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Preface

Ideas are seldom born clothed, but are gradually dressed in an arduous
process of accretion. In arriving at a deep knowledge of the state of the art

in many fields, it seems necessary to appreciate how ideas have evolved:
How do ideas originate? How do they mature? How does one idea give
birth to another? How does the intellectual environment fertilize the
growth of ideas? Why was there once confusion about ideas that now seem
obvious?

Such an understanding has a special significance in the social sciences.
In the humanities, there is little sense of chronological progress. For exam-
ple, who would argue that in the past three centuries English poetry or
drama has been written that surpasses the works of Shakespeare? In the
natural sciences, knowledge accumulates by uncovering preexisting and
permanent natural processes. Knowledge in the social sciences, however,
can affect the social evolution that follows discovery, which through recip-
rocal causation largely determines the succeeding social theory.

In this spirit, I present a chronological, annotated bibliography of the
financial theory of investments. It is not, however, a history of the practice
of investing, and only occasionally refers to the real world outside of theo-
retical finance. To embed this “history of the theory of investments” in a
broader context that includes the development of methodological and theo-
retical tools used to create this theory, including economics, mathematics,
psychology, and the scientific method, I am writing companion volumes—
a multiyear project—titled My Outline of Western Intellectual History,
which also serves to carry this history back to ancient times.

Although this work can be used as a reference, to read it as a history
one can read from the beginning to the end. For the most part, papers and
books are not grouped by topic since I have tried to see the field as an inte-
grated whole, and to emphasize how one strand of research impacts others
that may initially have been thought to be quite separate. For this purpose a
chronological ordering—though not slavishly adhered to—seems appropri-
ate since a later idea cannot have influenced an earlier idea, only vice versa.

If I may indulge in the favorite pastime of historians, one can divide
the history of financial economics into three periods: (1) the Ancient Pe-
riod before 1950, (2) the Classical Period from about 1950 to 1980, and

ix
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(3) the Modern Period post-1980. Since about 1980, the foundations laid
down during the Classical Period have come under increasing strain, and
as this is written in 2005, it remains to be seen whether a new paradigm
will emerge.

Of necessity, I have selected only a small portion of the full body of
financial research that is available. Some papers are significant because
they plant a seed, ask what turns out to be the right question, or develop
important economic intuitions; others are extraordinarily effective in
communicating ideas; yet others are important because they formalize
earlier concepts, making all assumptions clear and proving results with
mathematical rigor. Although I have tried to strike some balance between
these three types of research, I have given more prominence to the first
two. Unpublished working papers are included only if they either (1) are
very widely cited or (2) appear many years before their ideas were pub-
lished in papers by other authors. A few literature surveys are mentioned
if they are particularly helpful in interpreting the primary sources. Math-
ematical statements or proofs of important and condensable results are
also provided, usually set off by boxes, primarily to compensate for the
ambiguity of words. However, the proofs are seldom necessary for an in-
tuitive understanding.

The reader should also understand that this book, such as it is, is very
much work in progress. Many important works are not mentioned, not be-
cause I don’t think they are important, but simply because I just haven’t
gotten to them yet. So this history, even from my narrow vantage point, is
quite partial and incomplete, and is very spotty after about 1980. In partic-
ular, though it traces intimations of nonrationalist ideas in both the ancient
and classical periods, it contains very little of the newer results accumulat-
ing in the modern period that have come under the heading of “behavioral
finance.” Nonetheless, the publisher encouraged me to publish whatever I
have since it was felt that even in such a raw form this work would prove
useful. Hopefully, in the fullness of time, an updated version will appear
making up this deficit.

The history of the theory of investments is studded with the works of
famous economists. Twentieth-century economists such as Frank Knight,
Irving Fisher, John Maynard Keynes, Friedrich Hayek, Kenneth Arrow,
Paul Samuelson, Milton Friedman, Franco Modigliani, Jack Hirshleifer,
James Tobin, Joseph Stiglitz, Robert Lucas, Daniel Kahneman, Amos Tver-
sky, and George Akerlof have all left their imprint. Contributions to fi-
nance by significant noneconomists in this century include those by John
von Neumann, Leonard Savage, John Nash, and Maurice Kendall. Look-
ing back further, while the contributions of Daniel Bernoulli and Louis
Bachelier are well known, much less understood but of comparable impor-
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tance are works of Fibonacci, Blaise Pascal, Pierre de Fermat, Christiaan
Huygens, Abraham de Moivre, and Edmund Halley.

Perhaps this field is like others, but I am nonetheless dismayed to 
see how little care is taken by many scholars to attribute ideas to their
original sources. Academic articles and books, even many of those that
purport to be historical surveys, occasionally of necessity but often out
of ignorance oversimplify the sequence of contributors to a finally fully
developed theory, attributing too much originality to too few scholars.
No doubt that has inadvertently occurred in this work as well, but hope-
fully to a much lesser extent than earlier attempts. Even worse, an im-
portant work can lie buried in the forgotten past; occasionally, that
work is even superior in some way to the later papers that are typically
referenced.

For example, ask yourself who first discovered the following ideas:

Present value.

The Modigliani-Miller theorem.

Pratt-Arrow measures of risk aversion.

Markowitz mean-variance portfolio theory.

The Gordon growth formula.

The capital asset pricing model.

The Black zero-beta model.

The Cox-Ross-Rubinstein binomial option pricing model.

The Lucas exchange model.

The Milgrom-Stokey no trade theorem.

The derivation of expected utility from postulates of individual 
rationality.

The martingale pricing representation with risk-neutral probabilities.

Dynamic completeness.

The association of random walks with rational markets.

The use of nonstationary variance to describe the stochastic process of
security prices.

The hypothesized relationship between upwardly biased stock prices,
belief heterogeneity, and short-selling constraints.

The size effect.

The abnormal earnings growth model.

Prospect theory.

Preface xi
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In most of these cases, the individuals commonly given bibliographi-
cal credit in academic papers were actually anticipated many years, occa-
sionally decades or centuries, earlier. In some cases, there were others with
independent and near-simultaneous discoveries who are seldom, if ever,
mentioned, offering one of many proofs of Stephen Stigler’s law of
eponymy that scientific ideas are never named after their original discov-
erer! This includes Stigler’s law itself, which was stated earlier by sociolo-
gist and philosopher of science Robert K. Merton. A prominent example
in financial economics is the Modigliani-Miller theorem, which received
possibly its most elegant exposition at its apparent inception in a single
paragraph contained in a now rarely referenced but amazing book by
John Burr Williams published in 1938, 20 years before Modigliani-Miller.
Had his initial insight been well known and carefully considered, we
might have been spared decades of confusion. A clear example of Mer-
ton’s naming paradox is the “Gordon growth formula.” Unfortunately,
once this type of error takes hold, it is very difficult to shake loose. In-
deed, the error becomes so ingrained that even prominent publicity is un-
likely to change old habits.

Also, researchers occasionally do not realize that an important funda-
mental aspect of a theory was discovered many years earlier. To take a
prominent example, although the Black-Scholes option pricing model de-
veloped in the early 1970s is surely one of the great discoveries of financial
economics, fundamentally it derives its force from the idea that it may be
possible to make up for missing securities in the market by the ability to re-
vise a portfolio of the few securities that do exist over time. Kenneth Ar-
row, 20 years earlier in 1953, was the first to give form to a very similar
idea. In turn, shades of the famous correspondence between Blaise Pascal
and Pierre de Fermat three centuries earlier can be found in Arrow’s idea.
A field of science often progresses by drawing analogies from other fields
or by borrowing methods, particularly mathematical tools, developed ini-
tially for another purpose. One of the delightful by-products of historical
research is the connections that one often uncovers between apparently
disparate and unrelated work—connections that may not have been con-
sciously at work, but no doubt through undocumented byways must surely
have exercised an influence.

One can speculate about how an academic field could so distort its
own origins. Its history is largely rewritten, as it were, by the victors. New
students too often rely on the version of scholarly history conveyed to
them by their mentors, who themselves are too dependent on their men-
tors, and so forth. Seldom do students refuse to take existing citations at
their word and instead dust off older books and journals that are gradually
deteriorating on library shelves to check the true etiology of the ideas they
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are using. Scholars have the all-too-human tendency of biasing their attri-
butions in the direction of those whom they know relatively well or those
who have written several papers and spent years developing an idea, to the
disadvantage of older and more original works by people who are not in
the mainstream, either in their approach to the subject, by geography, or
by timing. An excellent example of this is the sole paper on mean-variance
portfolio selection by A.D. Roy, whom Harry Markowitz acknowledges
deserves to share equal honor with himself as the co-father of portfolio
theory.1 Robert K. Merton has dubbed this the “Matthew effect” (particu-
larly apt since it may serve as an example of itself) after the lines in the
Gospel According to Matthew (25:29): “Unto everyone that hath shall be
given, and he shall have abundance; but from him that hath not shall be
taken away even that which he hath.”

Of course, financial economics is not alone in its tendency to oversim-
plify its origins. For example, consider the calculus, well known to have
been invented by Isaac Newton and Gottfried Wilhelm Leibniz. Yet the in-
vention of calculus can be traced back to the classical Greeks, in particular
Antiphon, Eudoxus, and Archimedes, who anticipated the concept of lim-
its and of integration in their use of the “method of exhaustion” to deter-
mine the area and volume of geometric objects (for example, to estimate
the area of a circle, inscribe a regular polygon in the circle; as the number
of sides of the polygon goes to infinity, the polygon provides an increas-
ingly more accurate approximation of the area of the circle). Although
Galileo Galilei did not write in algebraic formulas, his work on motion im-
plies that velocity is the first derivative of distance with respect to time, and
acceleration is the second derivative of distance with respect to time. Pierre
de Fermat devised the method of tangents that in substance we use today
to determine the maxima and minima of functions. Isaac Barrow used the
notion of differential to find the tangent to a curve and described theorems
for the differentiation of the product and quotient of two functions, the
differentiation of powers of x, the change of variable in a definite integral,
and the differentiation of implicit functions.

Unlike large swaths of history in general, much of the forgotten truth
about the origins of ideas in financial economics is there for all to see, in
older books residing on library shelves or in past journals now often avail-
able in electronic form. Much of the history of investments has only been
rewritten by the victors, and can be corrected from primary sources. In this
book, I have tried my best to do this. For each paper or book cited, my
goal is to clarify its marginal contribution to the field.

Like the three witches in Shakespeare’s Macbeth (and I hope the resem-
blance ends there), with hindsight, I can “look into the seeds of time, and
say which grain will grow and which will not.” Taking advantage of this, I
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will deemphasize research (such as the stable-Paretian hypothesis for stock
prices) that, although once thought quite promising, ultimately proved to
be a false path.

Nonetheless, I am certain that I also have omitted many important dis-
coveries (in part because I just haven’t gotten to them) or even attributed
ideas to the wrong sources, unaware of even earlier work. Perhaps, on the
other hand, I have succumbed to the historian’s temptation to bias his in-
terpretation of the written record in light of what subsequently is seen to
be important or correct. I hope the reader will forgive me. I have already
received some assistance from Morton Davis, and I wish to publicly thank
him. I also ask the reader to take the constructive step of letting me know
these errors so that future revisions of this history will not repeat them.

MARK RUBINSTEIN

Berkeley, California
January 2006
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1202  Fibonacci or Leonardo of Pisa (1170–1240), Liber Abaci (“The
Book of Calculation”); recently translated into English by Laurence E.
Sigler in Fibonacci’s Liber Abaci: A Translation into Modern English of
Leonardo Pisano’s Book of Calculation (New York: Springer-Verlag,
2002).

1478  Unknown Author, The Treviso Arithmetic; translated into English by
David Eugene Smith, pp. 40–175, in Frank J. Swetz, Capitalism and Arith-
metic: The New Math of the 15th Century Including the Full Text of the
Treviso Arithmetic of 1478 (LaSalle, IL: Open Court, 1987).

1761  Edmond Halley (November 8, 1656–January 14, 1742), “Of Com-
pound Interest,” in Henry Sherwin, Sherwin’s Mathematical Tables (pub-
lished posthumously after Halley’s death in 1742, London: W. and J.
Mount, T. Page and Son, 1761).

FIBONACCI SERIES, PRESENT VALUE, PARTNERSHIPS, 
FINITE-LIVED ANNUITIES, CAPITAL BUDGETING

Fibonacci (1202) is well-known as the most influential tract introducing
positional numerical notation into Europe. Arabic numerals were first

developed in India, perhaps in the mid-first millennium A.D. and were sub-
sequently learned by Arab traders and scholars. In turn, Fibonacci learned
about them while traveling through North Africa. He begins Chapter 1
with these words:

These are the nine figures of the Indians: 9, 8, 7, 6, 5, 4, 3, 2, 1.
With these nine figures, and with this sign 0 which in Arabic is
called zephirum, any number can be written, as will be demon-
strated.

After the publication of this tract, computation by Arabic numerals using
pen and ink gradually replaced the use of the abacus. The book also devel-
ops the famous Fibonacci series, 1, 1, 2, 3, 5, 8, 13 . . . .

3
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Much less appreciated is the role Liber Abaci plays in the develop-
ment of present value calculation, as has been quite recently discovered
by William N. Goetzmann in [Goetzmann (2003)] “Fibonacci and the Fi-
nancial Revolution,” Yale ICF Working Paper No. 03-28 (October 23,
2003). Fibonacci illustrates his methods of calculation through several
numerical examples. Among these are four types of applications to in-
vestments: (1) the fair allocation of profits to members of a partnership
(“On Companies,” pp. 172–173); (2) the calculation of profits from a se-
quence of investments, with intermediate withdrawals (“Problems of
Travelers,” pp. 372–373); (3) the calculation of future value (“A Note-
worthy Problem on a Man Exchanging One Hundred Pounds at Some
Banking House for Interest,” pp. 384–386); and (4) the calculation of
present value (“On a Soldier Receiving Three Hundred Bezants for His
Fief,” p. 392). His solution to (1) is simply to divide profits in proportion
to contributed capital—a solution that is now obvious. As an example of
(3) in Sigler’s translation:

A man placed 100 pounds at a certain [banking] house for 4
denari per pound per month interest, and he took back each year a
payment of 30 pounds; one must compute in each year the 30
pound reduction of capital and profit on the said 100 pounds. It is
sought how many years, months, days and hours he will hold
money in the house. (p. 384)

Fibonacci calculates that the man will have some money with the bank
for 6 years, 8 days, and “(1/2)(3/9)5” hours. This makes use of Fibonacci’s
notation whereby the denominator of each fraction is actually the prod-
uct of its explicit denominator and all the denominators to the right, and
the hours are the sum of these fractions. So the number of hours is 5 +
(3/9)hours + (1/18)hours = 5 and 7/18 hours, in modern notation. Note 
that as antiquated as Fibonacci’s notation has become, it still remains
very useful in situations where small units are measured in a different
number of parts than larger units. For example, Fibonacci would have
written 5 weeks, 3 days, 4 hours, 12 minutes, and 35 seconds as
(35/60)(12/60)(4/24)(3/7)5.

In problem (4), Fibonacci illustrates the use of present value by rank-
ing the present values of two annuities, differing only in the periodicity of
payment, where the interest rate that can be earned on the reinvestment of
amounts received is 2 percent per quarter: Both pay 300 bezants per year,
with one paying quarterly installments of 75 bezants and the other instead
paying the entire 300 bezants at the end of each year.

Due to compounding, present value under a constant interest rate is

4 A HISTORY OF THE THEORY OF INVESTMENTS
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the result of summing a weighted geometric series. Goetzmann speculates
that Fibonacci’s interest in finance may have provided the spark for his fa-
mous work on infinite series. Unfortunately, we know so little about Fi-
bonacci that this cannot be verified.

After Fibonacci’s work, Arabic numerals became widely used in Eu-
rope, particularly for commercial purposes. The Treviso Arithmetic (1478)
published by an unknown author is the earliest known dated and printed
book on arithmetic and serves as an early attempt to popularize the Arabic
numeral system. The book starts by describing how to use Arabic numerals
for enumeration, addition, subtraction, multiplication, and division—the
same procedures in use today. By the Treviso’s time, the numerals had just
previously reached their modern forms. For example, the practice of writ-
ing 0 as Ø died out after 1275. This may be in part due to the Treviso it-
self, since printing technology may have forced standardization. However,
notation for the operations of addition, subtraction, multiplication, and di-
vision was not introduced until later, “+” and “–” in print in 1489, “×” in
1631, and “÷” in 1659. While we are on the subject, “√” was introduced
in 1525, “=” in 1557, “<” and “>” in 1631, “∫” in 1675 (by Gottfried Wil-
helm Leibniz), “f(x)” in 1735 (by Leonhard Euler), and “dx/dy” in 1797
by Joseph-Louis Lagrange. Representation of fractions as decimals did not
occur until 1585. Using letters for unknowns in equations waited until
François Vieta’s (1540–1603) formulation in about 1580. John Napier in-
vented logarithms in 1614 and brought decimal notation for factions to
Europe in 1617.

These operations are illustrated by a number of problems. Partnerships
can be traced as far back as 2,000 B.C. in Babylonia. This form of business
organization provided a way to finance investments requiring large
amounts of capital over extended periods of time. In Christian Europe,
partnerships also provided a way to circumvent usury prohibitions against
charging interest. Here is the first partnership problem posed in the Treviso
(p. 138):

Three merchants have invested their money in a partnership,
whom to make the problem clearer I will mention by name. The
first was called Piero, the second Polo, and the third Zuanne.
Piero put in 112 ducats, Polo 200 ducats, and Zuanne 142 ducats.
At the end of a certain period they found they had gained 563
ducats. Required is to know how much falls to each man so that
no one shall be cheated.

The recommended solution, following the same principle as already set
forth by Fibonacci in his problem “On Companies,” is to divide the profits

The Ancient Period: Pre-1950 5
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among the investors in proportion to their respective investments. The sec-
ond partnership problem is much more interesting (p. 138):

Two merchants, Sebastiano and Jacomo, have invested their
money for gain in a partnership. Sebastiano put in 350 ducats
on the first day in January, 1472, and Jacomo 500 ducats, 14
grossi on the first day of July, 1472; and on the first day of Janu-
ary, 1474 they found they had gained 622 ducats. Required is
the share of each.

After converting both investments to a common unit, 8,400 grossi 
for Sebastiano and 12,014 grossi for Jacomo, the Treviso adjusts for 
the timing of the investments by the number of months of the respective
investments:

Sebastiano: 8,400 × 24 = 201,600      Jacomo: 12,014 × 18 = 216,252

The profits are then divided according to these proportions. The 
sum 201,600 + 216,252 = 417,852. Sebastiano receives 622 ×
(201,600/417,852) = 300 ducats and Jacomo 622 × (216,252/417,852)
= 322 ducats.

The modern analyst would approach this allocation in one of two
ways, depending on whether Jacomo’s delayed contribution were con-
tracted in advance or whether the terms of his contribution were deter-
mined near the time of his contribution. In the former case, he would then
need to know the interest rate to work out the fair division of profits, and
in the second he would need to know the value of a share in the partner-
ship on July 1, 1472. Although the author of the Treviso has posed an in-
teresting problem and probably learned much from Fibonacci, his answer
suggests he does not yet understand Fibonacci’s more sophisticated present
value analysis.

But by the 1500s, Fibonacci’s work on present value had become bet-
ter known, despite usury laws. Consider, for example, a problem from Jean
Trenchant [Trenchant (1558)], L’Arithmétique, 2nd edition, 1637, Lyons
(p. 307): Which has the higher present value, a perpetual annuity of 4 per-
cent per quarter or a fixed-life annuity of 5 percent per quarter for 41
quarters? Trenchant solves the problem by comparing the future value at
the end of 41 quarters of a 1 percent annuity per quarter, with the present
value in the 41st quarter of a perpetual annuity at 5 percent starting then.
Trenchant’s book also contains the first known table of present value dis-
count factors.

6 A HISTORY OF THE THEORY OF INVESTMENTS
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In the forgotten age before computers, once it was desired to deter-
mine the effects of interest rates on contracts, much work was devoted to
developing fast means of computation. These include the use of loga-
rithms, precalculated tables, and closed-form algebraic solutions to pre-
sent value problems. Edmond Halley, cataloger of stars in the Southern
Hemisphere from telescopic observation, creator of the first meteorologi-
cal charts, publisher of early population mortality tables, is, of course,
best known as the first to calculate the orbits of comets. Not the least of
his achievements includes results in financial economics. Halley (1761) de-
rives (probably not for the first time) the formula for the present value of
an annual annuity beginning at the end of year 1 with a final payment at
the end of year T: [X/(r – 1)][1 – (1/rT)], where r is 1 plus the annual dis-
crete interest rate of the annuity and X is the annual cash receipt from the
annuity. Another relatively early derivation of this formula can be found
in Fisher (1906).

Although valuation by present value, as we have seen, had appeared
much earlier, Fisher (1907) may have been the first to propose that any
capital project should be evaluated in terms of its present value. Using
an arbitrage argument, he compared the stream of cash flows from the
project to the cash flows from a portfolio of securities constructed to
match the project. Despite this, according to Faulhaber-Baumol (1988),
neither the Harvard Business Review from its founding in 1922 to
World War II, nor widely used textbooks in corporate finance as late as
1948, made any reference to present value in capital budgeting. It was
not until Joel Dean in his book [Dean (1951)] Capital Budgeting: Top
Management Policy on Plant, Equipment, and Product Development
(New York: Columbia University Press, 1951) that the use of present
value was popularized. More recently, according to John R. Graham and
Campbell Harvey in [Graham-Harvey (2001)] “The Theory and Practice
of Corporate Finance: Evidence from the Field,” Journal of Financial
Economics 60, Nos. 2–3 (May 2001), pp. 187–243, most large firms use
some form of present value calculation to guide their capital budgeting
decisions.

1494  Luca Pacioli (circa 1445-1517), Summa de arithmetica, geometria,
proportioni et proportionalita (“Everything about Arithmetic, Geometry
and Proportions”); the section on accounting, “Particularis de computis et
scripturus,” translated into English by A. von Gebstattel, Luca Pacioli’s
Exposition of Double-Entry Bookkeeping: Venice 1494 (Venice: Albrizzi
Editore, 1994).

The Ancient Period: Pre-1950 7
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PROBLEM OF POINTS, ACCOUNTING, DEBITS VS. CREDITS,
ACCOUNTING IDENTITY, ASSETS, LIABILITIES, AND EQUITIES,

CLEAN-SURPLUS RELATION, BOOK VS. MARKET VALUES,
MATCHING PRINCIPLE, CONSISTENCY PRINCIPLE

Pacioli (1494), acknowledging a debt to Euclid (circa 300 A.D.) and Fi-
bonacci (1202), summarizes the basic principles of arithmetic, algebra,

geometry, and trigonometry. More important for our immediate purposes,
Pacioli is often credited with posing the “Problem of Points,” the problem
that eventually ignited the explosive development of modern probability
theory in the seventeenth century (naturally there is some evidence that this
problem originated even earlier):

A and B are playing the fair game of balla. They agree to continue
until one has won six rounds. The game actually stops when A has
won five and B three. How should the stakes be divided?

Pacioli’s (incorrect) solution was simply to divide the stakes in proportion
to the number of games won by each player. So if the stakes were 56 pisto-
las, player A would receive 35 and player B would receive 21.

But Pacioli’s book is best known for its influence on accounting. Ac-
counting in ancient times took the form of a mere physical listing of in-
ventories. Later accounting methods translated these items into a common
unit of measurement, usually a single currency. This mutated into a list of
“charges” and “discharges,” essentially a cash statement showing the
sources and uses of cash designed so that the lord of an estate could mon-
itor his steward who actually dispensed payments. The origins of the more
recent methods of double-entry accounting are a bit obscure. We know
that an Italian merchant firm, Gallerani company of Siena, used double-
entry accounting as early as 1305 (reported by Christopher W. Nobes,
[Nobes (1982)] “The Gallerani Account Book of 1305–1308,” Account-
ing Review 57, No. 2 (April 1982), pp. 303–310). Although Pacioli did
not invent double-entry accounting methods, because he developed double-
entry bookkeeping so thoroughly in this influential work he is often refer-
enced as the original source of these methods and considered “the father
of accounting.” In the accounting section of his book, “Particularis de
computis et scripturus,” Pacioli writes that he is describing “the Venetian
method which certainly among others is much recommended and which
can be used as a guide to all others” (p. 42). He even admonishes would-
be accountants not to rest easy at night until their credits and debits are
equal. Further discussion of the history of financial accounting conven-
tions (for external accounting purposes) takes us beyond the intended
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scope of this book. However, since accounting concepts are important for
measuring the expected return and risk of corporate securities, I instead
discuss the key issues.

First, what is the purpose of external accounting statements? In my
opinion, their primary purpose is to provide information to stockholders.
One could argue that the statements are also useful for employees in eval-
uating the return and risk of investing their human capital with the firm,
or outside suppliers of goods and services who may want to evaluate the
return and risk of dealing with the firm, or debt holders who need to as-
sess the likelihood of default. But I think, particularly since the stockhold-
ers are the owners of the firm and, by determining the stock price,
indirectly make resource allocation decisions for the firm, that the primary
constituency for these statements is the stockholders. While the statements
may have other goals, their paramount purpose is to help stockholders de-
cide the market price of the firm’s stock. This is consistent with the view
taken in financial economics, and largely by the law, that the firm should
be run for the benefit of its shareholders. In practice, while the employees,
suppliers, and debt holders may have access to other information about
the firm, the annual report to shareholders, with its balance sheet and in-
come statement, is their primary source of information, particularly for
large public firms.

One way the firm could meet the obligation of providing information
to shareholders would be to have videos taken of each employee for his
or her entire working year, gather these together, and distribute them to
each stockholder. That way the stockholder would have a fairly complete
and unbiased record of what happened during the year. But, clearly, this
is absurd. At the other extreme, the firm could simply report one number
to its stockholders at the end of every year—its own estimate of what the
stock price should be. But this, too, is not useful since the firm may not
have enough information to make a good estimate of its stock price. As
Hayek (1945) argues, the information needed to determine the stock
price is typically widely dispersed across the economy, and no small sub-
set of individuals, even all the employees of a firm, is sufficient to deter-
mine an informationally efficient price. Even setting this aside, the proper
technique of aggregating this information into a price is not clear, and
firms cannot be relied upon to know how to do this. A firm may also be
tempted to manipulate the resources it receives from investors, or the in-
centive-based compensation paid to its executives, by an intentional over-
valuation of its stock. Finally, as if this were not difficult enough, a
desirable further constraint is not to require firms to release information
that can affect their incentive to compete against other firms, even if this
information aids in valuation. So the challenge of accounting is to find a
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constrained middle ground, some way to summarize what happened dur-
ing the year without leaving out anything important, without relying on
the firm to be completely truthful, and without damaging the firm’s in-
centive to compete.

The solution that has evolved since Pacioli is to provide two financial
statements, the balance sheet and the income statement. The first, like a
snapshot, captures the relevant aspects of the firm at a single point in time;
and the second, like a movie, shows how the firm moves from a balance
sheet at an earlier date to a balance sheet at a later date. The balance sheet
represents every transaction as giving rise to a change in an asset, on the
one hand, and a corresponding change in liability or equity on the other
(occasionally transactions also merely interchange some equities with lia-
bilities, or an asset with another asset). This gives us the famous account-
ing identity that disciplines double-entry accounting:

Assets = Liabilities + Equities

Every transaction has these two faces. Traditionally assets are subdivided
into three main categories: current assets (cash, receivables, inventories,
and prepaid expenses); long-term physical assets like plant and equipment;
and intangible long-term assets like the capitalized value of research and
development expenses and the value of established brand names. Liabilities
are subdivided into two main categories: short-term (payables, deferred
taxes, short-term debt) and long-term (long-term bank loans, publicly
traded corporate bonds). Equities are subdivided into two categories: con-
tributed capital and the accumulated profits. The income statement sub-
tracts several expense items from revenues to yield profits attributed to the
period between two balance sheets. These profits are usually divided by the
number of shares outstanding to determine earnings per share (EPS), and
the proportion of the earnings paid out as dividends is separately reported
to determine dividends per share.

If an investor only wants to take away from this a single number, then
he should just look at earnings per share. This is the accountant’s estimate
of how much the stock price should have changed (with dividends added
back) between the dates of the two balance sheets. That is, if St–1 and St are
the stock prices at dates t – 1 and t, Dt is the dividends paid per share, and
Xt the reported earnings per share between the two dates, then

(St + Dt) – St–1 = Xt

There is a sense in which if the accountants and the stock market have got
it right, the stock price would have changed by exactly this amount.
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Moreover, using the EPS equation and the so-called clean-surplus rela-
tion (assuming no new contributed capital),

Yt = Yt–1 + Xt – Dt

we can prove that the stock price per share St equals the corresponding
book value Yt per share. Starting with the date 0 boundary value at the in-
ception of the firm, S0 = Y0, where the book value Y0 is contributed capital,
and solving these equations recursively:

St = Yt = Y0 + ∑k=1(Xk – Dk)

In practice, even if the market is working properly, the market and
book values of most firms are not equal. Although we can blame this on
the accountants, they are in a tough spot. One problem is created by rev-
enues or expenses that are sometimes delayed until after products have
been delivered or accelerated before products are delivered. So simply to
record as revenues and expenses all transactions during the year can be
misleading. Instead, the matching principle of accounting requires that
only revenues received from products delivered to customers during a year
and only the expenses generated to create those products should be re-
ported on the income statement for that year. Cash received or paid out
during the year that is not matched to products delivered during the year is
recorded as a temporary balance sheet item and typically recognized on the
income statement in the succeeding year when the corresponding products
are delivered. This is called “accrual accounting” in contrast to “cash ac-
counting,” which does not try to match revenues with expenses. So ac-
countants have this trade-off: They can increase the accuracy of the
statements by using cash accounting, or they can provide potentially more
useful but potentially less accurate comparisons by using accrual account-
ing. For external accounting statements, this trade-off today has typically
been decided in favor of accrual accounting.

As a simple example, the matching principle is the cause of inventories
on the balance sheet. These may reflect the purchase of warehoused sup-
plies or finished goods that have been paid for but have not yet been used
in production or delivered to a customer. But even this can create account-
ing questions. If units of a homogeneous item held in inventory have been
purchased at different prices, just which price should be used to expense a
unit used in a product that is delivered? One approach is to assume that
the first unit purchased is the first one used, or first in first out (FIFO) ac-
counting; an alternative is to assume that the last unit purchased is the first
one used, or last in first out (LIFO) accounting.
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As an even more difficult issue, suppose a firm buys long-lived equip-
ment used to manufacture its products, which gradually wears out or
eventually becomes technologically obsolete. The matching principle re-
quires the firm to determine how much of the equipment is used up to
make the products it delivers that year. While the initial cost of purchasing
the equipment is a known fact, and the liquidation revenues eventually re-
ceived perhaps years later from selling the equipment will be a known
fact, there is generally no magical way of determining the correct rate of
depreciation of the equipment in any given year. There is no transaction to
prove what this is. So accountants solve this dilemma in one of their fa-
vorite ways. Depending on the type of equipment, they simply require that
it be depreciated at a specific rate each year. The simplest technique is
straight-line depreciation, whereby, say, 10 percent of the purchase price is
considered an expense in each year for 10 years. But because that may not
correctly represent the rate of depreciation, they may alternatively allow
an accelerated form whereby greater depreciation is taken in earlier years
compared to later years. Accountants try to find a middle ground between
giving firms the latitude they need to do a better job of matching, against
the fear that if too much flexibility is permitted, the firm will use that to
misstate (usually overstate) its earnings. It is just this sort of balancing act
that makes accounting interesting, and its appropriate conventions far
from obvious.

