizing surrogate models to identify suitable parameter settings for the target

algorithm. For specific algorithms that require fine-tuning, the model for the pa-

rameter tuning problem is a bilevel optimization work that takes into account

scalability in terms of parameters and the number of problem instances. Here,

83

Chapter 6. Automated Parameter Tuning Via Bilevel Optimization

the most convenient aspects of bilevel optimization are taken into account to de-

crease the parameter tuning problem’s computing cost. The suggested method’s

anticipated benefit is that the solved bilevel optimization problem has an objec-

tive function that is defined directly in terms of the hardest instances that the

algorithm to be tuned can solve, resulting in a reduction in the tuning process’

computing cost.

The rest of the chapter is organized as follows: The Automated Parameter

Tuning Problem (APTP) is detailed and modeled as a bilevel optimization task

in Section 6.2, Section 6.3 explains the construction of the surrogate models to

deal with the computational cost associated with the search process. Section 6.4

presents the extension of BCA to solve APTP. The experiments and discussion

on the findings are presented in Section 6.5. Finally, Section 6.6 provides the

conclusions.

6.2 The Automated Parameter Tuning Problem

Assume you need to calibrate an algorithm that has multiple types of parameters

(also known as hyperparameters). Those parameters can be [59, 94]:

1. Boolean parameters: commonly used to activate or deactivate an algorithm

feature, e.g., {true, false} .

2. Categorical parameters: finite unordered options, usually used to choose

from a set of alternative features or mechanisms, e.g., {sort, shuffle} .

3. Real-valued parameters: related to the behavior of the algorithm’s mecha-

nisms, e.g., {3.14, 2.7, 0.1} .

4. Integer-valued parameters: a special case of real-valued parameters, or a

numerical representation of categorical parameters, e.g., {2, 3, 5, 7} .

Because boolean and categorical parameters can be represented by integer

numbers using a one-to-one function without losing generality, those different

84

Chapter 6. Automated Parameter Tuning Via Bilevel Optimization

types of parameters can be reduced to either integer- or real-valued parameters

(see Section 6.4). Furthermore, an algorithm is typically created to solve a certain

type of optimization problem before being tested on a group of similar problems

known as instances. A set of instances is referred to as a benchmark in this docu-

ment and is denoted by I.

The parameter tuning problem can be formally defined as follows [41, 59, 94]:

Definition 6.1: Parameter Configuration

Given an algorithm A(Φ, I) with parameters Φ = (ϕ1, . . . , ϕn) ∈ X that

affect its behavior when solving a set of instances I ∈ I, the aim is then to

find a configuration Φ∗ ∈ X that provides an optimal performance of A on

I according to some performance indicators. Here, X denotes the set of all

valid configurations for A.

The preceding definition applies to any algorithm that requires parameter val-

ues to be fine-tuned, as long as A produces a numerical number that represents

the method’s performance. As a result, to (numerically) assess how good an algo-

rithm is at solving a collection of instances, measurements must be established. If

the mean and variance of an algorithm’s error are equal to zero (assuming the ex-

amples’ solutions are known), the algorithm has successfully solved the instance.

As an example for Definition 6.1, consider three parameters: two real-valued

parameters (step size and crossover probability), one integer-valued parameter

(population size), and one categorical parameter related to the variation opera-

tor used to compute a solution (e.g., DE/rand/1/bin or DE/rand/1/exp), as

proposed by Storn and Price in the Differential Evolution Algorithm [124]. DE

was developed for global optimization, and each instance represents an optimiza-

tion problem in this scenario.

The following section is focused on defining some indicators to quantify the

performance of a target algorithm over either an instance or a set of instances.

85

Chapter 6. Automated Parameter Tuning Via Bilevel Optimization

6.2.1 Performance Indicators

This section focuses on evaluating the performance of algorithms such as meta-

heuristics and machine learning methods, taking into account three key factors:

(1) accuracy, (2) stability, and (3) computational cost based on calculation time.

The accuracy (also known as effectiveness) of a solution is determined by how

near it is to the ideal answer (an error close to or equal to zero). Assume that ξI
is a random variable that yields the probability distribution given by the error of

an algorithm A(Φ, I), when solving the instance I with a configuration Φ. Thus,

the expected value of the error µ1(Φ) = E[ξI | Φ] has to be minimum for a given

configuration Φ. For simplicity, E[ξI | Φ] is denoted as A(Φ, I).

The algorithm’s performance variance, specifically the error value obtained

by the metaheuristic under examination, is related to the algorithm’s stability or

robustness. Furthermore, a metaheuristic should be able to produce erroneous

values without outliers, in which case the following indicators are taken into ac-

count. Here, µ2(Φ) = var[ξI | Φ] and µ3(Φ) = |ξmax − ξmin|.

The computing budget spent on each test problem (instance) is another impor-

tant performance indicator to consider when configuring an algorithm, and this

number can be controlled. µ4 = R(Φ) is a performance indicator that can be a

regularization term or a computational cost quantifier required by the algorithm.

6.2.2 The Automated Parameter Tuning Task as a BO Problem

The automated parameter tuning problem is modeled and described in this sec-

tion as a bilevel optimization problem (the original development of this math-

ematical problem has been detailed in [94]). Here, the upper-level problem is

used to improve the performance of a target algorithm A (which solves a set of

test problems referred to as instances) by taking a vector of parameters Φ whilst

the lower-level problem finds the minimum number of instances in a benchmark

I (with Dll instances) that A is unable to solve for the given vector of parameters

Φ provided.

86

Chapter 6. Automated Parameter Tuning Via Bilevel Optimization

Firstly, suppose that A(Φ, I) is the target algorithm with parameters defined

in Φ that solves a set of instances I = {I1, I2, . . . , IDll
} in independent executions.

The task of finding the best vector of parameters for A to solve several instances

I is modeled as a bilevel optimization problem that works as follows:

1. A vector of parameters Φ is selected from the upper-level space of parame-

ters.

2. The lower-level utilizes Φ to find the instances that are successfully solved

by A(Φ, Ii). A binary vector Θ = (θ1, θ2, . . . , θDll
) is used to set θi = 1

when A(Φ, Ii) successfully solves the instance Ii; otherwise θi = 0 for i =

1, 2, . . . , Dll.

3. After that, the upper level evaluates each instance Ii satisfying θi = 0. This

allows the upper level to only evaluate the performance of unsolved in-

stances in I, i.e., A only evaluates instances Ii where the corresponding

θi = 0.

To represent the above-mentioned bilevel optimization technique, certain fac-

tors must be taken into account to generate objective functions with practical

behavior. Firstly, assume that, Φ1,Φ2 ∈ X are two different vectors of parame-

ters or configurations, also Θ1 ∈ Ψ(Φ1), Θ2 ∈ Ψ(Φ2) are two lower-level optimal

solutions (from the lower-level), and I is a set of problem instances. Then:

1. f(Φ1,Θ1) ≥ 0.

2. f(Φ1,Θ1) = 0 if and only if A successfully solves the entire benchmark.

3. F (Φ,Θ) ≥ 0 for all (Φ,Θ) ∈ X × Y .

4. F (Φ1,Θ1) < F (Φ2,Θ2) if the performance of A(Φ1) is better than A(Φ2),

i.e., A(Φ1) solves more instances and the mean error in each instance given

by A(Φ1) is less than the mean error obtained by A(Φ2).

87

Chapter 6. Automated Parameter Tuning Via Bilevel Optimization

The first three conditions are stated to ensure low-bounded functions, while

the fourth requirement is mentioned to numerically evaluate two different con-

figurations for the target method. To achieve the aforesaid conditions, the next

bilevel optimization problem is proposed.

Minimize:

F (Φ,y) =

[
Dll∑
i=1

(1− yi)E[A(Φ, Ii)]

]
+ λ1

Dll∑
i=1

(1− yi) + λ2R(Φ) (6.1)

s.t.

y ∈ Ψ(Φ) = argmin {f(Φ,y) : y ∈ Y } (6.2)

where,

f(Φ,y) =

Dll∑
i=1

|S(E[A(Φ, Ii)])− yi| . (6.3)

Here, y ∈ Y is a binary vector, i.e., Y = {0, 1}Dll where yi is associated to

the instance Ii. E is the expected value of the error given by A(Φ, Ii) and S is a

mapping defined as follows:

S(a) =

1 if a = 0

0 otherwise
. (6.4)

Moreover, λ1 > 0 and λ2 > 0 where

λ1 >

Dll∑
i=1

E[A(Φ, Ii)] for all Φ ∈ X (6.5)

and λ2 > 0 penalizes the regularization term defined by R(Φ). Here, R is used

to control the complexity of A. An illustrative example for the BO problem (6.1)-

(6.3) is given in Figure 6.1 which offers an interesting step function that favors

promising configurations for target algorithm A.

88

Chapter 6. Automated Parameter Tuning Via Bilevel Optimization

X

F

1

2

3

4

5

6
u
n
solv

ed
 In

sta
n
ces

0

F(Φ*, ψ(Φ*))

Figure 6.1: Illustrating the objective function values for the APTP modeled as a
bilevel optimization task.

The following properties emerge from the the above bilevel optimization prob-

lem.

Proposition 6.2.1. Assume that equations (6.1)-(6.3) define a bilevel optimization

problem and algorithmA is solving a set of instances I. Then, |Ψ(Φ)| = 1, i.e., Ψ(Φ)

is a unit set for all Φ ∈ X

Proof. Suppose that there exists Φ ∈ X such that y, z ∈ Ψ(Φ) are different, then

for some i, j ∈ {1, 2, . . . , Dll} such that yi ̸= zi. Thus, E[A(Φ, I)] = 0 and

E[A(Φ, I)] > 0 for an instance I ∈ I but that is a contradiction. Therefore,

y = z.

The above proposition states an important result to be used for approximating

the mapping Ψ(Φ) because only the optimistic position can exist [38]. That is

convenient because different algorithms have been proposed in the specialized

89

Chapter 6. Automated Parameter Tuning Via Bilevel Optimization

literature for such optimistic position. Hence, the notation ψ(Φ) ∈ Ψ(Φ) for all

Φ ∈ X is introduced, where (Φ, ψ(Φ)) will denote a feasible solution.

The following results are related to the way the UL interacts with infeasible

solutions [94].

Theorem 6.1

For each feasible solution (Φ, ψ(Φ)) ∈ X × Y for the bilevel optimization prob-

lem given by equations (6.1)-(6.3), there exists y ∈ Y such that F (Φ, ψ(Φ)) ≥
F (Φ,y).

Proof. Assume that (Φ, ψ(Φ)) ∈ X × Y such that y = ψ(Φ) the result becomes

trivial. However, if y ∈ Y such that
∑Dll

i=1 yi <
∑Dll

i=1 ψ(Φ)i, then F (Φ, ψ(Φ)) ≥
F (Φ,y) based on the inequality in Equation (6.5).

Corollary 6.1

If there exists a feasible solution (Φ∗, ψ(Φ∗)) ∈ X×Y such that E[A(Φ, I)] = 0,

∀ I ∈ I, then F (Φ∗, ψ(Φ∗)) = λ2R(Φ
∗) and f(Φ∗, ψ(Φ∗)) = 0.

This section was used to describe the APTP as a BO problem using several

varieties of quantifiable-performance algorithms. The structure described above,

on the other hand, can be modified for parameter tuning operations in which

an algorithm solves a collection of instances. However, it is common to discover

that the algorithm to be configured is computationally expensive, in which case

the above definition may also be computationally expensive. The following part

describes how to handle the aforementioned computational cost.

90

Chapter 6. Automated Parameter Tuning Via Bilevel Optimization

6.3 Surrogate Model

The purpose is to train a surrogate model by offering feasible solutions that have

been evaluated in the exact model (Equation 6.6), i.e., a feasible solution for a

problem defined by Equations (6.1)-(6.3) is obtained when A(Φ, I) solves every

instance in I.

A feasible solution can also be represented as (Φ, ψ(Φ)). As a result, the fol-

lowing BO problem is transformed:

min
Φ∈X
{F (Φ) = F (Φ, ψ(Φ))}. (6.6)

To tackle the high computing cost of evaluating solutions in the exact model,

this transformed problem is utilized to approximate the leader objective func-

tion using a surrogate model. The goal is to create an adaptive statistical model

that can approximate outcomes at a minimal cost of computing. Here, a training

dataset is defined as follows:

Ptrain = {(Φ1, ψ(Φ1)), (Φ2, ψ(Φ2)), . . . , (Φm, ψ(Φm))} (6.7)

As can be seen, solely feasible solutions are taken into account while construct-

ing a prediction model. Approximate solutions are generated by radial basis

function-based models utilizing feasible data points in the search space, follow-

ing guidelines given in [102]. It is worth mentioning that different authors

[102, 108] suggest that polynomial term Q will help to improve the approxi-

mation F (x) = F̂ (x) + ε:

F̂ (x) =
n∑

i=1

αik(x, xi) +Q(x).

In practice, Q is considered to be constant because it offers adequate approxima-

91

Chapter 6. Automated Parameter Tuning Via Bilevel Optimization

tions, which implies that z = Aβ where:

β =

α
θ

 , A =

G 1

1 0

 ∈ R(N+1)×(N+1).

Note that, θ represents the coefficient of a constant polynomial Q.

Additionally, various adjustments should be made to direct the search to promis-

ing regions in the parameter search space while avoiding over-fitting. This is be-

cause stochastic algorithms’ parameter tuning problem can result in random out-

comes influenced by outliers. As a result, the polynomial kernel function model

of noisy data is adopted:

β = (A− λI)−1z,

where λ is a noise variance-related regularization parameter. If λ is greater than

0, the approximate model F̂ will not meet the condition F (Φ) = F̂ (Φ). It will,

however, distinguish between representative data and noise while maintaining

the environmental bias.

6.4 Proposed Approach

This section describes the BCAP (Bilevel Centers Algorithm for Parameter Tuning)

algorithm, which is used to solve the BO problem specified in Section 6.2.2, (6.1)-

(6.3). Here, BCAP is developed under the BCA framework with a surrogate-model

strategy suggested in [91], which is useful to save evaluations mainly at the upper

level of the BO problem.

An algorithm A can have either discrete or real value parameters as described

in Section 6.2. That is, the upper-level search space (parameter space) denoted

by X is defined, without loss of generality, on X ⊂ Zm ×Rn. It can be noted that

X defines a mixed discrete-continuous search space. Therefore, X is transformed

by using an injective function. Firstly, consider X = X1 × X2 with X1 = Zm,

92

Chapter 6. Automated Parameter Tuning Via Bilevel Optimization

X2 = Rn, and X̃1 as the shortest close interval satisfying X1 ⊂ X̃1. Then X1

is transformed into X̃1 by using the identity mapping, and X̃1 into X1 via the

transformation T : X̃ → X1 where T (Φ̃) = (⌊ϕ̃1⌋, ⌊ϕ̃2⌋, . . . , ⌊ϕ̃m⌋) with ⌊·⌋ defined

as the floor function.

Example 6.1

The Differential Evolution algorithm (details in Section 6.2) has three main

parameters:

• Population size: a non-negative integer number ϕ1 ∈ [3, 1000]

• Crossover probability: a real number ϕ2 ∈ [0, 1].

• Stepsize: a real number ϕ3 ∈ [0, 2].

Here, parameters space can be transformed into X̃ = [3, 1000]× [0, 1]× [0, 2].

The main objective here is the configuration of metaheuristics for solving nu-

merical optimization problems stated as:

Minimize

fi(w), w ∈ RD

subject to:

w ∈W

Assume that A is an algorithm with parameters Φ = (ϕ1, ϕ2, . . . , ϕn) which

should minimize, independently, a set of test instances fi(w) subject to w ∈ W

for i = 1, 2, . . . , Dll. The next subsections detail BCAP and its usage to solve the

APTP.

93

Chapter 6. Automated Parameter Tuning Via Bilevel Optimization

6.4.1 BCAP Components

BCAP works with a population given by X̃ × Y , and its elements are utilized

to train a surrogate model to help with the optimization process. After that,

an iterative procedure using the variation operator based on the center of mass

approach is utilized to generate alternatives (parameter values) to be assessed

in the approximated or exact objective function (see Section 6.3). To increase

the quality of the surrogate model, the size of the training dataset Ntrain is also

changed. Each of the steps is described in-depth in the following sections.

• Initial population of parameters: Here, the population for the BO problem for

APTP (6.1)-(6.3) is defined as usual: P = {(Φ1, y1), (Φ2, y2),(ΦN , yN)}.

• Generating candidate parameters: Let (Φ,y) ∈ P a solution, then a new

upper-level vector of parameters is generated by using the center of mass

concept with the upper-level function in Equation (6.1) as to compute the

mass as in Section 5.1.2:

Φnew = Φ+ η(c− uworst), (6.8)

• Fixing solutions: When an element in Φnew exceeds its established limits,

then such entry is replaced by the corresponding entry in the center of mass

used to compute Φnew. Finally, the new solution Φnew replaces the worst

solution in P if it is better than current Φ.

• Finding feasible solutions: When Φnew is computed, approximation for y ∈
Ψ(Φnew) is performed. Here, BCAP uses feasible solutions in P as detailed

in Section 6.4.2.

• Training surrogate model: Regarding the surrogate modeling outlined in Sec-

tion 6.3, to choose the train data set (Ptrain with Ntrain elements) used to

approximate the exact model F̂ , it is suggested to use all those solutions

evaluated in F̂ to construct the surrogate model.

94

Chapter 6. Automated Parameter Tuning Via Bilevel Optimization

Figure 6.2 shows a simplified diagram to illustrate the main processes during

each BCAP call. Note that when the surrogate model F̂ is calculated, a local search

is carried out at the upper-level search space (parameters space) by considering

the surrogate mapping F̂ trained with Ptrain. The best solution (Φbest, ybest) ∈
argmin{F (Φ,y) : (Φ,y) ∈ P} is utilized for approximating a local optimum of F̂

which is a continuous and smooth function. This local search is performed via the

quasi-Newton method BFGS [78, 91]. Assume that F̂ was successfully trained,

then the properties of feasible solutions can be discovered by BCAP, but with a

reduced number of calls to the target algorithm.

In order to avoid premature convergence, an exploration stage is performed

as follows: For each vector of parameters Φ in a population P , Φnew is computed

by using Equation (6.8). After that, Φnew is evaluated in the upper-level function

F , and the worst solution in P is updated by Φnew when this new one takes better

F values than the current solution F (Φnew, y) < F (Φ,y) defined in Equations

(6.1)-(6.3).

6.4.2 Lower-Level Procedure

Let Φnew be a new UL parameter vector, its corresponding feasible solution ψ(Φnew)

is computed by adopting the strategy given in [91]. This strategy works as fol-

lows: find the nearest UL in P to Φ, i.e., (Φnearest,ynearest) ∈ argmin{∥Φnew−Φ∥ :

(Φ,y) ∈ P}, then a simplistic approximation for the lower level is ψ(Φ) ≈ ynearest.

Figure 6.3 illustrates how the approximations to LL optimal solutions are ob-

tained. Considering that these approximations are used, the upper level only calls

the algorithm A(Φnew, Ii) on those instances where the corresponding entries in

ynearest are equal to zero. This step helps to save computational effort associated

with the target algorithm A.

Since this naive strategy can lead to an infeasible solution, a model reevalu-

ation is performed to ensure lower-level optimality. Therefore, each solution in

P is re-evaluated at the lower level every certain number of iterations, i.e., for

95

Chapter 6. Automated Parameter Tuning Via Bilevel Optimization

each vector of parameters (Φ,y) ∈ P , solve every problem instance with the tar-

get algorithm A to form the corresponding optimal solution ψ(Φ) as described in

Section 6.2.

6.4.3 Complete Algorithm

This part summarizes the design of BCAP to solve the bilevel optimization prob-

lem defined by Equation (6.6) for the automated parameter tuning:

• Step 1: Create a population P ⊂ X × Y with N vector of parameters

randomly generated (uniform distribution) at the upper-level search space.

• Step 2: Build the surrogate model F̂ as described in Section 6.3 to detect

biased parameters.

• Step 3: Find an optimal solution from F̂ by using the Quasi-Newton method

BFGS using the best configuration found so far as an initial guess.

• Step 4: Approximate the lower-level problem for the newly generated can-

didate solution.

• Step 5: Evaluate the upper level and replace the worst solution in the pop-

ulation if the newly generated solution is better than the current configura-

tion.

• Step 6: After a certain number of generations, reevaluate the entire popu-

lation to avoid infeasible solutions.

• Step 7: Generate new upper-level solutions and go to Step 4.

A detailed pseudocode is given in Algorithm 7.

6.5 Experiments and Discussion

This section details the experimentation to evaluate the performance of BCAP,

which is used to determine the parameter configuration of two evolutionary al-

96

Chapter 6. Automated Parameter Tuning Via Bilevel Optimization

Algorithm 7: BCAP

1 Choose ℓ and λ > 0
2 N ← K ∗D, tr ← 5

3 Initialize a population P ⊂ X̃ × Y with N elements.
4 while the end criterion is not achieved do
5 Compute a surrogate model F̂ by using the current population P for

training (Section 6.3).
6 Since F̂ is smooth, use a gradient-based method to find

Φ̂ ∈ argmin F̂ (Φ).
7 Choose the best solution in P to initialize that search procedure.
8 Solve lower-level problem ŷ ∈ argminz∈Y f(Φ̂, z) (Section 6.2).
9 if (Φ̂, ŷ) satisfies the Corollary 6.1 then

10 Stop and report (Φ̂, ŷ)

11 else
12 Update the best solution (Φbest, ybest) in P by (Φ̂, ŷ) if

F (Φ̂, ŷ) < F (Φbest, ybest).

13 for each (Φ, y) in P do
14 Compute Φnew = Φ+ ηX(cX − uworst) (Section 6.4.1).
15 Use the procedure described in Section 6.4.2 to find

ynew ∈ argminz∈Y f(Φ, z).
16 if F (Φnew, ynew) < F (Φ, y) then
17 Replace the worst element in P with (Φnew, ynew).

18 Re-evaluate all solutions in P every tr generations to avoid infeasible
solutions.

19 Report the best solution in P .

gorithms, two swarm intelligence algorithms, and one physics-based algorithm.

Differential Evolution (DE), Particle Swarm Optimization (PSO), Artificial Bee

Colony (ABC), and Evolutionary Centers Algorithm (ECA) are considered to solve

a set of test problems taken from a recent benchmark for numerical optimiza-

tion, while GGA-CGT, a grouping-based genetic algorithm, is also analyzed when

solving combinatorial optimization problems (Bin-Packing problems). The BCAP

results are compared to those of IRACE, a state-of-the-art and widely used param-

eter tuning approach described later in this section.

Before presenting the experiments related to the configuration of representa-

97

Chapter 6. Automated Parameter Tuning Via Bilevel Optimization

tive metaheuristics for optimization, they are described (as well as their parame-

ters) in the following list:

• ABC [73]: The Artificial Bee Colony (ABC) is a swarm intelligence algorithm

based on the honey bee foraging behavior. ABC works like this: given N

bees, a percentageNe of them are hired to identify food sources (solutions),

and these solutions are visited up to “limit” times by No = N −Ne observer

bees seeking to enhance them.

• ECA [90]: The center of mass concept is used in the physics-based Evolu-

tionary Centers Algorithm to create biased vectors for adjusting the worst

elements into better regions of the search space. ECA works by computing

a center of mass (biased to promising regions) for each solution in a pop-

ulation with N elements, then using K < N elements in the population to

generate a new direction to the center of mass (biased by the worst solution

to avoid premature convergence) with a stepsize ηmax.

• DE [124]: Differential Evolution is an evolutionary algorithm for solving

global optimization problems in continuous spaces. Since its most popular

variation, DE/rand/1/bin, can provide competitive results in a variety of

optimization problems, DE is an efficient population-based technique. DE

starts with a population of N solutions, and then computes directions with

stepsize F and applies a binomial crossover with probability CR to construct

a new solution.

• PSO [74]: The behavior of a birds flock inspired Particle Swarm Optimiza-

tion, a swarm intelligence algorithm. PSO works with N particles and their

velocities (search direction), which are iteratively computed using the C1

and C2 parameters for social and cognitive knowledge, respectively, as well

as the inertia weight ω, which governs the influence of the preceding veloc-

ity.

• GGA-CGT [105]: For the Bin Packing Problem, the Grouping Genetic Algo-

rithm with Controlled Gene Transmission (GGA-CGT) uses a population of

98

Chapter 6. Automated Parameter Tuning Via Bilevel Optimization

N individuals, with pc and pm determining the percentage of individuals to

be recombined and mutated, respectively. The parameters kncs (to remove

bins in a non-cloned solution), kcs (to remove bins in a cloned solution),

Bsize (number of individuals in an elite set), and Ls (generations where at

most an individual can be cloned) regulate the methods used by this algo-

rithm to develop and improve solutions to update the population.

BCAP was implemented in the Julia Programming Language [16]. The BCAP

parameters were obtained by applying a grid search with ℓ ∈ {3, 4, . . . , 10},
ηmax ∈ {0.8, 1, 1.2, 1.4, . . . , 4}, and λ ∈ {0, 0.1, 0.2, . . . , 1}. The suggested pa-

rameter values were the following: N = ℓ · n, ℓ = 6, ηmax = 1.2 and λ = 10−1.

This empirical study suggested that, for large ℓ values (> 7), BCAP could con-

verge faster into a local minimum, and small values of ηmax (< 1) are related

to the exploitation of promising regions of the search space. On the other hand,

large values of λ are not recommended since the surrogate model can converge

to constant functions.

The original versions of the five metaheuristics are used to see if a proper

configuration lets them handle difficult optimization instances without needing

extra mechanisms.

The first ten test functions (instances) from the CEC 2017 benchmark were

used to evaluate the efficiency of each numerical optimization metaheuristic (ABC,

ECA, DE, and PSO) [10]. These are 10-dimensional optimization problems with

unimodal, multimodal, separable, and/or non-separable objective functions. The

main qualities of such functions are reported in Table 6.1. Using representative

Bin Packing Problem (BPP) examples, the performance of GGA-CGT was evalu-

ated. It is worth noting that most algorithms proposed in the literature have been

tested for the BPP study utilizing a well-studied test benchmark; it includes 1615

instances in which the number of items nitems varies within [50, 1000], the bin

capacity c is within [100, 100000] and the ranges of the weights are within (0, c].

IRACE [85] is an iterated F-race (I/F-Race) extension with an iterated racing

method that is part of the IRACE procedure (also known as the IRACE package).

99

Chapter 6. Automated Parameter Tuning Via Bilevel Optimization

Problem Function Properties Minimum

f1 Bent Cigar Unimodal, non-separable
and smooth but narrow
ridge

100

f2 Sum of Different Power Unimodal, symmetric and
non-separable

200

f3 Zakharov Unimodal and non-
separable

300

f4 Rosenbrock Multimodal (huge number
of local minimums) and
non-separable

400

f5 Rastrigin Multimodal (huge number
of local minimums), asym-
metrical and non-separable

500

f6 Expanded Scaffer F6 Multimodal (huge number
of local minimums) and
non-separable

600

f7 Lunacek Bi-Rastrigin Multimodal, differentiable
nowhere, asymmetrical and
non-separable

700

f8 Non-Continuous Multimodal (huge number
of local minimums), asym-
metrical and non-separable

800

f9 Levy Multimodal and non-
separable

900

f10 Schwefel Multimodal, non-separable
and second better local min-
imum is far from the global
minimum

1000

Table 6.1: The first ten CEC 2017 test functions, where their search space is
bounded within [−100, 100]D andD = 10. Each function has a shifted and rotated
optimum to provide real-world problem properties.

100

Chapter 6. Automated Parameter Tuning Via Bilevel Optimization

IRACE was created to select the proper algorithm configuration for optimization

and decision-making problems, as well as strategies to prevent premature con-

vergence. IRACE also supports real, integer, category, and ordinal parameters.

Figure 6.4 depicts a diagram that explains how IRACE works.

BCAP and IRACE independently ran 10 times per each considered metaheuris-

tic (ECA, DE, ABC, and PSO). BCAP was limited to call 200Dll = 2000 times the

target algorithm over the whole benchmark. On the other hand, IRACE called

400Dll = 4000 times the target metaheuristic. As can be seen, BCAP had a

constrained budget (half of the IRACE target metaheuristic calls) since the aim

is to explore if BCAP could produce comparable outcomes at a lower computa-

tional cost. Other alternatives, it should be noted, require a bigger budget (up to

1000Dll) to configure an algorithm [128].

The pairwise Bayesian signed-rank test, recently offered as a helpful option

for comparing stochastic algorithms, was used to analyze the statistical results

produced by BCAP and IRACE [24] as follows:

1. Each approach was executed ten times, as mentioned before, to configure a

target algorithm A on a set of instances I.

2. The ten results of each approach were stored as: CBCAP = {Φ(1)
BCAP, . . . ,Φ

(10)
BCAP}

and CIRACE = {Φ(1)
IRACE, . . . ,Φ

(10)
IRACE},

3. For each one of the ten configurations in CBCAP and CIRACE, each test in-

stance in I was solved thirty-one times.

4. The ten configurations in CBCAP and CIRACE were sorted by the number of

test instances successfully solved (the error per instance is smaller than

10−4) or the mean error value.

5. The pairwise Bayesian signed-rank test was applied to the set of thirty-one

runs located in the median value of the ten configurations.

Furthermore, to configure GGA-CGT for BPP, we utilize an approach based on

its authors’ suggestions [105], which can be summarized as follows: (1) Select

101

Chapter 6. Automated Parameter Tuning Via Bilevel Optimization

50 typical instances from 1615 available; (2) solve the complete benchmark and

report the percentage of successfully solved instances once GGA-CGT is config-

ured. BCAP and IRACE each ran 10 times to configure GGA-CGT (on the same 50

instances), and the percentage of solved instances was reported after each run.

To summarize, “train” instances are used to configure this technique for com-

binatorial optimization and “test” instances are used to evaluate the algorithm

performance.

6.5.1 Configuring ABC

Regarding the experiments with ABC, the following parameters were considered:

Φ = (N, limit, Ne) ∈ R3 where N ∈ [10, 500] is the number of bees in the

swarm (population size), limit ∈ [0, 1000] and the number of employed bees is

⌊Ne ·N + 0.5⌋ with Ne ∈ [0, 1] (based on the empirical study carried out in [1]).

The best configurations found by BCAP and IRACE are presented in Table 6.2 and

the Bayesian signed-rank test result (in terms of the instances solved) is in Figure

6.5.

Based on the statistical test results in Fig. 6.5, BCAP was able to provide

better parameter configurations in almost 60% of the executions, compared with

the almost 26% provided by IRACE. Taking a closer look at the results in Table

6.2, it was clear that none of the configurations was able to provide successful

runs (premature convergence was observed in Figure 6.6). On the other hand,

BCAP obtained parameter values within the following ranges: N ∈ [254, 395],

limit ∈ [273, 949], Ne ∈ [0.22345, 0.530335], while IRACE’s ranges were as follows:

N ∈ [253, 357], limit ∈ [72, 783], and Ne ∈ [0.179173, 0.555798]. Those values

suggest that BCAP can find better configurations even if the ranges are somehow

similar. Furthermore, the computational cost required by BCAP is half of that

required by IRACE.

102

Chapter 6. Automated Parameter Tuning Via Bilevel Optimization

Run N Ne limit Instances solved Mean Error

BCAP

1 254 0.288465 949 0 1.118e+06

2 374 0.407581 924 0 1.385e+06

3 341 0.501753 801 0 1.705e+06

4 295 0.22345 690 0 2.198e+06

5 353 0.410992 486 0 3.163e+06

6 371 0.493897 538 0 3.385e+06

7 292 0.378883 326 0 4.572e+06

8 340 0.473353 324 0 5.545e+06

9 395 0.352415 394 0 5.859e+06

10 360 0.530335 273 0 6.672e+06

IRACE

1 352 0.318848 783 0 1.706e+06

2 357 0.555798 722 0 2.387e+06

3 253 0.312723 435 0 3.177e+06

4 273 0.179173 216 0 6.521e+06

5 273 0.179173 216 0 6.521e+06

6 301 0.291851 187 0 9.079e+06

7 270 0.374526 164 0 9.324e+06

8 320 0.210675 170 0 9.632e+06

9 317 0.249801 83 0 1.541e+07

10 325 0.442315 72 0 1.695e+07

Table 6.2: Best configuration of each one of the ten independent runs by BCAP
and IRACE when configuring ABC.

6.5.2 Configuring ECA

The physics-inspired metaheuristic called ECA was configured by using the follow-

ing vector of parameters Φ = (N,K, ηmax) ∈ R3, where N ∈ [10, 500], K ∈ [2, 10],

and ηmax ∈ [0, 4]. The best configurations found by IRACE and BCAP are pre-

103

Chapter 6. Automated Parameter Tuning Via Bilevel Optimization

sented in Table 6.3 and the statistical test results are found in Fig. 6.7.