The allocation of research and development expense and marketing
and advertising expenses can be particularly difficult to get right. Should
these be capitalized and then gradually expensed (amortized) over an ex-
tended period, or be immediately expensed? To get this right, one needs to
answer a very difficult question: To what extent do these expenses affect
the revenues and expenses from products delivered not in the years corre-
sponding to these expenses, but in subsequent years?

This example brings out another accounting principle: Since stock-
holders will use accounting information to project future revenues and
expenses, the financial statements need to make it easy for stockholders
to separate revenues and expenses due to ongoing sustainable operations
from one-shot occurrences. To do this, profits and losses are usually bro-
ken up into two categories: ordinary and extraordinary. Extraordinary
profits arise from changes in the value of the firm’s assets and liabilities
that cannot be expected to recur. It is useful to distinguish among three
types of extraordinary profits: (1) profits deriving from random changes
outside the firm’s control, such as movements in interest rates, which af-
fect the present value of the firm’s debt obligations; (2) profits from in-
tentional decisions of the firm, outside the normal operations of the
firm, such as the decision to hold cash in yen rather than in dollars; and
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(3) profits and losses deriving from ex post corrections to previous 
accounting statements, such as losses from stagnant inventories that, 
because of gradual changes in product demand, will never be used. 
Unfortunately, this last category all too often reflects the failure to 
have properly followed the matching principle in prior years. But, for
valuation purposes, it is still better to get the old bad news sooner rather
than later.

Another very difficult accounting question to resolve is the choice be-
tween simply reporting the results of executed transactions and, in addi-
tion, amending these results from time to time to reflect changes in market
values. For example, suppose the most significant asset of a pineapple firm
is land it bought in Hawaii in 1900 at a cost of $1 million. It would then
be reported on the balance sheet as an asset valued at $1 million. Over the
next century, because of the remarkable rise of tourism, the land gradually
becomes worth $100 million. Suppose that today, compared to the value
of the land, the remainder of the firm is worth very little. If the firm con-
tinues to carry the land on its balance sheet at $1 million, stockholders to-
day may have no idea that the firm has assets that could be liquidated at a
significantly higher value. An obvious solution would be for the firm to
have gradually recognized over the century changes in the market value of
the land every year as an extraordinary profit or loss. Had it done so, it
would now have both an offsetting asset and equity: The land would be
valued on the balance sheet at $100 million and additional equity would
be $99 million. Unfortunately, market value accounting, as it solves one
problem, creates another: Since the land has not yet been sold in a closing
transaction, how does the firm know what it is really worth? Although
this uncertainty can be reduced in a variety of ways, it cannot often be
eliminated. If it cannot be eliminated, the profit and loss created from
mark-to-market accounting is of a different reliability compared to situa-
tions where ownership has been bracketed by both an opening and a clos-
ing transaction. Would not stockholders want to distinguish between
unrealized profit from land that has not yet been sold and realized profit
from land that has? Moreover, different experts will often disagree about
the market value of the land until it is actually sold. Which expert should
the stockholders believe? In particular, should they believe experts hired
by the firm when the management of the firm may have an incentive to
overstate the value of the land?

In their schizoid way, generally accepted accounting principles (GAAP)
provide a complex answer to this problem: Some assets and liabilities can
be revalued at market and others cannot, roughly according to the uncer-
tainty of their market values. Other assets, such as capital equipment,
given intermediate treatment through depreciation rules, are being valued
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neither at cost nor at market, but rather by fairly rigid rules designed to
capture their probable decrease in value.

These are only a few of the valuation issues that cause the earlier equa-
tion relating stock price changes to earnings and, as a result, market value
to book value per share to become misaligned. Perhaps the most significant
cause of these differences can be attributed to structural conditions of in-
dustry competition. In many industries, firms are able to establish monop-
olistic or oligopolistic advantages that are not reflected in their book
values. The fact that few firms enter an industry before its demand takes
off can provide a significant first mover advantage. Microsoft, which has
established the most popular personal computer (PC) operating system,
provides a textbook example of how to leverage a singular advantage into
dominance in many PC software applications. Unfortunately, nothing in
Microsoft’s past transactions, even if its physical assets are marked to mar-
ket, can prepare the reader of its financial statements for its high ratio of
market value to book value. The difference between market and book re-
flects not only the very high operating profit margins on its current prod-
ucts, but its unique position to make very profitable investments in the
future, investments that would be denied to other firms that do not have
Microsoft’s monopolistic advantages. The stock market, of course, does
not wait for these profits to appear before embedding them into the stock
price; it anticipates them, thereby causing market values and book values
to diverge significantly.

Because of this argument, financial economists tend to consider firms
with high market-to-book ratios as growth firms, and those with low mar-
ket to book as value firms. Investors can even invest in mutual funds,
some specializing in growth stocks and others in value stocks. But it is
hoped that this discussion makes clear that because there are many rea-
sons why book and market values can become misaligned, the metric of
the market-to-book ratio to distinguish between growth and value stocks
is far from perfect.

Historically, accounting statements designed to measure performance
focus on the level of earnings, a return measure. But, ever since
Markowitz (1952/March) and Roy (1952), financial economists have ar-
gued that a second aspect of performance is also risk. Although it appears
that current accounting conventions are not well designed for this purpose
(and perhaps need to be redesigned to make risk measurement easier),
modern financial statements can still be quite useful. For example, the
time series of ordinary earnings per share provided by these statements
can be used to calculate variance measures of earnings, as an independent
indication of the risk of investing in the stock. Unfortunately, in practice,
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many firms exercise whatever latitude revenue and expense matching con-
ventions allow to smooth earnings over time and thereby give the appear-
ance of reduced risk.

The common way to measure risk from financial statements is ratio
analysis. Traditional examples include the ratio of current assets to current
liabilities, a crude stock indicator of default risk. The ratio of earnings be-
fore interest and taxes (EBIT) to annual interest payments is a flow mea-
sure of default risk. The ratio of long-term assets to short-term assets
measures liquidity and valuation risk, since presumably of the two, short-
term assets are more liquid and have less uncertainty regarding their value.
Although the firm’s stock derives risk from many sources, both from
within the firm and from without, there are three key sources of risk inside
the firm: (1) diversification of sources of revenues, (2) operating risk, and
(3) financial risk.

Current financial statements by themselves usually do not disaggregate
the sources of revenues by product line or industry to help much with mea-
suring diversification, although supporting footnotes and other sources
such as registration statements that accompany new securities issues have
some of this information.

Operating risk can be defined as the ratio of fixed to variable costs.
The higher this ratio for the firm, the more sensitive will be the profits of
the firm to changes in revenues. Although fixed and variable costs are not
directly broken apart on the income statement, to some extent the cate-
gories that are given can be used to disaggregate costs into these two
sources, and a time-series regression analysis of reported expenses against
revenues over time can be used to get a rough idea of this disaggregation.

The common indicator of financial risk is the liabilities-to-equities ra-
tio, using book values. The higher this ratio, presumably the more highly
leveraged the firm and the more sensitive bottom-line earnings will be to
changes in earnings before interest and taxes. However, on one hand, the
book value of equities is often a very poor indicator of the market value of
equities; and on the other, book value liabilities are commonly much more
closely aligned with market values. At the same time, the market values of
equities are often readily available from the stock market. Therefore, finan-
cial economists often prefer the ratio of the book value of liabilities to the
market value of equities to measure financial leverage.

Unfortunately, this measure of financial risk is not free from diffi-
culty. Clearly, as a precondition, transactions must be allocated to liabili-
ties or equities. For the purpose of measuring financial risk, the essence of
liabilities derives from promised fixed payments over time, and, provided
these are paid, liabilities do not share in the success of the firm. At the
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other extreme, equities have no promised payments, but after paying off
all other claimants on the firm (employees, suppliers, debt holders, gov-
ernment) receive whatever is left over. As the “residual claimants” of the
firm, equities derive their value directly from the profitability of the firm.
Some securities, like preferred stock, convertible debt, or employee stock
options, are hybrid securities, containing elements of debt and elements
of stock, and their categorization is problematic.

Consistency is another principle of accounting: The rules for imple-
menting first-order economically equivalent decisions by different firms
should be designed so that comparative accounting measures of return and
risk should not be affected. The controversy in the United States from
1994 to 2005 over accounting for employee stock options illustrates the is-
sue of consistency. As before, consider otherwise identical firms A and B; A
compensates its employees entirely with cash; B compensates its employees
entirely with stock options, originally issued at-the-money. To simplify,
both firms are assumed to receive the same services from their employees.
Naturally, A expenses its cash compensation; what should B do? If, as was
the standard practice, B does not treat the stock options as an expense, B
will report higher profits, even though from an economic point of view the
two firms are doing the same thing; B is really no better than A. So, the
principle of consistency demands that B determine the market value of its
options when they are granted and expense that value.

An insightful example of the difficulty of attaining consistency is ac-
counting for leased assets. Consider two otherwise equivalent firms; firm
A borrows the cost of the purchase of a building, and firm B leases the
same building. On the balance sheet of firm A, accountants will typically
record the purchase price of the building as an asset with an equal off-
setting liability. Reported in this way, the purchase creates an increase in
the debt-to-equity and debt-to-assets ratios. On the balance sheet of firm
B, if the length of the lease is not over the entire life of the building, the
value of the leased asset does not appear on the balance sheet, and its ef-
fect appears only on the income statement through the expensed lease
payments. Reported in this way, firm B will show no change in its debt-
to-equity or debt-to-assets ratios, and so will appear to have less finan-
cial risk than firm A. The apparent reason for this different treatment is
that the legal substance of these two transactions is quite different. Firm
A literally owns the building, while firm B does not. But, from the point
of view of financial analysis, this is a distinction of form, not first-order
economic substance. If the financial economist knew about the lease, he
or she would interpret the lease in this way: It is as if firm B borrowed
the building instead of borrowing cash, pays what are called lease pay-
ments (with a correction for implied depreciation) instead of interest
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payments, and is obligated to pay back (that is, return) the building, just
as firm A is obligated to pay back the cash loan. To abide by the consis-
tency principle, the firm should report the transactions in such a way
that the debt-to-equity ratios of the two firms remain equal. One way to
do this would be to record the value of the leased building as an asset
offset by an equal liability, reflecting firm B’s obligation to “pay back”
the “borrowed” building.

Unfortunately, as sensible as this sounds, further reflection shows how
difficult the standard of consistent accounting is to realize. Accounting for
leases in this way implies that assets are not defined by legal ownership;
rather they are defined by things the firm uses to generate revenues—firm B
does not own the building, but it is using it to generate revenues, so it is an
asset of the firm in this sense. Now, the goal of consistency really gets us
into trouble. Consider this: Both firms also use the streets outside their
headquarters so employees can come to and leave work; they also use seats
on airlines when their employees travel on business; and so forth. To be
consistent, these things are therefore assets and need to be reported on the
balance sheet. Ideally, a financial economist would want the firm to do this.
Again compare two firms, one that uses its own airplanes and roads owned
by the firm financed with debt, and another that uses the externally pro-
vided roads and airline seats. Clearly, carried to this extreme, consistency
becomes impractical.

We should not overplay the significance of designing good accounting
rules. External accounting statements are only one source of information
about the firm. Some individuals, called professional security analysts,
specialize in a single industry and spend a good portion of their lives eval-
uating public firms in that industry. As a result, if we get accounting rules
wrong, although the cost of learning about firm fundamentals will rise,
the market may very well continue to price stocks with reasonable accu-
racy. For example, many corporate executives apparently believe that
since expensing stock options reduces their reported earnings per share,
their stock price will also fall after the accounting change. But, since the
market has other means of learning about their firm’s option plans, what
is far more likely is that their stock price will be virtually unaffected by
the change.

1654  Blaise Pascal (June 19, 1623–August 19, 1662), “Traité du triangle
arithmétique avec quelques autres petits traités sur la même matière”;
translated into English as “Treatise on the Arithmetical Triangle,” and
with Pierre de Fermat (August 17, 1601–January 12, 1665), “Correspon-
dence with Fermat on the Theory of Probabilities” (1654), Great Books of
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the Western World: Pascal (Franklin Center, PA: Franklin Library, 1984),
pp. 447–487.

PASCAL’S TRIANGLE, PROBABILITY THEORY, 
PROBLEM OF POINTS, BINOMIAL CATEGORIZATION,

EXPECTATION, COUNTING PATHS VS. WORKING BACKWARDS,
PATH DEPENDENCE, PASCAL’S WAGER

Early work on combinatorial problems seems to have begun in India,1 so
that by about 1150, Bhaskara understood the general formula for the

number of combinations of n things taken j at a time, n!/[j!(n – j)!]. The
calculation of coefficients from the binomial expansion (a + b)n as well as
arraying these coefficients in the shape of a triangle was known by the Ara-
bian mathematician al-Tusi in 1265, and was known in China in Chu Shi-
Chieh’s Ssu Yuan Yü Chien (1303), the frontispiece of which is reproduced.
The equivalence between the combinatorial formula and these coefficients
was understood by 1636 by Marin Mersenne (1588–1648).

Although clearly the arithmetical triangle was not invented by Pas-
cal (1654), his treatise was the first to bring together all three elements—
combinatorics, binomial expansion coefficients, and their triangular
array. So thoroughly did Pascal investigate the triangle’s properties that
ever since it has been commonly referred to as Pascal’s triangle. It should
be noted that in his discussion of the arithmetical triangle and the Prob-
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lem of Points, Pascal does not directly use the modern concept of proba-
bility, nor even use that term. Instead, he uses combinatoric language,
speaking of an event happening so many times out of a total number of
possible times. So my discussion that follows is a modernized retelling of
Pascal’s results.

The triangle starts with 1 in the top row. Each number in a subsequent
row is generated by summing the two numbers in the previous row that are
just above its location.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

• • •

Pascal shows that the triangle has a number of surprising properties. For
example, numbering the rows starting with 0 for the top row, the nth row
contains the coefficients of the binomial expansion (a + b)n. In general, the
value of the jth entry (starting numbering from the left from 0) in the nth
row is n!/[j!(n – j)!].

Of critical importance for the development of the theory of probabil-
ity, especially as applied to games of chance (investments?), is the Problem
of Points. Recall the basic version of this problem. Two individuals have
staked a given amount to be paid to the one who is the first to win n
points. A point is awarded in a fair round in which each player has an
equal chance of winning. If they decide to stop playing after the first player
A has won x < n points and the second player B has won y < n points, what
is a fair division of the stakes?

As proposed in Pacioli (1494), suppose the two players have bet 28 pis-
tolas each, n = 6 and the points standings are (x, y) = (5, 3), and the game is
then called off. Pacioli argues that the fair division is to divide the total
stakes in direct proportion to the number of games won by each player. So
with 56 pistolas staked, 35 would go to the first player and 21 to the sec-
ond. Jerome Cardan, better known as Gerolamo Cardano (September 24,
1501–September 21, 1576), in [Cardano (circa 1565)] Liber de ludo aleae,
first published posthumously in 1663, translated from Latin into English
by Sydney Henry Gould as The Book on Games of Chance (New York:
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Holt, Reinhart and Winston, 1961), proposed a more sophisticated solu-
tion. He says that the division should depend on the outcome of a new
game created from the rounds remaining to be played. So in Pacioli’s ex-
ample, a new game between A and B is imagined where if A can win 1
point before B can win 3 points, then A will win; otherwise B will win. He
then asks in this new game what would be the fair stakes contribution of
each player. He concludes that B should be willing to stake 1(1 + 1) = 2
units for every 3(3 + 1) = 12 units staked by A. So again, if the original
stakes were 56 pistolas, he would conclude that A should receive 56(12/14)
= 48 and B should receive 56(2/14) = 8.

Neither Pacioli’s nor Cardano’s solution is correct. The problem was
finally solved by Pascal-Fermat (1654) in a famous correspondence that
gave birth to modern probability theory. They developed the idea of math-
ematical expectation, and assumed that each player should receive what he
would have expected had the game not been stopped.

20 A HISTORY OF THE THEORY OF INVESTMENTS

Pascal’s Triangle

Pascal’s triangle exemplifies a recombining binomial tree where the
number at each node is the sum of the two numbers lying in the row di-
rectly above it. The more general nonrecombining binary tree was origi-
nally popularized by Porphyry (circa 234–305), a Neoplatonic
philosopher. In his Introduction to the Categories (or Isagoge), he geo-
metrically represents the relationship of categories from Aristotle’s logi-
cal work Categories as a binary tree, where the set described by each
prior category is divided into two mutually exclusive and exhaustive
subsets. For example:

Substance 
Corporeal Incorporeal

Living Nonliving
Animals Plants

Rational Nonrational

The number of numerical relationships in Pascal’s triangle seems end-
less. Even the Fibonacci sequence lies hidden in the array. Can you find
it? Starting from the left side, add the numbers that lie in a diagonal
line extending above and to the right, and the sums will make a Fi-
bonacci series. Thus, we have: 1 = 1, 1 + 1 = 2, 1 + 2 = 3, 1 + 3 + 1 = 5,
1 + 4 + 3 = 8, and so on.
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Fermat’s solution simply requires counting the number of ways (or
paths) A can win and the number of ways B can win.

At (5, 3) standings, the possible remaining outcome sequences are
(where “a” indicates a point won by the first player and “b” a point won
by the second player):

(a a a)    (a b a)    (a b b)    (b b a)

(a a b)    (b a a)    (b a b)    (b b b)

Bolded sequences indicate games won by the first player. Since A wins in 7
out of the 8 possible sequences, A should receive 49 pistolas and B should
receive 7 pistolas.

Pascal’s alternative but equivalent solution uses the method of back-
wards recursive dynamic programming.
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(5, 3)

(6, 3)

(5, 4)

(6, 4)

(5, 5)

(5, 6)

(6, 5)

 Count paths:   7 vs. 1         7/8 ×× 56 = 49

Fermat’s Solution 
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Pascal first asks us to suppose the game is broken off when the stand-
ings are (5, 5). Since A and B then both have an equal chance of winning
56 pistolas, they each expect to win 28 pistolas, so the stakes should be di-
vided equally (28, 28). Moving backwards from that, if instead the stand-
ings are (5, 4), half the time playing one more round brings the standings
to (6, 4) in which case the stakes are divided (56, 0), and half the time the
standings end up (5, 5) in which case I have already established the stakes
should be divided (28, 28). Therefore, when the standings are (5, 4), A is
entitled to 1/2(56) + 1/2(28) = 42, and B is entitled to 1/2(0) + 1/2(28) = 14.
Moving back one more round to the current (5, 3) standings, similar rea-
soning leads to A begin entitled to 1/2(56) + 1/2(42) = 49 pistolas, and B is
entitled to 1/2(0) + 1/2(14) = 7 pistolas.2

Pascal has also been credited as the originator of decision theory. In
[Pascal (1657–1662)] Pensées, Great Books of the Western World: Pascal
(Franklin Center, PA: Franklin Library, 1984), pp. 173–352, particularly
section 3, “Of the Necessity of the Wager,” pp. 205–217, Pascal describes
his famous “wager,” his most unassailable “proof” that you should believe
God exists. Consider, he says, two mutually exclusive possibilities. If there
is no God, then believing in Him or not believing in Him will be of little
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(49, 7)

(56, 0)

(42, 14)

(56, 0)

(28, 28)

(0, 56)

(56, 0)

 Work backwards

 Pascal’s Solution
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matter. However, if there is a God, then believing in Him will bring you
the infinite happiness of an eternity in heaven, and not believing in Him
will bring you the infinite unhappiness of an eternity in hell. So even if
your subjective probability of God existing is arbitrarily small but greater
than zero, your expected gain from believing that God exists will be infi-
nite. Of course, we now understand that Pascal’s reasoning is seriously
flawed since it depends on his particular listing of the possible states of the
world. For example, another possibility is that if God exists, believers are
sent to hell since no human has enough information to conclude this is
true, while doubters, who have the correct view given the information
available, go to heaven.

Tempting as it may be, crediting Pascal as the first decision theorist is
undeserved. The much earlier Talmud (Kethuboth 9q) argues that a man
should not be allowed to divorce his wife for adultery before marriage.
First, there is the possibility the woman may have lost virginity before mar-
riage through the agency of her new husband; and second, even if this did
not happen, the woman may have not been a willing participant. Taken to-
gether, there being four possibilities with only one deserving of divorce, the
weight of the evidence militates against allowing it. Pascal’s wager may
also be another instance of Stephen Stigler’s law of eponymy since
Arnobius of Sicca described a similar choice in his “The Case against the
Pagans” (Book 2, Chapter 4), written in about 303 A.D.

As a striking aspect of the birth of modern probability theory, Pascal
simultaneously and perhaps unconsciously embraced its duality: the in-
terpretation of probabilities as applying (1) to physical processes like
coin flipping and games of chance where probabilities can be indis-
putably calculated (objective probabilities), which we see in the Problem
of Points, or (2) to nonrepeatable events about which there is often con-
siderable disagreement (subjective probabilities), which we see in Pascal’s
wager. Subsequently, it has been argued, for example, by Savage (1954)
in The Foundations of Statistics, that the use of subjective probabilities
applied to nonrepeatable events necessarily falls out from rational choice
among alternatives. But Savage’s analysis works only if bets on alterna-
tives are feasible in the sense that the event that determines the outcome
of the bets is potentially observable. The outcome of a bet on the exis-
tence of life after death is problematic: The winner betting there is no life
after death will find it singularly difficult to collect.

In the latter half of the twentieth century, digital computers became
critical to the further development of the theory of investments, from em-
pirical tests based on extensive databases to solving mathematical prob-
lems with numerical analysis. Very simple calculating machines had long
been in use, such as the abacus from 3000 B.C. The slide rule was invented

The Ancient Period: Pre-1950 23

ccc_rubinstein_pt01_1-98.qxd  1/12/06  1:40 PM  Page 23



in the years 1630–1632. In 1642–1644, in addition to his many other con-
tributions to science, Pascal, at about age 20, is credited with creating the
first digital computer. Numbers are entered by turning dials, and addition
and subtraction are accomplished by underlying gears that move as the
digits are dialed in, with the total shown in a window above the keys. The
1652 version, signed by Pascal, can be seen in Paris at the Conservatoire
National des Arts et Métiers; and for those who prefer London, a copy can
be found at the Science Museum in South Kensington.

1657  Christiaan Huygens (April 14, 1629–July 8, 1695), De ratiociniis in
aleae ludo (“Calculating in Games of Chance”), first published in Latin as
an appendix to Frans von Schooten’s Exercitationum mathematicarum
libri quinque (1657) and subsequently in Dutch as Van rekiningh in spelen
van geluck (1660); reprinted with annotations by Jakob Bernoulli in Ars
conjectandi, Part 1 (1713); English translation available as of March 6,
2004, on the Internet at www.stat.ucla.edu/history/huygens.pdf.

PROBABILITY THEORY, EXPECTATION, ARBITRAGE, 
STATE-PRICES, GAMBLER’S RUIN PROBLEM

A lready famous for, among other things, the discovery of the rings of Sat-
urn and its largest moon Titan, being the first to notice the markings on

the surface of Mars, and his invention of the pendulum clock in 1656,
Huygens (1657) in quick succession published the first work on probabil-
ity—actually a 16-page treatise that includes a treatment of properties of
expectation (a word he coined as expectatio). Despite the reputation of his
treatise and like Pascal (1654) and Pascal-Fermat (1654), Huygens makes
no reference to our current notion of probability. Moreover, although Huy-
gens’ results can be and have been interpreted in terms of our modern no-
tions of probability and expectation, he had something else in mind. For
him, expectation is the amount someone should pay for a gamble. So in
one of the curious reversals in intellectual history, a problem in investments
provided motivation for the birth of modern probability theory (rather
than, as might have been suspected, the other way around)!

Following the commentary of Ian Hacking in [Hacking (1975)] The
Emergence of Probability (Cambridge: Cambridge University Press, 1975)
to provide a basis for Huygens’ propositions, consider the following lot-
tery. A promoter offers a lottery to players P1 and P2. He will flip a fair
coin and player P1 will try to guess the outcome. If P1 guesses correctly,
the payoff will be X > 0 to player P1, and 0 to player P2, which I will write
(X, 0); if P1 guesses incorrectly, the payoff will be 0 to player P1, and X to
player P2, or (0, X). Huygens tacitly assumes that the value of the payoff
to any player remains unchanged under a permutation across the states. So
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in this case the value of payoff (X, 0) should equal the value of the payoff
(0, X). He then considers the lottery fair if its price (or stakes) to either
player is P = X/2 (Assumption 1). This follows from what we now call an
arbitrage argument. If instead P > X/2, then the promoter makes a sure
profit since his total receipts 2P > X, the prize he must pay out. On the
other hand, if instead P < X/2, then the two players could collude and
make a sure profit at the expense of the promoter.

Huygens now considers a revised lottery in which the winner agrees to
pay the loser a consolation prize 0 < K < X so that neither player will end
up out of pocket; that is, the payoff to each player will be either X – K or
K, with equal chance. Huygens assumes this will not change the price P of
the lottery (Assumption 2). Huygens also assumes that two lotteries with
the same payoffs must have the same price (Assumption 3)—an assump-
tion we would now call “the single-price law.”

Huygens starts by proving three propositions:

1. If there are equal chances of obtaining A or B, then the expectation is
worth (A + B)/2.

2. If there are equal chances of obtaining A, B, or C, then the expectation
is (A + B + C)/3.

3. If the number of chances of receiving A is n1 and the number of chances
of receiving B is n2, then the expectation is (n1A + n2B)/(n1 + n2).

Propositions 1 and 2 deal with equiprobable states. Proposition 3, if in-
terpreted as it subsequently was in modern terms, reaches our current no-
tion of expectation where probabilities do not have to be equal; we would
identify the ratio n1/(n1 + n2) ≡ p, so that the expectation is pA + (1 – p)B.

With our several-hundred-year remove, Proposition 1 may seem obvi-
ous; but that was not so in 1657.
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Proof of Huygens’ Proposition 1

Suppose there is a fair lottery I with two players and prize A + B (where
A < B). It then follows by Assumption 1 that for the lottery to be fair,
the price of a ticket to this lottery must be (A + B)/2. Suppose also that
the winner must pay the loser a consolation prize of A. The payoff from
the lottery for one player will then be either (A + B) – A = B if he wins or
A, the consolation prize if he loses. Notice that the payoff from this lot-
tery is the same as the payoff for fair lottery II where a player has an
equal chance of gaining A or B (by Assumption 2). Since lotteries I and
II have the same payoffs, they must have the same price (by Assumption
3). Finally, since the fair price of a ticket to lottery I is (A + B)/2, that
must also be the fair price for lottery II. Thus, Proposition 1 is proved.
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Proposition 2 is proved by extending the side payment idea of As-
sumption 2 as follows: There are now three players, P1, P2, and P3. Since
the gamble is fair, if P1 wins he receives the entire stakes X, but he agrees
to pay B to P2 and C to P3. So if P1 wins, P1 nets A ≡ X – (B + C). On the
other hand, in return, if P2 wins, he agrees to pay B to P1; and if P3 wins,
he agrees to pay C to P1. So P1 has an equal chance of winning A, B, or C.
P2 and P3 make arrangements between each other that are similar, so that
each player has an equal chance of winning A, B, or C. The following table
displays these outcomes:3

If the The Payoff The Payoff The Payoff 
Winner Is: for P1 Is: for P2 Is: for P3 Is:

P1 X – (B + C) = A B C
P2 B X – (A + B) = C A
P3 C A X – (A + C) = B

Proposition 3 uses yet a further extension of Assumption 2. Huygens
now proposes a lottery with n1 + n2 players. Each player stakes X. The lot-
tery is fair since the total payoff is X × (n1 + n2) and each player has an
equal chance of winning. The first player makes an agreement with the n1 –
1 players that if he wins he will pay each of them A, and if any one of them
wins instead, the winner agrees to pay him A. With the n2 players, if he
wins, he agrees to pay each of them B, and if any one of them wins, the
winner agrees to pay him B. From this, by an argument similar to the ear-
lier propositions, he proves Proposition 3.

Surprisingly, the primitive for Huygens is “value,” not “probabil-
ity.” Linking this with modern finance, it is as if he were thinking of val-
uation directly in terms of state-prices (where interest rates can be
approximated at zero so r = 1) πa and πb, where πa can be identified with
n1/(n1 + n2) and πb with n2/(n1 + n2). So the value of the lottery is πa(A) +
πb(B).

In the state-price interpretation, for the same arbitrage reason, the
sum of state-prices πa + πb must be 1 and each state-price must be positive.
However, the modern theory does not accept Huygens’ tacit assumption
that value is invariant to permuting the payoffs across equiprobable
states. That is, the equal-chance payoffs (X, 0) and (0, X) may not have
the same value.

From the modern perspective, state-prices reflect not only probabili-
ties but also levels of risk and risk aversion. We know that Huygens’ as-
sertion underlying his Assumption 1 that the gamble with equally likely
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payoffs X or 0 would be worth X/2 would not generally be true if that
gamble were traded in a market that did not also include its inverse gam-
ble with payoffs 0 or X in the corresponding states. When both exist in
the same quantity in the same market (as Huygens seems to assume),
since their individual risks can be completely diversified away, they
should be priced at their expected payoffs. But if only one were available
and not also its inverse, since the risk could not be eliminated by diversi-
fication, its price could be more or less than its expected value depending
on the correlation of its payoffs with other available investments, the cor-
relation with other factors of importance to the players, and their risk
aversion. Or, if the outside wealth of the players was, for reasons other
than the gamble, different in the two states, then the prices of the two
gambles would generally not be the same. If aggregate wealth were lower
in the first state than in the second, even though the gamble is a side bet
between two players, the price of the payoff X or 0 would be higher than
the price of the payoff 0 or X (of course, the simple arbitrage argument
given earlier continues to ensure that whatever their prices, the sum of
the two prices must be X).

The winner-take-all University of Iowa presidential election Internet
market immediately comes to mind as a real-life example. In the year
2000, participants were able to place a bet at price PB that would pay X =
$1 if George Bush were elected and 0 if not, or place a bet at price PG

that would pay X = $1 if Al Gore were elected and 0 if not. Ignoring the
small possibility of a third candidate winning, arbitrage requires that the
sum of the prices PB + PG = $1. Indeed, this was in fact true to a very
close approximation. Should one then, as Huygens argues, interpret PB as
the expected value of a bet that Bush will win and PG as the expected
value of a bet that Gore will win? Not quite. For if it were the case, for
example, that participants anticipate better economic times under Bush
than under Gore, and if they are risk averse, then the utility of receiving
an extra dollar if Gore is elected is higher than the utility of an extra dol-
lar if Bush is elected. Or, it may be that if Bush is elected and he had bet
on Bush, a participant may feel so discouraged that he cannot enjoy the
extra dollar as much if instead, Gore had been elected and he had bet on
Gore. Therefore, the prices of bets on Bush and Gore will be affected not
only by subjective probabilities but also by these utilities. In the end, the
price PB of a bet on Bush will be a little lower than the subjective proba-
bility of Bush winning, and PG will be correspondingly higher—in any
case, preserving a sum of $1.