The Bayesian signed-rank test results suggest that BCAP provided better con-

figurations in 47.5% of the executions, a similar performance concerning IRACE

was shown in the remaining 52.5%, and IRACE was unable to outperform BCAP

in any single case. Unlike the configurations for ABC, for ECA, both approaches

(BCAP and IRACE) were able to tune them to get instances successfully solved

(see that local optima were avoided in some convergence graphs in Figure 6.8).

BCAP found configurations for ECA in the following ranges: N ∈ [138, 289],

K ∈ [4, 8], and ηmax ∈ [1.037687, 1.379108]. On the other hand, IRACE provided

the following intervals: N ∈ [125, 247], K ∈ [3, 10], ηmax ∈ [1.01588, 2.01618]. It

is interesting to note that for ηmax, BCAP suggested lower values with respect to

IRACE, and that difference (smaller stepsize values for the variation operator) led

to a better performance by BCAP with 50% of the computational cost.

6.5.3 Configuring DE

DE was configured by using the following parameter vector Φ = (N,F,CR),

where the limits were N ∈ [10, 500], F ∈ [0, 2], and CR ∈ [0, 1] (obtained from

[51]). The best configurations found by IRACE and BCAP are presented in Table

6.4, whereas the statistical test results are depicted in Fig. 6.9.

Regarding DE, BCAP, based on Fig. 6.9, was competitive in 78.3% of the

executions, while a similar performance with IRACE was observed in just 1.3%,

and finally, IRACE was better in 21.7% of the executions.

The DE parameters were bounded by BCAP as follows: N ∈ [62, 340], F ∈
[0.239642, 0.36847], CR ∈ [0.692803, 0.988431]. IRACE found the next ranges:

N ∈ [13, 57], F ∈ [0.462729, 0.987232], CR ∈ [0.117163, 0.97588].

Unlike the ranges for ABC and ECA, those found by BCAP and IRACE for DE

were particularly different, i.e., larger populations, smaller stepsizes, and larger

crossover rates by BCAP and the opposite by IRACE.

104

Chapter 6. Automated Parameter Tuning Via Bilevel Optimization

It was expected that DE was able to obtain instances successfully solved be-

cause it is one of the most competitive metaheuristics for numerical optimiza-

tion [32] (see Figure 6.10 where a suitable convergence behavior was observed).

However, it is worth highlighting that BCAP was able to let ECA provide similar

Run N K ηmax Instances solved Mean Error

BCAP

1 223 5 1.132768 6 4.956e+01

2 152 6 1.185632 6 5.710e+01

3 262 7 1.379108 6 6.506e+01

4 157 7 1.376814 6 6.596e+01

5 186 8 1.49591 6 7.115e+01

6 201 4 1.037687 5 4.404e+01

7 289 5 1.051635 5 4.689e+01

8 209 4 1.143711 5 4.810e+01

9 183 6 1.047635 5 4.890e+01

10 138 4 1.207521 5 6.350e+01

IRACE

1 189 3 1.368956 6 2.172e+01

2 154 5 1.362471 6 2.590e+01

3 181 4 1.597606 6 3.075e+01

4 137 7 2.016182 6 3.195e+01

5 137 7 2.016182 6 3.195e+01

6 188 9 1.447275 6 3.329e+01

7 125 8 1.921186 6 3.395e+01

8 247 5 1.198838 6 4.048e+01

9 179 10 1.785714 6 4.639e+01

10 204 8 1.015882 5 3.069e+01

Table 6.3: The best configuration of each one of the ten independent runs by
BCAP and IRACE when configuring ECA.

105

Chapter 6. Automated Parameter Tuning Via Bilevel Optimization

performance as that of DE (see Tables 6.3 and 6.4).

Run N F CR Instances solved Mean Error

BCAP

1 340 0.269756 0.945315 5 7.556e+01

2 316 0.319333 0.907851 5 9.046e+01

3 292 0.297554 0.866267 5 9.783e+01

4 141 0.36847 0.988431 5 1.023e+02

5 181 0.285236 0.919108 5 1.424e+02

6 243 0.332965 0.857937 4 9.901e+01

7 332 0.244348 0.811175 4 1.081e+02

8 231 0.239642 0.793729 3 1.055e+02

9 168 0.2867 0.799051 3 1.359e+02

10 62 0.340536 0.692803 2 3.224e+02

IRACE

1 57 0.600528 0.97588 6 5.518e+01

2 22 0.987232 0.78687 6 1.650e+07

3 13 0.744198 0.236023 5 1.921e+01

4 26 0.575771 0.817107 5 4.352e+01

5 16 0.499888 0.173194 5 8.527e+01

6 13 0.5337 0.200412 5 5.664e+02

7 14 0.495335 0.317386 4 1.789e+02

8 13 0.462729 0.117163 4 3.707e+03

9 13 0.462729 0.117163 4 3.707e+03

10 35 0.468767 0.865054 4 6.669e+03

Table 6.4: The best configuration of each one of the ten independent runs by
BCAP and IRACE when configuring DE.

106

Chapter 6. Automated Parameter Tuning Via Bilevel Optimization

6.5.4 Configuring PSO

PSO was configured with the following parameter vector Φ = (N,C1, C2, ω) ∈ R4

with N ∈ [10, 500], C1, C2 ∈ [0, 4], and ω ∈ [0, 1] (based on the theoretical study

performed in [71]).

The best configurations found by IRACE and BCAP are presented in Table 6.5

and the statistical test results are found in Fig. 6.11.

In this case, the performances by BCAP (48%) and IRACE (47.6%) are similar.

However, BCAP just requires half of the calls to the target algorithm (PSO in this

comparison).

BCAP reported parameters bounded in the following ranges: N ∈ [151, 439],

C1 ∈ [1.130716, 3.89815], C2 ∈ [0.857492, 3.516415], ω ∈ [0.489866, 0.890124].

In contrast, the best IRACE configurations were limited by the ranges: N ∈
[297, 488], C1 ∈ [0.324315, 3.4954], C2 ∈ [0.792152, 3.2211] and the inertial weight

ω ∈ [0.36353, 0.753773]. As it can be noted, the ranges vary between the com-

pared approaches. However, a similar performance was observed in this partic-

ular metaheuristic for which the specialized literature reports that its fine-tuning

process can be difficult [126, 127]. Finally, premature convergence was observed,

see Figure 6.12, that coincides with the low number of instances solved in Table

6.5.

6.5.5 Configuring GGA-CGT

GGA-CGT was configured with the following parameter vector:

Φ = (N, pm, pc, kncs , kcs, Bsize, Ls) ∈ R7

with N ∈ [50, 400], pm ∈ [0, 0.9] and pc ∈ [0, 0.6], kncs, kcs ∈ [1, 6], Bsize ∈ [0, 0.5],

Ls ∈ [1, 50]. It is worth mentioning that those bounds have been suggested by the

authors of GGA-CGT [105]. Here, BCAP was limited to call 2000 times GGA-CGT,

whilst IRACE was limited to call 5000 times GGA-CGT. Both, BCAP and IRACE

107

Chapter 6. Automated Parameter Tuning Via Bilevel Optimization

Run N C1 C2 ω Instances solved Mean Error

BCAP

1 301 3.89815 3.38136 0.489866 1 3.631e+02

2 219 3.725067 2.712283 0.690293 1 4.329e+02

3 411 1.520623 3.516415 0.543125 1 4.475e+02

4 151 3.022239 1.648836 0.810039 1 5.439e+02

5 297 1.81692 1.957531 0.732172 1 5.723e+02

6 439 1.130716 3.24939 0.579927 1 6.444e+02

7 416 2.63786 3.162043 0.633675 1 6.477e+02

8 194 2.106226 0.857492 0.890124 1 7.319e+02

9 218 3.056313 2.463493 0.735224 1 7.340e+02

10 166 2.607728 2.916444 0.690893 1 7.383e+02

IRACE

1 344 0.324315 3.221096 0.492841 1 5.446e+02

2 371 2.246175 1.925117 0.678153 1 6.707e+02

3 488 0.374345 1.186899 0.753773 1 7.076e+02

4 351 2.193293 1.894675 0.625818 0 7.444e+02

5 297 0.488361 2.891988 0.479847 0 7.810e+02

6 433 0.786563 3.203202 0.382314 0 8.900e+02

7 414 0.914002 2.903228 0.36353 0 9.543e+02

8 414 0.914002 2.903228 0.36353 0 9.543e+02

9 381 3.153645 0.923493 0.534409 0 4.116e+04

10 324 3.495401 0.792152 0.550182 0 7.560e+04

Table 6.5: The best configuration of each one of the ten independent runs by
BCAP and IRACE when configuring PSO.

utilized the same seed and instances to configure this target algorithm in order to

promote a fair comparison.

The best configurations found by IRACE and BCAP are presented in Table 6.6

and the percentage of the optimal solutions is shown in Fig. 6.13.

108

Chapter 6. Automated Parameter Tuning Via Bilevel Optimization

In this case, the results by BCAP and IRACE suggest that both approaches ob-

tained parameters that lead to a similar GGA-CGT performance. However, BCAP

found a better vector of parameters in most runs as presented in Fig. 6.13. In this

experiment, BCAP saves 20% of the calls to the target algorithm.

Run N pm pc kncs kcs Bsize Ls UI

BCAP

1 304 0.677959 0.486372 4 2 0.301837 24 25

2 307 0.568854 0.211471 4 2 0.400471 6 27

3 198 0.562451 0.216652 5 2 0.442008 4 27

4 241 0.685238 0.51544 5 2 0.236686 38 29

5 364 0.426385 0.47666 3 2 0.184937 4 32

6 347 0.860843 0.595558 2 2 0.307822 13 35

7 337 0.59079 0.448577 2 2 0.369539 47 42

8 331 0.569756 0.560826 2 2 0.362339 10 43

9 245 0.731057 0.499798 1 2 0.252518 10 49

10 189 0.695612 0.490825 1 2 0.127177 14 68

IRACE

1 356 0.612855 0.383007 1 4 0.174165 18 21

2 376 0.672942 0.47128 4 2 0.344001 20 26

3 383 0.39003 0.421521 1 4 0.179265 2 28

4 381 0.510213 0.123572 2 3 0.407131 43 34

5 388 0.502477 0.520349 5 2 0.498641 12 37

6 386 0.693578 0.132053 2 1 0.277203 3 42

7 323 0.684316 0.445518 2 2 0.445776 6 43

8 371 0.707627 0.204171 2 1 0.255995 43 46

9 373 0.495379 0.401472 4 1 0.24307 27 75

10 291 0.434215 0.552431 6 1 0.183582 30 77

Table 6.6: Best configuration of each one of the ten independent runs by BCAP
and IRACE when configuring GGA-CGT. Here, UI means unsolved instances, i.e.,
number of instances where the global optimum was not obtained.

109

Chapter 6. Automated Parameter Tuning Via Bilevel Optimization

6.6 Conclusions of the Chapter

The automated parameter tuning problem (APTP) was introduced and formu-

lated as a bilevel optimization (BO) problems with an optimistic instance, that

offers an interesting structure with useful theoretical and practical consequences.

A surrogate-assisted BO technique named BCAP was presented to handle this

novel BO problem. BCAP was able to deal with the computational load involved

with the BO problem thanks to a surrogate model based on radial basis func-

tions. When tackling a collection of recent and complex optimization problems,

BCAP and IRACE, a state-of-the-art technique for parameter tuning, tuned dif-

ferent metaheuristics well (ABC, ECA, DE, PSO, and GGA-CGT). The Bayesian

signed-rank test was used to verify the results. According to the findings, BCAP

outperformed IRACE while configuring ABC, ECA, and DE, whereas similar results

where obtained when tuning PSO and GGA-CGT. Compared to IRACE, BCAP re-

quired just 50% of the calls to the target algorithm for the four metaheuristics

for numerical optimization used in the trials. In comparison to IRACE, BCAP re-

quired just 80% of the calls to the genetic algorithm for the bin-packing problem.

Based on the above findings, we can infer that modeling the APTP problem as

a BO problem and solving it using a population-based search technique with a

surrogate model is a viable choice to fine-tune search algorithms.

110

Chapter 6. Automated Parameter Tuning Via Bilevel Optimization

Figure 6.2: BCAP flowchart. The “approximate” step is used to save the computa-
tional cost of calling the target algorithm whilst the “reevaluation” stage is used
to fix infeasible solutions.

111

Chapter 6. Automated Parameter Tuning Via Bilevel Optimization

Upper Level Lower Level

Figure 6.3: Approximation to feasible solutions. In this figure the upper level will
only evaluate the instance I1 and will then save calls to the algorithm to be fine-
tuned.

Figure 6.4: Scheme of components required by IRACE to configure an algorithm.

112

Chapter 6. Automated Parameter Tuning Via Bilevel Optimization

Figure 6.5: BCAP and IRACE Bayesian
signed-rank test results when configur-
ing ABC.

Figure 6.6: Convergence graphs at the
median configuration for ABC obtained
by BCAP and IRACE. y-axis shows the ac-
curacy in log scale (for visualization pur-
poses) whilst the x-axis shows the num-
ber of function evaluations. Each sub-
plot contains the 31 convergence graphs
related to the 31 independent runs of
ABC. Here, representative test functions
are considered.

Figure 6.7: BCAP and IRACE Bayesian
signed-rank test results when configur-
ing ECA.

113

Chapter 6. Automated Parameter Tuning Via Bilevel Optimization

Figure 6.8: Convergence graphs at the
median configuration for ECA obtained
by BCAP and IRACE. Each subplot con-
tains the 31 convergence graphs related
to the 31 independent runs of ECA. y-
axis shows the accuracy in log scale (for
visualization purposes) whilst the x-axis
shows the number of function evalua-
tions. Here, representative test functions
are considered.

Figure 6.9: BCAP and IRACE Bayesian
signed-rank test results when configur-
ing DE.

114

Chapter 6. Automated Parameter Tuning Via Bilevel Optimization

Figure 6.10: Convergence graphs at the
median configuration for DE obtained by
BCAP and IRACE. y-axis shows the accu-
racy in log scale (for visualization pur-
poses) whilst the x-axis shows the num-
ber of function evaluations. Each subplot
contains the 31 convergence graphs re-
lated to the 31 independent runs of DE.
Here, representative test functions are
considered.

Figure 6.11: BCAP and IRACE Bayesian
signed-rank test results when configur-
ing PSO.

115

Chapter 6. Automated Parameter Tuning Via Bilevel Optimization

Figure 6.12: Convergence graphs at the
median configuration for PSO obtained
by BCAP and IRACE. y-axis shows the ac-
curacy in log scale (for visualization pur-
poses) whilst the x-axis shows the num-
ber of function evaluations. Each sub-
plot contains the 31 convergence graphs
related to the 31 independent runs of
PSO. Here, representative test functions
are considered.

1 2 3 4 5 6 7 8 9 10
93

94

95

96

97

98

99

BCAP

IRACE

Run

Pe
rc

e
n
ta

g
e
 o

f
o
p

ti
m

a
l
so

lu
ti

o
n

Figure 6.13: Optimal solution percentages when BCAP and IRACE independently
configure GGA-CGT to solve 1615 BPP instances (10 independent runs).

116

Chapter 7

A Family Concept for

Multi-Objective Bilevel

Optimization

Information

Part of this chapter is based on the paper: Jesús-Adolfo Mej́ıa-de-Dios, Ale-

jandro Rodŕıguez-Molina and Efrén Mezura-Montes (2022, July). A novel

evolutionary framework based on a family concept for solving multi-objective

bilevel optimization problems. In Proceedings of the Genetic and Evolution-

ary Computation Conference Companion (pp. 348-351).

https://doi.org/10.1145/3520304.3529045

117

https://doi.org/10.1145/3520304.3529045

Chapter 7. A Family Concept for Multi-Objective Bilevel Optimization

7.1 Introduction

Recalling from Chapter 3, there are competitive algorithms to approximate so-

lutions for a Multi-Objective Bilevel Optimization (MOBO) problem. However,

most of the research work just translate Evolutionary Multi-Objective Algorithms

(EMOAs) now to deal with MOBO, but specific mechanisms are still to be pro-

posed. In this chapter, a viable solution representation based on groups and called

families is proposed to (1) eliminate duplication created by UL copied solutions

and (2) improve solution ranking. This family representation uses the bilevel

structure to represent a bilevel solution in an organized manner, to preserve rep-

resentative and promising UL solutions as well as their associated LL solutions.

Important Concepts

Target of multi-Objective bilevel optimization: Find solutions distributed

along the UL Pareto-optimal front such that the LL decision variables are

optimizing the LL problem.

The following section details the proposal, defining the solution representa-

tion, and introducing the dominance criterion.

7.2 Family-based Representation

The LL of a MOBO problem comprises various solutions that the upper level must

manage. As a result, the following strategy is implemented. Let us describe some

basic principles for a dominance-based MOBO algorithm [37].

• Individual: Here, an individual is denoted by (x,y) where x ∈ X is an UL

decision vector and y ∈ Y is a LL decision vector. A feasible individual is

obtained when y ∈ Ψ(x) is an optimal solution for the LL problem parame-

terized by x.

118

Chapter 7. A Family Concept for Multi-Objective Bilevel Optimization

• Rank: The rank is a positive integer number indicating the front number

where the individual belongs according to the non-dominated sorting in a

population (see [35]).

• Contribution: Represented by a non-negative real number that indicates

how much an individual contributes to the global front (or how much in-

creases the diversity) composed by the non-dominated solutions in the pop-

ulation. Usually, larger values are preferred, e.g., crowding distance [35] or

hypervolume [15].

Su
pe
r
Ra
nk
 1

Su
pe
r
Ra
nk
 2

Su
pe
r
Ra
nk
 3

Population of six families

Global Front

Family

Individual
Ignored Individual

Figure 7.1: Graphical repre-
sentation of six families, the
corresponding super rank, and
the ignored solutions.

119

Chapter 7. A Family Concept for Multi-Objective Bilevel Optimization

7.2.1 Family of Solutions

Note that, for a given UL decision vector x, the LL can provide multiple optimal

solutions, say y1,y2, . . . ,yNll
associated to the same x, then multiple individu-

als (x,yi) for i = 1, 2, . . . , Nll are formed. However, multiple individuals share

the same UL decision vector x introducing redundancy. To handle this issue, i.e.,

to remove redundancy and improve the solutions ranking, the concepts of Fam-

ily and Super Rank, inspired by the biological classification of species [98], are

introduced.

Definition 7.2.1. (Family) Let x ∈ X be an UL decision vector, then, the set

B(x) ⊂ X × Y defined as in Eq. 7.1:

B(x) := {(x,yl) : yl ∈ Ψ(x), l = 1, 2, . . . , Nll} (7.1)

is called a family concerning x.

Note that a family B(x) is formed by a finite number of solutions in (x,y) ∈
X × Y but with the same UL decision vector x. The above is particularly use-

ful because it suggests a data structure. Moreover, when the LL objective func-

tion values at each solution in a family correspond to a non-dominated set, i.e.,

{f(x,y) : (x,y) ∈ B(x)} is a non-dominated set, such a property does not occur

at the upper level because the set {F (x,y) : (x,y) ∈ B(x)} can contain domi-

nated solutions. Also, two different families can contain solutions that dominate

each other. That is, there are solutions dominating intra-family and inter-families.

When one solution is dominated by another at the upper level, that solution will

be ignored because it is not in the Pareto front. The population of families must

be established before comparisons can be made.

Definition 7.2.2. (Population of families) A population of families P is defined

on a finite set of UL decision vectors:

P := {B(xi) : xi ∈ X, i = 1, 2, . . . , N}. (7.2)

120

Chapter 7. A Family Concept for Multi-Objective Bilevel Optimization

A family-based population includes the following properties: 1) P contains

LL optimal solutions, 2) there are at most N different UL decision vectors, and

3) at most N × Nll solutions in X × Y . Figure 7.1 shows the objective vectors

associated with the individuals in a family and also illustrates the distribution of

a population of families.

The following concepts are given to compare the quality of two families so as

to implement a suitable environmental selection.

7.2.2 Ranking Families

One of the most important aspects of dominance-based algorithms is ranking solu-

tions to ensure that the better solutions remain in the population [35]. A ranking

process is used to compare the dominance of two families within a population.

The family rank or Super Rank (SR) is based on the well-known non-dominated

sorting (NDS) [35]. The main idea is to perform the NDS over every solution in

S = {F (x,y) ∈ B(x) : ∀B(x) ∈ P }, (7.3)

and assign the SR(B) as the minimum ND rank to B as follows: SR(B) =

min{ND(x,y) : (x,y) ∈ B(x)}. Also, because ignored solutions are not part of

the UL Pareto optimum front, deleting them is necessary to avoid memory over-

flow when the population size is large enough. Thus, once the SR is computed

for B, the solutions (x,y) ∈ B(x) such that ND(x,y) > SR(B(x)) are removed.

Algorithm 8 details the procedure to compute the super rank for each family in

a population. Moreover, Figure 7.1 also shows how the suggested rank affects

the distribution of six families, super rank values, and how ignored solutions are

removed from each family.

The computational cost of Algorithm 8 is now analyzed. The non-dominated

sorting (line 4 in Algorithm 8) over a set S of size NS , having M -dimensional

objective vectors, requires O
(
NS logM−2NS

)
[76]. Assigning SR to each family

and removing ignored solutions (lines 5-7) require O(N ·Nll) with N = |P | and

121

Chapter 7. A Family Concept for Multi-Objective Bilevel Optimization

Nll = |B| or O(NS) since NS = N × Nll in the worst-case scenario. The overall

worst-case complexity of Algorithm 8 is O
(
NS logM−2NS

)
. Hence, computing

super rank values only depends on the NDS complexity, i.e., no complexity is

added by the super rank process.

Algorithm 8: Super rank calculation.

1 Input: Population of families P = {B(xi) : i = 1, 2, . . . , N}.
2 Output: Super rank values for each family in P .
3 S ← {F (x,y) ∈ B(x) : ∀B(x) ∈ P }
4 Perform the non-dominated sorting on S to obtain the rank of each

individual, i.e., ND(x,y), ∀F (x,y) ∈ S.
5 foreach B(x) in P do
6 SR(B(x))← min{ND(x,y) : (x,y) ∈ B(x)}.
7 Remove individuals (x,y) in B(x) such that their ND rank is larger

that the super rank of the family, i.e., ND(x,y) > SR(B(x)).

7.3 Proposed Method: SMS-MOBO

This section proposes a simple family-based framework that is built on a generic

EMOA. Three primary components are required for a dominance-based EMOA: 1)

a ranking algorithm, 2) a density estimator, and 3) operators (selection, crossover,

mutation, and environmental selection). Furthermore, to handle the LL task and

approximate solutions at that level, a Lower-Level EMOA (LLEMOA) is necessary.

The proposed approach (SMS-MOBO) builds families based on new UL deci-

sion vectors that are first produced at random and then reproduced using a vari-

ation operator. The super rank notion stated in Section 7.2 is used in the ranking

operation. When two families have the same super rank value, a hypervolume-

based density estimator is computed to compare solutions. Finally, to save the

non-dominated solutions discovered thus far, an archiving process is used. Algo-

rithm 9 summarizes the proposal by describing the main aspects of SMS-MOBO.

122

Chapter 7. A Family Concept for Multi-Objective Bilevel Optimization

7.3.1 Initialization

N UL decision vectors in X are generated randomly. After that, the LLEMOA is

performed to approximate a set of LL optimal solutions. Finally, the UL solutions

and their corresponding LL optimal solutions create a population of families P as

described in Section 7.2.

7.3.2 Reproduction at Upper Level

The following explains how a set Q (of size Noff) of UL offspring are created: The

super rank (lower SR is better) and contribution to the front in ties are used to

compare solutions in a binary tournament (see Section 7.3.5). The SBX crossover

and Polynomial Mutation (PM) are adopted to generate new UL solutions once

two parents have been chosen. The matching LL solutions for each UL vector in

Q are then approximated to generate a new set of families. To promote a biased

search at the LL, a set of LL solutions is constructed to initialize the LLEMOA

(using random selection, SBX, and PM on the LL vectors in P).

7.3.3 Archiving Procedure

To preserve the elite solutions discovered thus far, an archiving approach has been

implemented. For this, at the end of each generation, an archive A is updated by

saving non-dominated solutions in the current archive A and the population P ,

i.e., A contains non-dominated solutions in the set A ∪
(⋃

B∈P B
)
.

7.3.4 Lower Level Optimizer

One of the most important components is the LL algorithm that needs to approx-

imate LL optimal solutions for a given UL decision vector (say x). The MOP that

123

Chapter 7. A Family Concept for Multi-Objective Bilevel Optimization

Algorithm 9: MOBO: Multi-objective Bilevel Optimization framework
based on a family representation.

1 Input: UL problem (F , X), LL problem (f , Y), population size N , and
LLEMOA (LL optimizer).

2 Output: Final archive A.
3 Initialization (Section 7.3.1): Create UL solutions x1, . . . ,xN in X

randomly. Optimize f(xi, ·) using LLEMOA and create a family B(xi) for
i = 1, 2, . . . , N .

4 P ← {B(xi) : i = 1, 2, . . . , N}.
5 Compute the super rank for each family in P (Section 7.2.2).
6 Initialize Archive: A← ∅
7 while termination criterion not fulfilled do
8 Reproduction at UL (Section 7.3.2): Generate a set Q of new UL

offspring using P .
9 Solve the LL problem for each offspring in Q using LLEMOA (Section

7.3.4).
10 Create a new set Pnew of families using Q and the corresponding

LLEMOA solutions.
11 Combine P and Pnew, i.e., P ← P

⋃
Pnew.

12 Reduce population P (see Section 7.3.6).
13 Update archive A using P (see Section 7.3.3).

14 Return archive A.

needs to be solved at the LL is

y∗ ∈ argmin
y∈Y
{f(x,y) = [f1(x,y), . . . , fm(x,y)]T : gj(x,y), j = 1, . . . , J}

where x is fixed while the y’s are the decision vectors to be found.

Here, three state-of-the-art multi-objective algorithms are considered for solv-

ing this parameterized MOP problem.

NSGA-II

The Non-dominated Sorting Genetic Algorithm [35] (NSGA-II) is one of the most

used methods to solve multi-objective problems. In NSGA-II, the search space

is randomly seeded with a population of NP members denoted by P . Non-

124

Chapter 7. A Family Concept for Multi-Objective Bilevel Optimization

Dominated Sorting (NDS) is used to sort these individuals in order to find the

most promising options. NP offspring are produced in each generation. A binary

tournament is used to choose couples of parents, who are subsequently recom-

bined using SBX with a given probability. Each offspring can mutate at prede-

termined rates utilizing PM before being accepted into the population. The NDS

and the crowding distance as a density estimator are used as an environmental

selection mechanism.

SPEA2

The Strength Pareto Evolutionary Algorithm (SPEA2) [146] incorporates a fit-

ness function that combines the dominance and a density estimator. The density

estimator is the closest neighbor strategy, and the optimal solutions identified

at each generation are saved using an archiving mechanism. For reproduction,

SPEA2 uses the same genetic operations as NSGA-II (SBX crossover and polyno-

mial mutation), whereas for parent and environmental selection, fitness values

are utilized to compare the solution quality.

SMS-EMOA

The S-Metric Selection Evolutionary Multi-Objective Algorithm (SMS-EMOA) is a

metric-driven optimizer that guides the search for the Pareto front approximation

using the hypervolume indicator [15]. To keep only NP members in the popu-

lation, a reduction procedure is used. The NDS is used in this operator, and the

worst-ranked (regarding the hypervolume contribution) front is eliminated.

7.3.5 Density Estimator

There are different ways to compare Pareto fronts in a single-level MOP, as de-

tailed in Section 7.3.4. The super rank principles are used to assess the quality of

a family. However, using a density estimator to produce solutions dispersed along

125

Chapter 7. A Family Concept for Multi-Objective Bilevel Optimization

the Pareto front is required when a set of non-dominated families is formed.

The hypervolume measure is used to calculate each family’s contribution to

the front. To quantify this contribution, the hypervolume (HV) indicator intro-

duced in (7.4) is adopted, where A is a set of non-dominated solutions, r is a ref-

erence point, and vk is the hypervolume between the k-th solution in A (mapped

in the objective functions space) and r.

HV (A, r) =

[A]⋃
k=1

vk (7.4)

∆HV (x,y) = HV (Cv,0)−HV (Cv − {F (xv
k,y

v
k)} ,0) (7.5)

The hypervolume contribution is computed as follows. Let L be a set of fam-

ilies, and assume that C = {F (x,y) ∈ B(x) : ∀B(x) ∈ L} is non-dominated.

Compute the exclusive contribution ∆HV (x,y) of each objective vector in C as

in (7.4)-(7.5) (see [15]). Here, the contribution of a family is given by

∆HV (B) =
∑

(x,y)∈B(x)

∆HV (x,y). (7.6)

In other words, a family’s contribution is the sum of the contributions made by

its solutions to the non-dominated set C. Figure 7.2 represents how the sum of

contributions (7.4)-(7.5) is calculated for three different families with same SR

value.

7.3.6 Population Reduction

Let us assume that a population of families P of size |P | > N needs to be trun-

cated to save the N best solutions. First, a ranking based on the SR values is

computed. After that, the families with a minimum contribution to the front are

eliminated. Algorithm 10 summarizes this procedure which is based on the hy-

pervolume indicator.

126

Chapter 7. A Family Concept for Multi-Objective Bilevel Optimization

Contribution:

Figure 7.2: Contribution of three different families with the same SR value.

Algorithm 10: Reduce population of families that have the same SR
value.
1 Input: Population P = {Bi = B(xi) : i = 1, 2, . . . , |P |} such that |P | > N

2 Output: Reduced population of families with size N .
3 Compute SR values for each family in P using Algorithm 8.
4 Compute subfronts: Rj ← {B ∈ P : SR(B) = j} for j = 1, 2, . . . , SRmax.
5 S ← ∅, j ← 1.
6 while |S| ≤ N do
7 S ← S ∪Rj , j ← j + 1.

8 if |P | = N then
9 Return P .

10 else
11 Put last front as L← Rj

12 Families to be chosen from L: K = N − |S|.
13 while |L| > K do
14 For each family B in L, compute their contributions ∆HV (B) (see

Section 7.3.5).
15 Delete family in L with minimum contribution ∆HV .

16 P ←
(⋃j−1

k=1 Sk

)
∪L.

127

Chapter 7. A Family Concept for Multi-Objective Bilevel Optimization

7.4 Experiments and Discussion

This section tests the proposed SMS-MOBO (Algorithm 9) by implementing three

variants of the algorithm and comparing them to BLEMO on six constrained-multi-

objective bilevel optimization problems [37, 36]. The hypervolume (HV) is used

as the indicator to compare results.

7.4.1 Parameter Settings

Problems:

The benchmark considered here contains six constrained MOBO scenarios de-

noted as TP1, TP2, DS1, DS2, DS3, and DS4. TP1 is a three-dimensional problem

with two inequality constraints (one at each level) and a non-convex optimum

front. TP2 is a 15-dimensional problem with the follower problem as the only

constraint. Because DS1 to DS4 are scalable test problems, the 10D configuration

is utilized in all but DS4, which uses the 5D variant.

Algorithms:

BLEMO is the algorithm adopted for comparison purposes and its parameters are

set as suggested in its original paper, i.e., the population size at the UL is set to

Nul = 400 and Nll = 40 at the LL, pc = 0.9 for the SBX crossover with ηc = 20, and

pm = 0.1 for the polynomial mutation with ηm = 15. The crossover and mutation

parameters are the same as in SMS-MOBO, but the population size is different

because our approach employs a different representation of solutions. Regarding

SMS-MOBO, a population size of N = 40 is recommended for TP1, DS2, and

DS3; N = 10 for TP2, and N = 20 for DS1 and DS4. The LL population size

is set as Nll = 80 for TP1, DS1, and DS3; Nll = 40 for the remaining problems,

but with Noff = 10 as in BLEMO for all experiments. It is worth mentioning that

the parameters for SMS-MOBO have been selected using a trial-and-error strategy,

128

Chapter 7. A Family Concept for Multi-Objective Bilevel Optimization

suggesting that higher values for the population are recommended when multiple

solutions from the lower level promote the upper-level diversity of solutions.

Here, we use the constraint handling based on the Constraint Violation Sum

(CVS). That is, between two solutions, prefer the solution with the minimum CVS,

if both solutions have the same CVS, then compare them using Pareto-dominance

[95].

To ensure a fair comparison between SMS-MOBO and BLEMO, both algo-

rithms have the same number of function evaluations: 80000 for TP1-TP2 and

DS4, 300000 for DS1 and DS3, and 160000 for DS2.