Using these three propositions, Huygens then proves 11 others and
proposes but does not solve five additional problems suggested by 

The Ancient Period: Pre-1950 27

ccc_rubinstein_pt01_1-98.qxd  1/12/06  1:40 PM  Page 27



Fermat. Propositions 4 through 9 relate to the Problem of Points, ana-
lyzed at about the same time by Pascal-Fermat (1654). Propositions 10
to 14 move to new territory. To get a flavor of these, Proposition 10 an-
swers the question: How many times does one need to toss a single fair
die before one can expect to see the first six? Huygens solves the prob-
lem recursively. The probability of getting a six in the first toss is X1 =
1/6 and the probability of not getting a six is 5/6. The probability of get-
ting a six in the first two tosses is the sum of the probability of getting a
six in the second toss 1/6 plus the probability of having instead rolled a
six in the first toss (5/6)X1. Therefore, the probability of rolling a six in
the first two tosses is X2 = (1/6) + (5/6)X1. The probability of getting a
six in the first three tosses is the sum of the probability of getting a six 
in the third toss 1/6 plus the probability of instead having rolled a six in
the first two tosses (5/6)X2. Therefore, the probability of rolling a six in
the first three tosses is X3 = (1/6) + (5/6)X2. Continuing this line of rea-
soning, the probability of getting a six by the kth toss is Xk = (1/6) +
(5/6)Xk–1. From this, it is easy to see that when k = 4 the probability of
having thrown a six crosses over from below 1/2 to 671/1,296. (Although
Huygens does not solve this sequence of equations analytically, it is easy
to see that Xk = 1 – (5/6)k.)

The last proposition, 14, carries this type of recursive solution one
step further to a situation where the potential number of games is un-
bounded. This proposition answers the question: Suppose two players
take turns tossing two fair dice so that player A wins if he tosses a seven
before player B tosses a six; otherwise player B wins; and B tosses first.
What are the odds that A will win? Clearly, the probability that A will
toss a seven in a single throw is 6/36 and the probability that B will toss
a six in a single throw is 5/36. Huygens solves the problem by setting up
two simultaneous equations. Suppose that the probability that A will
win is p, so that the probability that B will eventually win is 1 – p. Every
time B throws, since it is as if the game just started, the probability that
A will eventually win is p. But every time A tosses, the probability that A
will eventually win is somewhat higher, say q. Therefore, from Proposi-
tion 3, when B tosses, the probability of A eventually winning is also
equal to:

5
36

0
31
36

×






+ ×






=q p
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Similarly, when A tosses, the probability of A eventually winning is:

Solving these two simultaneous equations for p and q, we get p = 31/61, so
the odds that A will win are 31:30.

The last of the five appended problems is the gambler’s ruin problem,
apparently originally posed by Pascal: Consider a game in which two play-
ers start with the same stakes. They play a sequence of rounds. At each
round the first player wins with probability p and receives one unit from
the stakes of the second player, or the second player wins (with probability
1 – p) and receives one unit from the stakes of the first player. The game
ends as soon as one player has no stakes remaining. What is the probability
that this will occur in at most n rounds?

The gambler’s ruin problem was to play a critical role in the subse-
quent development of the mathematics of random walks and Brownian
motion. In modern terminology, we have a random walk between absorb-
ing barriers, where one barrier marks the ruin the first player and the other
the ruin of the second. As discussed in Hald (2003), p. 352, in his 1713
correspondence with Pierre Rémond De Montmort, Nicholas Bernoulli
solves a generalization of this problem when the players start with different
stakes and can play any number of rounds. Suppose player A begins with
stakes a, and player B begins with stakes b, the probability that A will win
any round is p, and the probability that B will win any round is q = 1 – p.
With this notation, the probability R(a, b; p) that B will be ruined (and
perforce A will win all the stakes) is:

R a b
a
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1662  John Graunt (April 24, 1620–April 18, 1674), Natural and Political
Observations Made Upon the Bills of Mortality (London: Martyn, 1662);
reprinted in B. Benjamin, “John Graunt’s ‘Observations,’ ” Journal of the
Institute of Actuaries 90 (1962), pp. 1–60.

STATISTICS, MORTALITY TABLES, EXPECTED LIFETIME

The field of investments is distinguished by being, after games of chance,
the first to feel the benefits of the new probabilistic reasoning. In turn,

applications in this area led to further advances in probability theory and
literally initiated the related field of statistics. To begin this story, I first
need to explain the incipient effort to construct tables of human mortality,
and then how these tables were used to determine the present value of life
annuities (annuities with payments conditional upon the recipient remain-
ing alive).

The tradition of drawing up a population census dates back at least to
republican Rome. The famous Doomsday Book of 1086, put together for
the purposes of taxation in England, is a much later example. But it re-
mained for Graunt (1662) to conduct the first published statistical analysis
of this type of data, indeed of any type of data, making him the first known
statistician. Not only was his analysis the first of its kind, but it is surpris-
ingly sophisticated, largely remaining a model of good statistical procedure
to the present day. Of course, he was restricted to displaying data in the
form of tables since the representation of time series and cross sections by
graphs was not yet the practice.

According to Anders Hald, in [Hald (2003)] History of Probability and
Statistics and Their Applications before 1750 (Hoboken, NJ: John Wiley &
Sons, 2003), Graunt’s analysis was based on a compendium of vital statistics
for the population of London, gathered weekly starting in 1604, with some
data as late as 1672 (for subsequent editions). Like a good modern statisti-
cian, Graunt first worries about errors by correcting for unreasonable spikes,
running consistency checks, and checking for confirmatory evidence. For ex-
ample, he makes three independent calculations of the number of families in
London by looking separately at births, burials, and the number of houses.
He then finds useful ways to summarize the data. For example, he aggregates
burials over time according to the cause of death (Chapter 2):

Cause of Death Number of Burials

Plague 16,000
Children’s disease 77,000
Aged 16,000
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Cause of Death Number of Burials

“Chronical” diseases 70,000
“Epidemical” diseases 50,000

Total 229,000

He distinguishes between the fixed component of causes of death that
are found every year (“chronical”) and the variable component 
of those that change from year to year (“epidemical”). He notes that 
the fear that many citizens have of dying from particular causes is 
often quite exaggerated and hopes that his statistics will set them at ease.
He also makes other tables that present time-series numbers showing the
changes in the cause of death over time. Although Graunt does not yet un-
derstand with any precision the effect of sample size on reducing variance,
he does know this intuitively since he groups data into subperiods, such as
decades, so that trends will be more discernible. Using his data, he is the
first to note that the numbers of males and females in the population are
consistently nearly equal over time. He formulates and tests the hypothesis
that births are lower in years of relatively more deaths.

Most important for the subsequent development of probability 
theory, Graunt makes the first attempt we know of to create a mortality
table. To do this, he has to infer the total population over time from 
his data and the number of deaths by age. Since he lacks direct information
about this, he devises a clever way to guess this information from the data
at his disposal. Graunt’s resulting mortality table is (Hald 2003, p. 102):

Of the 100 conceived there remains alive at six years end 64.

At sixteen years end 40 At fifty six 6
At twenty six 25 At sixty six 3
At thirty six 16 At seventy six 1
At forty six 10 At eighty 0

It is perhaps worth noting that in the seventeenth century this type of
analysis was originally called “political arithmetic,” and then subsequently
“statistics,” originally taken to mean the collection and analysis of facts re-
lated to affairs of state (status is the Latin word for state).

In 1669, based on Graunt’s mortality table, Christiaan Huygens and
his brother Ludwig made several statistical innovations (these were finally
published in Christiaan Huygens, Oeuvres Complètes, Volume 6 of 22,
1895). Ludwig’s objective is to use Graunt’s table to calculate expected
lifetime conditional on current age. To do this, he assumes a uniform dis-
tribution of the probability of death in between Graunt’s observations.
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Hald (2003), p. 107, represents Ludwig’s calculations in the following
table:

The variables x and lx are taken directly from Graunt’s table; dx is the first
difference in lx; tx is the midpoint of the beginning and ending of the inter-
vals determined by x. Therefore, assuming a uniform distribution of dying
within each interval, tx equals the expected lifetime for the individuals cor-
responding to dx deaths. Ludwig reasons that 1,822 years is the number of
years the 100 individuals starting at age 0 will in total live: 36 will live on
average 3 years, 24 will live on average 11 years, 15 will live on average 21
years, and so on, so that the sum of all these years is 1,822. Then, each of
the 100 individuals at age 0 can expect to live until they are 1,822/100 =
18.22 = E(t0) years old. By similar logic, each of the 64 individuals at age 6
can expect to live until they are 1,714/64 = 26.78 = E(t6) years old. Given
an individual’s age, calculating his or her expected remaining lifetime is
then a simple matter of subtracting age x from E(tx). Interpolating between
17.5 and 15, Ludwig concludes that Christiaan, who at that time was 40,
could expect to live 16.5 more years.

Christiaan takes his brother’s analysis a few steps further. He represents
the first and second columns of the table graphically as an interpolated con-
tinuous function, the first appearance of a distribution function. He shows
how to calculate the median, as opposed to the expected, remaining life. He
also calculates the expected remaining lifetime for the second of two given in-
dividuals A and B to die. That is, if TA, a random variable, is the remaining
lifetime for A, and TB is the remaining lifetime for B, he calculates E[max(TA,
TB)]. First, for each number of years TA remaining in the life of A, assuming
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Ludwig Huygens’ Mortality Table
Number Number Midpoint Accumulation Average Expected

of of of Age of txdx from Age Remaining
Age Survivors Deaths Interval Below at Death Lifetime
x lx dx tx txdx E(tx) ex

0 100 36 3 108 1,822 18.22 18.22
6 64 24 11 264 1,714 26.78 20.78

16 40 15 21 315 1,450 36.25 20.25
26 25 9 31 279 1,135 45.40 19.40
36 16 6 41 246 856 53.50 17.50
46 10 4 51 204 610 61.00 15.00
56 6 3 61 183 406 67.67 11.67
66 3 2 71 142 223 74.33 8.33
76 1 1 81 81 81 81.00 5.00
86 0 0.00
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independence, he calculates E(TB|TB ≥ TA]. Then he weights each of these con-
ditional expectations by the probability of TA and sums the products. Here
we have one of the earliest uses of the idea of conditional expectations. Iden-
tifying T = max(TA, TB), we have the expected remaining lifetime of the sur-
vivor E(T) = E[E(T|TA)], what we now call the law of iterated expectations.

1671  Johan de Witt (September 24, 1625–August 20, 1672), Value of Life
Annuities in Proportion to Redeemable Annuities, published in Dutch
(1671); “Contributions of the History of Insurance and the Theory of Life
Contingencies,” Assurance Magazine 2 (1852), pp. 232–249.

1693  Edmond Halley, “An Estimate of the Degrees of the Mortality of
Mankind, Drawn from Curious Tables of the Births and Funerals in the
City of Breslaw; with an Attempt to Ascertain the Price of Annuities upon
Lives,” Philosophical Transactions of the Royal Society 17 (1693), pp.
596–610.

1725  Abraham de Moivre (May 26, 1667–November 27, 1754), A Trea-
tise of Annuities on Lives; reprinted as an addition to de Moivre’s third
edition (“Fuller, Clearer, and More Correct than the Former”) of The Doc-
trine of Chances (1756); reprinted by the American Mathematical Society
(2000), pp. 261–328.

LIFE ANNUITIES, PRESENT VALUE, 
MORTALITY TABLES, STATE-PRICES, TONTINES

Today, we think of probability theory as the servant of investments, but
this was not always so. In an earlier time, the need to know the present

value of cash flows dependent on mortality played a parenting role in de-
veloping ideas about probability. A life annuity is a contract that pays the
annuitant a given constant amount every year until the death of a given in-
dividual, the “nominee” (usually the same as the annuitant), with no re-
payment of principal. Social Security is today’s ubiquitous version of a life
annuity. A generalization is a joint life annuity, commonly used for married
couples or shipmates, which continues only for so long as they both live. A
tontine (named after a government funding proposal recommended to the
French Cardinal Jules Mazarin in 1653 by Lorenzo Tonti) is similar except
that the arrangement continues as long as one member survives. In a typi-
cal arrangement, a group of contributors place equal amounts of money in
a fund; each then receives an annuity that represents his or her share of a
designated total sum that the annuitants divide equally among themselves
every year. As the annuitants drop out because of their deaths, those 
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remaining divide the same total, leaving a greater payment to each. After
only one annuitant remains, he or she receives the entire annuity payment
each year. Once the last annuitant dies, all payments cease and the corpus
then reverts to the issuer (e.g., the government). In another version, which
provides the theme of Robert Louis Stevenson and Lloyd Osbourne’s
novella, The Wrong Box (1889), the tontine begins with 37 members; no
money is paid out until only one remains alive, whereupon he receives the
entire initial contribution plus all accumulated income.

According to Roman Falcidian Law passed in 40 B.C., during the Civil
War that intervened between the assassination of Julius Caesar in 44 B.C.
and the Battle of Actium in 31 B.C. (dates historians now identify with the
end of the Roman Republic and the start of the Roman Principate), the le-
gal heir, usually the firstborn surviving male, of an estate was guaranteed
to receive at least 25 percent of the value of the estate. Since bequests in
classical Rome often took the form of a life annuity to children who were
not the firstborn, it was necessary to determine their value. Annuities were
quoted in terms of “years’ purchase,” what we would now call the “pay-
back period.” For example, for an annuity of $100 per year, 20 years’ pur-
chase implies a current price of $100 × 20 = $2,000. From the
third-century Roman jurist Domitius Ulpianus (Ulpian), we have a table of
life annuities that apparently recognizes that the value of the annuity
should decrease with the age of the annuitant (although there may have
been an intentional upward bias to protect the estate of the firstborn). In
one of his tables, he quotes that at age 20, a life annuity is valued at 30
years’ purchase, while if one were 60, a life annuity is valued at 7 years’
purchase. We now know how to calculate a simple upper bound to the
years’ purchase. Assuming infinite life and a plausible interest rate of 6 per-
cent, the annuity would be worth $1/.06 = $16.67, implying a years’ pur-
chase of 16.67. That is the most the annuity could be worth since anything
less than an infinite life would produce a smaller value.

The history of life annuities has recently been surveyed in [Poitras
(2000)] Geoffrey Poitras, The Early History of Financial Economics: 1478–
1776: From Commercial Arithmetic to Life Annuities and Joint Stocks
(Cheltenham, U.K.: Edward Elgar, 2000). Beginning in the seventeenth
century, life annuities were used by governments to raise funds. One reason
annuities became quite popular is that they escaped Church usury laws: An
annuity was not considered a loan since the buyer received interest only
and not return of principal, even though a secondary market in annuities
permitted the buyer to cash out early. By that time a more sophisticated
notion of years’ purchase was used. Suppose that P is the price of an annu-
ity certain lasting until some fixed year in the future, X is the annual annu-
ity payment, and the interest return is r. The years’ purchase t satisfies the
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equation P = X[∑k=1,2,...,t(1/rk)]. In other words, the years’ purchase is the
time at which the present value of the received annuity equals its price.

Although, as we have seen, the Romans apparently used a crude ad-
justment for the expected life of the nominee, little attempt was made to
make this adjustment with any precision until de Witt (1671). In what may
be regarded as the first formal analysis of an option-style derivative, de
Witt proposed a way to calculate the value of life annuities that takes ac-
count of the age of the nominee. His method was crude by modern stan-
dards, but he did make use of one of the first mortality tables. De Witt
assumed nominees would die according to the following table. Out of
every 768 nominees:

Six will die every six months for the first 50 years.

Four will die every six months for the next 10 years.

Three will die every six months for the next 10 years.

Two will die every six months for the next 7 years.

Assuming a compound interest rate of 4 percent, for each of the 768
times to death, he calculated the present value of the corresponding annu-
ity and then took their arithmetic average to be the price of the annuity. De
Witt also mentions that his calculation will be biased low due to what we
would now call “adverse selection,” since the subset of individuals who
purchase annuities will likely contain those who are comparatively healthy
and therefore likely to live longer than others of their age.

While this history intentionally focuses on the development of ideas, in
contrast to the biographies of the creators of these ideas, I cannot resist
mentioning that in 1672, just one year after de Witt published his now-
classic work on life annuities, he was publicly hanged by a revolutionary
mob in Holland, no doubt because of his prominence as a government
minister with special expertise in finance.

Johan van Waveran Hudde (April 23, 1628–April 15, 1704), who had
been consulted by de Witt, derived his own annuity values using mortality
statistics from 1,495 people who had actually purchased annuities. Halley
(1693) made his own calculations. Apart from using different data, Halley’s
formula led to the same result as de Witt’s. But he restructured the solution in
a more fundamental way. The present value of an annuity certain terminating
at date t is X[∑k=1,2,...,t(1/rk)]. Suppose qt is the probability the annuitant will
die in year t. Then, according to de Witt, the present value of a life annuity is:

A X q
r

t t k t k
≡ ×



















=Σ Σ 1 2
1
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Alternatively, suppose pt is the probability the annuitant will be alive in
year t. Halley first calculated et ≡ pt/r

t, and then used these molecular prices
to calculate the present value of the life annuity:

A X
p

r
X et

t
t t t= ×







= ×Σ Σ
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Proof That Halley’s and de Witt’s 
Formulations Are Equivalent

To derive Halley’s formulation from de Witt’s, first derive the relation
between probabilities qt, that the annuitant dies in year t, and pt, that the
annuitant is alive in year t. pt equals the sum of the probabilities of dying
at dates t + 1, t + 2, t + 3, . . . since if one has not died by date t, one
must then die subsequently. So the probability of being alive at date t
must equal the probability of dying after date t. Consider a special case
where the annuitant must die by date 4. Then:

p1 = q2 + q3 + q4

p2 = q3 + q4

p3 = q4

Solving these equations for q2 and q3: q2 = p1 – p2, q3 = p2 – p3 (and q4 =
p3 – p4, where by assumption p4 = 0). So generally,

qt = pt–1 – pt

This makes intuitive sense since the probability of dying at date t should
equal the probability of being alive at date t – 1 (and therefore not hav-
ing died before that) less the lower probability of being alive at date t;
the difference between these probabilities can only be explained by hav-
ing died at date t.

Substituting this into de Witt’s formulation:

A X p p
r

t t t k t k
= × −
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We can think of the et as today’s price of your receiving $1 in year t if
and only if you are alive at that time. In today’s life insurance parlance, the
et is called a “pure endowment” price. Actuaries define pure endowment as
an amount payable to an insured contingent on surviving for a prespecified
length of time; an individual who does not survive receives nothing. En-
dowment insurance is more inclusive: It pays a stated sum plus accruals ei-
ther on a prespecified future date or on the date of death if that occurs
early. Premiums are typically paid in equal installments during the life of
the policy. This type of insurance can therefore be decomposed into pure
endowment insurance, which is canceled if death occurs earlier, before the
designated period is over, plus term insurance, which pays off only if the
insured dies during the period.

The mathematician de Moivre (1725) also worked on the life annu-
ity problem, deriving “closed-form” results for single-life and joint-life
annuities, tontines, and reversions. His Problem #1 (pp. 265–266) deals
with a single-life annuity. To obtain a solution in closed-form, he as-
sumes that the probability of remaining alive decreases with age in an
arithmetic progression:

Supposing the probabilities of life to decrease in arithmetic 
progression, to find the value of annuity upon a life of an age given.

Using Halley’s formulation, de Moivre therefore assumes that pt = 1 – (t/n),
where n can be interpreted as some maximum number of years remaining
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Proof That Halley’s and de Witt’s 
Formulations Are Equivalent (Continued)

Looking at the first few terms:

This makes intuitive sense since receiving the annuity at each date is
conditional on being alive at that date so that the present value of the
expected annuity at any date t equals pt(1/rt). The result follows since
the present value of a sum equals the sum of the present values.

A X p p
r

p p
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that the individual could survive. For example, consider a man of age 30; if n
= 50, the probability he will be alive in one year is p1 = 1 – 1/50 = .98, in two
years is p2 = 1 – 2/50 = .96. The probability that he will be alive in 50 years is
p50 = 1 – 50/50 = 0. Under this assumption, the present value of the annuity is:

Using the properties of geometric series, de Moivre shows that (where r* ≡
r – 1):

De Moivre also provided results for a joint-life annuity (Problem #2,
pp. 266-268):

The value [of a life annuity] of two single lives being given, to
find the value of an annuity granted for the time of their joint
continuance.

Suppose that two individuals at ages x and y were to individually buy an-
nuities, which for simplicity each paid off $1 every year they remain alive. Let
the present value of their annuities Ax ≡ Σt(xpt/r

t) and Ay ≡ Σt(ypt/r
t). Further,

suppose the probability of remaining alive is geometrically decreasing with
time so that xpt = px

t and ypt = py
t . So, for example, for the individual at age x,

the probability that he will be alive in one year is px, the probability that he
will be alive in two years is px

2, and so on. De Moivre proves that if the two
lives are independent, then the present value of an annuity written on their
joint lives (that is, a security that pays off $1 as long as both are alive) is:

A
A A r

A A A A rxy
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To see this, the probability that both individuals will be alive after t
years from their present ages is (pxpy)t, so that the present value of a joint
annuity is Axy = Σk=1,2, . . . ,∞(pxpy/r)

t. As de Moivre has posed the problem,
we need to express this in terms of single-life annuities. The present
value of a single-life annuity for the first individual is Ax = Σk=1,2, . . . ,∞
(px /r)t = (px/r)/[1 – (px/r)] = px/(r – px), and similarly for the second indi-
vidual Ay = py/(r – py). Solving each of these single-life formulas for px

and py and substituting these expressions for px and py in the expression
for the joint-life annuity, Axy, brings the result.
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De Moivre also considers a tontine problem (Problem #4, p. 270):

The values of two single lives being given, to find the value of an
annuity from the longest of them, that is, to continue so long as ei-
ther of them is in being.

which he proves to be Ax + Ay – Axy, quite generally without special as-
sumptions regarding the dependence of y pt and ypt on t.

De Moivre’s Problem #7 (p. 272) deals with a life annuity that results
from a “reversion”:

Suppose A is in possession of an annuity, and that B after the
death of A should have an annuity for his life only; to find the
value of the life of B after the life of A.

which he proves to be Ay – Axy, again quite generally without special as-
sumptions regarding the dependence of xpt and ypt on t.
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This follows quite simply from the observation that the probability
that at least one of the two individuals remains alive at time t is 
1 – (1 – xpt)(1 – y pt). Therefore the present value of the tontine 
is Σt[1 – (1 – xpt)(1 – y pt)]/r

t. Breaking this apart into three separate
sums, one for terms xpt, one for terms ypt, and one for terms xpt y pt,
yields the result.

This also follows quite simply from the observation that the prob-
ability that A will have died and B will be alive at time t is 
(1 – xpt)ypt. Therefore the present value of the tontine is Σt[(1 – xpt)ypt]/r

t.
Breaking this apart into two separate sums, one for terms y pt and one
for terms xpt y pt, yields the result.
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1738  Daniel Bernoulli (February 8, 1700–March 17, 1782), “Specimen
Theoriae Novae de Mensura Sortis,” in Commentarii Academiae Scien-
tiarum Imperialis Petropolitannae (1738); translated from Latin into Eng-
lish by L. Sommer, “Exposition of a New Theory on the Measurement of
Risk,” Econometrica 22, No. 1 (January 1954), pp. 23–36.

1934  Karl Menger (January 13, 1902–October 5, 1985), “Das Unsicher-
heitsmoment in der Wertlehre,” Zeitschrift für Nationaloekonomie, Band
V, Heft 4 (1934), pp. 459–485, translated from the German into English
by Wolfgang Schoellkopf as “The Role of Uncertainty in Economics,” in
Essays in Mathematical Economics in Honor of Oskar Morgenstern,
edited by Martin Shubik (Princeton, NJ: Princeton University Press,
1967), pp. 211–231.

RISK AVERSION, ST. PETERSBURG PARADOX, 
EXPECTED UTILITY, LOGARITHMIC UTILITY, 

DIVERSIFICATION, WEBER-FECHNER LAW OF PSYCHOPHYSICS,
BOUNDED UTILITY FUNCTIONS

In their solution to the Problem of Points, Pascal-Fermat (1654) had as-
sumed that a gamble was worth its expected value. Huygens (1657), as

well, as I have noted, developed his entire theory of chance with this pre-
sumption. The classic paper of Bernoulli (1738) originates the idea that a
gamble is worth less than its expected value because of risk aversion.
Bernoulli justified risk aversion by use of the St. Petersburg Paradox. How
much would you pay for the opportunity to flip a fair coin until the first
time it lands heads? If it first lands heads on the nth toss, you will receive
2n dollars. The expected value of this gamble equals

yet you would pay only a finite amount for it, no doubt far less than
your total wealth; therefore, the gamble must be worth less than its ex-
pected value.

For a solution, Bernoulli proposed that individuals instead maximize
expected utility, or as he then phrased it, “moral expectation.” In particu-
lar, Bernoulli suggested using a utility function U(W) with the property
that “the utility resulting from any small increase in wealth will be in-
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versely proportional to the quantity of goods previously possessed [W]”;
that is:

The solution to this is U(W) = a + b(log W) (where log(•) represents the
natural logarithm), or defined up to an increasing linear transformation,
simply log W. In that case, the expected utility of the gamble is:

implying that the individual would pay at most four ducats for the gamble.
Bernoulli notes that his cousin, Nicholas Bernoulli (October 10, 1687–
November 29, 1759), initially proposed the St. Petersburg Paradox. To
Nicholas, the Paradox was quite disturbing since it undermined his sense
that expected value was the essence of fairness. Daniel also notes that the
mathematician Gabriel Cramer anticipated much of his own solution sev-
eral years earlier in a letter to his cousin in 1728.

Anticipating Markowitz (1952/March) and Roy (1952), Daniel
Bernoulli also argues that risk-averse investors will want to diversify: “. . .
it is advisable to divide goods which are exposed to some small danger into
several portions rather than to risk them all together.” Bernoulli is hardly
the first to appreciate the benefits of diversification. For example, accord-
ing to Talmudic advice, “A man should always keep his wealth in three
forms: one third in real estate, another in merchandise, and the remainder
in liquid assets.” In The Merchant of Venice, Act 1, Scene 1, William
Shakespeare has Antonio say:

. . . I thank my fortune for it,
My ventures are not in one bottom trusted,
Nor to one place; nor is my whole estate
Upon the fortune of this present year.

Antonio rests easy at the beginning of the play because he is diversified
across ships, places, and time, although this turns out to be mistaken 
security.

An application of Bernoulli’s logarithmic utility appears in [Weber
(1851)] Ernst Heinrich Weber’s (June 24, 1795–January 26, 1878) Der
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Tastsinn und das Gemeingefühl (1851, “The Sense of Touch and the Com-
mon Sensibility”), one of the founding documents of experimental psy-
chology, which defines the threshold of intensity of any stimulus that must
be reached before it can be noticed, called the “just noticeable difference.”
He proposes that this difference divided by the current intensity of the
stimulus is a constant (Weber’s Law). Gustav Theodor Fechner (April 19,
1801–November 18, 1887), in [Fechner (1860)] Elemente der Psy-
chophysik (1860, “Elements of Psychophysics”), adapted this to explain
why, although the mind and the body appear separate, they are actually
different manifestations of the same reality. He proposed that a change in
sensation (as experienced by the mind) is proportional to the constant
from Weber’s Law.

Menger (1934) points out that concave utility—now commonly
termed “diminishing marginal utility”—is not sufficient to solve general-
ized versions of the St. Petersburg Paradox.4 For example, suppose the
payoff from the gamble were e raised to the power 2n dollars if heads
first appears on the nth toss; then the expected logarithmic utility of the
gamble is:

Indeed, Menger shows that as long as the utility function is un-
bounded, there always exists a St. Petersburg type gamble for which its ex-
pected utility will be infinite. As a result, many economists believe that
boundedness is a prerequisite for a reasonable utility function, although
this continues to be a matter of some controversy.

Menger also discusses another solution to the Paradox that will be
picked up much later by behavioral economists, namely that individuals
tend to ignore completely outcomes with sufficiently small probability of
occurrence—a solution suggested quite early by Georges-Louis Leclerc,
Comte de Buffon (September 7, 1707–April 16, 1788), in [Buffon (1777)]
“Essai d’arithmétique morale,” Supplément à l’Histoire Naturelle 4
(1777). Menger notes that individuals tend to underestimate the probabili-
ties of extreme events, small as well as large, and correspondingly overesti-
mate the probabilities of intermediate events.

Menger’s observation concerning unboundedness led Kenneth Joseph
Arrow, in [Arrow (1965/A)] “Exposition of the Theory of Choice under
Uncertainty,” Essay 2 in Essays in the Theory of Risk Bearing (Chicago:
Markham, 1971), pp. 44–89 (part of which was first published in 1965 as
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Lecture 1 in Aspects of the Theory of Risk Bearing, Yrjo Jahnsson Lec-
tures, Helsinki), reprinted in Collected Papers of Kenneth J. Arrow: Indi-
vidual Choice under Certainty and Uncertainty, Volume III (Cambridge,
MA: Harvard University Press, 1984), pp. 5–41, to conclude that not all
uncertain outcomes could be admitted under the von Neumann–Morgen-
stern (1947) axioms since both the completeness and continuity axioms
could be violated by St. Petersburg gambles of the Menger type unless the
utility function were required to be bounded both below and above. For
example, one could easily imagine two such gambles, one clearly preferred
to another, but both with infinite expected utility. However, these flights of
fancy do not trouble someone like Paul Anthony Samuelson who, in
[Samuelson (1977)] “St. Petersburg Paradoxes: Defanged, Dissected, and
Historically Described,” Journal of Economic Literature 15, No. 1
(March 1977), pp. 24–55, consoles himself that such gambles, while inter-
esting thought experiments, “do not seem to be of moment in real life.”
Nonetheless, the Paradox has played a lengthy and significant role in the
history of the economics of uncertainty, causing Samuelson to conclude
that it “enjoys an honored corner in the memory bank of the cultured an-
alytic mind.”

Samuelson raises perhaps a more troubling objection to unbounded
utility that does not rely on the infinities of the St. Petersburg Paradox.
Suppose there is a payoff $X, arbitrarily large, that an agent can receive
with certainty. If his utility is unbounded above, there will always exist an
even larger amount $Y that the agent will prefer even though he has an ar-
bitrarily small probability of obtaining it. Unbounded utility, then, implies
a sort of extreme form of nonsatiation. On the other side, in [Arrow
(1974)] “The Use of Unbounded Utility Functions in Expected Utility
Maximization: Response,” Quarterly Journal of Economics 88, No. 1
(February 1974), pp. 136–138, reprinted in Collected Papers of Kenneth J.
Arrow: Individual Choice under Certainty and Uncertainty, Volume III
(Cambridge, MA: Harvard University Press, 1984), pp. 209–211, Arrow
proves that if the utility function U(X) is monotone increasing and concave
with U(0) finite and if E(X) is finite, then E[U(X)] will also be finite. There-
fore, if gambles such as the St. Petersburg gamble with infinite expected
value are not available, as a practical matter, even utility functions that are
unbounded above should not present problems.

1780  Jeremy Bentham (February 15, 1748–June 6, 1832), An Introduc-
tion to the Principles of Morals and Legislation (privately printed); full ver-
sion published 1789.
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1906  Vilfredo Pareto (July 15, 1848–August 20, 1923), Manual of Politi-
cal Economy; translated from Italian into English (New York: Augustus
M. Kelly, 1971).