7.4.2 Experimental Results

The experiments are carried out considering the hypervolume values at the UL.

To compare the performance of the proposed algorithms (SMS-MOBO variants

against BLEMO), the Kruskal-Wallis rank sum test (α = 0.05) is used to validate

the results.

Due to solving multi-objective bilevel problems requiring high computational

effort and resources, 11 independent runs have been performed here; however, it

is recommended to perform a larger number of executions. Table 7.1 shows the

median of the hypervolume values generated by SMS-MOBO in the three versions

(changing the LLEMOA among NSGA-II, SPEA2, and SMS-EMOA) and BLEMO on

the test scenarios.

SMS-MOBO/SMS-EMOA outperforms BLEMO in TP1 and the high-dimensional

problem TP2, as shown in Table 7.1, suggesting that the SMS-EMOA used as a LL

optimizer can be a suitable choice if the interest problem has similar properties.

Furthermore, with the exception of test problem DS4, our approach is com-

petitive in most test problems against BLEMO (as suggested by the Kruskal-Wallis

rank sum test). In DS4, the Pareto-optimal front sits within the UL constraint’s

borders, making it a difficult test problem to solve because better solutions may

129

Chapter 7. A Family Concept for Multi-Objective Bilevel Optimization

require a larger population.

Figures 7.3-7.8 show the obtained non-dominated solutions for all problems

by the SMS-MOBO/SMS-EMOA variant and BLEMO, respectively. Note that only

the plots obtained by the SMS-MOBO/SMS-EMOA variant are presented here for

visualization purposes.

NSGA-II SPEA2 SMS-EMOA BLEMO p-value

TP1 0.302 0.302 0.302 0.206 1.65E-05

TP2 0.202 0.194 0.206 0.197 2.86E-06

DS1 0.95 0.95 0.95 0.95 0.643

DS2 0.53 0.531 0.532 0.532 0.321

DS3 1.02 1.02 1.01 1.01 0.155

DS4 0.986 0.985 0.985 0.992 2.18E-05

Table 7.1: Overall comparison of SMS-MOBO variants against BLEMO. Results in
bold indicate that significant-differences are observed (concerning the Kruskal-
Wallis rank sum test).

SMS-MOBO/SMS-EMOA BLEMO

Figure 7.3: Upper-level front at the median HV value by SMS-MOBO and BLEMO
solving problem TP1.

130

Chapter 7. A Family Concept for Multi-Objective Bilevel Optimization

SMS-MOBO/SMS-EMOA BLEMO

Figure 7.4: Upper-level front at the median HV value by SMS-MOBO and BLEMO
solving problem TP2.

SMS-MOBO/SMS-EMOA BLEMO

Figure 7.5: Upper-level front at the median HV value by SMS-MOBO and BLEMO
solving problem DS1.

131

Chapter 7. A Family Concept for Multi-Objective Bilevel Optimization

SMS-MOBO/SMS-EMOA BLEMO

Figure 7.6: Upper-level front at the median HV value by SMS-MOBO and BLEMO
solving problem DS2.

SMS-MOBO/SMS-EMOA BLEMO

Figure 7.7: Upper-level front at the median HV value by SMS-MOBO and BLEMO
solving problem DS3.

7.5 Conclusions of the Chapter

In this chapter, a representation based on a family concept was proposed to solve

constrained multi-objective bilevel optimization (MOBO) problems. The bilevel

132

Chapter 7. A Family Concept for Multi-Objective Bilevel Optimization

SMS-MOBO/SMS-EMOA BLEMO

Figure 7.8: Upper-level front at the median HV value by SMS-MOBO and BLEMO
solving problem DS4.

structure and the multiple objectives at each level were considered in this part

of the experimental study. As a result, the traditional non-dominated sorting was

utilized to eliminate redundancy (avoiding cloned solutions) among UL decision

vectors. Besides, for the family representation, a density estimator based on the

hypervolume indicator (also known as S-metric) was successfully applied to com-

pare the quality among a set of families. On representative constrained MOBO

problems, the S-metric selection MOBO algorithm (SMS-MOBO) was tested. Sta-

tistical results suggested that SMS-MOBO provided competitive results for solving

multi-objective bilevel instances.

133

Chapter 7. A Family Concept for Multi-Objective Bilevel Optimization

134

Conclusions and Future Work

This part contains the general conclusions of this thesis. The first two Chapters

have been used to give the theoretical background about bilevel optimization and

the solution approaches for different scenarios; the rest of the chapters were ded-

icated to presenting the findings. Firstly a nested approach was presented as the

Bilevel Centers Algorithm (BCA) to address single-objective bilevel optimization

via benchmark instances. BCA was presented as a framework that just requires

three parameters, (1) the population size, (2) the size of the subset to compute

the center of mass, and (3) the step size used to control the convergence acceler-

ation. Regarding accepting hypothesis #1 (in Section 1.2), the results suggested

that BCA was able to produce comparable accuracy results to those produced by

state-of-the-art algorithms. However, BCA required fewer function evaluations at

the upper level, making it a suitable algorithm for bilevel problems with a com-

putationally expensive upper-level problem. Furthermore, BCA was improved by

incorporating mechanisms to avoid pseudo-feasible solutions. The experimental

results revealed that BCA outperformed two competitive evolutionary algorithms

because BCA was able to provide feasible solutions close to the true optimum

whilst pseudo-feasible solutions were spotted in most of the cases in compari-

135

Chapter 7. A Family Concept for Multi-Objective Bilevel Optimization

son with the other approaches (which implied accepting hypothesis #2 given in

Section 1.2).

Moreover, it was observed that population-based algorithms can solve uni-

modal problems, mainly when the objective functions at both levels are not con-

flicting. On the other hand, bilevel evolutionary algorithms can converge to lo-

cal optima when the upper or lower level present multimodality (multiple local

optima), leading them to report misleading solutions or converge to infeasible

regions in the search space. The findings suggested that bilevel algorithms can

converge to feasible local optima in upper-level multimodal problems (unimodal

lower level); however, infeasible or pseudo-feasible solutions can be reported for

multimodal lower-level problems. Hence, a suitable mechanism can be used for

the upper or lower level to improve the performance of the algorithms.

The BCA framework was extended to address the automated parameter tun-

ing problem modeled as a bilevel optimization task. The proposed method was

used to deal with the computational load related to the BO problem thanks to an

incorporated surrogate model based on radial basis functions. According to the

findings, the proposed method statistically outperformed a popular procedure to

configure algorithms known as IRACE. Moreover, this extended BCA reduced the

computational usage in comparison to IRACE.

Regarding hypothesis #3, on the study on multi-objective bilevel optimization,

a representation based on a family concept was proposed to solve constrained

multi-objective bilevel optimization (MOBO) problems. The bilevel structure and

multiple objectives at each level were considered in this part of the experimental

study. As a result, the traditional non-dominated sorting was utilized to eliminate

redundancy (avoiding cloned solutions) among UL decision vectors. Besides, for

the family representation, a density estimator based on the hypervolume indicator

(also known as S-metric) was successfully applied to compare the quality among

a set of families. On representative constrained MOBO problems, the S-metric

selection MOBO algorithm (SMS-MOBO) was investigated. Statistical results sug-

gested that SMS-MOBO provided competitive results for solving multi-objective

136

Chapter 7. A Family Concept for Multi-Objective Bilevel Optimization

bilevel instances. These results, allowed accepting hypothesis #3 given Section

1.3. It was observed that multi-objective bilevel problems are challenging because

the upper-level problem depends on the lower level optimality to reach feasibility

and diversity of solutions. If the lower-level optimizer fails to converge to optimal

solutions, then the upper-level optimizer will report infeasible solutions. On the

contrary, if the lower level reports optimal solutions, but with low diversity of so-

lutions, then the upper-level optimizer will be unable to generate well-distributed

solutions along the upper-level Pareto-optimal front.

Future paths of research include the study and application of bilevel models

and solution approaches to important concerns than contains an obvious hierar-

chical structure. The following list includes possible issues than can be addressed

by using bilevel optimization.

• Constraint handling in single- and multi-objective bilevel problems can be

improved, particularly when the lower-level optimizer provides inexact lower-

level optimal solutions.

• Use the algorithm proposed in Chapter 6 to find the best parameters for

machine-learning algorithms besides configuring other metaheuristics.

• The lower-level optimizer can offer a variety of solutions from a Pareto-

optimal set in multi-objective bilevel problems. Improved constraint-handling

techniques can be proposed to select preferred solutions by the decision-

maker. Possible ideas include the usage of compromise programming at a

lower-level.

• Finally, real-world problems (e.g. mechanical design, path-planing, among

others) can be modeled and solved using bilevel optimization.

137

Chapter 7. A Family Concept for Multi-Objective Bilevel Optimization

138

Bibliography

[1] B. Akay and D. Karaboga. Parameter tuning for the artificial bee colony

algorithm. In International Conference on Computational Collective Intelli-

gence, pages 608–619. Springer, 2009.

[2] Maria João Alves and Carlos Henggeler Antunes. A differential evolution

algorithm to semivectorial bilevel problems. In Giuseppe Nicosia, Panos

Pardalos, Giovanni Giuffrida, and Renato Umeton, editors, Machine Learn-

ing, Optimization, and Big Data, pages 172–185, Cham, 2018. Springer

International Publishing.

[3] Maria João Alves, Stephan Dempe, and Joaquim J. Júdice. Computing the

pareto frontier of a bi-objective bi-level linear problem using a multiobjec-

tive mixed-integer programming algorithm. Optimization, 61(3):335–358,

2012.

[4] M. Andersson, S. Bandaru, and A. H.C. Ng. Tuning of multiple parameter

sets in evolutionary algorithms. In Proceedings of the Genetic and Evolution-

ary Computation Conference 2016, pages 533–540. ACM, 2016.

139

Bibliography

[5] M. Andersson, S. Bandaru, A. H.C. Ng, and A. Syberfeldt. Parameter tuned

CMA-ES on the CEC’15 expensive problems. In 2015 IEEE Congress on

Evolutionary Computation (CEC), pages 1950–1957. IEEE, 2015.

[6] J. S. Angelo and H. J. C. Barbosa. Differential evolution to find Stackelberg-

Nash equilibrium in bilevel problems with multiple followers. In IEEE

Congress on Evolutionary Computation (CEC 2015), pages 1675–1682.

IEEE, 2015.

[7] J. S. Angelo, E. Krempser, and H. J. C. Barbosa. Differential evolution for

bilevel programming. In IEEE Congress on Evolutionary Computation (CEC),

pages 470–477. IEEE, 2013.

[8] Jaqueline S Angelo, Eduardo Krempser, and Helio JC Barbosa. Perfor-

mance evaluation of local surrogate models in bilevel optimization. In

International Conference on Machine Learning, Optimization, and Data Sci-

ence, pages 347–359. Springer, 2019.

[9] J. M. Arroyo. Bilevel programming applied to power system vulnerabil-

ity analysis under multiple contingencies. IET generation, transmission &

distribution, 4(2):178–190, 2010.

[10] N.H. Awad, M.Z. Ali, B.Y. Q., J.J. Liang, and P.N. Suganthan. Problem Defi-

nitions and Evaluation Criteria for the CEC 2017 Special Session and Com-

petition on Single Objective Bound Constrained Real-Parameter Numerical

Optimization. Technical report, Technological University, Singapore, Tech.

Rep., 2016.

[11] T. Back. Selective pressure in evolutionary algorithms: A characterization

of selection mechanisms. In IEEE World Congress on Computational Intelli-

gence, pages 57–62. Citeseer, 1994.

[12] Thomas Back. Evolutionary Algorithms in Theory and Practice. Oxford Uni-

versity Press, 1996.

[13] J. F. Bard. Practical bilevel optimization: algorithms and applications, vol-

ume 30. Springer Science & Business Media, 2013.

140

Bibliography

[14] Slim Bechikh, Rituparna Datta, and Abhishek Gupta. Recent advances in

evolutionary multi-objective optimization, volume 20. Springer, 2016.

[15] Nicola Beume, Boris Naujoks, and Michael Emmerich. Sms-emoa: Multi-

objective selection based on dominated hypervolume. European Journal of

Operational Research, 181(3):1653–1669, 2007.

[16] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. Julia: A fresh

approach to numerical computing. SIAM review, 59(1):65–98, 2017.

[17] W. F. Bialas and M. H. Karwan. Two-level linear programming. Manage-

ment science, 30(8):1004–1020, 1984.

[18] M. Birattari and J. Kacprzyk. Tuning metaheuristics: a machine learning

perspective, volume 197. Springer, 2009.

[19] A. Biswas, K.K. Mishra, S. Tiwari, and A.K. Misra. Physics-inspired opti-

mization algorithms: A survey. Journal of Optimization, vol. 2013, 2013.

[20] Papun Biswas. Genetic Algorithm Based Multiobjective Bilevel Programming

for Optimal Real and Reactive Power Dispatch Under Uncertainty, pages 171–

203. Springer International Publishing, Cham, 2015.

[21] Ilhem BoussäıD, Julien Lepagnot, and Patrick Siarry. A survey on optimiza-

tion metaheuristics. Information Sciences, 237:82–117, 2013.

[22] J. P. Boyd and F. Xu. Divergence (Runge phenomenon) for least-squares

polynomial approximation on an equispaced grid and Mock–Chebyshev

subset interpolation. Applied Mathematics and Computation, 210(1):158–

168, 2009.

[23] L. Brotcorne, M. Labbé, P. Marcotte, and G. Savard. A bilevel model for toll

optimization on a multicommodity transportation network. Transportation

Science, 35(4):345–358, 2001.

[24] J. Carrasco, S. Garćıa, M.M. Rueda, S. Das, and F. Herrera. Recent trends

in the use of statistical tests for comparing swarm and evolutionary com-

141

Bibliography

puting algorithms: Practical guidelines and a critical review. Swarm and

Evolutionary Computation, 54:100665, 2020.

[25] Soumitri Chattopadhyay, Aritra Marik, and Rishav Pramanik. A brief

overview of physics-inspired metaheuristic optimization techniques. arXiv

preprint arXiv:2201.12810, 2022.

[26] Y. Chen and M. Florian. On the geometric structure of linear bilevel pro-

grams: a dual approach. Centre de Recherche Sur les Transports Publication,

(867), 1992.

[27] CA Coello Coello. Evolutionary multi-objective optimization: a historical

view of the field. IEEE computational intelligence magazine, 1(1):28–36,

2006.

[28] Jared L Cohon. Multiobjective programming and planning, volume 140.

Courier Corporation, 2004.

[29] B. Colson, P. Marcotte, and G. Savard. An overview of bilevel optimization.

Annals of operations research, 153(1):235–256, 2007.

[30] R Courant and J Fritz. Introduction to calculus and analysis, vol. ii/1 and

vol. ii/2, 1998.

[31] S. Damas, O. Cordón, and J. Santamaŕıa. Medical image registration us-

ing evolutionary computation. IEEE Computational Intelligence Magazine,

6(4):26–42, 2011.

[32] S. Das, S.S. Mullick, and P.N. Suganthan. Recent advances in differen-

tial evolution – an updated survey. Swarm and Evolutionary Computation,

27:1–30, 2016.

[33] Jesús-Adolfo Mej́ıa de Dios, Efrén Mezura-Montes, and Porfirio Toledo-

Hernández. Pseudo-feasible solutions in evolutionary bilevel optimization:

Test problems and performance assessment. Applied Mathematics and Com-

putation, 412:126577, 2022.

142

Bibliography

[34] Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and Tanaka Meyarivan. A

fast elitist non-dominated sorting genetic algorithm for multi-objective op-

timization: NSGA-II. In International conference on parallel problem solving

from nature, pages 849–858. Springer, 2000.

[35] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A

fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions

on evolutionary computation, 6(2):182–197, 2002.

[36] Kalyanmoy Deb and Ankur Sinha. Solving bilevel multi-objective optimiza-

tion problems using evolutionary algorithms. In International conference on

evolutionary multi-criterion optimization, pages 110–124. Springer, 2009.

[37] Kalyanmoy Deb and Ankur Sinha. An efficient and accurate solution

methodology for bilevel multi-objective programming problems using a

hybrid evolutionary-local-search algorithm. Evolutionary computation,

18(3):403–449, 2010.

[38] S. Dempe. Foundations of Bilevel Programming. Springer Science & Busi-

ness Media, 2002.

[39] S. Dempe and J. Dutta. Is bilevel programming a special case of a math-

ematical program with complementarity constraints? Mathematical Pro-

gramming, 131(1-2):37–48, February 2010.

[40] J. Derrac, S. Garćıa, D. Molina, and F. Herrera. A practical tutorial on

the use of nonparametric statistical tests as a methodology for comparing

evolutionary and swarm intelligence algorithms. Swarm and Evolutionary

Computation, 1(1):3–18, 2011.

[41] A. E. Eiben and S. K. Smit. Evolutionary algorithm parameters and meth-

ods to tune them. In Autonomous search, pages 15–36. Springer, 2011.

[42] A. E. Eiben and S. K. Smit. Parameter tuning for configuring and analyzing

evolutionary algorithms. Swarm and Evolutionary Computation, 1(1):19–

31, 2011.

143

Bibliography

[43] Gabriele Eichfelder. Multiobjective bilevel optimization. Mathematical Pro-

gramming, 123(2):419–449, 2010.

[44] M. A. El-Beltagy, P. B. Nair, and A. J. Keane. Metamodeling techniques

for evolutionary optimization of computationally expensive problems:

Promises and limitations. In Proceedings of the 1st Annual Conference on

Genetic and Evolutionary Computation-Volume 1, pages 196–203. Morgan

Kaufmann Publishers Inc., 1999.

[45] Maha Elarbi, Slim Bechikh, Lamjed Ben Said, and Rituparna Datta. Multi-

objective optimization: Classical and evolutionary approaches. In Recent

advances in evolutionary multi-objective optimization, pages 1–30. Springer,

2017.

[46] J.F. Epperson. On the runge example. The American Mathematical Monthly,

94(4):329–341, 1987.

[47] E. Fernandez, C. Gomez, G. Rivera, and L. Cruz-Reyes. Hybrid metaheuris-

tic approach for handling many objectives and decisions on partial support

in project portfolio optimisation. Information Sciences, 315:102–122, 2015.

[48] P.J. Fleming and R.C. Purshouse. Evolutionary algorithms in control sys-

tems engineering: a survey. Control engineering practice, 10(11):1223–

1241, 2002.

[49] Roger Fletcher. Practical methods of optimization. John Wiley & Sons, 2013.

[50] Jesse Frey. Introduction to stochastic search and optimization: Estimation,

simulation, and control. Journal of the American Statistical Association,

99(468):1204–1205, December 2004.

[51] Roger Gamperle, Sibylle D. Muller, and Petros Koumoutsakos. A parameter

study for differential evolution. In WSEAS Int. Conf. on Advances in Intel-

ligent Systems, Fuzzy Systems, Evolutionary Computation, pages 293–298.

Press, 2002.

144

Bibliography

[52] Fuchang Gao and Lixing Han. Implementing the Nelder-Mead simplex

algorithm with adaptive parameters. Computational Optimization and Ap-

plications, 51(1):259–277, May 2010.

[53] Yong-Feng Ge, Wei-Jie Yu, Jinli Cao, Hua Wang, Zhi-Hui Zhan, Yanchun

Zhang, and Jun Zhang. Distributed memetic algorithm for outsourced

database fragmentation. IEEE Transactions on Cybernetics, 51(10):4808–

4821, 2021.

[54] Fred Glover. Future paths for integer programming and links to artificial

intelligence. Computers & operations research, 13(5):533–549, 1986.

[55] P. Hansen, B. Jaumard, and G. Savard. New branch-and-bound rules for

linear bilevel programming. SIAM Journal on scientific and Statistical Com-

puting, 13(5):1194–1217, 1992.

[56] X. He, Y. Zhou, and Z. Chen. Evolutionary bilevel optimization based on

covariance matrix adaptation. IEEE Transactions on Evolutionary Computa-

tion, 2018.

[57] L. Hecheng and W. Yuping. An evolutionary algorithm based on a new de-

composition scheme for nonlinear bilevel programming problems. Interna-

tional Journal of Communications, Network and System Sciences, 3(01):87,

2010.

[58] Sergio Hernández, Guillem Duran, and José M. Amigó. Physics-inspired

swarm optimization: The general algorithmic search. In World Scientific

Series on Nonlinear Science Series B, pages 531–550. WORLD SCIENTIFIC,

July 2021.

[59] H. H. Hoos. Automated algorithm configuration and parameter tuning. In

Autonomous search, pages 37–71. Springer, 2011.

[60] F. Hutter and H. H. Hoos. Automatic algorithm configuration based on

local search. In Proceedings of the 22nd national conference on artificial

intelligence Vol. 2, pages 1152–1157. AAAI Press, 2007.

145

Bibliography

[61] F. Hutter, H. H. Hoos, K. Leyton-Brown, and T. Stützle. Paramils: an auto-

matic algorithm configuration framework. Journal of Artificial Intelligence

Research, 36:267–306, 2009.

[62] Hisao Ishibuchi, Ryo Imada, Naoki Masuyama, and Yusuke Nojima. Com-

parison of hypervolume, IGD and IGD+ from the viewpoint of optimal dis-

tributions of solutions. In International Conference on Evolutionary Multi-

Criterion Optimization, pages 332–345. Springer, 2019.

[63] Hisao Ishibuchi, Ryo Imada, Yu Setoguchi, and Yusuke Nojima. Reference

point specification in inverted generational distance for triangular linear

pareto front. IEEE Transactions on Evolutionary Computation, 22(6):961–

975, 2018.

[64] Md Monjurul Islam, Hemant Kumar Singh, and Tapabrata Ray. A surrogate

assisted approach for single-objective bilevel optimization. IEEE Transac-

tions on Evolutionary Computation, 21(5):681–696, 2017.

[65] Md Monjurul Islam, Hemant Kumar Singh, and Tapabrata Ray. Efficient

global optimization for solving computationally expensive bilevel opti-

mization problems. In 2018 IEEE Congress on Evolutionary Computation

(CEC), pages 1–8. IEEE, 2018.

[66] Md Monjurul Islam, Hemant Kumar Singh, Tapabrata Ray, and Ankur

Sinha. An enhanced memetic algorithm for single-objective bilevel opti-

mization problems. Evolutionary computation, 25(4):607–642, 2017.

[67] Ying Ji, Gang Ma, Ju Wei, and Yeming Dai. A hybrid approach for uncer-

tain multi-criteria bilevel programs with a supply chain competition appli-

cation. Journal of Intelligent & Fuzzy Systems, 33(5):2999–3008, 2017.

[68] Ying Ji, Shaojian Qu, and Zhensheng Yu. A new method for solving multi-

objective bilevel programs. Discrete Dynamics in Nature and Society, 2017,

2017.

[69] Hongmei Jia, Bin Wang, Lin Zhang, and Yanping Liu. A bilevel time-

dependent scheduling model for hazmat road transportation. IET Road

146

Bibliography

Transport Information and Control Conference and the ITS United King-

dom Members’ Conference (RTIC 2010). Better transport through technology,

2010.

[70] Liping Jia and Yuping Wang. Genetic algorithm based on primal and dual

theory for solving multiobjective bilevel linear programming. In 2011 IEEE

Congress of Evolutionary Computation (CEC), pages 558–565, 2011.

[71] M. Jiang, Y. P Luo, and S. Y. Yang. Stochastic convergence analysis and pa-

rameter selection of the standard particle swarm optimization algorithm.

Information processing letters, 102(1):8–16, 2007.

[72] S. Jiang, Z. Ji, and Y. Shen. A novel hybrid particle swarm optimization

and gravitational search algorithm for solving economic emission load dis-

patch problems with various practical constraints. International Journal of

Electrical Power & Energy Systems, 55:628–644, 2014.

[73] D. Karaboga. An idea based on honey bee swarm for numerical optimiza-

tion. Technical report, Technical report-tr06, Erciyes university, engineer-

ing faculty, computer engineering department, 2005.

[74] J. Kennedy. Particle swarm optimization. IEEE International Conference on

Neural Network, pages 1942–1948, 1995.

[75] A. Koh. Solving transportation bi-level programs with differential evolu-

tion. In IEEE Congress on Evolutionary Computation, CEC 2007., pages

2243–2250. IEEE, 2007.

[76] Hsiang-Tsung Kung, Fabrizio Luccio, and Franco P Preparata. On finding

the maxima of a set of vectors. Journal of the ACM (JACM), 22(4):469–476,

1975.

[77] F. Legillon, A. Liefooghe, and E. G. Talbi. Cobra: A cooperative coevolu-

tionary algorithm for bi-level optimization. In IEEE Congress on Evolution-

ary Computation (CEC), pages 1–8. IEEE, 2012.

147

Bibliography

[78] A. S. Lewis and M. L. Overton. Nonsmooth optimization via quasi-Newton

methods. Mathematical Programming, 141(1-2):135–163, 2013.

[79] Hong Li and Li Zhang. An efficient solution strategy for bilevel multiob-

jective optimization problems using multiobjective evolutionary algorithm.

Soft Computing, pages 1–21, 2021.

[80] Hong Li, Qingfu Zhang, Qin Chen, Li Zhang, and Yong-Chang Jiao. Mul-

tiobjective differential evolution algorithm based on decomposition for a

type of multiobjective bilevel programming problems. Knowledge-Based

Systems, 107:271–288, 2016.

[81] Hui Li and Qingfu Zhang. Multiobjective optimization problems with com-

plicated Pareto sets, MOEA/D and NSGA-II. IEEE transactions on evolution-

ary computation, 13(2):284–302, 2008.

[82] X. Li, P. Tian, and X. Min. A hierarchical particle swarm optimization for

solving bilevel programming problems. In International Conference on Ar-

tificial Intelligence and Soft Computing, pages 1169–1178. Springer, 2006.

[83] Bingbing Liu, Zhongping Wan, Jiawei Chen, and Guangmin Wang. Opti-

mality conditions for pessimistic semivectorial bilevel programming prob-

lems. Journal of Inequalities and Applications, 2014(1):1–26, 2014.

[84] D. C. Liu and J. Nocedal. On the limited memory bfgs method for large

scale optimization. Mathematical programming, 45(1-3):503–528, 1989.

[85] M. López-Ibáñez, J. Dubois-Lacoste, L. Pérez-Cáceres, M. Birattari, and

T. Stützle. The irace package: Iterated racing for automatic algorithm

configuration. Operations Research Perspectives, 3:43–58, 2016.

[86] Yibing Lv and Zhongping Wan. A solution method for the optimistic lin-

ear semivectorial bilevel optimization problem. Journal of Inequalities and

Applications, 2014(1):1–10, 2014.

148

Bibliography

[87] Yibing Lv and Zhongping Wan. Solving linear bilevel multiobjective pro-

gramming problem via exact penalty function approach. Journal of In-

equalities and Applications, 2015(1):1–12, 2015.

[88] J.E. Marsden and A. Tromba. Vector calculus. Macmillan, 2003.

[89] J. A. Mej́ıa-de Dios and E. Mezura-Montes. A physics-inspired algorithm for

bilevel optimization. In Power, Electronics and Computing (ROPEC), 2018

IEEE International Autumn Meeting on, pages 1–6. IEEE, 2018.

[90] J. A. Mej́ıa-de Dios and E. Mezura-Montes. A new evolutionary optimiza-

tion method based on center of mass. In Decision Science in Action, pages

65–74. Springer, 2019.

[91] J. A. Mej́ıa-de Dios and E. Mezura-Montes. A surrogate-assisted meta-

heuristic for bilevel optimization. In Proceedings of the ACM Genetic and

Evolutionary Computation Conference (GECCO), page in press. ACM Press,

2020.

[92] J.A. Mej́ıa-de Dios and E. Mezura-Montes. A Metaheuristic for Bilevel Op-

timization Using Tykhonov Regularization and the Quasi-Newton Method.

In 2019 IEEE Congress on Evolutionary Computation (CEC), pages 3134–

3141. IEEE, 2019.

[93] Jesús-Adolfo Mej́ıa-de Dios and Efrén Mezura-Montes. A New Evolution-

ary Optimization Method Based on Center of Mass, pages 65–74. Springer

Singapore, Singapore, 2019.

[94] Jesús-Adolfo Mej́ıa-de Dios, Efrén Mezura-Montes, and Marcela Quiroz-

Castellanos. Automated parameter tuning as a bilevel optimization prob-

lem solved by a surrogate-assisted population-based approach. Applied

Intelligence, 51(8):5978–6000, 2021.

[95] Efrén Mezura-Montes and Carlos A. Coello Coello. Constraint-handling in

nature-inspired numerical optimization: Past, present and future. Swarm

and Evolutionary Computation, 1(4):173–194, 2011.

149

Bibliography

[96] Efrén Mezura-Montes, Mariana-Edith Miranda-Varela, and Rub́ı del Car-

men Gómez-Ramón. Differential evolution in constrained numerical opti-

mization: An empirical study. Information Sciences, 180(22):4223–4262,

2010.

[97] M. Mitchell. An introduction to genetic algorithms. Cambridge, MA: MIT

Press, 1996.

[98] Royall T. Moore. Proposal for the recognition of super ranks. TAXON,

23(4):650–652, 1974.

[99] Ajit Narayanan and Mark Moore. Quantum-inspired genetic algorithms. In

Evolutionary Computation, 1996., Proceedings of IEEE International Confer-

ence on, pages 61–66. IEEE, 1996.

[100] Nadia Nedjah and Luiza de Macedo Mourelle. Evolutionary multi–objective

optimisation: a survey. International Journal of Bio-Inspired Computation,

7(1):1–25, 2015.

[101] J. Nocedal and S. Wright. Numerical optimization. Springer Science &

Business Media, 2006.

[102] Y. S. Ong, P. B. Nair, and A. J. Keane. Evolutionary optimization of com-

putationally expensive problems via surrogate modeling. AIAA journal,

41(4):687–696, 2003.

[103] Calice Olivier Pieume, Patrice Marcotte, Laure Pauline Fotso, Patrick Siarry,

et al. Solving bilevel linear multiobjective programming problems. Ameri-

can Journal of Operations Research, 1(4):214–219, 2011.

[104] Calice Olivier Pieume, Patrice Marcotte, Laure Pauline Fotso, Patrick Siarry,

et al. Generating efficient solutions in bilevel multi-objective programming

problems. American Journal of Operations Research, 3(02):289, 2013.

[105] M. Quiroz-Castellanos, L. Cruz-Reyes, J. Torres-Jimenez, C. Gómez, H. J.

Fraire Huacuja, and A.C.F. Alvim. A grouping genetic algorithm with con-

150

Bibliography

trolled gene transmission for the bin packing problem. Computers & Oper-

ations Research, 55:52–64, 2015.

[106] S. S. Rao. Engineering optimization: theory and practice. John Wiley &

Sons, 2009.

[107] Esmat Rashedi, Hossein Nezamabadi-pour, and Saeid Saryazdi. GSA: a

Gravitational Search Algorithm. Information sciences, 179(13):2232–2248,

2009.

[108] S. Shan and G. G. Wang. Survey of modeling and optimization strate-

gies to solve high-dimensional design problems with computationally-

expensive black-box functions. Structural and Multidisciplinary Optimiza-

tion, 41(2):219–241, 2010.

[109] C. Shi, J. Lu, and G. Zhang. An extended Kuhn–Tucker approach for linear

bilevel programming. Applied Mathematics and Computation, 162(1):51–

63, 2005.

[110] X. Shi and H. Xia. Interactive bilevel multi-objective decision making. Jour-

nal of the Operational Research Society, 48:943–949, 1997.

[111] A. Sinha, Z. Lu, K. Deb, and P. Malo. Bilevel optimization based on itera-

tive approximation of multiple mappings. arXiv preprint arXiv:1702.03394,

2017.

[112] A. Sinha, P. Malo, and K. Deb. Unconstrained scalable test problems for

single-objective bilevel optimization. In IEEE Congress on Evolutionary

Computation (CEC), pages 1–8. IEEE, 2012.

[113] A. Sinha, P. Malo, and K. Deb. Efficient evolutionary algorithm for single-

objective bilevel optimization. arXiv preprint arXiv:1303.3901, 2013.

[114] A. Sinha, P. Malo, and K. Deb. Test problem construction for single-

objective bilevel optimization. Evolutionary computation, 22(3):439–477,

2014.

151

Bibliography

[115] A. Sinha, P. Malo, and K. Deb. Transportation policy formulation as a multi-

objective bilevel optimization problem. In IEEE Congress on Evolutionary

Computation (CEC), pages 1651–1658. IEEE, 2015.

[116] A. Sinha, P. Malo, and K. Deb. A review on bilevel optimization: from

classical to evolutionary approaches and applications. IEEE Transactions

on Evolutionary Computation, 22(2):276–295, 2018.