1951  Kenneth Joseph Arrow (August 23, 1921–), “An Extension of the
Basic Theorems of Classical Welfare Economics,” Proceedings of the 2nd
Berkeley Symposium on Mathematical Statistics and Probability; edited by
J. Neyman (Berkeley: University of California Press, 1951), pp. 507–532;
reprinted in Collected Papers of Kenneth J. Arrow: General Equilibrium,
Volume II (Cambridge, MA: Harvard University Press, 1983), pp. 13–45.

ORDINAL VS. CARDINAL UTILITY, PARETO OPTIMALITY,
OPTIMALITY OF COMPETITIVE EQUILIBRIUM

Bentham (1780) advocates that the goal of human life is to obtain happi-
ness, that happiness can be numerically measured, and that, in their

choices, humans make careful hedonic calculations trading off advantages
against disadvantages. Bentham writes:

Nature has placed mankind under the governance of two sover-
eign masters, pain and pleasure. It is for them alone to point out
what we ought to do as well as to determine what we shall do. On
the one hand, the standard of right and wrong, on the other the
chain of cause and effects, are fastened to their throne.

He also believes that wealth is a means to (and hence to some extent
a measure of) happiness, but that greater and greater wealth will result in
continually diminishing increments to happiness—what is now called
“diminishing marginal utility of wealth” (from this he was able to deduce
that gambling is “bad” and insurance is “good”). The goal of society is
to produce the maximum happiness for all, where the numerical value of
the happiness of each of its members is simply equally weighted and
summed to produce the total. Combining these ideas results in the pre-
scription of redistribution of wealth from rich to poor, although Bentham
realized that the benefits of such a policy had to be balanced against a re-
duction in productivity incentives. One of the many problems with this
prescription is how to decide which people are to be included as “mem-
bers” of the society (voters only, men only, citizens only, etc.?). Although
these views have been significantly modified by modern economists, Ben-
tham is nonetheless rightfully deserving of the title “the father of the util-
ity function.”

In contrast, the Greek philosophers believed that each man has a de-
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fined place in the broad scheme of the world; some men are born to be
slaves, and at the other extreme, others—the philosophers—should be the
rulers. Men are naturally superior to women. That one man would work
for the happiness of another, or that one man deserved greater happiness
than others, was fully compatible with their view of justice.

Pareto (1906) realized that he could dispense with the cardinality of
utility (presumed by Bentham) and more weakly simply interpret prefer-
ences as an ordering, yet still derive the same results. But more famously,
he realized that Alfred Marshall’s (July 26, 1842–July 13, 1924) [Mar-
shall (1890)] Principles of Economics, Volume 1 (1890), eighth edition
retitled Principles of Economics: An Introductory Volume (New York:
Macmillan, 1920), and others’ use of utility to make interpersonal wel-
fare comparisons was too strong, and introduced what has ever since
been called “Pareto optimality”: a characterization of a candidate equi-
librium in which no alternative reallocation of commodities across agents
can make some agents better off while making no other agent worse off
(where each agent evaluates his own welfare in terms of his own utility).
Since it was later shown that a competitive equilibrium is Pareto-optimal,
Pareto optimality has become the modern justification for Adam Smith’s
invisible hand.

Arrow (1951) proves the two optimality theorems for the competitive
equilibrium also described in Debreu (1959):

First Optimality Theorem: If an equilibrium exists and all com-
modities relevant to preferences and production are priced by the
market, then the competitive equilibrium must be Pareto-optimal;
that is, any change in the equilibrium allocation of commodities
across consumers cannot make some consumers better off while
making none worse off.

Here we have the modern justification for the invisible hand of Smith
(1776).

Second Optimality Theorem: If there are no increasing returns to
scale in production and certain other minor conditions are met,
then every Pareto-optimal allocation of commodities across con-
sumers is a competitive equilibrium for some initial allocation of
endowments.5

The second theorem implies a very useful way to identify whether a
proposed allocation is Pareto-optimal. Assuming concave utility for all
consumers, an allocation will be Pareto-optimal if and only if it maximizes
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a positively weighted sum of consumer utilities subject to constraints on
the aggregate supply of consumption.

Pareto optimality is one of the modern justifications for a competitive
price system (the others have to do with incentives and the communication
of information (Hayek 1945)): That is, it leads to an allocation of re-
sources across consumers and firms so that there is no other allocation that
can make some consumers better off (relative to it) while making no one
worse off. A secondary justification is that the equilibrium of a competitive
price system lies within “the core of the economy”: the set of allocations
that make everyone at least as well off relative to one’s endowed allocation
(everyone is born into the economy with given endowed resources).

Of course, the set of Pareto-optimal allocations is not unique and the
competitive price system simply picks one of them. But Arrow shows that
every Pareto-optimal allocation can be attained through a competitive
price system by an appropriate reshuffling of endowments (before any ex-
change or production has occurred) among consumers. So the exact
Pareto-optimal allocation the society wants can be reached by first redis-
tributing wealth and then letting the price system do its magic. Since mod-
ern economists eschew interpersonal welfare comparisons, it is not the
province of economics to say what that initial wealth distribution should
be—these are matters for political science. Economics always ducks the re-
ally hard questions.

Proofs of these theorems were independently discovered by Gerard De-
breu in [Debreu (1951)] “The Coefficient of Resource Utilization,” Econo-
metrica 19, No. 3 (July 1951), pp. 273–292, and in [Debreu (1954)]
“Valuation Equilibrium and Pareto-Optimum,” Proceedings of the Na-
tional Academy of Sciences (1954).

1835  Lambert Adolphe Jacques Quetelet (February 22, 1796–February
17, 1874), Sur l’homme et le développement de ses facultés, ou Essai de
physique sociale (Paris: Bachelier, 1835); translated from French into Eng-
lish as A Treatise on Man and the Development of His Faculties (Edin-
burgh: Chambers, 1942).

AVERAGE OR REPRESENTATIVE MAN, NORMAL DISTRIBUTION,
PROBABILITY IN THE SOCIAL SCIENCES

L’homme moyen, or the “average man,” the most famous fictional char-
acter in the social sciences, makes his debut in Quetelet (1835).

Quetelet constructs his average man from a sample of about 100,000
French conscripts, measuring their average height and weight. He even
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goes so far as to determine from arrest records the propensity of the aver-
age man to commit a crime. The “average man” who became better
known as the “representative man,” was to play a central role in the devel-
opment of financial economics more than a century later.

Quetelet’s second important contribution was to assume that many
natural processes, if properly sorted, conform to a normal curve. As noted
to me by my student, Luca Barone, we may also owe to Plato (427 B.C.–
347 B.C.), with some liberality of interpretation, the first written descrip-
tion of a unimodal symmetric frequency distribution, along with the belief
that most traits are naturally distributed in that manner:

. . . for experience would have taught him that the true state of
the case, that few are the good and few the evil, and that the
great majority are in the interval between them. I mean . . . as
you might say of the very large and very small—that nothing 
is more uncommon than a very large or a very small man; and
this applies generally to all extremes, whether of great and
small, or swift and slow, or fair and foul, or black and white:
and whether the instances you select be men or dogs or anything
else, few are the extremes, but many are in the mean in between
them. (Great Books of the Western World: Plato, Volume I:
Phaedo, Franklin Center, PA: Franklin Library, 1979, pp. 385–
439, especially p. 415)

Quetelet added the more specific property of normality,6 observing
that a key requirement for his result is that the sample be sufficiently ho-
mogeneous in all ways but the single source of variation under examina-
tion. So confident was he of his normal law that when he observed
considerably more conscripts in the lowest-height group than he observed
in the next higher group, he concluded that the large number in the lowest
group, where service was voluntary, was evidence that about 2,000 men
had fraudulently avoided conscription.

In 1843, Antoine-Augustin Cournot (August 18, 1801–March 31,
1877) in [Cournot (1843)] Exposition de la théorie des chances et des
probabilities (Paris: Hachette, 1843) expressed serious reservations about
the application of probability theory to the social sciences. This is all the
more surprising coming from Cournot, who in 1838 can be credited with
introducing mathematical methods into economics. His argument, like his
1838 book, was well ahead of its time. The problem lay in choosing
testable hypotheses. He believed that the social sciences offered such a
large variety and number of ways of sorting and classifying data that some
samples that would seem to support hypotheses could not be relied upon,
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since by chance some hypotheses would necessarily be spuriously statisti-
cally significant. He writes:

It is evident that as the number of divisions increases without
limit, it is a priori more and more probable that, by chance alone,
at least one of the divisions will produce ratios of male to female
births for the two classes that are sensibly different.

In particular, Cournot worried that it would be tempting to choose hy-
potheses after peeking at the data to be used for the test. Today we have a
name for this pernicious error: “data mining.”

At the other extreme lay the views of Henry Thomas Buckle, who, in
History of Civilization in England, Volume 1 (London: J.W. Parker,
1857), looked forward to the day when the power of statistics would
forge laws of the social sciences and afford a comparable predictability to
that acquired by physics through the use of mathematics. The future, of
course, was to reveal that the truth lay in between the visions of Cournot
and Buckle. But even in the mid-twentieth century, the most famous of sci-
ence fiction sagas, The Foundation Trilogy (1951–1953) by Isaac Asimov
(January 2, 1920–April 6, 1992), predicted that a kind of social statistical
mechanics applied on a galactic scale would eventually permit statistically
significant forecasts of dominant social trends that lay hundreds of years
in the future.

1900  Louis Bachelier (March 11, 1870–April 26, 1946), “Théorie de la
spéculation,” Annales Scientifiques de l’Ecole Normale Supérieure 17
(Third Series 1900), pp. 21–86; translated from French into English by A.
James Boness, “The Theory of Speculation,” in The Random Character of
Stock Market Prices, edited by Paul H. Cootner; reprinted (London: Risk
Publications, 2000), pp. 18–91; also reprinted in the original French as
“Théorie de la speculation & théorie mathématique de jeu,” Les Grandes
Classiques Gauthier Villars (Paris: Éditions Jacques Gabay, 1995), Part 1,
pp. 21–86.

BROWNIAN MOTION, OPTION PRICING, 
RANDOM WALK, NORMAL DISTRIBUTION

Bachelier (1900) in this doctoral thesis shows that probability theory can
be used to describe the movement of security prices. His is very likely

the first such attempt of which there is record. Bachelier gives the first
mathematical description of a continuous-time, continuous-state stochastic
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process (arithmetic Brownian motion), amazingly with the goal of valuing
“options” (French rentes, or perpetual government bonds). Although that
goal was only partially realized, his paper—a thesis submitted to the Acad-
emy of Paris—anticipated Einstein’s work on Brownian motion by six
years as well as the mathematical basis for the Black-Scholes formula
(which is based on geometric Brownian motion) by 73 years.

He precociously anticipated the now-ubiquitous assumption of ran-
dom walks and normal distributions. He justified randomness by arguing
that at the current price there must be as many buyers who believe the
price will rise as there are sellers who believe that the price will fall. And
since there is no reason to think that either group is wiser than the other,
the probability must be about the same that the next price change will be
up or down. So he concluded that a trader should expect to make zero
profit, and that the market is therefore a “fair game.”

The implications of the random walk of prices led Bachelier to dis-
cover the now well-known result that volatility expands in proportion to
the square root of time,7 and he derives a differential equation governing
the asset price diffusion. He observes that if price changes are serially inde-
pendent and identically distributed random variables with finite variance
observed over reasonably short intervals, then price changes across longer
intervals will be approximately normally distributed according to the
Pierre-Simon Marquis de Laplace (March 23, 1749—March 5, 1827) cen-
tral limit theorem from his [Laplace (1814)] Essai philosophique sur les
probabilités (A Philosophical Essay on Probabilities), 1814. Bachelier also
derives the first published option pricing formula and then goes on to test it
empirically, noting a strong resemblance between his theoretical values and
market prices. He ends his thesis by writing:

Perhaps a final remark will not be pointless. If, with respect to sev-
eral questions treated in this study, I have compared the results of
observation with those of theory, it was not to verify the formulas
established by mathematical methods, but only to show that the
market, unwittingly, obeys a law which governs it, the law of
probability. (p. 87)

This Vincent van Gogh of financial economics received only average
marks on his thesis. Ironically, we can see now that it is undoubtedly the
finest thesis ever written in financial economics. In 1906, he published
“Théorie des probabilités continues” (Paris: Gauthier-Villars), in which he
defined several types of stochastic processes, including Markov and Ornstein-
Uhlenbeck processes, which were subsequently rediscovered; and he de-
scribed stochastic processes in terms of their drift and diffusion coefficient.
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Despite this, he could not find an academic job until several years later; and
even then, he had to settle for an obscure teaching post until he retired in
1937, nine years before his death in 1946. Unfortunately forgotten for more
than 50 years, Bachelier’s thesis was rediscovered by Paul Anthony Samuel-
son, who said in the transcript of the PBS television program “NOVA 2074:
The Trillion Dollar Bet,” broadcast February 8, 2000:

In the early 1950s I was able to locate by chance this unknown
book, rotting in the library of the University of Paris, and when
I opened it up it was as if a whole new world was laid out before
me. In fact as I was reading it, I arranged to get a translation 
in English, because I really wanted every precious pearl to be
understood.8

1921  Frank Hyneman Knight (November 7, 1885–April 15, 1972), Risk,
Uncertainty and Profit (Boston: Houghton Mifflin, 1921).

RISK VS. UNCERTAINTY, 
SOURCE OF BUSINESS PROFIT, DIVERSIFICATION

Knight (1921) is known primarily for two ideas. The first is his distinc-
tion between “risk” and “uncertainty,” and the second is his location of

the source of “profit” in the returns from exposure of business activities to
uncertainty. Knight’s analysis is somewhat confusing, tempting the false in-
terpretation of his writing in too modern a light. With that in mind, Knight
associates risk with circumstances in which probabilities can be more or
less objectively measured, or in which the law of large numbers can be
brought into play to eliminate all uncertainty by combining the results of
several related endeavors.

As we have repeatedly pointed out, an uncertainty which can by
any method be reduced to an objective, quantitatively determinant
probability, can be reduced to complete certainty by grouping
cases. (Chapter 7)

On the other hand, singular events or events for which science can
make no clear predictions are associated with uncertainty. In human af-
fairs, prominent among the latter are judgments of the decision-making
skill of other human beings. Knight believed that for uncertain events it is
meaningless to speak of them probabilistically—a view that was later to
play a significant role in challenges to the usefulness of maximizing ex-
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pected utility based on subjectively formed probability beliefs, in particu-
lar, Ellsberg (1961).

Richard Cantillon (circa 1690–May 14, 1734), in [Cantillon (1755]
his 1755 Essay of the Nature of Commerce (but written in the 1720s), had
realized quite early that the source of profit within a firm was the remuner-
ation that was contingent on the success of the firm after all fixed payment
contracts are honored, including interest, wages, and rent. However, in a
competitive economy under certainty all profit is competed away so that
profits are zero in equilibrium. Knight therefore argued that profits could
arise only in an economy where the future was not known with certainty.
Perhaps with some license, representing his theory with mathematics
(which Knight did not do), I can write:

rj = r + δj + εj

where rj is the realized return to the stockholders of a firm j, r is the riskless
return, εj is the portion of the realized return of the firm that it can, in prin-
ciple, eliminate by diversification. Today we would call εj the return from
“residual risk.” That leaves δj, the portion of the return that Knight would
associate with uncertainty and a measure of Knight’s notion of “profit.”
Knight associates profit then with the random portion of a firm’s return
that cannot be eliminated by diversification, hedged, or insured. What
causes this portion of the return? Knight argues that if probability distribu-
tions cannot be objectively measured, their uncertainty cannot be diversi-
fied away. And most significantly, the results of human judgments in
deciding the course of a firm and in choosing individuals to whom to dele-
gate authority within the firm cannot be measurably predicted with proba-
bilities. So it is “entrepreneurship” that is the ultimate source of profit.

The only “risk” which leads to profit is a unique uncertainty re-
sulting from an exercise of ultimate responsibility which in its very
nature cannot be insured nor capitalized nor salaried. Profit arises
out of the inherent, absolute unpredictability of things, out of the
sheer brute fact that the results of human activity cannot be antici-
pated and then only in so far as even a probability calculation in
regard to them is impossible and meaningless. (Chapter 10)

What is the expected value of δj? For Knight, a good guess made by the
market would be that E(δj) < 0 for what we would now call behavioral rea-
sons: (1) the tendency of entrepreneurs to be overconfident and therefore to
overinvest, (2) overpaying because of failure to appreciate the so-called win-
ner’s curse, (3) the reluctance to abandon an effort once the commitment
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has been made, and (4) the satisfaction of working for oneself. But clearly
Knight had no real concept of what today we could call “systematic risk,”
that is, risk borne by the whole society from which an individual cannot es-
cape without sacrificing expected return.

1923  John Maynard Keynes (June 5, 1883–April 21, 1946), “Some As-
pects of Commodity Markets,” Manchester Guardian (1923).

1949  Holbrook Working (1895–October 5, 1985), “The Theory of Price
of Storage,” American Economic Review 39, No. 6 (December 1949),
pp. 1254–1262.

SPOT VS. FORWARD PRICES, FORWARD VS. EXPECTED PRICES,
NORMAL BACKWARDATION, CONVENIENCE YIELD, 

HEDGING VS. SPECULATION

One of the earliest issues in financial economics that attracted the atten-
tion of economists was the question of the normal relation between to-

day’s price for future delivery (the futures or forward price F0) and the
expected future underlying asset price on the delivery date E(St). In his
newspaper article, Keynes (1923) first formulated his theory of “normal
backwardation” in the futures market, arguing that F0 is typically less than
the expected value of St. He believed that hedgers who were naturally short
would have to pay speculators a risk premium to convince them to accept
their risk. Keynes spelled his argument out in more detail in [Keynes
(1930)] A Treatise on Money, Volume II: The Applied Theory of Money
(London: Macmillan, 1930), pp. 142–147.

Of course, it was understood quite clearly that for certain types of un-
derlying assets, arbitrage reasoning (and I will update this and add risk
aversion) creates a form of normal backwardation. For example, if the un-
derlying asset is a stock market index, assuming no arbitrage and perfect
markets, F0 = S0(r/d)t, where S0 is the current underlying asset price, r is the
riskless return, d is the payout return on the index, and t is the time to de-
livery. Typically, since risk aversion implies that E(St) > S0(r/d)t, taken to-
gether this implies that F0 < E(St).

The really interesting situation relates to underlying assets that are
used for consumption or production purposes (that is, commodities). For
these, because the underlying commodity may not be easily shorted (bor-
rowed and sold), arbitrage cannot force F0 = S0(rc)t, where c is one plus
the rate of storage cost; rather it can only assure that S0c

t ≤ F0 ≤ S0(rc)t. It
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is also possible for commodities that E(St) < S0(rc)t. Therefore, the ques-
tion becomes interesting whether after accounting for the opportunity
costs of holding the underlying commodity, its forward price will be less
than its expected future spot price: F0 < E(St)/(rc)t. This creates an extra
benefit to current owners of the commodity dubbed a “convenience
yield” by Nicholas Kaldor in [Kaldor (1939)] “Speculation and Eco-
nomic Stability,” Review of Economic Studies 7, No. 1 (October 1939),
pp. 1–27.

As stated by John R. Hicks (April 8, 1904–May 20, 1989), in [Hicks
(1939)] Value and Capital: An Inquiry into Some Fundamental Principles
of Economic Theory (Oxford: Clarendon Press, 1939, and revised second
edition, 1946), investors will typically have to be induced to buy commod-
ity futures since it is not a position they would naturally prefer:

They know that the demands and supplies which can be fixed up
in advance for any particular date [by a forward contract] may
have little relation to the demands and supplies which will actually
be forthcoming at that date; and, in particular, they cannot foretell
at all exactly what quantities they will themselves desire to buy or
sell at a future period. Consequently, the ordinary business man
only enters into a forward contract if by doing so he can “hedge”—
that is to ssay, if the forward transaction lessens the riskiness of his
position. And this will only happen in those cases where he is
somehow otherwise committed to making a sale or a purchase. . . .
[T]echnical conditions give the entrepreneur a much freer hand
about the acquisition of inputs (which are largely needed to start
new processes) than about the completion of outputs (whose
process of production . . . may already have begun). Thus, while
there is likely to be some desire to hedge planned purchases, it
tends to be less insistent than the desire to hedge planned sales.
(second edition, p. 137)

Keynes and Hicks believed that typically businessmen have much more
flexibility (today, we might say they have more valuable “real options”) in
choosing when, if, and from whom to buy inputs needed for production
than they have to sell outputs they were often partially or fully committed
to produce. So there is, in their language, a “congenital weakness” on the
demand side for commodities. Taking up the slack on the buy side of the
forward transaction are the speculators who, because they lack a natural
reason to be long, require a convenience yield (that is, a lower forward
price) to be induced to go long and take that risk.
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Since the expected future spot price is not observable, the signature of
normal backwardation will be the tendency of the forward price to rise
(more than the opportunity costs of holding the commodity would suggest)
as the delivery date approaches.

It is commonly thought that today’s futures price is largely determined
by today’s expectation of the future spot price on the delivery date of the
future. Further, differences in the futures prices for different delivery dates
for otherwise identical futures are often thought to reflect differences in ex-
pectations concerning future spot prices corresponding to the two dates.
Working (1949/December) argues that this is not generally correct.

He notes that the ratio of the futures prices quoted in the market at
time t (say January 2006) for delivery of a commodity at time t + k (say
September 2006) to the same commodity at time t + h (say March 2006)
where 0 < h < k often stays constant even as the spot price of the commod-
ity changes or as changes in expected future harvests occur. Working points
out that the key condition for this to hold is that current stocks of the com-
modity be plentiful relative to expected future stocks and that it be possible
to store the commodity to carry it forward. For then, the current price of
the commodity can adjust so that an owner of the commodity is indifferent
among selling it for consumption at t, t + h, or t + k, provided only that he
is compensated for the cost of storing the commodity should he decide to
keep it in inventory. Since storage costs are presumably higher the longer
the commodity is stored, the futures price for delivery at increasingly dis-
tant dates will be higher than at earlier dates, and the difference will be the
cost of storage.

But occasionally the futures prices are inverted so that the nearer-term
futures price is higher than the farther-term futures price. This can happen
if current stocks may be low relative to current demand and future harvests
are expected to be large. In that case, it may not be desirable to carry any
of the current stock forward, and all of it should be consumed before the
next harvest. This decouples the futures price from the cost of storage and
creates “convenience yield.”

1930  Irving Fisher (February 27, 1867–April 29, 1947), The Theory of In-
terest: As Determined by Impatience to Spend Income and Opportunity to
Invest It (New York: Macmillan, 1930); reprinted (New York: Augustus
M. Kelley, 1955).

INTERTEMPORAL CONSUMPTION, PRODUCTION, 
AND EXCHANGE, RATE OF INTEREST, FISHER EFFECT,

IMPATIENCE VS. OPPORTUNITY, 
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FISHER SEPARATION THEOREM, COMPETITIVE MARKETS,
UNANIMITY VS. PARETO OPTIMALITY, REAL OPTIONS,

SPECULATION, CAPITAL BUDGETING

F isher (1930) is the seminal work for most of the financial theory of in-
vestments during the twentieth century. Fisher refines and restates many

earlier results that had appeared in his [Fisher (1896)] Appreciation and
Interest; [Fisher (1906)] The Nature of Capital and Income (New York:
Macmillan, 1906), reprinted (New York: Augustus M. Kelley, 1965); and
[Fisher (1907)] The Rate of Interest. As Fisher states, some of his ideas
were foreshadowed by John Rae (June 1, 1796–July 12, 1872), to whom
Fisher dedicates his 1930 book, in [Rae (1834)] Statement of Some New
Principles on the Subject of Political Economy, Exposing the Fallacies of
the System of Free Trade, and Some Other Doctrines Maintained in “The
Wealth of Nations” (Boston: Hilliard Gray & Co., 1834). Fisher develops
the first formal equilibrium model of an economy with both intertemporal
exchange and production. In so doing, at one swoop, he not only derives
present value calculations as a natural economic outcome in calculating
wealth, he also justifies the maximization of present value as the goal of
production and derives determinants of the interest rates that are used to
calculate present value.

He assumes each agent is both the consumer and the producer of a sin-
gle aggregate consumption good under certainty. This single-good simplifi-
cation allows him to abstract from the unnecessary complications of the
multicommodity Walrasian paradigm, and has ever since been at the heart
of theoretical research in finance. At each date, exchange is effected by
means of a short-term default-free bond maturing at the end of the period.
In this context, among its many contributions to economic thought are (1)
an analysis of the determinants of the real rate of interest and the equilib-
rium intertemporal path of aggregate consumption, (2) the “Fisher effect”
relating the nominal interest rate to the real interest rate and the rate of in-
flation, and (3) the Fisher Separation Theorem justifying the delegation of
production decisions to firms that maximize present value, without any di-
rect dependence on shareholder preferences, and justifying the separation
of firm financing and production decisions. Most subsequent work in the
financial theory of investments can be viewed as further elaboration, par-
ticularly to considerations of uncertainty and to more complex financial in-
struments for the allocation of consumption across time and across states
of the world.

Fisher reconciles the two previous explanations of the rate of interest,
one based on productivity (“opportunity”) and the other based on con-
sumer psychology, or time preference—“impatience,” a term coined by
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Fisher (1907) in The Rate of Interest—showing that they are jointly needed
for a comprehensive theory: “So the rate of interest is the mouthpiece at
once of impatience to spend income without delay and of opportunity to
increase income by delay” (p. 495).

Fisher describes his economy in three ways: in words, with graphs, and
with equations. It is interesting that, even at this time in the development
of economic thought, Fisher finds it necessary to justify the usefulness of
algebraic formulations, pointing out that by this method one could be sure
that the number of unknowns and number of independent equations are
the same. In addition, he writes:

The contention often met with that the mathematical formulation
of economic problems gives a picture of theoretical exactitude un-
true to actual life is absolutely correct. But, to my mind, this is
not an objection but a very definite advantage, for it brings out
the principles in such sharp relief that it enables us to put our fin-
ger definitely on the points where the picture is untrue to real life.
(p. 315)9

Fisher develops a simple example with just two time periods and three
consumers for the case where only consumer time preference determines
interest rates. Let:

r be the equilibrium riskless return.

C0
i,C1

i be the endowed consumption of consumer i at dates 0 and 1.

x0
i, x1

i be the amount of borrowing or lending of consumer i at dates 0
and 1 that each consumer can choose subject to his or her budget
constraint: x0

i + x1
i/r = 0.

C0
i ≡ C0

i + x0
i, C1

i ≡ C1
i + x1

i be the optimal amounts of consumption that
consumer i chooses at dates 0 and 1.

He then assumes that a consumer’s rate of time preference will depend on
the chosen consumption stream: fi = Fi(C0

i, C1
i) is the rate of time preference

of consumer i.
In the appendix to his Chapter 12, Fisher relates the rate of time pref-

erence to the utility of consumption, Ui(C0
i, C1

i) such that: fi =
[Ui′(C0

i)/Ui′(C1
i)] – 1.

He argues that in equilibrium the rate of time preference of each con-
sumer must equal the riskless return, so that:

f1 = f2 = f3 = r
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For the market to clear, he requires that net borrowing and lending at each
date across all consumers be 0: x0

1 + x0
2 + x0

3 = 0 and x1
1 + x1

2 + x1
3 = 0. The

seven unknowns, C0
1, C0

2, C0
3, C1

1, C1
2, C1

3, and r are matched by seven inde-
pendent equations.
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Fisher’s Economy

A modernized representative agent proof would go something like this.
Let:

U(C0), U(C1) be the utility of consumption at dates 0 and 1.

ρ be the rate of patience.

Ω0 be the initial endowment of the consumption good.

X0 be the amount of Ω0 used up in production so that C0 = Ω0 – X0.

f(X0) be the output from production of date 1 consumption so that
C1 = f(X0).

W0 be the current wealth of the consumer so that W0 = C0 + C1/r.

Assume that U′(C) > 0 (nonsatiation), U″(C) < 0 (diminishing marginal
utility), 0 < ρ < 1 (tendency to prefer current over future consumption),
f ′(X0) > 0 (more input yields more output), and f″(X0) < 0 (diminishing
returns to scale).

The production problem for the consumer is:

Substituting in the constraints, differentiating the utility function, and set-
ting the derivative equal to zero to characterize the maximum, it follows
that:

The exchange problem for the consumer is:

(Continued)

max ( ) ( )
,C C

U C U C W C
C
r0 1

0 1 0 0
1+ = +ρ  subject to 

′
′

= ′U C
U C

f X
( )
( )

( )0

1
0ρ

max ( ) ( ) ( )
,C C

U C U C C X C f X
0 1

0 1 0 0 0 1 0+ = − =ρ  subject to  and Ω

ccc_rubinstein_pt01_1-98.qxd  1/12/06  1:40 PM  Page 57



58 A HISTORY OF THE THEORY OF INVESTMENTS

Fisher’s Economy (Continued)

Again, substituting in the constraint, differentiating the utility function,
and setting the derivative equal to zero, it follows that:

Gathering these two results together:

(1)

Thus, we have Fisher’s two-sided determinants of the interest rate: The
equilibrium riskless return equals what we would call today the mar-
ginal rate of substitution (what Fisher called “the rate of time prefer-
ence”), and it equals the marginal productivity of capital.

For a more concrete example, suppose U(Ct) = log Ct and f(X0) =
αX0

β with 0 < β < 1 and α > 0. These satisfy the required derivative con-
ditions on utility and the production function. α can be interpreted as a
pure measure of productivity since the greater α, the more output from
any given input. Substituting into equation (1):

Solving this for the unknowns C0 and r:

Differentiating the solution for the riskless return:

So we see a pure isolation of the effects of Fisher’s impatience (ρ) and
opportunity (α) on the interest rate.

dr
dρ

α β ρ ρβ
ρβ

β
β

= −
+
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1

00
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Fisher also claims that separate rates of interest for different time peri-
ods are a natural outcome of economic forces, and not something that can
be arbitraged away in a perfect market.

The other corollary is that such a formulation reveals the necessity
of positing a theoretically separate rate of interest for each sepa-
rate period of time, or to put the same thing in more practical
terms, to recognize the divergence between the rate for short terms
and long terms. This divergence is not merely due to an imperfect
market and therefore subject to annihilation, as Böhm-Bawerk,
for instance, seemed to think. They are definitely and normally
distinct due to the endless variety in the conformations of income
streams. No amount of mere price arbitrage could erase these dif-
ferences. (p. 313)10

More generally, Fisher argues that the rate of interest is determined by:
(1) the relative distribution of endowed resources across time, (2) time
preferences of consumer/investors, (3) production opportunities that pro-
vide a way of transforming aggregate current endowments into aggregate
future consumption, (4) the general size of endowed resources, (5) risk
aversion and the time structure of risk, and (6) the anticipated rate of infla-
tion. With a noticeably behavioral orientation, Fisher attributed factor (2)
to lack of foresight, lack of self-control, habit formation, expected lifetime,
and a bequest motive. He shows how all six factors will affect the decisions
made by economic agents and how these decisions will aggregate up to de-
termine the equilibrium rate of interest.

Fisher then considers a number of potential objections to his theory.
An objection still popular is that tying the determinants of interest to as-
pects of intertemporal consumption choice may be elegant, but narrow. In
fact, interest is largely determined by the “supply and demand for loanable
funds.” Fisher replies that this supply and demand is the intermediate ef-
fect of the fundamental underlying needs of producers to maximize present
value and of consumers to optimally balance their consumption over their
lifetimes. But he also admits that there may be myriad institutional influ-
ences on interest rates that he has not considered, but that these factors
will be secondary.

Fisher worded his separation result as follows:

But we see that, in such a fluid world of options as we are here as-
suming, the capitalist reaches the final income through the cooper-
ation of two kinds of choice of incomes which, under our
assumptions, may be considered and treated as entirely separate.
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To repeat, these two kinds of choice are: first, the choice from
among many possible income streams of that particular income
stream with the highest present value, and secondly, the choice
among different possible modifications of this income stream by
borrowing and lending or buying and selling. The first is a selec-
tion from among income streams of differing market values, and
the second, a selection from among income streams of the same
market value. (p. 141)11

This “separation” must be carefully interpreted to mean that the second
choice is not independent of the first choice. In order to know what second
choice to make, the implications of the first choice must be known. How-
ever, the first choice can be made before making the second. Fisher also
made it quite clear that his separation result depends on a competitive mar-
ket where capitalists are “unconscious” of any impact they might have on
interest rates, and he made it clear that his result requires the equivalency
of borrowing and lending rates (perfect markets).

This suggests that, provided firms act as competitive present value
maximizers, firms can make the same production decisions their sharehold-
ers would make on their own without knowledge of their time preferences
or their endowments. If true, this dramatically simplifies the problem of re-
source allocation in a competitive economy.

Despite this, Mark Rubinstein, in [Rubinstein (1978)] “Competition
and Approximation,” Bell Journal of Economics 9, No. 1 (Spring 1978),
pp. 280–286, argues that the widely believed Fisher Separation Theorem
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Proof of Fisher’s Separation Theorem

To derive the separation theorem, continuing with our earlier example,
suppose the production decision were delegated to a competitive present
value–maximizing firm. Such a firm would then choose X0 to:

where it disregards any influence it may have over r (that is, it chooses
X0 as if dX0/dr = 0). Differentiating the present value and setting the de-
rivative equal to zero, it follows that: r = f ′(X0), precisely the decision
that representative consumers would have made on their own.

max
( )

X
X

f X
r0

0
0− +
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(in perfect and competitive financial markets, firms that choose invest-
ments that maximize present value make choices unanimously preferred by
all their stockholders) is essentially incorrect, particularly in a market of
well-diversified investors, because it is not robust to the assumption of
competition.

Perfect competition is sometimes defined to require that no firm by its
actions can have any influence whatsoever on prices. Joan Violet Robinson
(October 31, 1903–August 5, 1983), in [Robinson (1934)] “What Is Per-
fect Competition?,” Quarterly Journal of Economics 49, No. 1 (November
1934), pp. 104–120, takes issue with the practical implausibility of this re-
quirement for commodities with rising marginal costs of production (nec-
essary if more than one firm is to survive in a market where all firms sell
the same commodity at the same price), for then the number of firms must
literally be infinite. With a finite number of firms, when one firm increases
its output, the corresponding decrease in the optimal output of other firms
will partially but not completely offset the increase, leaving prices some-
what changed. She concludes:

Let us agree to call competition perfect if the price cut associated
with a unit increase of output by one firm is less than a certain def-
inite amount. Then for any given slope in the marginal cost curves,
there is a certain number of firms which will make competition
perfect. This number will be smaller the smaller the slope of the
marginal cost curves, and greater the greater the slope of the mar-
ginal cost curves. (p. 119)12

If competition is defined according to Robinson’s classic paper, then
unanimity generally (or, as an empirical matter, probably typically) will not
occur. This can be demonstrated even in a single-period economy under
certainty. The basic idea is that with a large number of small firms, while
the production decision of any one firm has a very small effect on the inter-
est rate (effect 1), well-diversified investors allocate only a very small por-
tion of their wealth to each firm. Therefore, each firm also has only a very
small influence on their wealth (effect 2). Thus, in voting for the firm’s pro-
duction decision, each investor must make the trade-off between two small
effects. Since some investors (lenders) will want a higher interest rate and
others (borrowers) a lower rate, they will disagree. Matters are not saved
by increasing the number of firms, since, as the paper shows, each of the
two effects diminishes at the same rate.

Although the competitive present value decision is not generally
unanimously supported by all investors (unless they are identical),
nonetheless it remains Pareto-optimal. The paper argues that the great
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virtue of present value maximization is that it is the only way a firm can
make Pareto-optimal investment decisions irrespective of the identities
of its shareholders. Despite the publication of this paper more than 20
years ago, introductory texts in finance continue ultimately to justify
maximization of present value on the false basis of unanimity. One
prominent text continues to list unanimity as the first of seven great
ideas of financial economics.

Fisher may also have been the first economist to emphasize the role of
what are now called “real options” in increasing the flexibility of produc-
tion opportunities, which now play a key role in modern treatments of pre-
sent value for corporate investments:

This brings us to another large and important class of options;
namely the options of effecting renewals and repairs, and the op-
tions of effecting them in any one of many different degrees. . . .
But the owner has many other options than that of thus maintain-
ing a constant stock of goods. He may choose to enlarge his busi-
ness as fast as he makes money from it. . . . A third option is
gradually to go out of business. . . . Another case of optional in-
come streams is found in the choice between different methods of
production, especially between different degrees of so-called capi-
talist production. . . . The alternatives constantly presented to
most business men are between policies which may be distin-
guished as temporary and permanent. The temporary policy in-
volves use of easily constructed instruments which soon wear out,
and the permanent policy involves the construction at great cost of
instruments of great durability. . . . In all cases, the “best” results
are secured when the particular series of renewals, repairs, or bet-
terments is chosen which renders the present value of the prospec-
tive income stream the maximum. (pp. 194–199)13

Fisher also discusses dynamic properties of interest rate changes,
whereby, for example, increasing interest rates leads to a change in the uti-
lization of production opportunities that in turn tends to stabilize interest
rates, creating the mean reversion we typically observe.

While Fisher provides a qualitative discussion of the first-order effects
of uncertainty, he expresses considerable pessimism about prospects for
formal generalization of his theory:

To attempt to formulate mathematically in any useful, complete
manner the laws determining the rate of interest under the sway of
chance would be like attempting to express completely the laws
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which determine the path of a projectile when affected by random
gusts of wind. Such formulas would need to be either too general
or too empirical to be of much value. (p. 316)14

So Fisher left it for others to explain a wide variety of economic phenom-
ena such as insurance, the use of both debt and equity, the demand for liq-
uidity, the use of diversified portfolios, and the extreme diversity of types
of securities with differing returns, all of which largely rely on uncertainty
for their existence.

In his earlier book, The Nature of Capital and Income, Fisher
(1906) expressed his views about the rationality of markets and the role
of speculation:

The evils of speculation are particularly acute when, as generally
happens with the investing public, the forecasts are not made in-
dependently. A chief cause of crises, panics, runs on banks, etc.,
is that risks are not independently reckoned, but are a mere mat-
ter of imitation. . . . Where, on the other hand, speculation is
based on independent knowledge, its utility is enormous. It op-
erates both to reduce risk by utilizing the special knowledge of
speculators, and also to shift risk from those who lack this
knowledge to those who possess it. . . . Risk is one of the direst
economic evils, and all of the devices which aid in overcoming
it—whether increased guarantees, safeguards, foresight, insur-
ance or legitimate speculation—represent a great boon to hu-
manity. (pp. 296–300)

Jack Hirshleifer in [Hirshleifer (1958)] “On the Theory of Optimal In-
vestment Decision,” Journal of Political Economy 66, No. 4 (August
1958), pp. 329–352, integrates the theory of capital budgeting by firms
into Fisher’s model of simultaneous consumption and investment choice,
setting a strong economic foundation and resolving a number of controver-
sies concerning the use of present value and the internal rate of return as
investment criteria. In addition, he considers the impact of certain market
imperfections such as differences between borrowing and lending rates and
capital rationing, as well as mutually exclusive investments.

1931  Harold Hotelling (September 29, 1895–December 26, 1973), “The
Economics of Exhaustible Resources,” Journal of Political Economy 39,
No. 2 (April 1931), pp. 137–175.
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EXHAUSTIBLE RESOURCES, HOTELLING’S RULE, 
EXTRACTION AS AN OPTION, GOLD

A ssuming (as we would say today) no arbitrage, perfect and competitive
markets, and certainty, Hotelling (1931) derives the result that the price

of an exhaustible resource (e.g., precious metal, copper, oil, etc.) must
grow over time at the riskless rate of interest. This is often called
“Hotelling’s Rule.” So if P0 is its price per unit today, then after elapsed
years t > 0 with per annum riskless interest return r, its price will be Pt =
P0r

t. He reasons thus. In competitive equilibrium, the resource must be ex-
tracted at a rate such that at the margin there will be no gain from shifting
extraction between any two periods. For that to be true, the present value
of owning the resource must be the same whether one chooses to extract
and sell the resource today or at any date t > 0. But if that is true, then the
undiscounted price must be growing at the riskless rate of interest; that is,
if P0 = PV0(Pt), then Pt = P0r

t. With extraction costs, the rule must be revised
to say that the price net of extraction costs grows at the rate r – 1.
Hotelling then argued that the prevalent fear that an exhaustible resource
will be exhausted too quickly is typically misplaced. As long as the re-
source’s industry is competitive, it will be extracted at the socially optimal
rate, requiring no government intervention.

Hotelling left it for others to generalize his rule to uncertainty. It is use-
ful to distinguish between two types of uncertainty: (1) uncertainty of sup-
ply, arising from either extraction costs, the contents of the mine, or the
rate of exploration, and (2) uncertainty in demand (that is, in the future
value of using the resource). Financial economists have taken a particular
interest in the latter. For example, consider an oil well with known con-
tents and known extraction costs; at what rate should the oil be extracted?
Octavio A. Tourinho in [Tourinho (1979)] “The Option Value of Reserves
of Natural Resources,” unpublished working paper (September 1979),
University of California at Berkeley, was the first to analyze this problem as
an option. He compares the decision to extract the resource to the decision
to exercise a perpetual payout-protected American call option on the price
of oil with a known and fixed strike price (i.e., the cost of extraction).
Paradoxically, just as one would never optimally exercise such a call option
early (Samuelson-Merton 1969), so, too, it would seem one would never
extract the resource. Tourinho’s solution was to suppose that the extrac-
tion cost was growing at a sufficient rate over time to make extraction op-
timal. However, if extraction costs are constant over time, then Tourinho
leaves the paradox unresolved. Clearly, the economy should not choose
never to consume oil, for example, even if extraction costs were known
and fixed. While subsequent analysis has largely resolved this paradox for
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exhaustible resources used for consumption, the paradox still remains for a
resource such as gold, which is overwhelmingly held for investment and
not consumption purposes, even in situations where there is no fear of na-
tional expropriation of a privately held mine.

Michael John Brennan, in [Brennan (1990)] “Latent Assets,” Journal
of Finance 45, No. 3 (July 1990), pp. 709–730, Presidential Address to the
American Finance Association, considers this paradox: Why should any-
one mine gold when gold is held almost exclusively for investment pur-
poses, the cost of extraction increases more slowly than the rate of interest,
and the mine cannot be expropriated? The opportunity to mine gold is
therefore similar to a perpetual American call that it would never pay to
exercise early. Brennan observes that firms mine gold nonetheless. He ar-
gues that to have their stock price properly valued, they need to mine gold
to prove to investors that they have the quantity of gold reserves that they
claim. Unfortunately, this strikes me as a very unconvincing solution to the
paradox; but like the Sherlock Holmes maxim, when one has considered
and rejected the probable, whatever remains, however improbable, must
be the truth.

1933  Alfred Cowles 3rd (September 15, 1891–December 28, 1984), “Can
Stock Market Forecasters Forecast?,” Econometrica 1, No. 3 (July 1933),
pp. 309–324.

INVESTMENT PERFORMANCE, EFFICIENT MARKETS

Cowles (1933) may be the first published statistical test of the ability of
experts to “beat the market.” Cowles examines 7,500 recommendations

of 16 financial services on individual stocks over the period 1928–1932.
He gives the following characterization of this sample:

The forecasters include well-known organizations in the different
fields represented, many of which are large and well financed, em-
ploying economists and statisticians of unquestioned ability. . . .
Some of the forecasters seem to have taken a page from the book
of the Delphic Oracle, expressing their prophecies in terms suscep-
tible of more than one construction. (p. 309)15

The average recommendation led to market performance worse than
the market average by 1.4 percent per annum. After comparing the dis-
tribution of returns of the actual forecasters to the distribution of re-
turns of portfolios constructed from randomly selected investments, he
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also concluded that there was no significant statistical evidence that the
best performing forecaster outperformed the market by skill. He also ex-
amined the investments of 20 leading fire insurance companies and fore-
casts of 24 financial publications with similar results, except that here
the least successful investors seem to have done even worse than what
would have been expected by chance.

J.G. Cragg and Burton G. Malkiel in [Cragg-Malkiel (1968)] “The
Consensus and Accuracy of Some Predictions of the Growth of Corporate
Earnings,” Journal of Finance 23, No. 1 (March 1968), pp. 67–84, provide
a more recent study of the Cowles type. In particular, they examine the ac-
curacy of consensus forecasts by security analysts of future corporate earn-
ings. To their surprise they find for their sample that these forecasts are
little better than forecasts obtained by simple extrapolations of past earn-
ings growth.

1934  Benjamin Graham (May 8, 1894–September 21, 1976) and David
L. Dodd, Security Analysis: Principles and Technique (New York: Mc-
Graw-Hill, 1934); revised several times, including Benjamin Graham,
David L. Dodd, and Sidney Cottle (New York: McGraw-Hill, fourth edi-
tion, 1962).

1949  Benjamin Graham, The Intelligent Investor, fourth revised edition
(New York: HarperCollins, 1973), first published in 1949.

SECURITY ANALYSIS, FUNDAMENTAL ANALYSIS, 
CAPITAL STRUCTURE, GROWTH VS. VALUE, REBALANCING,

DOLLAR-COST AVERAGING, EFFICIENT MARKETS,
MATHEMATICAL FINANCE, 

EXTREMES OF INVESTMENT PERFORMANCE

In perhaps the most famous book written on the stock market, Graham-
Dodd (1934) advocate the fundamental approach to determining invest-

ment value and develop techniques to analyze balance sheets and income
statements. From the hindsight of later developments, their primary fail-
ings were (1) not to consider the full role of diversification, (2) not to em-
bed the role of risk in determining value in an equilibrium context, and (3)
not to give sufficient consideration to the forces that tend to make markets
informationally efficient.

Graham and Dodd’s handling of the issue of the relevancy of corporate
capital structure is instructive. They compare three firms with the same
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cash flows per annum from operations ($1,000,000), but different capital
structures:

The bonds are all assumed to pay 5 percent and the stocks are all as-
sumed to capitalize earnings in a ratio of 10:1, so for firm B, earnings to
stock = 1,000,000 – (.05 × 5,000,000) = 750,000; for firm C, earnings to
stock = 1,000,000 – (.05 × 10,000,000) = 500,000; with 10:1 capitaliza-
tion, for firm B, the value of stock = 750,000 × 10 = 7,500,000; for firm
C, value of stock = 500,000 × 10 = 5,000,000 (pp. 461–463, original
edition, 1934).

They immediately point out that this situation is at first blush unex-
pected since three firms with the same cash flows have different total val-
ues. It also suggests that firm value can be influenced by voluntary changes
in capital structure. This leads them to pose the question: “Can the value
of an enterprise be altered through arbitrary variations in capital struc-
ture?” Upon closer scrutiny, Graham and Dodd point out that the stock of
firm A can be interpreted as really a combination of the bonds and stock of
company B. So the stock of firm A should in theory be worth 5,000,000 +
10 × (1,000,000 – .05 × 5,000,000) = 12,500,000. This is very close to the
analysis of Modigliani-Miller (1958) and Modigliani-Miller (1969). Unfor-
tunately, Graham and Dodd, now on the verge of discovering one of the
most important ideas in the history of investments, in the very next sen-
tence turn away from this promising direction with these words:

But this $12,500,000 value for Company A stock would not ordi-
narily be realized in practice. The obvious reason is that the com-
mon-stock buyer will rarely recognize the existence of a “bond
component” in a common-stock issue; and in any event, not want-
ing such a bond component, he is unwilling to pay extra for it.
This fact leads to an important principle, both for the security
buyer and for corporate management, viz.:
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C 500,000 5,000,000 10,000,000 15,000,000
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The optimum capitalization structure for any enterprise in-
cludes senior securities to the extent that they may safely be issued
and bought for investment. (p. 463)

Graham (1949) forcefully expounds his investment philosophy in the
popular investment classic, The Intelligent Investor. Graham, known as
“the father of value investing,” advises investing based on a careful analy-
sis of business fundamentals, paying close attention to price-earnings (P/E)
ratios, dividend yield, and other tools of security analysis, and only invest-
ing in stocks with market values not far above the value of their tangible
assets. While some growth stocks turn out ex post to have high returns,
Graham believes that buyers of these stocks are too subject to unpre-
dictable and extreme price fluctuations to make investment advisable. His
general rule is to divide investible wealth between high-grade bonds and a
portfolio of 10 to 30 stocks, maintaining at least 25 percent in each cate-
gory, and rebalancing relatively frequently to preset target proportions. He
also advocates dollar-cost averaging, wherein one invests the same dollar
amount in common stocks at fixed periodic intervals, rather than lump-
sum investing. He justifies this strategy by arguing that “In this way, he
buys more shares when the market is low than when it is high, and he is
likely to end up with a satisfactory overall price for his holdings” (p. 10).
Although Graham’s conclusion is correct, the implication he draws from it
is not. Paradoxically, just because the average price per share of stock is re-
duced does not mean the investor is better off.

Unfortunately, some of Graham’s prescriptions are little more than
platitudinous common sense. For example, he writes: “To enjoy a reason-
able chance for continued better than average results, the investor must fol-
low policies which are (1) inherently sound and promising, and (2) not
popular in Wall Street” (p. 13) and “The more the investor depends on his
portfolio and the income therefrom, the more necessary it is for him to
guard against the unexpected and the disconcerting in this part of his life.
It is axiomatic that the conservative investor should seek to minimize his
risks” (p. 25).

Graham believes that an astute investor can find ample opportunities
to make excess profits:

It has been an old and sound principle that those who cannot af-
ford to take risks should be content with a relatively low return on
their invested funds. From this there has developed the general no-
tion that the rate of return which the investor should aim for is
more or less proportionate to the degree of risk he is ready to run.
Our view is different. The rate of return sought should be depen-
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dent, rather, on the amount of intelligent effort the investor is will-
ing and able to bring to bear on his task. (p. 40)16

This is the diametrically opposite view of those who have come to advo-
cate “efficient markets” wherein no amount of “intelligent effort” can be
cost-effective, so that the reward/risk trade-off dominates all other con-
siderations.

And what does Graham think of sophisticated mathematical ap-
proaches to investing in stock to detect these inefficiencies? Here is the an-
swer he gave in May 1958 in [Graham (1958)] an address entitled “The
New Speculation in Common Stocks” given at the annual convention of
the National Federation of Financial Analysts Societies (reproduced in the
appendix to The Intelligent Investor on pp. 315–325):

In forty years of Wall Street experience and study I have never
seen dependable calculations made about common-stock values,
or related investment policies, that went beyond simple arith-
metic or the most elementary algebra. Whenever calculus is
brought in, on higher algebra, you could take it as a warning sig-
nal that the operator was trying to substitute theory for experi-
ence, and usually also to give speculation the deceptive guise of
investment. (p. 321)17

Those who would criticize Graham’s investment philosophy must
contend with his spectacular investment record, purported to have re-
turned about 17 percent per annum from 1929 to 1956. Even worse,
one must now deal with the unabashed support and investment results
of Graham’s most famous disciple, Warren E. Buffett, the most famous
and successful stock investor of the twentieth century. In [Buffett
(1984)] “The Superinvestors of Graham-and-Doddsville,” an edited
transcript of a 1984 talk given at Columbia University commemorating
the 50th anniversary of the publication of Security Analysis, printed as
an appendix to The Intelligent Investor, pp. 291–313, Buffett readily ac-
knowledges that with enough investors, just random chance will cause
some investors to realize extraordinary returns. But he argues that if you
could identify many of these investors in advance of their success, and if
you found, for instance, that a disproportionate number came from Om-
aha, yet they made independent investments, you might conclude that
there was something about Omaha that creates skillful investing. In his
own admittedly casual empirical test, Buffett summarizes the results of
nine extremely successful investors with two things in common: (1) they
were all identified by Buffett in advance as probable successful investors,
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and (2) they all by and large follow the tenents of Benjamin Graham. As
he writes:

Our Graham & Dodd investors, needless to say, do not discuss
beta, the capital asset pricing model, or covariance in returns
among securities. These are not subjects of any interest to them. In
fact, most of them would have difficulty defining these terms. The
investors simply focus on two variables: price and value. (p. 294)18

Although these investors followed the same general principles, there was
little duplication in the securities they selected, so their portfolios on the
surface appear to be relatively independent; in addition, casual observa-
tion suggests low risk. Buffett summarizes his attitude toward “efficient
markets”:

I am convinced there is much inefficiency in the market. These
Graham-and-Doddsville investors have successfully exploited
gaps between price and value. When the price of a stock can be
influenced by a “herd” on Wall Street with prices set at the mar-
gin19 by the most emotional person, or the greediest person, or the
most depressed person, it is hard to argue that the market always
prices rationally. In fact, market prices are frequently nonsensical.
(p. 299)20

Of course, the highest compound annual rate of return in Buffett’s sample
is Buffett’s own partnership, which from 1957 to 1969 experienced a rate
of return of 29.5 percent (23.8 percent to the limited partners), while the
average investor who held the Dow Jones Industrial Average (DJIA) would
have earned 7.4 percent! More astonishing is the record of Buffett’s hold-
ing company, Berkshire Hathaway, from its inception in 1965 to 2001,
which experienced a compound annual rate of return in book value per
share of 22.6 percent compared to 11.0 percent inclusive of dividends for
the S&P 500 index. Over these 37 years, in only 4 did Berkshire Hathaway
underperform the Index. In particular, from 1980 through 1998, the firm
outperformed the index in every single year. Let’s face it: It is hard to argue
with success.

Or is it? There is a sense in which Buffett “cheats.” Buffett is not al-
ways passive, like most institutional investors. To the contrary, he often ac-
quires a sufficiently large stake in a few corporations that he is able to
influence their internal investment decisions and cost-control policies. Few
would argue that the market for physical capital is efficient. In many cases,
nothing short of bankruptcy21 prevents corporate managers from making
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inefficient productive investments. In contrast, in an efficient stock market,
excluding trading costs, there can be no ex ante poor investors since all
prices are fair.

Another famous investor is Peter Lynch, who managed Fidelity’s Mag-
ellan (mutual) Fund over the 13 years from 1977 through 1989. Over this
period, Magellan outperformed the S&P 500 index in 11 out of 13 years
and had an average annualized compound return of 28 percent, consider-
ably exceeding the 17.5 percent annual return of the S&P 500 index over
the same period. Perhaps even more astounding, in the first seven years be-
fore the fund was burdened with very large size, Magellan beat the S&P
500 by more than 15 percent in every single year. Alan J. Marcus in [Mar-
cus (1990)] “The Magellan Fund and Market Efficiency,” Journal of Port-
folio Management 17, No. 1 (Fall 1990), pp. 85–88, asks whether
Magellan’s performance was due to luck or skill. Suppose in any year the
probability of a single fund outperforming the market by chance is 1/2.
Then the probability that a single fund identified at the outset could, by
chance, outperform the market in at least 11 out of 13 years equals
[13!/(11! × 2!) + 13!/(12! × 1!) + 13!/(13! × 0!)](1/213) ≈ .01. However, as
Marcus points out, Magellan was not identified as a winner in advance,
but only after the fact. In that case, the appropriate question is: What is the
probability that the best-performing fund out of the universe of competing
funds would end up, by chance, outperforming the market in at least 11
out of 13 years? Simulation shows that with 500 competing funds over the
13-year period, the probability that, by chance, the best-performing fund
would outperform the market in at least 11 years is 99.8 percent. So mea-
sured in these terms, we would hardly be impressed to find that Magellan
had done so well.

However, suppose instead we ask: What is the probability that the
best-performing fund out of 500 over the 13 years would end up, by
chance, having an annualized compound return of at least 28 percent
while the market’s return was 17.5 percent? The answer to this question
depends on the probability distribution of returns of the funds had they
selected portfolios by chance. To get a rough answer, Marcus supposes
that this distribution is normal with a standard deviation of return of 10
percent over a single year (and an annualized mean of 17.5 percent).
Over a 13-year period, the standard deviation of the annualized com-
pound return would then be 10%/√—

13 = 2.77%. A rough estimate from
Marcus’ paper suggests that the probability that Magellan’s performance
could have happened by chance is about 17 percent. But this figure does
not correct for the fact that the true universe may be even larger than
Marcus considers since the time period over which fund performance was
measured was selected after the fact. Contrary to Marcus’ conclusion,
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one suspects that if we were to enlarge the universe to consider other 13-
year periods, we should not be surprised that in the entire history of U.S.
mutual funds, the best-performing mutual fund would have done as well
as Magellan.

1936  John Maynard Keynes (June 5, 1883–April 21, 1946), The General
Theory of Employment, Interest and Money (New York: Macmillan,
1936); reprinted (Norwalk, CT: Easton Press, 1995).

MARKET RATIONALITY, MARKET PSYCHOLOGY, 
MARKETS VS. BEAUTY CONTESTS VS. CASINOS, 

RISK VS. UNCERTAINTY, LIQUIDITY PREFERENCE

For many economists, even as late as 1936 when Keynes wrote his Gen-
eral Theory (no doubt the most influential book written in economics in

the twentieth century), the stock market was seen essentially as a casino
where economic logic did not apply. Keynes (1936) clearly subscribed to
this view:

Day-to-day fluctuations in the profits of existing investments,
which are obviously of ephemeral and non-significant character,
tend to have an altogether excessive, and an even absurd, influence
on the market. It is said, for example, that the shares of American
companies which manufacture ice tend to sell at a higher price in
summer when their profits are seasonally high than in winter when
no one wants ice. A conventional valuation which is established as
the outcome of the mass psychology of a large number of ignorant
individuals is liable to change violently as the result of sudden fluc-
tuation of opinion due to factors which do not really make much
difference to the prospective yield; since there will be no strong
roots of conviction to hold it steady. In abnormal times in particu-
lar, when the hypothesis of an indefinite continuance of the exist-
ing state of affairs is less plausible than usual even though there
are no express grounds to anticipate a definite change, the market
will be subject to waves of optimistic and pessimistic sentiment,
which are unreasoning and yet in a sense legitimate where no solid
basis exists for a reasonable calculation.

But there is one feature in particular which deserves our atten-
tion. It might have been supposed that competition between ex-
pert professionals, possessing judgment and knowledge beyond
that of the average private investor, would correct the vagaries of
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the ignorant individual left to himself. It happens, however, that
the energies and skill of the professional investor and speculator
are mainly occupied otherwise. For most of these persons are, in
fact, largely concerned, not with making superior long-term fore-
casts of the probable yield of an investment over its whole life, but
with foreseeing changes in the conventional basis of valuation a
short time ahead of the general public. They are concerned, not
with what an investment is really worth to a man who buys it “for
keeps,” but with what the market will value it at, under the influ-
ence of mass psychology, three months or a year hence. (Chapter
7, pp. 153–155)22

Then he makes his famous comparison between the stock market and
a beauty competition:

[P]rofessional investment may be likened to those newspaper com-
petitions in which the competitors have to pick out the six prettiest
faces from a hundred photographs, the prize being awarded to the
competitor whose choice most nearly corresponds to the average
preferences of the competitors as a whole; so that each competitor
has to pick, not those faces which he himself finds the prettiest,
but those which he thinks likeliest to catch the fancy of the other
competitors, all of whom are looking at the problem from the
same point of view. It is not a case of choosing those which, to the
best of one’s judgment, are really the prettiest, nor even those
which the average opinion genuinely thinks the prettiest. We have
reached a third degree where we devote our intelligences to antici-
pating what average opinion expects the average opinion to be.
And there are some, I believe, who practice the fourth, fifth, and
higher degrees. (Chapter 7, p. 156)

With the prevalence of views such as these, it is easy to understand why it
took so long for the study of the stock market to be taken seriously.

In the clarification of his book, in [Keynes (1937)] “The General
Theory of Employment,” Quarterly Journal of Economics 51, No. 2
(February 1937), pp. 209–223, Keynes famously supports Knight (1921)
in his distinction between risk and uncertainty:

The calculus of probability, tho mention of it was kept in the
background, was supposed to be capable of reducing uncertainty
to the same calculable status as that of certainty itself; just as in
the Benthamite calculus of pains and pleasures or of advantage
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and disadvantage. . . . Actually, however, we have, as a rule, only
the vaguest idea of any but the most direct consequences of our acts.

By “uncertain” knowledge, let me explain. I do not mean
merely to distinguish between what is known for certain and what
is only probable. The game of roulette is not subject, in this case,
to uncertainty. . . . The sense in which I am using the terms is that
in which the prospect of a European war is uncertain, or the price
of copper and rate of interest twenty years hence. . . . About these
matters there is no scientific basis on which to form any calculable
probability whatever. We simply do not know. Nevertheless, the
necessity for action and for decision compels us as practical men
to do our best to overlook this awkward fact and to behave ex-
actly as we should if we had behind us a good Benthamite calcula-
tion of a series of prospective advantages and disadvantages, each
multiplied by its appropriate probability, waiting to be summed.

How do we manage in such circumstances to behave in a
manner which saves our faces as rational, economic men? We have
devised for the purpose a variety of techniques. . . .

1. We assume the present is a much more serviceable guide to the
future than a candid examination of past experience would
show it to have been hitherto. In other words we largely ig-
nore the prospect of future changes about the actual character
of which we know nothing.

2. We assume the existing state of opinion as expressed in prices
and the character of existing output is based on correct sum-
ming up of future prospects so that we can accept it as such
unless and until something new and relevant comes into the
picture.

3. Knowing that our individual judgment is worthless, we en-
deavor to fall back on the judgment of the rest of the world
which is perhaps better informed. That is, we endeavor to
conform to the behavior of the majority or the average.

. . . All these pretty, polite techniques, made for a well-paneled
Board Room and a nicely regulated market, are liable to collapse.
At all times the vague panic fears and equally vague and unrea-
soned hopes are not really lulled, but lie a little way below the sur-
face. (pp. 213–215)23

Keynes then uses this argument to justify another determinant of the
rate of interest, “liquidity preference,” that had not been on the list in
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Fisher (1930). He argues that some individuals tend to hoard money,
even though it is barren, yielding no explicit return, to protect them-
selves through its extreme liquidity against the indefinable future. So, in
order to be held, interest-bearing securities need to compensate the mar-
ginal individual for not holding money. Hence, they have higher rates 
of interest than they would otherwise have in the absence of liquidity
preference.

1938  John Burr Williams (1899–1989), The Theory of Investment Value
(Cambridge, MA: Harvard University Press, 1938); reprinted (Burlington,
VT: Fraser Publishing, 1997).