[117] A. Sinha, P. Malo, P. Xu, and K. Deb. A bilevel optimization approach to

automated parameter tuning. In Proceedings of the 2014 Annual Conference

on Genetic and Evolutionary Computation, pages 847–854. ACM, 2014.

[118] Ankur Sinha, Pekka Malo, and Kalyanmoy Deb. An improved bilevel evo-

lutionary algorithm based on quadratic approximations. In 2014 IEEE

Congress on Evolutionary Computation (CEC), pages 1870–1877. IEEE,

2014.

[119] Ankur Sinha, Pekka Malo, and Kalyanmoy Deb. Approximated set-valued

mapping approach for handling multiobjective bilevel problems. Comput-

ers & Operations Research, 77:194–209, 2017.

[120] Ankur Sinha, Pekka Malo, and Kalyanmoy Deb. Evolutionary bilevel op-

timization: An introduction and recent advances. In Recent advances in

evolutionary multi-objective optimization, pages 71–103. Springer, 2017.

[121] Ankur Sinha, Tharo Soun, and Kalyanmoy Deb. Using Karush-Kuhn-Tucker

proximity measure for solving bilevel optimization problems. Swarm and

evolutionary computation, 44:496–510, 2019.

[122] S. K. Smit and A. E. Eiben. Comparing parameter tuning methods for evo-

lutionary algorithms. In 2009 IEEE congress on evolutionary computation,

pages 399–406. IEEE, 2009.

[123] M. Spivak. Calculus on manifolds: a modern approach to classical theorems

of advanced calculus. CRC press, 2018.

152

Bibliography

[124] R. Storn and K. Price. Differential evolution - a simple and efficient adap-

tive scheme for global optimization over continuous spaces. Berkeley: ICSI,

1995.

[125] E. G. Talbi. A taxonomy of metaheuristics for bi-level optimization. In

Metaheuristics for bi-level optimization, pages 1–39. Springer, 2013.

[126] I. C. Trelea. The particle swarm optimization algorithm: convergence anal-

ysis and parameter selection. Information processing letters, 85(6):317–

325, 2003.

[127] F. Van den Bergh and A. P. Engelbrecht. A study of particle swarm opti-

mization particle trajectories. Information sciences, 176(8):937–971, 2006.

[128] N. Veček, M. Mernik, B. Filipič, and M. Črepinšek. Parameter tuning with

chess rating system (crs-tuning) for meta-heuristic algorithms. Information

Sciences, 372:446–469, 2016.

[129] Mark Velasquez and Patrick T Hester. An analysis of multi-criteria decision

making methods. International journal of operations research, 10(2):56–66,

2013.

[130] L. Vicente, G. Savard, and J. Júdice. Descent approaches for quadratic

bilevel programming. Journal of Optimization Theory and Applications,

81(2):379–399, 1994.

[131] J. Von-Neumann and O. Morgenstern. Theory of games and economic be-

havior. Bull. Amer. Math. Soc, 51(7):498–504, 1945.

[132] H. Von-Stackelberg. Market Structure and Equilibrium. Springer Science &

Business Media, 2010.

[133] J. Y. T. Wang, M. Ehrgott, K. N. Dirks, and A. Gupta. A bilevel multi-

objective road pricing model for economic, environmental and health sus-

tainability. Transportation Research Procedia, 3:393–402, 2014.

153

Bibliography

[134] Xiaoli Wang and Yuping Wang. An energy and data locality aware bi-level

multiobjective task scheduling model based on mapreduce for cloud com-

puting. In 2012 IEEE/WIC/ACM International Conferences on Web Intelli-

gence and Intelligent Agent Technology, volume 1, pages 648–655, 2012.

[135] Y. Wang, Y.-C. Jiao, and H. Li. An evolutionary algorithm for solving non-

linear bilevel programming based on a new constraint-handling scheme.

IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications

and Reviews), 35(2):221–232, 2005.

[136] Lyndon While, Philip Hingston, Luigi Barone, and Simon Huband. A faster

algorithm for calculating hypervolume. IEEE transactions on evolutionary

computation, 10(1):29–38, 2006.

[137] Jianlin Jiang Yibing Lv, Tiesong Hu. Penalty method-based equilibrium

point approach for solving the linear bilevel multiobjective programming

problem. Discrete & Continuous Dynamical Systems - S, 13(6):1743–1755,

2020.

[138] Zhongping Wan Yibing Lv. Linear bilevel multiobjective optimization prob-

lem: Penalty approach. Journal of Industrial & Management Optimization,

15(3):1213–1223, 2019.

[139] E. A. Youness, O. E. Emam, and M. S. Hafez. Fuzzy bi-level multi-objective

fractional integer programming. Applied Mathematics & Information Sci-

ences, 8(6):2857–2863, November 2014.

[140] B. Yuan and M. Gallagher. Statistical racing techniques for improved em-

pirical evaluation of evolutionary algorithms. In International Conference

on Parallel Problem Solving from Nature, pages 172–181. Springer, 2004.

[141] B. Yuan and M. Gallagher. Combining meta-eas and racing for difficult ea

parameter tuning tasks. In Parameter Setting in Evolutionary Algorithms,

pages 121–142. Springer, 2007.

[142] Guangquan Zhang, Jie Lu, and Tharam Dillon. Decentralized multi-

objective bilevel decision making with fuzzy demands. Knowledge-Based

154

Bibliography

Systems, 20(5):495–507, 2007. Intelligent Knowledge Engineering Sys-

tems.

[143] Tao Zhang, Tiesong Hu, Jia-wei Chen, Zhongping Wan, and Xuning Guo.

Solving bilevel multiobjective programming problem by elite quantum be-

haved particle swarm optimization. In Abstract and Applied Analysis, vol-

ume 2012. Hindawi, 2012.

[144] Y. Zheng, Z. Wan, and G. Wang. A fuzzy interactive method for a class of

bilevel multiobjective programming problem. Expert Systems with Applica-

tions, 38(8):10384–10388, 2011.

[145] A. Zhou, B.Y. Qu, H. Li, S. Z. Zhao, P. N. Suganthan, and Q. Zhang. Multi-

objective evolutionary algorithms: A survey of the state of the art. Swarm

and Evolutionary Computation, 1(1):32–49, 2011.

[146] Eckart Zitzler, Marco Laumanns, and Lothar Thiele. Spea2: Improving the

strength pareto evolutionary algorithm. TIK-report, 103, 2001.

[147] Eckart Zitzler and Lothar Thiele. Multiobjective evolutionary algorithms:

a comparative case study and the strength pareto approach. IEEE transac-

tions on Evolutionary Computation, 3(4):257–271, 1999.

155

Bibliography

156

Appendix A

Optimization

This appendix is dedicated to describing what optimization problems are, in-

cluding the solution methodology from classical to approximate approaches such

as evolutionary algorithms and other metaheuristic methods. Here, single- and

multi-objective problems are briefly introduced to give important concepts to fur-

ther introduce bilevel optimization problems comprehensively.

A.1 Single-Objective Optimization

In this section, the single-level optimization problems are described by giving im-

portant definitions and theoretical results that involve theorems on optimality

conditions that guarantee the existence of solutions for some optimization tasks.

Optimizing a single-objective problem means that it is required to find arguments

for the real-valued function such that the minimum is reached on those argu-

157

Appendix A. Optimization

ments. Thus, an optimization problem is defined, without loss of generality, as

finding the set:

X∗ = argmin
x∈X

f(x) = {x∗ ∈ X : f(x∗) ≤ f(x), ∀x ∈ X}, (A.1)

where f is a bounded below function (called objective function), i.e., f(x∗) >

−∞. X is a D-dimensional parameter space (search space), usually X ⊂ RD is

the domain for x representing constraints on allowable values for x. Equation

A.1 may be read as: X∗ is the set of values (arguments) x = x∗ that minimizes

f(x) subject to X∗ (see Figure A.1).

Figure A.1: A single-objective optimiza-
tion problem is represented. Note that
X represents the search space, and x∗ is
minimizing f on X.

From the above description, different classes of optimal solutions emerge de-

pending on the properties of the objective function f . For instance, if f is oscillat-

ing on a range, then local or global optimal solutions can appear. In practice, it

is common to find that f contains multiple optimal solutions. The main idea is to

compute global optima.

Given a function f : X ⊂ Rn → R with X ̸= ∅, for x∗ ∈ X the value

f∗ := f(x∗) > −∞ is called a global minimum if and only if

∀x ∈ X, f(x∗) ≤ f(x).

Then, x∗ is a global minimum point, f is the objective function, and the set X is

the feasible region.

158

Appendix A. Optimization

An optimization problem is solved only when a global minimum is found.

However, global minimums are, in general, difficult to find because objective

functions can be hard to analyze in real-world problems. Therefore, in prac-

tice, a local minimum [106, 12] that represents a better solution than an a priori

known solution will be acceptable. Optimization problems are usually ill-posed

problems because existence of optimal solution is not guaranteed in general, and

when solutions exist, they can not be unique.

More complicated optimization problems can contain some constraints inher-

ent to the task being modeled, adding a difficulty layer to the resolution strategy.

Those constraints are determined by equality and inequality equations besides

that objective function. That is, a constrained optimization problem restricts the

global search space into regions where the function arguments can be a candidate

to be an optimum (see Definition 1.1).

Definition 1.1

A general Constrained Optimization Problem (COP) can be defined as fol-

lows:

Minimize:

f(x), x ∈ S ⊆ RD (A.2)

subject to:

gi(x) ≤ 0, i =1, . . . , p (A.3)

hj(x) = 0, j =p+ 1, . . . ,m (A.4)

where S =
∏D

k=1[xk,min, xk,max] i.e. xk ∈ [xk,min, xk,max] for k = 1, 2, . . . , D.

The problem is subject to p inequality constraints and m − p equality con-

straints. If x satisfies gi(x) ≤ 0, for i = 1, . . . , p and |hj(x)| ≤ ε, for

j = p+ 1, . . . ,m with ε > 0 a small value; then x is regarded feasible.

As mentioned before, COPs are, in general, complicated to solve since the

constraints can add multiple sources of difficulty in the search space. For exam-

159

Appendix A. Optimization

ple, when the constraints introduce non-convex or disconnected feasible regions,

finding optimal feasible solutions become a challenging task.

To illustrate the main properties of an optimization problem, the following

example is given.

Example 1.1

The Sphere function constrained by a disk:

f(x1, x2) = (x1 − 1)2 + (x2 + 1)2

subject to:

x21 + x22 ≤ 2,

where −2 ≤ x1, x2 ≤ 2.

As you can note, this nonlinear problem contains two decision variables

and an inequality constraint.

160

Appendix A. Optimization

The following section gives important results on optimal solutions’ existence in

optimization problems and optimality conditions to determine which optimization

problems have at least a local optima.

A.1.1 Optimality Conditions

Optimality Conditions have been developed from theoretical analyzes to prove

that optimal solutions exist for some classes of optimization problems. Usually,

classical algorithms to solve optimization problems are based on optimality con-

ditions.

Gradient-based optimality conditions assume that f(x) is continuous and dif-

ferentiable, i.e., partial derivatives exist.

∇f(x) =
(
∂f(x)

∂x1
,
∂f(x)

∂x2
, . . . ,

∂f(x)

∂xn

)T

is the vector of partial derivatives known as gradient vector (gradient of f(x)).

This gradient vector is very useful to determine the direction where f takes the

largest values, suggesting then a search direction. Moreover, the gradient vector

becomes the zero vector on optimal solutions. This fact introduces a necessary

optimality condition (but not sufficient). The following theorems use the gradient

concept to give necessary and sufficient optimality conditions.

Theorem 1.1

If the objective function f(x) has maximum or minimum (also known as ex-

treme point) at x = x̂ and the first partial derivates of f(x) exists, then

∇f(x̂) = (0, 0, . . . , 0)T = 0.

The proof for this theorem is detailed in [106].

As you can see in Theorem 1.1, optimal solutions satisfy some interest proper-

ties that help to characterize solution nature, letting us know if the point x could

161

Appendix A. Optimization

be a minimum or maximum point. The above theorem states that any optimal

point cancels the gradient vector. However, other solutions could also cancel it.

It is necessary to determine whether a solution is optimal, then the necessary

condition is required.

Theorem 1.2

If x is a stationary point, then x̂ is a local optimum and the Hessian matrix

H (second derivate for f(x)) evaluated at x̂. Then: 1) x̂ is a local minimum

point if H(x̂) is positive-definite, or 2) x̂ is a local maximum point if H(x̂) is

negative-definite.

The proof for this theorem is detailed in [106].

The necessary condition has been developed for twice differentiable functions

f at a solution x̂ that satisfies Theorem 1.2, i.e., ∇f(x̂) = 0 and the Hessian

matrix is definite positive or negative, then x̂ is a strict local optima [106].

As you can see from the above conditions, constrained problems have not been

considered due to more considerations have to be done according to the nature

of equality and inequality constraints. Therefore, different conditions have been

studied for constrained optimization problems, such as the Karush-Kuhn-Tucker

conditions addressed in the following part.

A.1.2 Karush-Kuhn-Tucker Conditions

The Karush-Kuhn-Tucker (KKT) conditions are used to handle equality and in-

equality constraints in nonlinear optimization problems as a generalization of the

Lagrange Multiplier method (which only considers equality constraints) [17, 26,

109]. Note that the KKT conditions are also called Kuhn-Tucker conditions or

first-order necessary conditions.

The main idea is to transform the constrained problem from the Definition 1.1

162

Appendix A. Optimization

into the Lagrangian function:

L(x,µ,λ) = f(x) + µ⊤g(x) + λ⊤h(x)

where g(x) = (g1(x), . . . , gp(x))
⊤, h(x) = (h1(x), . . . , hm(x))⊤ denote the equal-

ity and inequality constraints, respectively. Thus, the following result determines

whether a point is an optimal solution for the problem in Definition 1.1.

Theorem 1.3

Assume that the objective f and constraint functions gi, hj are continuously

differentiable (the derivative exists and is itself continuous). If (x∗,µ∗) satisfy

that:

L(x∗,µ∗) = ∇f(x∗) +

m∑
i=1

µi∇gi(x∗) +

J∑
j=1

λj∇hj(x∗) = 0

where λj ≥ 0 and λjgj(x, y) ≤ 0. Then x∗ is an optimal solution.

The proof for this theorem is detailed in [106].

Theorem 1.3 is one of the most important results in the optimization area.

The KKT conditions are useful to handle equality and inequality constraints and

characterize optimal feasible solutions by using a Lagrangian function. Different

algorithms have been proposed to solve constrained optimization problems by

implementing the KKT conditions.

A.1.3 Solutions Strategies

The specialized literature reports different strategies for solving optimization tasks,

such as exact methods derived from mathematical procedures where the charac-

teristic of problems is known [101, 106]. However, when the information on the

optimization problem is not fully available, approximate strategies such as meta-

heuristic algorithms become relevant as they can approximate solutions for highly

163

Appendix A. Optimization

complicated problems.

Classical Approaches

Classical approaches to solving optimization problems are always the first option

when the information on the objective function and constraints is given a priori,

and the optimization problem behaves well. As mentioned before, exact algo-

rithms can solve well-behaved problems such as linear, quadratic, convex, and

non-convex programming problems. For instance, Newton-like or quasi-Newton

algorithms are based on the first-order derivate information of the objective func-

tion [106].

Metaheuristic Approaches

The metaheuristic concept was introduced in [54] to describe an algorithm which

uses upper-level heuristics1 to solve complex optimization problems [125]. The

most popular metaheuristics are based on Darwin’s theory of natural evolution,

known as Evolutionary Algorithms (EAs)

• Evolutionary Algorithms. EAs have been successfully used to solve real-world

optimization problems [21, 48, 31]. EAs are methods with stochastic oper-

ators such as selection, recombination, and mutation, inspired by the nat-

ural selection of species (evolution). Some of the most popular EAs are

Genetic Algorithms [97], Evolutionary Programming, Evolution Strategies,

and Genetic Programming [12, 50]. Nowadays, one of the most popular EA

for real-parameter optimization, particularly in constrained search spaces,

is DE [96] which was introduced by Storn and Price [124] for global op-

timization over continuous search spaces. Evolution-based algorithms are

commonly used when traditional/exact techniques can not be applied (or

the properties of problems are not available) because EAs do not require

strong assumptions.
1Discover new strategies to solve problems.