PRESENT VALUE, DIVIDEND DISCOUNT MODEL, 
PERPETUAL DIVIDEND GROWTH FORMULA, ARBITRAGE,

DISCOUNTING EARNINGS VS. DIVIDENDS, VALUE ADDITIVITY,
ITERATED PRESENT VALUE, CAPITAL STRUCTURE, 

LAW OF THE CONSERVATION OF INVESTMENT VALUE, 
LAW OF LARGE NUMBERS, MARGINAL INVESTOR

The author of an insufficiently appreciated classic, Williams (1938) was
one of the first economists to interpret stock prices as determined by

“intrinsic value” (that is, discounted dividends). Harry M. Markowitz
writes in his Nobel Prize autobiography: “The basic concepts of portfolio
theory came to me one afternoon in the library while reading John Burr
Williams’ The Theory of Investment Value” (in [Markowitz (1991)]
“Foundations of Portfolio Theory,” Les Prix Nobel 1990, Nobel Founda-
tion, 1991, p. 292).

While, as we have seen, Williams did not originate the idea of present
value, he nonetheless develops many implications of the idea that the value
of a stock under conditions of certainty is the present value of all its future
dividends. His general present value formula is:

where Dt is the dividend paid at date t, r(t) is the current (date t = 0) annu-
alized riskless discount return for dollars received at date t, and P0 is the
current (date t = 0) value of the stock. A nice way to build up to this is to
start with the recursive relation Pt = (Dt+1 + Pt+1)/r(t + 1). Successive substitu-
tions for Pt through date T lead to P0 = [Σt=1, . . . ,TDt /r(t)

t] + PT /r(T)T. The re-
sult then follows for T = ∞.

P
D

r t

t t
t0

1= = ∞Σ , ,

( )
K
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The modern view would be that this formula follows from no 
arbitrage. Consider the present value now of receiving a single cash 
flow of Dt at date t. The present value PV0(Dt) is defined as the amount
of money you would need to set aside today to ensure that you would
have Dt at date t. This could be done by investing Dt /r(t)

t today in 
default-free zero-coupon bonds maturing at date t and holding this 
position until date t. Note that this investment would grow by date t
to (Dt /r

t)rt = Dt . Therefore, Dt /r(t)
t must be the present value of Dt. It

must also be what you would need to pay in a market to receive Dt at
date t for there to be no arbitrage opportunities between that investment
and the zero-coupon bonds. More generally, the date 0 present value
PV0(D1, D2, . . . , Dt, . . .) is the amount of money you would need to in-
vest today in default-free zero-coupon bonds such that you are sure to
have exactly D1 at date 1, D2 at date 2, . . . , Dt at date t, . . . , which
would clearly be:

Williams argues against discounting earnings instead of dividends and
quotes the advice an old farmer gave his son (p. 58):

A cow for her milk,
A hen for her eggs,
And a stock, by heck,
For her dividends.

His book contains the derivation of the simple formula for the pre-
sent value of a perpetually and constantly growing stream of income, P0 =
D1/(r – g), where r is the constant annualized riskless discount rate and g is
the constant annualized growth rate in dividends.

PV D D D
D

r t
t

t t
t0 1 2( , , , , )

( )
  . . .   . . . = Σ
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Proof of the Perpetual Dividend Growth Formula

Here is a proof. Define a ≡ D1/r and x ≡ g/r. Then, P0 = a(1 + x + x2 + · · ·).
Multiplying both sides by x, we have P0x = a(x + x2 + x3 + · · ·). Subtract-
ing this from the previous expression for P0, P0(1 – x) = a. Substituting
back for a and x, P0[1 – (g/r)] = D1/r. Therefore, P0 = D1/(r – g).

ccc_rubinstein_pt01_1-98.qxd  1/12/06  1:40 PM  Page 76



Williams actually writes this formula in the form P0 = D0x/(1 – x)
where x ≡ g/r—p. 88, equation (17a)—and notes that finite stock prices
require g < r. This is commonly and mistakenly called the “Gordon
growth formula” after its restatement in [Gordon-Shapiro (1956)] My-
ron J. Gordon and Eli Shapiro, “Capital Equipment Analysis: The Re-
quired Rate of Profit,” Management Science 3, No. 1 (October 1956),
pp. 102–110.24

Gordon and Shapiro popularized the formula by rewriting it as k =
(D1/P0) + g, where k equals r under certainty, but under uncertainty
could loosely be interpreted as the expected return to stock. Breaking
apart this expected return into two components, the dividend yield and
growth, translated Williams’ formula into a language that popularized it
among investment professionals. For example, in the early 1960s, al-
though the dividend yield of U.S. Steel was higher than IBM’s, IBM
could have a higher k and P/E ratio because its prospects for growth
were so spectacular.

Here are two useful corollaries in present value calculations:

COROLLARY 1. Law of Value Additivity: The present value of a sum of
cash flows equals the sum of their present value:

PV0(D1, D2, D3, . . . , Dt, Dt+1, Dt+2, . . . , DT) 

= PV0(D1, D2, . . . , Dt) + PV0(Dt+1, Dt+2, . . . , DT)

COROLLARY 2. Law of Iterated Present Value: The date 0 present value
of a series of cash flows beginning at date t + 1 equals the present value at
date 0 of the present value of the cash flows at date t:

PV0(Dt+1, Dt+2, . . . , DT) = PV0[PVt(Dt+1, Dt+2, . . . , DT)]
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Derivation and Application of the Present 
Value Formula for a Finite-Lived Annuity

With these corollaries, one can easily derive a simple formula for a finite-
lived constantly growing stream of cash flows; that is, where D2 = D1g, D3
= D1g

2, D4 = D1g
3, . . . , DT = D1g

T–1. In that case, I can interpret this pre-
sent value as the difference between the present values of two perpetually
growing dividend streams, where the second begins at date DT+1:

By corollary 1: PV0(D1, D2, . . . , DT) = PV0(D1, D2, . . .) – PV0(DT+1, DT+2, . . .)

(Continued)
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Following in the footsteps of de Moivre (1725) and Halley (1761),
Williams also develops a very extensive analysis of a variety of generaliza-
tions, for example for a constant growth rate over n years, followed by div-
idends that exponentially level off toward a limiting amount that is twice
the dividend in the nth year (p. 94, equation [27a]):
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Derivation and Application of the Present 
Value Formula for a Finite-Lived Annuity (Continued)

By corollary 2: 

A nice application of these results is to determine the present value of a
series of cash flows growing at g1 from dates 1 to t + 1, and then grow-
ing at g2 from dates t + 1 to date T:

PV0(D1, D2, . . . , Dt, Dt+1, Dt+2, . . . , DT) 

= PV0(D1, D2, . . . , Dt) + PV0(Dt+1, Dt+2, . . . , DT)

= PV0(D1, D2, . . , Dt) + PV0[PVt(Dt+1, Dt+2, . . . , DT)]

= PV0(D1, D1g1, . . . , D1g1
t-1) + PV0[PVt(D1g1

t, D1g1
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His book also contains what is probably the first exposition of the
Modigliani-Miller (1958) proposition on the irrelevancy of capital structure,
which Williams poetically calls the “Law of the Conservation of Investment
Value.” Williams writes with borrowed nineteenth-century elegance:

If the investment value of an enterprise as a whole is by definition
the present worth of all its future distributions to security holders,
whether on interest or dividend account, then this value in no wise
depends on what the company’s capitalization is. Clearly, if a sin-
gle individual or a single institutional investor owned all of the
bonds, stocks and warrants issued by the corporation, it would
not matter to this investor what the company’s capitalization was
(except for details concerning the income tax). Any earnings col-
lected as interest could not be collected as dividends. To such an
individual it would be perfectly obvious that total interest- and
dividend-paying power was in no wise dependent on the kind of
securities issued to the company’s owner. Furthermore no change
in the investment value of the enterprise as a whole would result
from a change in its capitalization. Bonds could be retired with
stock issues, or two classes of junior securities could be combined
into one, without changing the investment value of the company
as a whole. Such constancy of investment value is analogous to the
indestructibility of matter or energy: it leads us to speak of the
Law of the Conservation of Investment Value, just as physicists
speak of the Law of the Conservation of Matter, or the Law of the
Conservation of Energy. (pp. 72–73)25

Although this exposition does not use the magical word arbitrage, in
his next paragraph on the subject Williams says that his Law will not hold
exactly in practice (he had not yet absorbed later notions of information-
ally efficient markets). But, he says, that simply leaves open “opportunities
for profit by promoters and investment bankers.” From his analysis of
United Corporation, it is clear that he sees “promoters” profiting by taking
advantage of naive techniques used by investors to value the separate secu-
rities in the recapitalization; had the investors but understood the Law of
the Conservation of Investment Value, they would have defeated the pro-
moters’ efforts.

Williams had very little to say about the effects of risk on valuation
(pp. 67–70) because he believed that all risk could be diversified away:

The customary way to find the value of a risky security has been to
add a “premium for risk” to the pure rate of interest, and then use
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the sum as the interest rate for discounting future receipts. . . .
Strictly speaking, however, there is no risk in buying the bond in
question if its price is right. Given adequate diversification, gains
on such purchases will offset losses, and a return at the pure inter-
est rate will be obtained. Thus the net risk turns out to be nil. (pp.
67–69)26

As precocious as Williams was, he got this wrong, which makes subse-
quent discoveries all the more impressive. Knight (1921) also makes a
similar error based on the law of large numbers developed by Jakob
Bernoulli (1713).

Despite this, because in 1938 Williams had not yet read Markowitz
(1952/March) or Roy (1952), he did not appreciate the portfolio point of
view. In his discussion of how stock is allocated among different investors,
he emphasizes that investors will have different beliefs about the value of
that stock, but he believes investors with the highest valuations will end up
owning all of the stock. He ignores the good sense of holding some stocks
to take advantage of risk reduction through diversification, even if they are
not your first choice and may even seem somewhat overpriced. As a result,
he argues that the only investor who determines the price of a stock is the
marginal or last investor who is the most relatively pessimistic among all
the optimistic investors who own the stock. With the later perspective of
Markowitz and Roy, in the absence of short sales (implicitly assumed by
Williams), the modern view is to see each investor who owns the stock as a
candidate to purchase even more should its price fall, so that the price of
the stock is not simply determined by the preferences and beliefs of the
marginal investor, but rather the preferences and beliefs of the average in-
vestor who holds the stock.

1938  Frederick R. Macaulay, Some Theoretical Problems Suggested 
by the Movements of Interest Rates, Bond Yields and Stock Prices in 
the U.S. since 1856, National Bureau of Economic Research (New York:
Columbia University Press, 1938); reprinted (London: Risk Publica-
tions, 2000).

DURATION, FOUR PROPERTIES OF DURATION, 
PARALLEL SHIFT IN INTEREST RATES, ARBITRAGE

W hat is the average time to the receipt of cash flow from a bond, usually
called the “duration” of the bond? For a zero-coupon bond, this is

clearly its time to maturity. For a coupon bond, it must be less than its time
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to maturity. Let Xt be the cash flow from a bond at date t, and r(t) be the
annualized return of a zero-coupon bond maturing at date t. Then B =
ΣtXt /r(t)

t is the present value of the bond. Macaulay (1938) (see in particu-
lar pp. 43–53) proposes that its duration D be defined as:

where the sum is taken from 1 to T (the date of the last cash flow from the
bond). Thus, Macaulay duration is the time to receipt of the average dollar
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Proof of the Additivity Property of Duration

To see this, consider two bonds 1 and 2:

Form a portfolio of the two bonds so that the total value of this
portfolio is B ≡ B1 + B2. Consider the following weighted average of the
durations of the two bonds: (B1/B)D1 + (B2/B)D2. Writing this after sub-
stituting the definition of duration:
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of present value from the bond. This has several nice properties. First, the
duration of the zero-coupon bond equals its time to maturity. Second, the
duration of a portfolio of bonds equals a weighted average of the dura-
tions of its constituent bonds, where the weights are the relative values of
the bonds.

Third, if forward rates remain unchanged and an unrevised portfolio
of bonds experiences no cash flows between dates t and t + 1, then if the
duration of the portfolio is D measured at date t, the duration will be D –
1 at date t + 1.

Although Macaulay clearly realized that the prices of bonds with
longer durations would be more sensitive to interest rates than shorter-
duration bonds, it remained for Hicks (1939) and Paul Anthony Samuelson,
in [Samuelson (1945)] “The Effect of Interest Rate Increases on the Bank-
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Proof of Time Reduction Property of Duration

Proof of third property: changes in duration over time. Consider a
three-period coupon bond with:

X1 = 0, X2 > 0, X3 > 0

Duration at date 0 is:

Duration at date 1, assuming unchanged forward returns, is:
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ing System,” American Economic Review 35, No. 1 (March 1945), pp. 16-
27, to point out that the same calculation of duration measures the elastic-
ity of the bond price with respect to the interest rate. Suppose r(t) = y for
all t, then it is easy to see that dB/B = – (D/y)dy. This implies that the values
of bonds with similar durations have similar sensitivities to changes in inter-
est rates; and the greater the duration, the more sensitive the present value
of the bond is to changes in interest rates.

Later it was realized that this interpretation of duration, as the sensi-
tivity of bond prices to a parallel shift in interest rates, has a technical
problem. For example, in a simple situation suppose the term structure of
spot returns (and hence forward returns) is flat at r per annum (irrespective
of maturity). Now suppose the entire term structure shifts to a new level,
say return s (irrespective of maturity) greater or less than r, so that the term
structure of spot returns continues to be flat but at a different level s ≠ r. If
this happens, bond prices would change, and the duration of a bond, as we
have seen, predicts the price change. Unfortunately, one can show that the
assumption that the term structure can only shift in parallel violates the
fundamental assumption of financial economics: no arbitrage.
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Proof of the Risk Quantification 
Property of Duration

To see this, B = ΣtXty
–t, so that dB/dy = – ΣttXty

–t–1. Therefore, dB =
–y–1(ΣttXty

–t)dy. Then, dB/B = –y–1[Σtt(Xty
–t)/B]dy. Then, by the defini-

tion of duration, dB/B = – (D/y)dy.

Proof of the Contradiction between 
Parallel Yield Shifts and No Arbitrage

To see this, I want to borrow from an analysis in [Davis (2001)] Morton
D. Davis, The Math of Money (New York: Springer-Verlag, 2001), pp.
66–67. Assume as usual no arbitrage and perfect markets. Consider the
following portfolio of bonds (each is a zero-coupon bond with a princi-
pal payment of $1 at maturity) purchased when the term structure is r:

(a) Agree now (date 0) to buy one bond at the end of one year (date
1) that matures two years after (date 3); this is called a “for-
ward rate agreement.”

(Continued)

ccc_rubinstein_pt01_1-98.qxd  1/12/06  1:40 PM  Page 83



84 A HISTORY OF THE THEORY OF INVESTMENTS

Proof of the Contradiction between 
Parallel Yield Shifts and No Arbitrage (Continued)

(b) Agree now (date 0) to sell (2/r) bonds at the end of one year
(date 1) that mature one year after (date 2); this is another for-
ward rate agreement.

Note that under these agreements, no money changes hands at date 0;
rather the purchase and sale of the bonds and any payment or receipt of
cash for this occurs at date 1.

Now, suppose after having formed this portfolio of forward rate
agreements at date 0, the term structure of spot returns then shifts to s
after date 0 but before date 1 and remains at this level on date 1. On this
date (date 1), liquidate the portfolio.

At date 1, the gain or loss on forward rate agreement (a) is:

and at date 1, the gain or loss on forward rate agreement (b) is:

Adding these together, the total liquidation value of the portfolio at date
1 is:

Now this must necessarily be greater than 0 (and not equal to 0)
since r ≠ s. Indeed, whatever happens, whether s > r or s < r, the liquida-
tion cash flow to the investor will be positive regardless of whether the
term structure shifts up or down. But since the portfolio of the two for-
ward rate agreements costs nothing at date 0 but is worth a positive
amount for certain at date 1, there is an arbitrage opportunity. This con-
tradicts our original assumption of no arbitrage; hence the situation de-
scribed is not consistent. To conclude, the assumption that the only way
the term structure can shift is in parallel is inconsistent with the most
basic principle of financial economics: namely, no arbitrage.
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Macaulay was pessimistic about extending his analysis to deal with
embedded options. He put it this way:

Convertible bonds and bonds carrying special privileges of any
kind, such as “circulation” privileges, present similar difficulties.
The promise to make future money payments is only one of ele-
ments determining their prices and yields. They are mongrels and
it is next to impossible to measure the degree of their contamina-
tion. (pp. 70–71)

A historical review of the development of the concept of duration can
be found in [Weil (1973)] Roman L. Weil, “Macaulay’s Duration: An Ap-
preciation,” Journal of Business 46, No. 4 (October 1973), pp. 589–592.

Duration is now one of three standard methods to measure the risk of
securities. Duration measures the sensitivity of bond prices to changes in
interest rates, beta measures the sensitivity of the excess return (over the
riskless return) of a stock to the excess return of a stock market index,
and delta measures the sensitivity of the value of an option to dollar
changes in its underlying asset price. All three measures are linear so that
the duration of a portfolio of bonds, the beta of a portfolio of stocks, and
the delta of a portfolio of options on the same underlying asset are
weighted sums of the corresponding risk measures of their portfolio’s con-
stituent securities.

1945  Friedrich August von Hayek (May 8, 1899–March 23, 1992), “The
Use of Knowledge in Society,” American Economic Review 35, No. 4
(September 1945), pp. 519–530.

AGGREGATION OF INFORMATION, PRICE SYSTEM, 
EFFICIENT MARKETS, SOCIALISM VS. CAPITALISM

This relatively short and elegantly written paper is surely one of the
gems in the crown of economics. Just as Abraham Lincoln’s Gettys-

burg Address (1863) pointed the United States in a new direction, so,
too, Hayek (1945) can be viewed as a call for economics to take the cru-
cial next step. The standard competitive equilibrium model, which
shows how the price system results in a Pareto-optimal outcome, is in
Hayek’s words “no more than a useful preliminary to our study of the
main problem” (p. 530), for it takes as given the beliefs (and implicitly
the information) of each agent and imposes no cost on the operation of
the price system. Because there is no treatment of the costs and methods
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of forming these beliefs or of implementing the price system itself, the eco-
nomic solution could just as well, in principle, be reached by a benevolent
central planner in possession of the same information. While the competi-
tive model proves that the price system can in principle solve the problem
of economic order, it does not show that it is the best way to solve it.

Hayek then describes qualitatively the key (but not the only) reason
why the price system is the preferred method of solution. He argues that
the role of the price system is to efficiently aggregate widely dispersed bits
of information into a single sufficient statistic, the price, that summarizes
for economic agents all they need to know (in addition to the particular
knowledge of their own circumstances) about the dispersed information to
make the correct decisions for themselves—the essence of the rationalist
view of markets. He writes:

The peculiar character of the problem of rational economic order
is determined precisely by the fact that the knowledge of the cir-
cumstances of which we must make use never exists in concentrate
or integrated form, but solely as disbursed bits of incomplete and
frequently contradictory knowledge which all the separate individ-
uals possess. The economic problem of society is thus . . . a prob-
lem of the utilization of knowledge not given to anyone in its
totality. (pp. 519–520)

The most significant fact about the [price] system is the econ-
omy of knowledge with which it operates, or how little the indi-
vidual participants need to know in order to be able to take the
right action. In abbreviated form, by a kind of symbol [the price],
only the most essential information is passed on, and passed on
only to those concerned. (pp. 526–527)27

He also brilliantly restates the description of Smith (1776)28 of the key
problem that is solved by a competitive price system:

I am convinced that if it were the results of deliberate human design,
and if the people guided by the price changes understood that their
decisions have significance far beyond their immediate aim, this
mechanism [the price system] would have been acclaimed as one of
the greatest triumphs of the human mind. . . . The problem is pre-
cisely how to extend the control of any one mind; and, therefore,
how to dispense with the need of conscious control and how to pro-
vide inducements which will make the individuals do the desirable
things without anyone having to tell them what to do. (p. 527)29
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The motivation behind much of Hayek’s work was his role in the de-
bate over the social alternatives of capitalism versus socialism. He stead-
fastly argued that the key issue in this debate was the creation and
communication of relevant economic information, and that for a variety
of reasons, capitalism was much better suited to that task. He was there-
fore concerned about the causes of economic failure under capitalism,
most prominently experienced as depression. For Hayek, the roundabout
nature of production, that it takes time, and that the more sophisticated
the economy, the more time production typically takes, is the key eco-
nomic fact responsible for depression. Production requires a partially irre-
versible commitment of resources for some time before the resulting
output can be consumed. The longer the time for this commitment, and
the more prices fail to function as correct signals for production planning,
the more likely cumulative errors of over- or underinvestment will lead to
economic collapse. For example, if the prices of some commodities needed
for production are temporarily artificially low, producers will be tempted
to commit to greater production than is profitable, and may suddenly be
forced in the future to cut back, while they accumulate inventories and re-
duce employment.

Hayek distinguishes between two types of economic knowledge: (1)
general scientific or theoretical knowledge and (2) specific knowledge of
the individual circumstances of time and place. Advocates of socialism im-
plicitly require that economic planners have access to both types, while ad-
vocates of rational expectations, such as Lucas (1972) and Grossman
(1976), concentrate both types of knowledge with market participants.
Both are mistaken. For example, the flaw in rational expectations is that in
order for market participants to extract from prices all the information
they need to make the correct decisions, they would need to have knowl-
edge of type (2), which includes the aggregated preferences and endow-
ments of all other participants and how these fit together to determine their
demands.

Hayek won the 1974 Nobel Prize in Economic Science “for [his] pio-
neering work in the theory of money and economic fluctuations and for
[his] penetrating analysis of the interdependence of economic, social and
institutional phenomena.”

1947  John von Neumann (December 3, 1903–February 8, 1957) and Os-
kar Morgenstern (January 24, 1902–July 26, 1977), Theory of Games and
Economic Behavior, second edition (Princeton, NJ: Princeton University
Press, 1947) (first edition without appendix, 1944).
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1951  Frederick Mosteller (December 24, 1916–) and Philip Nogee, “An
Experimental Measurement of Utility,” Journal of Political Economy 59,
No. 5 (October 1951), pp. 371–404.

1953  Maurice Allais (May 31, 1911–), “Le comportement de l’homme ra-
tionnel devant le risqué: critique des postulats et axioms de l’école Améri-
caine,” with English summary, Econometrica 21, No. 4 (October 1953),
pp. 503–546; reprinted and translated as “The Foundations of a Positive
Theory of Choice Involving Risk and a Criticism of Postulates and Axioms
of the American School,” in Expected Utility Hypothesis and the Allais
Paradox, edited by Maurice Allais and O. Hagen (Norwell, MA: D. Reidel
Publishing, 1979).

1954  Leonard J. Savage (November 20, 1917–November 1, 1971), The
Foundations of Statistics (New York: John Wiley & Sons, 1954); second
revised edition (New York: Dover 1972).

EXPECTED UTILITY, INDEPENDENCE AXIOM, 
SUBJECTIVE VS. OBJECTIVE PROBABILITY, ALLAIS PARADOX,

EXPERIMENTAL MEASUREMENT OF UTILITY

D espite the earlier work of Daniel Bernoulli (1738), there was little at-
tempt to analyze the effects of uncertainty on economic decisions for

the next 200 years. A notable exception was Knight (1921), who argues
that profits and the very existence of the market system are due to the dis-
tinction between risk and uncertainty. Although Bernoulli’s assumption of
diminishing marginal utility had been picked up by Marshall (1890) and
other economists, his second great idea of expected utility left a number of
economists uncomfortable with the conclusion that fair gambles should
be avoided; this suggested that risk taking was irrational and therefore
something that would have to be considered outside the normal confines
of economics.

John von Neumann and Oskar Morgenstern’s Theory of Games and
Economic Behavior decisively changed this view. To develop their new
“game theory,” they needed utility-type payoffs with mixed strategy prob-
abilities. So in the second edition of the book, von Neumann-Morgenstern
(1947), an appendix (pp. 617–632) provides an axiomatic analysis justify-
ing the idea that rational individuals should make choices by maximizing
their expected utility. Unknown to von Neumann-Morgenstern, an earlier
and probably first proof, but based on somewhat different rationality ax-
ioms, appeared in [Ramsey (1926)] Frank Plumpton Ramsey’s (February
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22, 1903–January 19, 1930) “Truth and Probability” (1926), published
posthumously after his tragic death from an operation for jaundice in 1930
at the age of 26, in the Foundations of Mathematics and Other Logical Es-
says (Harcourt Brace, 1931), reprinted (Totowa, NJ: Littlefield, Adams,
1965), pp. 156–198. In 1937, Bruno de Finetti (June 13, 1906–July 20,
1985), in [de Finetti (1937)] “La Prevision: ses lois logiques ses sources sub-
jectives,” Annales de l’Institut Henri Poincaré 7 (1937), pp. 1–68, trans-
lated and published as “Foresight: Its Logical Laws, Its Subjective
Sources,” in Studies in Subjective Probability, edited by Henry E. Kyburg
Jr., and Howard E. Smokler (New York: Robert E. Krieger Publishing, sec-
ond edition, 1980), unaware of Ramsey, also shows how to deduce subjec-
tive probabilities from choices.

A convenient version of the axioms follows. Suppose Ω represents
the set of all possible gambles over all possible outcomes, say x1, x2, and
x3 and p, q, r ∈ Ω. Suppose by p we mean a gamble leading to outcomes
x1, x2, and x3 with respective probabilities p1, p2, and p3. And suppose q
represents a gamble leading to the same outcomes with respective proba-
bilities q1, q2, and q3; and r represents a gamble leading to the same out-
comes with respective probabilities r1, r2, and r3. The relation ≥ (“is
preferred or indifferent to”) is a binary relation over gambles. So I write
p ≥ q meaning gamble p is preferred or indifferent to q. I also write p = q
if and only if p ≥ q and q ≥ p; and I write p > q if and only if p ≥ q and
not p = q.

AXIOM 1. Completeness: For all p, q ∈ Ω, either p ≥ q or p ≤ q.

AXIOM 2. Transitivity: For all p, q, r ∈ Ω, if p ≥ q and q ≥ r, then p ≥ r.

AXIOM 3. Continuity: For all p, q, r ∈ Ω, if p > q and q > r, then there ex-
ists an α, β ∈ (0, 1) such that αp + (1 – α)r > q and q > βp + (1 – β)r.

AXIOM 4. Independence: For all p, q, r ∈ Ω and for any α ∈ (0, 1), p >
q if and only if αp + (1 – α)r > αq + (1 – α)r.

The expected utility representation theorem says: Axiom 1–4 if and only
if there exists a function U defined on the outcomes x1, x2, and x3 such that
for every p, q ∈ Ω:

p ≥ q if and only if ΣjpjU(xj) ≥ ΣjqjU(xj)

(where to the right ≥ means equal to or greater than)

U is called a utility function. It is easy to see that U is not a unique func-
tion, but rather is defined up to an increasing linear transformation; that
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is, for any real numbers a and b > 0, U is a utility function if and only if
V = a + bU is also a utility function (in other words, U and V preserve the
same ordering of all possible gambles). It follows that simply assuming
choices are made by maximizing expected utility is a shorthand for as-
suming choices are consistent with the von Neumann–Morgenstern ax-
ioms—a convenience that many economists have adopted.

The von Neumann–Morgenstern axioms did not explicitly use the
“independence axiom,” but their axioms were independently reformu-
lated using this axiom by Jacob Marschak in [Marschak (1950)] “Ratio-
nal Behavior, Uncertain Prospects and Measurable Utility,”
Econometrica 18, No. 2 (April 1950), pp. 111–141, and Paul Anthony
Samuelson in [Samuelson (1966)] “Utility, Preference and Probability,”
an abstract of a paper presented orally May 1952, reprinted in The Col-
lected Scientific Papers of Paul A. Samuelson, Volume 1 (Cambridge,
MA: MIT Press, 1966), pp. 127-136. Edmond Malinvaud, in [Malin-
vaud (1952)] “Note on von Neumann–Morgenstern’s Strong Indepen-
dence Axiom,” Econometrica 20, No. 4 (October 1952), p. 679, then
showed that the independence axiom is actually implied by the original
von Neumann–Morgenstern axioms. This axiom implies that the utility
of the outcome in each state is independent of the outcomes in all other
states. Starting with, say, a function F(C1, C2, . . . Cs, . . . , CS) describing
a preference ordering over consumption in states s = 1, 2, . . . , S, it is
easy to understand intuitively that the independence axiom allows this
to be written as ΣspsU(Cs).

The independence axiom is probably the weakest link in the von
Neumann–Morgenstern theory and has led to many ingenious arguments
that it can be inconsistent with reasonable behavior. For example, sup-
pose x1 is a trip to London and x2 is a trip to Paris, and suppose p = (1, 0)
is a sure trip to London, and q = (0, 1) is a sure trip to Paris. Assume p >
q. Now suppose I introduce a third outcome x3: viewing a movie about
London. Considering this, say your choice is now between p = (.8, 0, .2)
and q = (0, .8, .2). The independence axiom requires that as before p > q.
That is, since the common opportunity to view a movie about London is
added to both choices, your preference ordering should remain un-
changed. But isn’t it possible that if you take p and end up with only a
movie about London you will feel so badly about missing an actual trip
to London that you will wish you had chosen q instead and then never
would have had to bear this disappointment? This kind of reversal is
ruled out by the independence axiom.

The most famous early challenge to the independence axiom was in-
vented in Allais (1953). Suppose the outcomes x1 = $0, x2 = $100, and x3 =
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$500. Consider a pair of gambles, p1 = (0, 1, 0) and p2 = (.01, .89, .10).
Empirically, for most people p1 > p2. Now consider a second pair of gam-
bles, q1 = (.89, .11, 0) and q2 = (.90, 0, .10). Empirically, the same people
for whom p1 > p2, also q2 > q1. Yet, it turns out these choices violate the in-
dependence axiom. To see this, if p1 > p2, then by the expected utility repre-
sentation theorem there exists a function U such that

U($100) > .01U($0) + .89U($100) + .10U($500)

Adding .89U($0) to both sides and subtracting .89U($100) from both
sides:

.89U($0) +.11U($100) > .90U($0) + .10U($500)

which, of course, implies that q1 > q2.
Von Neumann and Morgenstern took it for granted that agents

make choices as if they employ probabilities. Savage (1954) provides 
an axiomatic analysis justifying the view that all uncertainties may be 
reduced to subjective probabilities. He shows that if an individual fol-
lows certain logical behavioral postulates that he identifies with rational
behavior, the individual will behave as if he makes decisions based on
maximizing his expected utility where the expectation is taken with re-
spect to his subjective probabilities. Savage’s work can also be viewed as
an extension of von Neumann–Morgenstern to incorporate subjective
probabilities.

About 30 years earlier, Ramsey (1926) had initiated the axiomatic jus-
tification of subjective probabilities. He began by rejecting the path of
defining probabilities in terms of the intensity of internal human psycho-
logical states. Instead, he argued that it would be more useful to deduce
the implicit use of subjective probabilities from the actions of individuals,
assumed to make choices based on certain postulates that one might asso-
ciate with rationality. To take a very simple example, suppose there are
two equally pleasant stores, equally distant from your home, that both sell
your favorite brand of ice cream. However, sometimes one or the other
store is temporarily out of stock. I might deduce from your consistent
choice of one of the stores that you believe that store is more likely to
have the ice cream.

This inference from actions to probabilities proves particularly 
pragmatic for a theory of human economic choice: It is unnecessary 
to interrogate individuals about how they think; one need only ob-
serve what alternative acts they would choose. Moreover, by observing
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their choices, it is possible to separate out their preferences from their
beliefs, a distinction that was to prove critical to almost all work in 
“asset pricing” during the remainder of the twentieth century. Ramsey
writes:

I mean the theory that we act in the way we think most likely to
realize the objects of our desires, so that a person’s actions are
completely determined by his desires and opinions. . . . It is a sim-
ple theory and one that many psychologists would obviously like
to preserve by introducing unconscious opinions in order to bring
it more in harmony with the facts. How far such fictions can
achieve the required results I do not attempt to judge: I only claim
for what follows an approximate truth, or truth in relation to this
artificial system of psychology, which like Newtonian mechanics
can, I think, still be profitably used even though it is known to be
false. (p. 173)

Unfortunately, even if an observed agent is perfectly rational, the pro-
gram of inferring probabilities and preferences from observed choices con-
tains many hidden shoals that can ground the unwary. For example,
having observed an individual bet on a racehorse does not necessarily im-
ply that, given the track odds, he believes the horse will win; the bettor
may simply like the name of the horse. For an agent to reveal his prefer-
ences and probabilities from his choices, the full implications for the agent
of each choice must be specified and the menu of all possible choices must
be known.

Mosteller-Nogee (1951) describe what was to be the first in a long
line of experiments testing the expected utility theory of von Neumann–
Morgenstern (1947) and by extension Savage (1954). They confront sev-
eral college undergraduates and National Guardsmen with a long series of
gambles to see if, for each subject, there exists a single utility function con-
sistent with all his choices. Of course, given the complexity of the task, no
subject was perfectly consistent. However, Mosteller and Nogee conclude
that, with the exception of a few subjects, their responses were sufficiently
consistent (1) that it is “feasible to measure utility experimentally, (2) that
the notion that people behave in such a way as to maximize expected util-
ity is not unreasonable, [and] (3) that on the basis of empirical curves it is
possible to estimate future behavior in comparable but more complicated
risk-taking situations.”

In 1988, Allais won the Nobel Prize in Economic Science “for his pio-
neering contributions to the theory of markets and efficient utilization of
resources.”
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1948  Milton Friedman (July 31, 1912–) and Leonard J. Savage, “The Util-
ity Analysis of Choices Involving Risk,” Journal of Political Economy 56,
No. 4 (August 1948), pp. 279–304.

1952  Harry M. Markowitz (August 24, 1927–), “The Utility of Wealth,”
Journal of Political Economy 60, No. 2 (April 1952), pp. 151–158.

1979  Daniel Kahneman (1934–) and Amos Tversky (March 16, 1937–
June 2, 1996), “Prospect Theory: An Analysis of Decision under Risk,”
Econometrica 47, No. 2 (March 1979), pp. 263–291.

RISK AVERSION AND GAMBLING, LOTTERIES, 
REFERENCE-DEPENDENT UTILITY, 

PROSPECT THEORY, DYNAMIC STRATEGIES

W ith the work of von Neumann–Morgenstern (1947), which provided a
rational justification for maximizing expected utility, the conclusions

of Daniel Bernoulli (1738) concerning risk aversion could now be taken se-
riously. Friedman-Savage (1948) was the first to do so (although their
work was partially anticipated by L. Törnqvist in [Törnqvist (1945)] “On
the Economic Theory of Lottery Gambles,” Skandinavisk Aktuarietidskrift
28, Nos. 3–4 (1945), pp. 298–304). Their paper contains the first diagrams
of utility as a function of income with the geometric result that an individ-
ual will avoid fair binomial gambles if a chord drawn between the two out-
comes of the gamble lies below the utility function.

Such a risk-averse agent will never accept a fair or an unfair gamble.
Yet curiously it is commonplace for the same individual to be risk averse
for the most part and even purchase insurance, yet also quite happily buy
lottery tickets. Earlier economists were unable to explain this because they
had given up on maximizing expected utility rather than jettison the hy-
pothesis of diminishing marginal utility. Friedman and Savage now re-
versed this priority of hypotheses and thereby reconciled gambling with
rational behavior.

Friedman and Savage begin by postulating a singly inflected utility
function with a concave (to the origin) segment over low levels of income
followed by a convex segment over high levels of income. Supposing that
an individual finds his current wealth in the domain of the concave seg-
ment, he will simultaneously buy insurance against small and large losses,
avoid all fair gambles with small potential gains, but also accept unfair
gambles with potentially large gains. That is, he will willingly buy gambles
that have a large probability of a small loss but a small probability of a
large gain (long shots). To explain as well why lotteries tend to have many
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winning prizes of moderate size rather than a single extremely large prize,
Friedman and Savage postulate that the convex segment be followed by a
second upper concave segment.

Markowitz (1952/April) points out that the simultaneous preference
for insurance and long-shot gambles is not confined to individuals with
low wealth (whose wealth falls in the domain of the lower concave seg-
ment) but rather to individuals with wealth at all levels. So, rather than
interpret the Friedman and Savage utility function as static, he prefers to
assume that as an individual’s wealth changes, the utility function will,
perhaps with some short delay, move horizontally, tending to keep the in-
dividual’s current wealth, low or high, at the origin. This may be the first
occurrence of a formally expressed habit formation or reference-dependent
behavioral argument in financial economics, anticipating by 17 years the
“prospect theory” of Kahneman-Tversky (1979).30 Markowitz’s full the-
ory supposes that an individual’s utility function is monotonically in-
creasing and bounded above and below—to avoid the generalized St.
Petersburg Paradox (Menger 1934)—and has three inflection points, with
the middle inflection point at the origin (the individual’s customary
wealth level). The first inflection point to the left of the origin separates a
convex segment (the farthest left) and a concave segment ending at the
origin, and the third inflection point to the right of the origin also sepa-
rates a convex segment beginning at the origin and a concave segment
(the farthest right). Similar to Kahneman-Tversky (1979), Markowitz
also assumes that the concave segment just to left of the origin is steeper
(that is, more concave) than the convex segment to the right of the origin.
This implies that the individual will tend to ignore symmetric gambles
but be quite interested in gambles that are highly skewed to the right
(long shots or lotteries).

Markowitz argues that behavior that seems to indicate a willingness to
accept symmetric gambles is often part of a strategy in which the individ-
ual is making a sequence of bets and plans to increase the size of future
bets if the person has been winning, and decrease the size of future bets if
he has been losing. Taken together, this compound gamble is skewed to the
right around the individual’s customary wealth, and therefore is just the
sort of overall gamble that Markowitz’s theory predicts will be attractive.
This is the earliest example of a description I can find of a dynamic strategy
that produces nonsymmetric outcomes (in this case, similar to a call), an-
ticipating by 20 years the Black-Scholes (1973) equivalence between dy-
namic strategies and options.

For many years, the Friedman-Savage and Markowitz departures from
strictly concave utility were largely discounted. Apparently risk-preferring

94 A HISTORY OF THE THEORY OF INVESTMENTS

ccc_rubinstein_pt01_1-98.qxd  1/12/06  1:40 PM  Page 94



behavior was explained by the inherent “joy of gambling” that appeals to
some individuals. A common proof is that individuals seldom stake a large
fraction of their wealth on a fair or an unfair gamble. Instead, they bet
only small amounts, perhaps repetitively. However, more recently, the
prospect theory of Kahneman-Tversky (1979) has revived interest in utility
functions that have a convex region.

In 2002, Daniel Kahneman was awarded the Nobel Prize in Economic
Science “for having integrated insights from psychological research into
economic science, especially concerning human judgment and decision-
making under uncertainty.”

1949  Holbrook Working, “The Investigation of Economic Expectations,”
American Economic Review 39, No. 3 (May 1949), pp. 150–166.

RANDOM WALK, MARTINGALES, EFFICIENT MARKETS

Kendall (1953) writes:

It may be that the motion [of stock prices] is genuinely random
and that what looks like a purposive movement over a long period
is merely a kind of economic Brownian motion. But economists—
and I cannot help sympathizing with them—will doubtless resist
any such conclusion very strongly. (p. 18)31

The fear that the phenomenon one is examining is just random, having nei-
ther rhyme nor reason, is the primal fear of the scientist. However, Work-
ing (1949/May) observes, perhaps for the first time—apart from Bachelier
(1900)—that this is precisely what a good economist would expect from
price changes. The profit-seeking behavior of investors will tend to elimi-
nate any predictable movement in prices, leaving a random walk as the
only equilibrium outcome:

[I]f the futures prices are subject only to necessary inaccuracy
(that irreducible minimum of inaccuracy which must result from
response of prices to unpredictable changes in supply and in
consumption demand schedules), the price changes will be com-
pletely unpredictable. The proposition is readily proved from a
consideration of the alternative condition in which price
changes are predictable. If it is possible under any given combi-
nation of circumstances to predict future price changes and have
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the predictions fulfilled, it follows that the market expectations
must have been defective; ideal market expectations would have
taken full account of the information which permitted successful
prediction of the price change. . . . Apparent imperfection of
professional forecasting, therefore, may be evidence of perfec-
tion of the market. The failures of stock market forecasters, to
which we referred earlier, reflect credit on the market. . . . The
fundamental statistical basis for discriminating between neces-
sary and objectionable inaccuracy is that necessary inaccuracy
produces price changes among which all serial correlations tend
to be zero, whereas objectionable inaccuracy tends to produce
price changes which have certain serial correlations that differ
significantly from zero. (pp. 159, 160, 163)32

Although subsequent work has shown this explanation to be over-
simplified and incorrect, it has nonetheless become part of the fabric 
of everyday thinking about markets and is no doubt, in practice, a 
very useful and close approximation to the truth (particularly over the
short run).

So Working provides perhaps the first formulation of the random
walk interpretation of what later became known as “efficient markets”
(Fama 1965; 1970/May). In [Working (1958)] “A Theory of Anticipatory
Prices,” American Economic Review 48, No. 2 (May 1958), pp. 188–199,
Working carries this one logical step further and observes that as a conse-
quence, the current price is the best guess about the future price—what
later became known as the “martingale” interpretation of efficient mar-
kets (Samuelson 1965).

Another paper often cited for an observation similar to Working’s
economic interpretation of random walks is [Roberts (1959)] Harry 
V. Roberts, “Stock Market ‘Patterns’ and Financial Analysis: Method-
ological Suggestions,” Journal of Finance 14, No. 1 (March 1959), 
pp. 1–10; reprinted in The Random Character of Stock Market 
Prices, edited by Paul H. Cootner (London: Risk Publications, 2000),
pp. 7–17. By 1961, the random walk hypothesis was clearly ingrained
into the fabric of investment theory. For example, Alexander (1961)
could write:

If, however, there are really trends in earnings, so that an increase
in earnings this year implies a higher probability of an increase
next year than do stable or declining earnings, the stock price
right now should reflect these prospects by a higher price and a
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higher price-to-earnings ratio. . . . If one were to start out with
the assumption that a stock or commodity speculation is a “fair
game” with equal expectation of gain or loss or, more accurately,
with an expectation of zero gain, one would be well on the way to
picturing the behavior of speculative prices as a random walk.
(pp. 238, 239)
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1951 John C. Clendenin, “Quality versus Price as Factors Influencing
Common Stock Price Fluctuations,” Journal of Finance 6, No. 4 (December
1951), pp. 398–405.

VOLATILITY

Clendenin (1951) may be the first to investigate some of the determinants
of stock price volatility. In particular, Clendenin confirms one of the pre-

dictions of market rationality: Other things being equal, the volatility of the
return of a high-priced stock and the volatility of the return of an otherwise
similar low-priced stock should be the same. This finding was later con-
firmed with a more careful analysis by A. James Heins and Stephen L. Alli-
son in [Heins-Allison (1966)] “Some Factors Affecting Stock Price
Volatility,” Journal of Finance 39, No. 1 (January 1966), pp. 19–23. This
hypothesis is not to be confused with the suggestion of Black (1976) that
the volatility of the return of a given stock typically varies inversely with its
stock price. The former is a cross-sectional hypothesis and this latter is a
time-series hypothesis.

1952 Harry M. Markowitz, “Portfolio Selection,” Journal of Finance 7,
No. 1 (March 1952), pp. 77–91.

1952 Andrew D. Roy, “Safety First and the Holding of Assets,” Econo-
metrica 20, No. 3 (July 1952), pp. 431–449.

1959 Harry M. Markowitz, Portfolio Selection: Efficient Diversification
of Investments, Cowles Foundation Monograph #16 (New York: John Wi-
ley & Sons, 1959); reprinted in a second edition with Markowitz’s hind-
sight comments on several chapters and with an additional bibliography
supplied by Mark Rubinstein (Malden, MA: Blackwell, 1991).

DIVERSIFICATION, PORTFOLIO SELECTION, 
MEAN-VARIANCE ANALYSIS, COVARIANCE, RISK AVERSION,
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LAW OF LARGE NUMBERS, EFFICIENT SET, 
CRITICAL LINE ALGORITHM, LONG-TERM INVESTMENT,

SEMIVARIANCE, MARKET MODEL

The assumption that an investor maximizes the expected return of his
portfolio implies that he will place all his eggs in one basket, the single

security with the highest expected return, and “watch it”—the advice once
given by the industrialist and philanthropist Andrew Carnegie.1 But this
leaves unexplained the pervasiveness of diversification. Markowitz
(1952/March) is the first mathematical formalization in English of the idea
of diversification of investments, the financial version of “the whole is
greater than the sum of its parts”: Through diversification, risk can be re-
duced without changing expected portfolio return. Markowitz postulates
that an investor should maximize expected portfolio return (µP) while min-
imizing portfolio variance of return (σP

2 ). Variance may have first been sug-
gested as a measure of economic risk by Fisher (1906), reprinted in 1965,
pp. 406–410. Jacob Marschak in [Marschak (1938)] “Money and the The-
ory of Assets,” Econometrica 6, No. 4 (October 1938), pp. 311–325 (see
in particular p. 320), suggested using the means and the covariance matrix
of consumption of commodities as a first-order approximation in measur-
ing utility. Markowitz instead looked directly at the single variable of port-
folio return and showed how one could, in practice, calculate the
mean-variance efficient set: for each possible level of portfolio expected re-
turn, the portfolio with the lowest variance of return.

Probably the most important aspect of Markowitz’s work was to
show that it is not a security’s own risk, perhaps as measured by security
variance, that is important to an investor, but rather the contribution the
security makes to the variance of the entire portfolio—and this was pri-
marily a question of its covariance with all the other securities in the
portfolio. This follows from the relation between the variance of the re-
turn of a portfolio (σP

2) and the variance of return of its constituent secu-
rities (σj

2 for j = 1, 2, . . . , m):

σP
2 = Σj xj

2 σj
2 + ΣjΣk≠ jxjxkρjkσjσk

where the xj are the portfolio proportions (that is, the fraction of the total
value of the portfolio held in security j so that Σjxj = 1) and ρjk is the corre-
lation of the returns of securities j and k. Therefore, ρjkσjσk is the covari-
ance of their returns. This seems to be the first occurrence of this equation
in a published paper on financial economics written in English.

So the decision to hold a security should not be made simply by com-
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paring its expected return and variance to others’, but rather the decision
to hold any security would depend on what other securities the investor
wanted to hold. Securities cannot be properly evaluated in isolation, but
only as a group. This perspective was clearly missing from Williams
(1938), from Buffett (1984), and from Graham-Dodd (1934); and even in
as late as the revised version of Security Analysis in 1962, it received scant
comment. Markowitz’s approach is now commonplace among institu-
tional portfolio managers.

One might ask why Markowitz’s insight had been so long in coming.
As noted, Williams (1938) argued that risk could be diversified away and
was therefore of modest consequence. In [Hicks (1931)] “The Theory of
Uncertainty and Profit,” Economica 0, No. 32 (May 1931), pp. 170–189,
John R. Hicks comes tantalizingly close. Hicks argues that diminishing
marginal utility suggests that investors will demand extra expected return
for bearing risk. But Hicks argues that some risk can be reduced by its
transfer to other parties who are more willing to bear risk via insurance or
hedging. He also suggests that a key motivation behind firms with many
stockholders is to allow the firm to expand while spreading its risk to many
investors. And then Hicks falls into the law of large numbers trap, arguing
that diversification both across a large number of investments and over
time will make the remaining overall risk minimal—a double error:

Finally, it must be asked—what light is thrown by the foregoing
on the general question of the influence of risk on the distribution
of the National Dividend. . . . Most of the groups of persons
whose resources with which we are concerned in the theory of dis-
tribution seem to be large enough for nearly all risks they bear to
cancel out in a moderate period of time. (p. 187)2

But Hicks qualifies this by writing:

[T]he affairs of a group, large enough and homogeneous enough
to be a convenient object of economic discussion, may fail to be
independent. . . . The most obvious are changes in the general level
of prices. (p. 188)

However, Hicks clearly believes this dependence is a second-order
problem and does not pursue its implications. He repeats this reliance on
the law of large numbers a second time in [Hicks (1935)] “A Suggestion
for Simplifying the Theory of Money,” Economica, New Series 2, No. 5
(February 1935), pp. 1–19 (in particular p. 9).

The Classical Period: 1950–1980 103

ccc_rubinstein_pt02_99-308.qxd  1/12/06  1:41 PM  Page 103



Contrast this with Markowitz, who states simply:

This presumption that the law of large numbers applies to a port-
folio of securities cannot be accepted. The returns from securities
are too inter-correlated. Diversification cannot eliminate all vari-
ance. (p. 79)3

And this key observation encouraged him to take the next steps that others
before him had not seen as necessary.

Markowitz argues that investors dislike variance of portfolio return
since they are averse to risk. Hicks, in [Hicks (1962)] “Liquidity,” Eco-
nomic Journal 72, No. 288 (December 1962), pp. 787–802, his Presiden-
tial Address to the Royal Economic Society, instead makes the case that
investors dislike variance because it increases the probability that forced
selling of securities with significant liquidation costs will be required to
meet liquidity needs (that is, consumption), an argument essentially similar
to Keynes (1937).

Roy (1952) independently sets down the same equation relating portfo-
lio variance of return to the variances of return of the constituent securities.
He develops a similar mean-variance efficient set. Whereas Markowitz left
it up to the investor to choose where within the efficient set he would invest,
Roy advised choosing the single portfolio in the mean-standard deviation
efficient set that maximizes (µP – d)/σP, where d is a “disaster level” return
the investor places a high priority not falling below—a ratio similar in spirit
to the now popular Sharpe ratio (Sharpe 1966). It is easy to see that if the
portfolio return is normally distributed, then his criterion is equivalent to
minimizing the probability that the realized portfolio return will end up be-
low d. Roy is thus the first researcher writing in English to emphasize the
preference asymmetry between upside and downside outcomes. Many years
later, comparing Roy’s paper to his own, Markowitz charitably writes in
[Markowitz (1999)] “The Early History of Portfolio Theory: 1600–1960,”
Financial Analysts Journal 55, No. 4 (July/August 1999), pp. 5–16:

On the basis of Markowitz (1952/March), I am often called the fa-
ther of modern portfolio theory (MPT), but Roy (1952) can claim
an equal share of this honor. (p. 5)

Markowitz was ultimately interested in providing investors with a
workable methodology that would actually be used to make real investment
decisions. Therefore, in [Markowitz (1956)] Harry M. Markowitz, “The
Optimization of a Quadratic Function Subject to Linear Constraints,”
Naval Research Logistics Quarterly 3 (1956), pp. 111–133, he works out in
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detail his numerical critical line algorithm for deriving the efficient set, ap-
plying mathematical programming results developed by Harold W. Kuhn
(July 29, 1925–) and Albert William Tucker (November 28, 1905–January
25, 1995), in [Kuhn-Tucker (1951)] “Nonlinear Programming,” Proceed-
ings of the 2nd Berkeley Symposium on Mathematical Statistics and Proba-
bility, edited by J. Neyman (Berkeley: University of California Press, 1951),
pp. 481–492, and George B. Dantzig (1914–May 13, 2005), A. Orden, and
P. Wolfe, in [Dantzig-Orden-Wolfe (1956)] “The Generalized Simplex
Method for Minimizing a Linear Form under Linear Inequality Restric-
tions,” Pacific Journal of Mathematics 5, No. 2 (June 1955).

Markowitz (1959) contains an extended and detailed development of
the mean-variance portfolio choice model of Markowitz (1952/March),
purposely designed for access by readers with modest quantitative back-
ground. In very simple terms, Markowitz develops the mathematics of di-
versification. He also strives to find a way to reconcile his mean-variance
criterion with the maximization of the expected utility of wealth after
many reinvestment periods.

The book also foreshadows several avenues of future research. (1)
Markowitz advises using the strategy of maximizing the expected logarith-
mic utility of return each period for investors with a long-term horizon,
and he develops a useful quadratic approximation to this strategy that al-
lows the investor to choose portfolios based on mean and variance. (2)
Markowitz actually recommends semivariance as a replacement for vari-
ance as a measure of risk on the grounds that it is realistically superior, and
investigates its properties and optimal portfolio computing procedures:

Analysis based on semi-variance tends to produce better portfolios
than those based on variance. Variance considers extremely high
and extremely low returns equally desirable. An analysis based on
variance seeks to eliminate both extremes. An analysis based on
semi-variance, on the other hand, concentrates on reducing losses.
(p. 194, 1st edition)

(3) He outlines the diagonal or market model in an extended footnote,
which later, at Markowitz’s suggestion, Sharpe (1963) will develop more
fully. (4) Insisting that investors choose their portfolios to maximize ex-
pected utility according to the Savage (1954) axioms, he compares several
alternative measures of risk: standard deviation, semivariance, expected
value of loss, expected absolute deviation, probability of loss, and maxi-
mum loss. (5) Markowitz lays out how to solve the multiperiod expected
utility of consumption problem by using the backwards recursive tech-
nique of dynamic programming.
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In 1970 when Markowitz assessed the chief subsequent discoveries
that his 1959 book had not encompassed, he concluded as he wrote in his-
torical perspective (1999):

As compared to later analyses, the chapter 13 consumption-
investment game was in discrete time rather than in continuous time
(as in Merton (1969/September)), did not reflect the discovery of my-
opic utility functions (as did Mossin (1968) and Samuelson (1969)),
and did not consider the behavior of a market populated by con-
sumer/investors playing this game [as in Sharpe (1964)]. (p. 9)4

Thanks to his work in the 1950s on portfolio selection, in 1990
Markowitz was awarded the Nobel Prize in Economic Science.

1953 Kenneth Joseph Arrow, “Le rôle de valeurs boursières pour la ré-
partition le meilleure des risques,” in Econométrie, Colloques Interna-
tionaux du Centre National de la Recherche Scientifique 11 (1953), pp.
41–47; translated into English as “The Role of Securities in the Optimal
Allocation of Risk Bearing,” Review of Economic Studies 31, No. 2 (April
1964), pp. 91–96; reprinted with new commentary as Essay 4 in Essays in
the Theory of Risk Bearing (Chicago: Markham, 1971), pp. 121–133;
reprinted in Collected Papers of Kenneth J. Arrow: General Equilibrium,
Volume II (Cambridge, MA: Harvard University Press, 1983), pp. 46–47.

1965/c Kenneth Joseph Arrow, “Insurance, Risk and Resource Alloca-
tion,” Essay 5 in Essays in the Theory of Risk Bearing (Chicago:
Markham, 1971), pp. 134–143 (first published in 1965 as Lecture 3 in As-
pects of the Theory of Risk Bearing, pp. 45–56, Yrjo Jahnsson Lectures,
Helsinki); reprinted in Collected Papers of Kenneth J. Arrow: The Eco-
nomics of Information, Volume IV (Cambridge, MA: Harvard University
Press, 1984), pp. 77–86.

1968 Roy Radner (June 29, 1927–), “Competitive Equilibrium under
Uncertainty,” Econometrica 36, No. 1 (January 1968), pp. 31–58.

1970 Jacques H. Drèze (1929–), “Market Allocation under Uncertainty,”
European Economic Review 2, No. 1 (Winter 1970), pp. 133–165.

STATE-SECURITIES, COMPLETE MARKETS, STATE-PRICES, 
MARKET-EQUIVALENCE THEOREM, DYNAMIC COMPLETENESS,  

PORTFOLIO REVISION, MORAL HAZARD, 
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RISK-NEUTRAL VS. SUBJECTIVE PROBABILITY, 
SEQUENTIAL MARKETS, 

EXISTENCE AND OPTIMALITY OF COMPETITIVE EQUILIBRIUM

A rrow (1953) may be the most important paper ever written for financial
economics. The concept of a competitive equilibrium under uncertainty

and the derivation of its optimality seem to have appeared for the first time in
this paper. Arrow shows how the certainty economy described in the first six
chapters of Debreu (1959) can easily be generalized to deal with uncertainty
provided consumers are (weakly) risk averse. To do so, he invents the idea of
a state-security (sometimes called a “state-contingent claim,” “pure security”
or “Arrow-Debreu security”): a security that pays off one unit of the nu-
meraire in one and only one future state. He then assumes that at the begin-
ning of the economy a “complete market” of state-securities exists, that is,
one state-security for every possible state. It is fairly easy to see that Debreu’s
conclusions concerning the existence and optimality of competitive equilib-
rium remain unchanged (with the additional assumption of risk aversion).

In two papers in the mid-1960s, Jack Hirshleifer in [Hirshleifer (1965)]
“Investment Decision under Uncertainty: Choice Theoretic Approaches,”
Quarterly Journal of Economics 79, No. 4 (November 1965), pp. 509–536,
and [Hirshleifer (1966)] “Investment Decision under Uncertainty: Applica-
tions of the State-Preference Approach,” Quarterly Journal of Economics
80, No. 2 (May 1966), pp. 252–277, developed a number of applications
using state-prices and state-securities, including an analysis of risk aver-
sion, the debt-versus-equity decisions of firms, and the discount rate for
public investments. He contrasts what he calls the “state-preference ap-
proach” to the mean-variance approach of Markowitz (1959), Sharpe
(1964), and others. In each case, he seeks to show that formulating eco-
nomic issues in terms of state-prices and state-securities often leads to an
analysis that is simultaneously more simplified and more general, while
reaching similar conclusions.

A key implication of Arrow’s results might be called the “market-
equivalence theorem”: Consider an economy with just as many different
securities as states, commonly called a complete market. The equilibrium
portfolio choices of each investor and the equilibrium security prices will
be the same in that economy as in an otherwise identical economy, but
where the original securities are replaced with a full set of state-securities.
Once we have the solution in terms of state-prices and state-securities, we
can then combine the state-securities into portfolios that have the same
payoffs as the original securities and express the solution in terms of
choices and prices of the original securities. We can also quite easily then
value the original securities in terms of state-prices.
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As subsequent research has shown—for example, Rubinstein (1974)—
it is frequently much easier to derive results using the equivalent economy
with state securities in place of the original economy. In effect, the first-
order conditions of the economy with state securities invert the matrix of
the first-order conditions of the original economy.

108 A HISTORY OF THE THEORY OF INVESTMENTS

Illustration of Completing the Market

To illustrate this, consider a three-state economy facing a future of either
recession, normality, or prosperity. The payoff from an asset corre-
sponding to each of these states is:

Asset payoff = [1 2 3]

By holding a units, an investor can create the more general payoff [a
2a 3a]. Adding riskless cash as a second security, the payoff is the same
in every state:

Cash payoff = [1 1 1]

By holding as well c units of cash, an investor can now create the
payoff [a + c, 2a + c, 3a + c]. The investor can purchase the payoff [0 1
2] since [1 2 3] – [1 1 1] = [0 1 2].

Note, however, that with just the asset and cash, the investor cannot
purchase the payoff [1 0 0] since there are no values of a and c such that
a[1 2 3] + c[1 1 1] = [1 0 0].

Consider a third security:

Derivative payoff = [1 1 0]

By holding as well d units of the derivative, an investor can create the
payoff [a + c + d, 2a + c + d, 3a + c]. Observe more significantly that the
investor can now create state-securities (a “basis vector”):

[1 0 0] = – [1 2 3] + 3[1 1 1] – [1 1 0]
[0 1 0] = [1 2 3] – 3[1 1 1] + 2[1 1 0]
[0 0 1] =  0[1 2 3] + [1 1 1] – [1 1 0]

Therefore, having constructed these, fully arbitrary payoffs are now
possible using the state-securities (implying a complete market) since

[x y z] = x[1 0 0] + y[0 1 0] + z[0 0 1]
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Solving for the state-prices in terms of the prices of the traded securi-
ties is called the “inverse problem.” The example illustrates that if the mar-
ket is complete, the inverse problem can be solved.

As nice as this simplification is, Arrow was troubled by his assumption
of a complete market. In practice, the number of possible states is quite
large, so the number of required securities would be vast. Somewhat over-
shadowed by the idea of state-securities, Arrow (1953) also contains Ar-
row’s principal solution to this difficulty: the first published occurrence of
the idea that an initially incomplete market can be effectively completed by
opportunities for portfolio revision over time—the key idea behind many
subsequent models of intertemporal equilibrium as well as modern option
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Solving the Inverse Problem: Inferring State 
Prices from Security Prices

We can state the value of traded securities in terms of the value of a
portfolio of state-securities. As an example, consider again a three-state
economy where π1, π2, π3 are the current state-prices attached to each
state, an asset with payoff [1 2 3] has current price S0, cash with payoff
[1 1 1] has price 1/r, and a derivative with payoff [1 1 0] has current
price C0. Then:

S0 = [1]π1 + [2]π2 + [3]π3

C0 = [1]π1 + [1]π2 + [0]π3

The solution is:

π3 0
1= −
r

C

π2 0 0
3

2= − + +
r

S C( )

π1 0 0
3= − +
r

S C( )

1
1 1 11 2 3r

= + +[ ] [ ] [ ]π π π
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pricing theory. For further commentary, see my discussion under Black-
Scholes (1973).

Arrow (1965/C) provides a wide-ranging discussion of risk-bearing.
Many social arrangements, including most obviously insurance, futures,
and stock markets, exist primarily to shift risk from those who are less
willing or able to those who are more willing or able to bear it. More-
over, by social pooling of risk though diversification, certain risks can al-
most magically disappear. Arrow writes, “Under such a system [complete
markets], productive activity and risk-bearing can be divorced, each be-
ing carried out by the one or ones best qualified.” Today this process is
called “financial engineering,” a term that may have been invented by
Mark Garman.

Although a complete market is generally required for an uncon-
strained Pareto-optimal allocation of resources, in reality markets are far
from complete. In this paper, Arrow considers reasons why markets are
incomplete and explains several mechanisms that are created in response
to make the best of a difficult situation. He singles out “moral hazard”—
originally introduced in [Arrow (1963/December)], “Uncertainty and the
Welfare Economics of Medical Care,” American Economic Review 53,
No. 5 (December 1963), pp. 941–973, reprinted as Essay 8 in Essays in
the Theory of Risk Bearing (Chicago: Markham, 1971), pp. 177–222—as
possibly the most important factor preventing complete markets. Moral
hazard occurs when the existence of a contract itself changes the incen-
tives of the parties involved. For example, fire insurance might reduce the
care an owner would take to prevent an accidental fire. As long as the fire
insurance company can monitor the insured only at a cost, this will be a
problem. A second-best institutional response is coinsurance; this compro-
mise moves the market more toward completeness, but does not go all the
way. Other examples of coinsurance include bankruptcy and limited lia-
bility laws.

Drèze (1970) is an important but rarely mentioned commentary on
Arrow (1953). He shows that the prices of state-securities can be regarded
as products of subjective probabilities and risk aversion adjustments and
that the present value of an asset can be viewed as its (discounted) ex-
pected value where the state-prices equal the subjective probabilities that
would adhere in an economy with risk-neutral preferences. These proba-
bilities have become known as “risk-neutral probabilities.” Quoting from
the abstract,

It is shown that prices for contingent claims to a numeraire com-
modity have all the formal properties of a probability measure on
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the states, but still reflect the relative scarcities under alternative
states as well as the probabilities of these states.