164

Appendix A. Optimization

• Physics-Inspired Algorithms. Physics-inspired algorithms are based on mod-

els from physical phenomena such that gravitational law [107], the center-

of-mass concept [90], quantum physics [99], among others [21]. Those

methods can work on a set of solutions but are not necessarily based on

stochastic principles (as in EAs) to successfully solve complex optimization

problems. The reader is referred to [19, 21] for finer details on physics-

inspired methods that solve optimization problems.

• Hybrid Algorithms. When mathematical properties of the optimization prob-

lem are known, classical techniques can be applied to obtain exact local

optima. However, when accurate enough global solutions are required, hy-

brid methods have been proposed. They combine metaheuristic methods

(such as global search); and classical techniques (local search) to improve

the approximation accuracy [47, 53]. Also, combinations of metaheuris-

tics from different inspirations have been considered to improve results on

complicated problems when traditional frameworks are unable to provide

desired solutions [72]. Thus, combining different algorithms to propose a

new algorithm is referred to as hybrid algorithms.

A.2 Multi-Objective Optimization

Optimization problems simultaneously dealing with more than one objective func-

tion are known as multi-objective problems if such objectives are in conflict. More-

over, different real-world problems can be modeled as multi-objective optimiza-

tion tasks, providing a most representative mathematical model to the problem of

interest.

Important Concepts

• Conflicting Objectives: When an objective takes smaller values, an-

other one takes larger values.

• Multi-objective problem: Optimization problems with multiple con-

165

Appendix A. Optimization

flicting objectives.

Without lost of generality, a multi-objective optimization problem can be for-

mulated as follows [28, 14, 145]:

min
x∈X

F (x) =



F1(x)

F2(x)

...

FM (x)


(A.5)

gj(x) ≤ 0, j = 1, 2, . . . , J (A.6)

hk(x) = 0, k = 1, 2, . . . ,K (A.7)

x ∈ X. (A.8)

where M is the number of conflicting objectives, gj and hk respectively denote

inequality and equality constraints. X is the search space or the function domain.

Here, the optimality definitions are quite different from those in single-objective

optimization since F : X ⊂ RD → RM is not a real-valued objective function.

Therefore, it is necessary to introduce concepts of dominance to discriminate the

quality of a solution.

Definition 1.2

A solution in x∗ ∈ Ω is Pareto Optimal if ∀x ∈ Ω− {x∗}, Fi(x
∗) ≤ Fi(x) is

obtained for 1 ≤ i ≤ M and there exists at least one 1 ≤ j ≤ M such that

Fj(x
∗) < Fj(x).

Once the optimality is described in this context, the Pareto Optimal Set P ∗ ⊂
Ω is defined, such as any element in P ∗ is a Pareto optimal solution. Another

166

Appendix A. Optimization

important concept is the Pareto-Optimal front given by

PF ∗ = {F (x) : x ∈ P ∗}.

Finding solutions distributed along the Pareto-optimal front is a complicated

task. Here, optimality is hard to meet, and a well-distribution of solutions is

required when a posteriori decision-making is performed.

Other important concepts in multi-objective optimization are the Ideal and

Nadir points analytically defined as:

• Ideal point: z = (z1, z2, . . . , zM), where zm = minx∈Ω Fm(z).

• Nadir point: w = (w1, w2, . . . , wM), where wm = maxx∈Ω Fm(w).

Definition 1.3

A solution x1 ∈ Ω dominates x2 ∈ Ω if and only if Fi(x1) ≤ Fi(x2) for 1 ≤
i ≤M and there exists at least one 1 ≤ j ≤M such that Fj(x1) < Fj(x2).

The above concepts are important to compare two different solutions in terms

of optimality. A representation is given in Figure A.2 which is used to visualize

how optimal solutions are distributed.

Multi-objective problems can be solved by using classical approaches from

mathematical programming, and fuzzy logic, among others. Evolutionary multi-

objective algorithms are proposed to approximate solutions along the Pareto-

optimal front. Traditional methods aggregate the different objective functions

into a single one (weighted sum of objective values) [14]. However, those meth-

ods make strong assumptions about the objective functions limiting their appli-

cability. Here, exact algorithms are not addressed to extend the discussion on

multi-objective evolutionary algorithms. The reader is referred to [129] for fur-

ther details on classical approaches to solving multi-objective problems.

167

Appendix A. Optimization

A.2.1 Multi-Objective Evolutionary Algorithms

High interest from the Evolutionary Computing community has been observed

because evolutionary algorithms are highly competitive to solve multi-objective

optimization problems. MOEAs are based on different ideas such as Pareto dom-

inance, decomposition, and indicators, among others, [14, 100, 27]. The most

representative algorithms are listed and described as follows:

• Non-dominated sorting Genetic Algorithm II (NSGA-II) is one of the most

popular MOEA thanks to its simplicity and low computational complexity.

NSGA-II Uses a non-dominates sorting and crowding distance to keep a

promising distribution of solutions [34].

• Strength Pareto Evolutionary Algorithm (SPEA/SPEA2) uses the main pop-

ulation for the optimization process and an archive population to save non-

dominated solutions found via the main population [147]. Here, the strength

Pareto indicates the percentage of solutions in the current population that a

solution is Pareto-dominating.

• Multi-objective Evolutionary Algorithm Based on Decomposition (MOEA/D)

Figure A.2: Illustrating the dis-
tribution of a Pareto-optimal
front, the location of the nadir,
and ideal points. Also, it can
be observed that the Pareto-
optimal front determines a
convex region. Minimization is
assumed in this figure.

168

Appendix A. Optimization

is one of the most popular decomposition-based MOEA. MOEA/D simulta-

neously solves as many sub-problems (optimizes single objective functions

known as scalarizing functions) as elements in the population [81]. It is

worth mentioning that each sub-problem is defined by a scalarizing func-

tion parameterized by a weight vector, and the distribution of the weight

vectors helps the optimizer to control the diversity of solutions.

• S-Metric Selection Evolutionary Multi-Objective Algorithm (SMS-EMOA) is

a metric-driven optimizer that uses the hypervolume indicator to guide the

search for the Pareto front approximation [15]. A reduction operation is

adopted to maintain only NP individuals in the population.

Assessing the algorithms’ performance to highlight their pros and cons of is

important. The next section is devoted to describing some of the most used indi-

cators.

A.2.2 Performance Indicators

Different performance indicators have been proposed to evaluate MOEAs’ perfor-

mance [14, 45]. The most common indicators are used to quantify how close the

approximate Pareto front and true Pareto Front are. The most commonly used

performance indicators are then described as follows [45, 62, 63]:

• The Generational Distance (GD) estimates how close is the Pareto front

found by the MOEA from the true Pareto front in a given problem [62].

GD(PF, PF ∗) =

√√√√ N∑
i=1

d2i

/
|PF ∗| (A.9)

where N is the number of non-dominated solutions found by the MOEA

and di is the (euclidean) distance between the i-th element in PF and the

closest to it in PF ∗.

169

Appendix A. Optimization

Figure A.3: Main aspects when the generational distance (GD), inverted genera-
tional distance (IGD), and hypervolume indicator (HV) are computed.

• Inverted Generational Distance (IGD) is a variant of GD, but in this case,

each element in the true Pareto front is compared concerning the front

found by the MOEA [62].

• Hypervolume (HV) is used to approximate the area/volume, which is domi-

nated by the Pareto front obtained concerning a given reference point [136].

GD and IGD are not related to the Pareto-optimality definitions (Pareto-compliant),

but they are widely used to numerically determine the distance between the

Pareto-optimal front and the obtained by an evolutionary algorithm. The hy-

pervolume indicator is Pareto-compliant, and it can be used to determine how

170

Appendix A. Optimization

close a set of non-dominated solutions is to the Pareto-optimal front but also to

quantify the distribution along the front. Figure A.3 shows how the GD, IGD, and

hypervolume are calculated.

171

Appendix A. Optimization

172

Appendix B

Proofs of Theorems

This part contains the corresponding proofs for Theorem 2.3 and Corollary 2.1.

Proof B.1

Let (F, f, X, Y, R) be a BO problem that satisfies the hypothesis in Theorem

2.3. Since f is non-injective, then, there exists (w, z) ∈ X × Y such that

f(x,y∗) = f(w, z), then F (w, z) = Q(f(w, z)) = Q(f(x,y∗)) = F (x,y∗)

with Q : Img(f) ⊆ R→ R.

The following proof is associated to Corollary 2.1.

Proof B.2

If f is non-injective at (x∗, y∗) and (x, y) with y ∈ Y −Ψ(x). The result is

fulfilled by applying Theorem 2.3.

173

Appendix B. Proofs of Theorems

174

Appendix C

Test Problems

C.1 PMM Test Suite

PMM1

Here, q1, r1 and r2 are convex functions. The LL problem is differentiable on Y .

Those functions are defined as follows:

q1(x,y) =

k∑
i=1

(
yi −

x3i
100

)2

, r1(x) = −
k∑

i=1

x2i ,

q2(y) = 10 + yk+1 + 106
Dll∑

i=k+2

y2i , r2(x) = −
Dul∑

i=k+1

x2i .

175

Appendix C. Test Problems

A feasible solution is obtained when yi = (x3i)/100 for i = 1, 2, . . . , k; yk+1 =

10 and yk+2 = · · · = yDll
= 0. The upper level is a convex task on feasible

solutions.

PMM2

In this test problem, q1 and r2 are shifted Ben Cigar functions, q2 is a shifted Za-

kharov function, and r1 is the sphere function. Hence, the upper-level optimiza-

tion problem is a convex task on feasible solutions. Those functions are defined

as follows:

q1(x,y) = (y1 − x1 sin(x1))2 + 106
k∑

i=2

(yi − xi sin(xi))2,

r1(x) = −
k∑

i=1

x2i ,

q2(x) =

Dll∑
i=k+1

(yi −
√
i)2 +

(
Dll∑

i=k+1

0.5(yi −
√
i)

)2

,

+

(
Dll∑

i=k+1

0.5(yi −
√
i)

)4

,

r2(x) = −x2k+1 − 106
Dul∑

i=k+2

x2i .

A feasible solution is obtained when yi = xi sin(xi) for i = 1, 2, . . . , k, and

yi =
√
i, for i = k + 1, k + 2, . . . , Dll.

176

Appendix C. Test Problems

PMM3

In this test problem q1 is a shifted sphere function, q2 is the Rosenbrock’s function,

r1 and r2 are sphere functions. Those functions are defined as follows:

q1(x,y) =
k∑

i=1

(
yi −

x3i
100

)2

, r1(x) = −
k∑

i=1

x2i ,

q2(y) =

Dll−1∑
i=k+1

[100(y2i − yi+1)
2 + (yi − 1)2],

r2(x) = −
Dul∑

i=k+1

x2i .

A feasible solution is obtained when yi = (x3i)/100 for i = 1, 2, . . . , k, and yi = 1

for i = k + 1, k + 2, . . . , Dll. As we can see, the lower level has a multimodal

objective function.

PMM4

For this test problem q1 is a shifted sphere function, q2 is the Rastrigin function, r1
and r2 are sphere functions. Moreover, this problem incorporates a relationship

such that the approximation to the mapping Ψ might fail in some cases due to the

Runge’s phenomenon [46, 22]. Those functions are defined as follows:

q1(x,y) =

k∑
i=1

(
yi −

10

1 + 2.5x2i

)2

, r1(x) = −
k∑

i=1

x2i ,

q2(y) = 10(Dll − k) +
Dll∑

i=k+1

y2i − 10 cos(2πyi),

r2(x) = −
Dul∑

i=k+1

x2i .

177

Appendix C. Test Problems

A feasible solution is obtained when yi = 10/(1 + 2.5x2i) for i = 1, 2, . . . , k, and

yi = 0 for i = k + 1, k + 2, . . . , Dll.

PMM5

In this test problem q1 is a shifted Rastrigin function, q2 is the sum of different

power functions, r1 and r2 are sphere functions. The lower-level optimization task

is multimodal and non-differentiable. Those functions are defined as follows:

q1(x,y) = 10k +
k∑

i=1

(yi − xi)2 − 10 cos(2π|yi − xi|),

r1(x) = −
k∑

i=1

x2i ,

q2(x,y) =

Dll∑
i=k+1

|yi|i−k+1, r2(x) = −
Dul∑

i=k+1

x2i .

A feasible solution is obtained when yi = xi for i = 1, 2, . . . , k, and yi = 0 for

i = k + 1, k + 2, . . . , Dll.

PMM6

This final test problem is the hardest one to solve of this test suite, since q1 is a

shifted Griewank’s function, q2 and r2 are modified Rastrigin functions which are

178

Appendix C. Test Problems

multimodal and r1 is the sphere function. Those functions are defined as follows:

q1(x,y) = 1 +
1

4

k∑
i=1

(yi − xi)2 −
k∏

i=1

cos

(
10(yi − xi)√

i

)
,

r1(x) = −
k∑

i=1

x2i ,

q2(x) = 10(Dll − k) +
Dll∑

i=k+1

y2i − 10 cos(2πyi),

r2(x) = −

[
10(Dul − k) +

Dul∑
i=k+1

x2i − 10 cos(2πxi).

]

A feasible solution is obtained when yi = xi for i = 1, 2, . . . , k, and yi = 0 for

i = k + 1, k + 2, . . . , Dll.

179

	Abstract
	Introduction
	Problem Statement
	Research Hypothesis
	Hypothesis #1
	Hypothesis #2
	Hypothesis #3

	General Objective
	Specific Objectives
	Contributions
	Thesis Structure
	Publications

	Bilevel Optimization
	Problem Definition
	Optimistic and Pessimistic Positions
	Optimistic Position
	Pessimistic Position

	Feasibility
	Optimality Conditions
	Pseudo-Feasibility in Evolutionary Computing for BO
	Implication of Pseudo-feasibility in Evolutionary Computing for BO
	Pseudo-feasible Solution Detection Mechanism

	Multi-Objective Bilevel Optimization
	Problem Definition
	Optimistic and Pessimistic Scenarios

	Bilevel Optimization Test Problems
	SMD Test Suite
	PMM Test Suite

	Conclusions of the Chapter

	Literature Review
	Single-Objective Bilevel Optimization
	Single-Level Reduction
	Nested approach
	Surrogate Assisted Algorithms

	Multi-Objective Bilevel Optimization
	Classical Approaches
	Nested Multi-objective Metaheuristics
	Non-nested Multi-objective Metaheuristics

	Conclusions of the Chapter

	Nested-BCA: Preliminary Proposal
	Introduction
	The Center of Mass Concept as a Variation Operator
	Center of Mass Concept
	The Variation Operator: Unconstrained Case
	The Variation Operator: Constrained Case

	Generic Framework for Bilevel Optimization
	Representation
	Initialization
	Upper-Level Optimizer
	Lower-Level Optimizer

	Bilevel Centers Algorithm
	Upper-Level Variation Operator
	Solving the Lower Level Problem
	Adaptive Population Size Reduction
	Parameters

	Experiments and Discussion
	Conclusions of the Chapter

	QBCA: BCA for Handling Pseudo-feasible Solutions
	Baseline Solution Methodology
	Initial Population
	Upper-Level Optimizer
	Lower Level Optimizer
	Mechanism to Detect Pseudo-feasible Solutions

	blackComputational Complexity
	Experiments and Discussion
	Experiment 1
	Experiment 2

	Conclusions of the Chapter

	Automated Parameter Tuning Via Bilevel Optimization
	Introduction
	The Automated Parameter Tuning Problem
	Performance Indicators
	The Automated Parameter Tuning Task as a BO Problem

	Surrogate Model
	Proposed Approach
	BCAP Components
	Lower-Level Procedure
	Complete Algorithm

	Experiments and Discussion
	Configuring ABC
	Configuring ECA
	Configuring DE
	Configuring PSO
	Configuring GGA-CGT

	Conclusions of the Chapter

	A Family Concept for Multi-Objective Bilevel Optimization
	Introduction
	Family-based Representation
	Family of Solutions
	Ranking Families

	Proposed Method: SMS-MOBO
	Initialization
	Reproduction at Upper Level
	Archiving Procedure
	Lower Level Optimizer
	Density Estimator
	Population Reduction

	Experiments and Discussion
	Parameter Settings
	Experimental Results

	Conclusions of the Chapter

	Conclusions and Future Work
	Bibliography
	Optimization
	Single-Objective Optimization
	Optimality Conditions
	Karush-Kuhn-Tucker Conditions
	Solutions Strategies

	Multi-Objective Optimization
	Multi-Objective Evolutionary Algorithms
	Performance Indicators

	Proofs of Theorems
	Test Problems
	PMM Test Suite