Drèze also revisits Arrow’s solution for an incomplete market: sequen-
tial markets over time. He points out that, although that would seem to
conserve the number of markets, it is still generally necessary for agents
to know in advance the state-prices established in future markets in order
to make their current decisions, even for states that do not end up occur-
ring. So Arrow’s solution does not really reduce the information consumers
need to make their current decisions compared with a complete market.
The same criticism can be made of the Black-Scholes (1973) option pricing
model, which assumes that the volatility of the underlying asset can be pre-
dicted in advance, since this is tantamount to knowing in advance state-
prices established in future markets.
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Equivalence of Initially Complete and 
Sequentially Complete Markets

Consider an economy with three dates, 0, 1, and 2. At date 1, one of
E possible states (“events”) e = 1, 2, . . . , E occurs. Then, conditional
on what event occurs at date 1, at date 2 one of S possible states s = 1,
2, . . . , S occurs. For simplicity (and often without loss of generality),
I assume state-securities exist. An investor starts out with wealth W0
which she then invests in available securities. With initially complete
markets, at date 0, the investor chooses state-securities that pay off at
date 2 contingent on the full state description at that date, which in-
cludes the prior event that occurred at date 1 and the following state
at date 2, which are denoted by se. The date 0 price, the subjective
probability of the sequence e then s, and the number of each security
an investor chooses at date 0, paying off at date 2, contingent on the
sequence e then s, are denoted respectively by πse, pse, and Wse. The in-
vestor’s risk aversion for wealth at date 2 is captured by the utility
function U(Wse). In this economy E × S securities are required.

The investor’s problem with initially complete markets is:

(Continued)

At date 0:     subject to  max ( )
{ }W

e s se se e s se se
se

p U W W WΣ Σ Σ Σ0 = π

ccc_rubinstein_pt02_99-308.qxd  1/12/06  1:41 PM  Page 111



112 A HISTORY OF THE THEORY OF INVESTMENTS

Equivalence of Initially Complete and 
Sequentially Complete Markets (Continued)

Under an alternative organization of the market, event securities for
each event e occurring at date 1 are available at date 0, and then at date 1
depending on the occurred event e, a new market opens up with state-secu-
rities newly available for each state s that can then occur at date 2. In this
economy, E + S securities are required. The date 0 price, the subjective
probability of event e, and the number of each security an investor chooses
at date 0, paying off at date 1, contingent on e, are denoted respectively by
πe, pe, and We. The date 1 price, the subjective probability of state s given
that event e has occurred, and the number of each security an investor
chooses at date 1, paying off at date 2, contingent on s, given the event e
has occurred, are denoted respectively by πs|e, ps|e, and Ws|e. Ue(We) associ-
ates utility at date 1 with wealth We available to invest over the next pe-
riod. This utility is derived, as specified next, for each event e, from having
first solved for the optimal choices for wealth Ws|e received at date 2 that
can be earned given the constraint of being able to invest We only at date 1.
Ue(We) is called an indirect or derived utility function.

The investor’s problem with dynamically complete markets (work-
ing backwards) is:

At date 1, given event e:

Then at date 0:

To prove equivalence, using the prior two equations, the dynamic
problem is equivalent to:

If pricing and beliefs are consistent, then pse = peps|e
and πse = πeπs|e

,
so that:

max ( )
{ }

| |
|W

e s se s e e s se s e
s e

p U W W WΣ Σ Σ Σ   subject to   0 = π

max [ ( )] ( )
{ }

| | | |
|W

e e s s e e s e e e s s e s e
s e

p p U W W WΣ Σ Σ Σ   subject to   0 = π π

max ( )
{ }W

e e e e e e e
e

p U W W WΣ Σ   subject to   0 = π

U W p U W W We e
W

s s e s e e s s e s e
s e

( ) max ( )
{ }

| | | |
|

≡ =Σ Σ   subject to   π
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To illustrate the distinction between state prices, subjective probabili-
ties, and risk-neutral probabilities, consider the possible payoffs from a
one-year homeowner earthquake insurance policy (see box below).
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Equivalence of Initially Complete and 
Sequentially Complete Markets (Continued)

Then
Wse = Ws|e

Observe that the equivalence requires that at date 0, the investor
knows the state-prices that would be established at date 1, πs|e for all
events e, even for the events that do not end up occurring (as Drèze was
first to mention).

Payoffs from a Homeowner Earthquake 
Insurance Policy
Richter Subjective Risk-Aversion Risk-Neutral State
Scale Damage Payoff Probability Adjustment Probability Price

s Xs ps Ys qs ≡ psYs πs ≡ qs/r
0.0–4.9 None $         0 .850 .9939 .845 .805
5.0–5.4 Slight 750 .100 .9976 .100 .095
5.5–5.9 Medium 10,000 .030 1.0472 .031 .030
6.0–6.9 Severe 25,000 .015 1.1430 .017 .016
7.0–8.9 Large 50,000 .005 1.3787 .007 .007

Sum 1.000 1.000

______________________________________________________________
The five states s are the levels of earthquake damage that could occur during the
year.
The payoffs Xs are the dollar damages in each state to be recovered by insurance
at the end of the year.
The subjective probabilities ps are personal degrees of belief associated with each
state.
The variables, Ys, are risk adjustment factors, smaller than 1 for relatively rich
states and larger than 1 for relatively poor states.
qs is also a probability constructed from the subjective probabilities ps but modi-
fied by the risk adjustment factor Ys; because qs is so adjusted, it is called a risk-
neutral probability.
A state price πs is the price that would be paid at the beginning of the year to re-
ceive $1 at the end of the year if state s occurs, and $0 if state s does not occur.
The riskless return over the (year) is r, so that r – 1 is the interest rate.
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For simplicity it is assumed that the Richter scale earthquake rating is
perfectly determinative of the damage, and that even if the earthquake oc-
curs during the year, the insurance payment (Xs) is not received until the
end of the year. The table shows five mutually exclusive and exhaustive
events, each generically termed a future state (s)—a full description of the
relevant aspects of the world. To each state, investors assign a subjective
probability (ps) expressing their personal degree of belief the state will oc-
cur. Of course, to be probabilities they must all be nonnegative real num-
bers and sum to one.

One might naively think that the (present) value of the insurance pol-
icy would be its expected payoff discounted back to the present by the one-
year riskless return r (that is, the riskless interest rate is r – 1): (ΣspsXs)/r. So
if r = 1.05, the value of the insurance policy would be:

As any student of finance knows, this valuation approach fails to con-
sider risk aversion. A very popular hypothesis contends that individuals re-
ceive greater utility from an extra dollar when they are poor (say, high
Richter scale states) and less utility from an extra dollar when they are
comparatively rich (low Richter scale states). One way to consider this ef-
fect is to assign positive risk-aversion adjustment factors Ys to each state,
with the factors being somewhat less than one in rich states and somewhat
greater than one in comparatively poor states. This adjustment will place
less weight on dollars received in rich states and more weight on dollars re-
ceived in poor states. I can achieve this by constructing probabilities qs ≡
psYs (where the risk adjustment factors have been carefully standardized so
that when multiplied by their corresponding subjective probabilities to
form qs, their sum, Σsqs = 1). So calibrated, the numbers qs qualify as prob-
abilities since they are all nonnegative and sum to one over all the states.
The formula for the value of the policy in terms of these probabilities is:
(ΣsqsXs)/r. Using these probabilities, I would calculate the value of the pol-
icy to be:

Notice that the effects of risk aversion have been swallowed up by the
probabilities qs. Using these probabilities to calculate expectations, I have

. ( ) . ( ) . ( , ) . ( , ) . ( , )
.

$ , .

845 0 100 750 031 10 000 017 25 000 007 50 000
1 05

1 104 76

+ + + +

=

  

. ( ) . ( ) . ( , ) . ( , ) . ( , )
.

$ .
850 0 100 750 030 10 000 015 25 000 005 50 000

1 05
952 38

+ + + + =
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then simply discounted the expected payoff by the riskless return (with no
further adjustment for risk aversion) to determine the value of the policy.
Hence, the probabilities qs are called “risk-neutral probabilities.” It must
be stressed that although they are probabilities, it is not generally true that
they will be the same as the subjective probabilities (which express pure de-
grees of belief untainted by considerations of risk aversion).

“State prices” is a closely allied concept. If I divide each of the risk-
neutral probabilities qs by r and define πs ≡ qs/r, the formula for the value
of the policy becomes: ΣsπsXs. Under this formulation, I would equivalently
calculate the value of the policy as:

.805(0) + .095(750) + .030(10,000) + .016(25,000) + .007(50,000) = $1,104.76

Writing the formula this way, it is natural to interpret the πs as prices, one
each for the receipt of $1 in its associated state. Hence, the πs are called
state-prices. Correspondingly, a security that has a payoff of $1 in one state
s and $0 in every other state is called a state-security. Notice that Σsπs = 1/r.
This has a natural economic interpretation: The value of a portfolio that
pays $1 in each and every state is the value of receiving $1 for certain, or
1/r. Thus, although the state-prices πs are nonnegative, they are not proba-
bilities because they do not sum to one (unless, of course, r = 1).

I can summarize this succinctly as follows: In calculating present val-
ues, using subjective probabilities ps considers only beliefs, using risk-neutral
probabilities qs considers the joint effects of both beliefs and risk aversion,
and using state-prices πs simultaneously takes account of beliefs, risk aver-
sion, and time. Academics love different reformulations of present value
results. The flavor currently in favor is based on the stochastic discount
factor, Zs ≡ πs/ps. Using this, I have ΣspsXsZs; using expectation notation,
this is usually more simply written as E(XZ).

The idea of risk-neutral probabilities probably made its first appearance
in Drèze’s much earlier presentation of this paper in September 1965 at the
First World Congress of the Econometric Society, or perhaps in even earlier
work of Arrow. The concept was apparently independently discovered by
Paul Anthony Samuelson and Robert C. Merton in [Samuelson-Merton
(1969)] “A Complete Model of Warrant Pricing That Maximizes Utility,”
Industrial Management Review 10 (Winter 1969), pp. 17–46, reprinted in
The Collected Scientific Papers of Paul A. Samuelson, Volume 3 (Cam-
bridge, MA: MIT Press, 1972), pp. 818–847, and reprinted in Robert C.
Merton, Continuous-Time Finance, Chapter 7 (Malden, MA: Blackwell,
1990), pp. 215–254. Their name for this concept was “util-prob.”

Another early formulation explicitly writing down state-prices as prod-
ucts of subjective probabilities and a risk-aversion adjustment can be found
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in Myers (1968), in particular p. 12, equation (6), one of the very few pa-
pers in the academic literature to reference an early version of Drèze (1970).

Much has been made of the formalization of Drèze’s results by J.
Michael Harrison and David M. Kreps, in [Harrison-Kreps (1979)] “Mar-
tingales and Arbitrage in Multi-Period Securities Markets,” Journal of
Economic Theory 20, No. 3 (June 1979), pp. 381–408. They make it clear
that all that is needed is no arbitrage and permit a continuous number of
states. But the economic content of their result is almost evident from
Drèze, and certainly with the subsequent results of, say, Beja (1971), Ru-
binstein (1976/Autumn), or Ross (1977), they make only a marginal con-
tribution to the underlying economic intuition: They rule out doubling
strategies, which, over any finite time interval in continuous time, can pro-
duce arbitrage profits.

Radner (1968) sees how far the economy described by Arrow (1953)
and Debreu (1959) can be stretched. He first shows that the main results
related to the existence and optimality of equilibrium continue to go
through even if agents have different information about the world, in the
sense that different agents can distinguish only between different subsets of
states, resulting in a type of incomplete market. However, it still continues
to be the case that enough markets can exist at the beginning of the history
of the economy so as to make the opening of subsequent markets unneces-
sary. But this framework begins to unravel when agents have computa-
tional limitations. These mean that agents must wait for further
information about the world over time before they can determine their full
lifetime strategy. Similar problems result if agents receive information over
time about the behavior of other agents. Both of these give rise to a de-
mand for liquidity in the form of investments held in a numeraire and in
the form of future spot markets—both of which are conspicuously absent
from an Arrow-Debreu economy. Radner concludes that:

The distinction between (1) uncertainty and information about the
environment, and (2) uncertainty and information about others’
behavior or the outcome of as yet unperformed computations ap-
pears to be fundamental.

In [Radner (1972)] “Existence of Equilibrium of Plans, Prices and
Price Expectations in a Sequence of Markets,” Econometrica 40, No. 2
(March 1972), pp. 289–303, Radner investigates the potential for a se-
quence of markets to make up for an incomplete market at any date in the
history of an economy. This was first suggested by Arrow (1953). This
raises the problem first emphasized by Drèze (1970) that agents need to
know in advance the state-prices established in future markets. Radner
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deals with this explicitly. He defines “common expectations” to mean that
all agents associate the same future prices to the same future events (of
course, he continues to allow heterogeneous probabilities concerning these
events), and he assumes the plans of agents are “consistent” since, at every
date the market for exchange is open, the planned supply equals the
planned demand for each commodity. He then shows that a competitive
equilibrium exists, which he calls an equilibrium of plans, prices, and price
expectations.

Arrow won the 1972 Nobel Prize in Economic Science “for his pioneer-
ing contributions to general economic equilibrium and welfare theory.”

1953 Maurice G. Kendall (September 6, 1907–March 29, 1983), “The
Analysis of Economic Time-Series, Part I: Prices,” Journal of the Royal Sta-
tistical Society (Series A, General) 116, No. 1 (1953), pp. 11–25; reprinted
in The Random Character of Stock Market Prices, edited by Paul H. Coot-
ner (London: Risk Publications, 2000), pp. 99–122.

RANDOM WALK, NORMAL DISTRIBUTION, EFFICIENT MARKETS

Kendall (1953) is one of the first to discover from an empirical analysis
that stock prices (actually indexes of stocks in the same industry, trusts,

and commodity prices) tend to follow a random walk. He writes:

The series looks like a “wandering” one, almost as if once a week
the Demon of Chance drew a random number from a symmetrical
population of fixed dispersion and added it to the current price to
determine the next week’s price. And this, we recall, is not the be-
havior in some small backwater market. The data derive from the
Chicago wheat market over a period of fifty years during which at
least two attempts were made to corner wheat, and one might
have expected the wildest irregularities in the figures. (p. 13)5

He stresses that knowledge of past price changes seems to be of no help in
forecasting future changes. Kendall may be the first to note empirically that
although individual industry stock indexes have serially uncorrelated re-
turns and although one cannot be used in advance to predict another, differ-
ent industry indexes at the same time have significantly cross-sectionally
correlated return—the key feature considered in Markowitz (1952/March).
Kendall is also one of the first to observe that price changes in common
stocks are approximately normally distributed, but with too many observa-
tions near the mean and too many in the extreme tails.
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Almost 20 years earlier, Holbrook Working also noticed that commod-
ity prices moved randomly in [Working (1934)] “A Random-Difference Se-
ries for Use in the Analysis of Time Series,” Journal of the American
Statistical Association 29, No. 185 (March 1934), pp. 11–24. Working
suggested that changes in security prices result from the accumulation of
many independent influences, some positive and some negative. Before
that, Eugen Slutzky in [Slutzky (1927)] “The Summation of Random
Causes as the Source of Cyclic Processes” in Problems of Economic Condi-
tions 3 (edited by the Conjuncture Institute, Moscow, 1927), translated
from Russian into English in Econometrica 5, No. 2 (April 1937), pp.
105–146, demonstrated that a series generated by summing random num-
bers resembled an economic time series complete with cycles.

1953/A Milton Friedman, “The Methodology of Positive Economics,” in
Essays in Positive Economics (Chicago: Chicago University Press, 1953),
pp. 3–43.

ASSUMPTIONS VS. CONCLUSIONS, 
DARWINIAN SURVIVAL, ARBITRAGE

Can a theory be refuted by proving that its assumptions are incorrect?
Not so, argues Friedman (1953/A). The only test of the validity of a the-

ory is the degree of correspondence of its predictions with reality. Indeed,
since the best theories tend to have the most parsimonious and simple as-
sumptions, these assumptions are almost always untrue. For example,
economists often assume perfect and competitive markets—demonstrably
untrue—or that agents are fully rational and capable of lightning-fast exact
and complex calculations. Yet these simple and false assumptions are able
to explain and predict a wide variety of different phenomena. More accu-
rately stated, economists often assume that agents behave as if they are
fully rational and perfect calculating machines, not that they actually have
these abilities. The relevant question is not whether these assumptions are
true, but whether a more parsimonious set of assumptions can explain the
same phenomena, or whether alternative assumptions, perhaps equally
parsimonious, can explain the same phenomena and then some.

Friedman also offers a famous and very controversial justification for
the standard economic assumption of agent rationality based on the Dar-
winian theory of survival:

Let the apparent immediate determinant of business behavior be
anything at all—habitual reaction, random chance or whatnot.
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Whenever this determinant happens to lead to behavior consistent
with rational and informed maximization of returns, the business
will prosper and acquire resources with which to expand; when-
ever it does not the business will tend to lose resources. . . . Given
natural selection, acceptance of the hypothesis [of maximization
of returns] can be largely based on the assumption that it summa-
rizes the conditions for survival. (p. 22)

Unfortunately, as others have now shown, it is quite easy to invent Dar-
winian environments where the irrational survive.

In his companion essay, [Friedman (1953/B)] “The Case for Flexible
Exchange Rates,” in Essays in Positive Economics (Chicago: Chicago Uni-
versity Press, 1953), pp. 157–203, in particular p. 184, he is perhaps the
first to develop the arbitrage reasoning that underpins much of logic behind
the notion of efficient markets (Fama 1970/May). Using the example of cur-
rencies in different countries, he argues that if a security becomes mispriced
relative to its fundamentals, arbitrageurs will buy or sell it while hedging
their risk with a properly priced close substitute. This will tend to eliminate
the mispricing. Moreover, the irrational investors who created the mispric-
ing will suffer losses, which in the long run will diminish their wealth and
make them a much less potent force in the market in the future.6

Friedman won the 1976 Nobel Prize in Economic Science “for his
achievements in the fields of consumption analysis, monetary history, and
theory and for his demonstration of the complexity of stabilization policy.”

1958 James Tobin (March 5, 1918–March 11, 2002), “Liquidity Prefer-
ence as Behavior Towards Risk,” Review of Economic Studies 25, No. 2
(February 1958), pp. 65–86.

RISKLESS SECURITY, MEAN-VARIANCE PREFERENCES, 
TOBIN SEPARATION THEOREM, QUADRATIC UTILITY, 

MULTIVARIATE NORMALITY

Extending the Markowitz (1952/March) and Roy (1952) model of port-
folio choice, Tobin (1958) adds a riskless security and shows that the in-

vestor’s choice of the proportional composition of his subportfolio of risky
securities is independent of his degree of risk aversion (and wealth). Geo-
metrically, consider a graph with portfolio mean return along the y-axis
and portfolio variance of return along the x-axis. All mean-variance effi-
cient portfolios lie along a straight line through the riskless return and tan-
gent to the hyperbolic curve of Markowitz’s efficient set. This is known as
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the Tobin Separation Theorem, or more simply as portfolio separation.
This means that an investor can break down his optimal portfolio choice
problem into two sequential steps: First, given the joint distribution of the
returns of risky securities and the riskless return, he chooses his optimal
subportfolio of risky securities irrespective of his risk aversion and wealth;
second, given the return of this portfolio and the riskless return, his risk
aversion, and his wealth, he divides his investable wealth between this sub-
portfolio and the riskless security. Tobin also shows that for mean-variance
portfolio choice to be consistent with expected utility maximization, either
the utility function needs to be quadratic or the returns of all possible port-
folios must be jointly normally distributed.
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Proof That Quadratic Utility or Multivariate 
Normality Implies Mean-Variance Preferences

Here is a proof that quadratic utility –(A – W1)
2 (where A is a con-

stant and W1 is end-of-period wealth) implies choice in terms only of
mean and variance:

U(W1) = –(A – W1)
2 = –(A2 – 2AW1 + W1

2) = –A2 + 2AW1 – W1
2

Therefore,

E[U(W1)] = –A2 + 2AE(W1) – E(W1
2)

= –A2 + 2AE(W1) – [Var(W1) + [E(W1)
2]

= – A2 + 2AE(W1) – [E(W1)]
2 – Var(W1)

= f[E(W1), Var(W1)]

Note also that dE[U(W1)]/dE(W1) = 2A – 2E(W1) = 2[A – E(W1)],
so dE[U(W1)]/dE(W1) > 0 if and only if E(W1) < A. Also note that
dE[U(W1)]/dVar(W1) = –1 < 0 (unconditionally).

Here is a proof that joint normality leads to mean-variance prefer-
ences. Let W0 be the beginning-of-period wealth. Say the end-of-period
(random) returns of the available securities are r1, r2, . . . , rj, . . . and an
investor chooses his portfolio proportions x1, x2, . . . , xj, . . . such that
Σjxj = 1 so that the (random) return on his portfolio rP ≡ Σjxjrj. His 
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Proof That Quadratic Utility or Multivariate 
Normality Implies Mean-Variance Preferences 
(Continued)

problem is to maximize his expected utility of end-of-period wealth by
choice of the xj, that is,

where W1 = W0rP and rP ≡ Σjxjrj and Σjxj = 1.

It is a property of jointly normally distributed random variables that
any linear combination of the variables is itself normally distributed.
Therefore, if the returns of all securities are jointly normal, then rP ≡
Σjxjrj will also be normally distributed. Thus, given jointly normal re-
turns, any portfolio an investor can form must also have a normal distri-
bution. Moreover, since a normal distribution is completely described by
its mean µP and variance σP

2, I can write rP = µP + σPx where x is a stan-
dard normal random variable. Thus, there exists a function f such that:

E[U(W1)] = E{[U[W0(µP + σPx)]} = f(µP, σP)

where I regard W0 as a nonrandom parameter of f.

It remains to show that U′(W1) > 0 and U″(W1) < 0 implies that
f ′(µP) > 0 and f ′(σP

2) < 0. Let n(x) be the standard normal density func-
tion so that n(x) > 0. Then

f(µP, σP) = ∫U[W0(µP + σPx)]n(x)dx so that f ′(µP) = ∫U′(W1)n(x)dx

It follows from this that because U′(W1) > 0 and f ′(µP) > 0. Also:

Again because U′(W1) > 0 and  U″(W1) < 0 and xn(x) is symmetric
around 0, then f ′(σP

2) < 0.7

′ =






∫ ′f U W xn x dxP P( ) ( ) ( )σ σ2
1

1
2

max [ ( )]
{ }xj

E U W1
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Tobin won the 1981 Nobel Prize in Economic Science “for his analysis
of financial markets and their relations to expenditure decisions, employ-
ment, production and prices.”

1958 Franco Modigliani (June 18, 1918–September 25, 2003) and Mer-
ton Howard Miller (May 16, 1923–June 3, 2000), “The Cost of Capital,
Corporation Finance and the Theory of Investment,” American Economic
Review 48, No. 3 (June 1958), pp. 261–297.

1969 Franco Modigliani and Merton Howard Miller, “Reply to Heins
and Sprenkle,” American Economic Review 59, No. 4, Part 1 (September
1969), pp. 592–595.

LAW OF THE CONSERVATION OF INVESTMENT VALUE, 
CAPITAL STRUCTURE, MODIGLIANI-MILLER THEOREM, 

DOMINANCE VS. ARBITRAGE, SHORT SALES, 
WEIGHTED AVERAGE COST OF CAPITAL, VALUE ADDITIVITY, 

VALUE VS. STOCK PRICE IRRELEVANCY

M odigliani-Miller (1958) extends to uncertainty the idea in Fisher
(1930) that the financing and production decisions of a firm can be

separated. It is also the first formal treatment of the Williams (1938) Law
of the Conservation of Investment Value, showing that in a perfect market,
the value of a firm is independent of its capital structure (Modigliani-
Miller’s Proposition I). Although this result was clearly anticipated by
Williams, Modigliani and Miller argue that Williams does not really prove
his Law because he has not made it clear how an arbitrage opportunity
would arise if his Law were to fail. To quote Modigliani-Miller’s complete
comment with regard to Williams:

A number of writers have stated close equivalents of our Proposi-
tion I although by appealing to intuition rather than by attempting
a proof and only to insist immediately that the results are not ap-
plicable to the actual capital markets. . .

. . . See, for example, J.B. Williams [21, esp. pp. 72–73]; David Durand
[3]; and W.A. Morton [14]. None of these writers describe in any detail
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the mechanism which is supposed to keep the average cost of capital
constant under changes in capital structure. They seem, however, to 
be visualizing the equilibrating mechanism in terms of switches by 
investors between stocks and bonds as the yields get out of line with
their “riskiness.” This is an argument quite different from the pure ar-
bitrage mechanism underlying our proof, and the difference is crucial.
(p. 271)8

While this criticism, it seems to me, is questionable with respect to
Williams, it does seem on the mark with respect to Walter A. Morton,
who writes in [Morton (1954)] “The Structure of the Capital Market and
the Price of Money,” American Economic Review 44, No. 2 (May 1954),
pp. 440–454:

The essential difference between the obligations of the same com-
pany lies in the priority of claim to earnings and assets. If only
one security is issued, it bears all the risk whether it be called a
bond, preferred stock, or common stock, and would have the
same value provided that the security could share in all the earn-
ings. (I ignore at this point the difference that might be made by
the fact that interest payments are tax deductible as a cost before
computing federal income taxes whereas preferred and common
stock dividends are not.) Similarly, if one individual owned all of
the various types of securities issued, his risk would be the same.
Legal differences in the event of insolvency or reorganization and
tax policy will modify this result. If all the securities were sold in
“packages” of bonds, preferred and common, the risk to each
owner would be the same as if it were all common stock. It fol-
lows accordingly that the over-all cost of money would be unaf-
fected by capital structure if individuals could not differentiate
risks. (p. 442)9

Morton then goes on to argue that once investors can specialize their
portfolios in one type of the firm’s securities, so that one investor owns
only its bonds, say, and another its stock, then clientele effects (some value
safety, and others value the higher return that inures to higher risk) can
cause the sum of the values the investors place on their positions to exceed
the value had they not been able to specialize.

To show this would not happen in a perfect market, with a lengthy
argument Modigliani and Miller prove Williams’ Law using a number of
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assumptions that their own later work and the work of several others
show to be unnecessary. For example, Modigliani-Miller assume the
debt of the firm is riskless and that, to use their terminology, two firms
must exist that are in the same “risk class.” This means that, as in the
proof that follows, the random variables XU and XL are equal in all
states of the world.

Modigliani-Miller (1969) strip their proof to its essentials and come full
circle, it seems to me, to Williams’ original insight. They assume there are two
otherwise identical firms (that is, with the same total future cash flows from
assets), one levered and one not. They then show that if the sum of the cur-
rent values of the stock and bonds of the levered firm were not equal to the
current value of the stock of the unlevered firm, there would be a weak arbi-
trage opportunity (Proposition I). By “weak” I mean that, among two invest-
ments, any investor would prefer one over the other. In that sense, one
investment would dominate the other. Unlike arbitrage, this weaker notion of
dominance does not require that one be sold short against the other to create
arbitrage profits. As Modigliani and Miller construct their new proof, they
seem to be using the weaker notion of dominance to circumvent the need to
allow short sales.

124 A HISTORY OF THE THEORY OF INVESTMENTS

DOMINANCE Proof of the Law of the Conservation 
of Investment Value

X ≡ XU = XL (future operating income of unlevered and levered
firms—same “risk class” assumption)

VU ≡ SU (unlevered firm relation between current total firm value
and its current equity value)

VL ≡ DL + SL (levered firm relation between current total firm value
and the current values of its riskless debt and equity)

r (return on default-free bonds)

Suppose first that VU > VL. Consider the payoffs of the following
two portfolios:

Current Cost Future Payoff

Buy α% shares of U αSu ≡ αVU αX

Buy α% bonds of L αDL αrDL

Buy α% shares of L αSL α(X – rDL)

Total αDL + αSL = αVL α[(rDL) + (X – rDL)] = αX
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Observe two aspects of this proof. First, it requires default-free bor-
rowing by the firm and that the investor must be able to borrow on the
same terms (r) as the firm. Hence this method of proof is sometimes
called a “homemade leverage argument.” Second, it is not really an arbi-
trage proof as we would mean it today. In fact, it is very much in 
the spirit of Williams (1938), who seems also to be making a dominance
argument.

In both their 1958 and their streamlined 1969 “dominance” proofs,
Modigliani and Miller require default-free debt. For example, in order to
capture the limited liability of stock, α(X – rDL) ≥ 0 so that X ≥ rDL, which
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DOMINANCE Proof of the Law of the Conservation 
of Investment Value (Continued)

The two portfolios have the same payoff, αX. Therefore, if VU >
VL, then no investors would want to hold the stock of the unlevered
firm since they could achieve exactly the same cash flows more cheaply
by instead buying the portfolio of the bonds and stock of the levered
firm. Therefore, an investment in the levered firm dominates an invest-
ment in the unlevered firm.

Suppose, alternatively, that VL > VU. Consider the payoffs of the fol-
lowing two portfolios:

Current Cost Future Payoff

Buy α% shares of L αSL ≡ α (VL – DL) α (X – rDL)

Buy α% shares of U αSU ≡ αVU αX
Borrow αDL –αDL –αrDL

(on personal account)

Total α(VU – DL) α(X – rDL)

The two portfolios have the same payoff, α(X – rDL). Therefore, if
VL > VU, then no investors would want to hold the stock of the levered
firm since they could achieve exactly the same cash flows more cheaply
by instead buying the portfolio of the bonds and stock of the unlevered
firm. Therefore, an investment in the unlevered firm “dominates” an in-
vestment in the levered firm.

Taking these together, if no portfolio dominates, then VL = VU.10
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implies that there must always be sufficient operating income to meet debt
payments. On the other hand, it is equally immediately clear from
Williams’ proof that risky debt (provided there are no bankruptcy costs)
does not alter his Law.

A more modern arbitrage proof requires that short selling with full
use of the proceeds be allowed (because the positions taken have to be
capable of being reversed). Unlike the Modigliani-Miller dominance
proof, this proof does not require homemade leverage (only that the in-
vestor be able to buy and sell the firms’ securities) and also permits firm
bond default.

Modigliani-Miller’s Proposition II says that the expected return on eq-
uity E(rS) equals the expected return on the portfolio of debt and equity
E(rV) plus the difference between E(rV) and the return on debt r times the
debt-to-equity ratio D/S: E(rS) = E(rV) + [E(rV) – r](D/S). Today, this seems
obvious since this is equivalent to saying that the expected return of a port-
folio with two securities equals a weighted average of the expected returns

126 A HISTORY OF THE THEORY OF INVESTMENTS

ARBITRAGE Proof of the Law of the Conservation 
of Investment Value

Using the same notation, compare the costs and payoffs of the following
two portfolios:

Current Cost Future Payoff

Buy α% shares of U αSU ≡ αVU αX

Buy α% bonds of L αDL α min(X, rDL)
Buy α% shares of L αSL α max(0, X – rDL)

Total αDL + αSL = αVL α[min(X, rDL) 
+ max(0, X – rDL)] = αX

The two portfolios have the same payoff, αX. Therefore, with no
arbitrage, their current costs must be the same so that αVU = αVL, im-
plying that VU = VL.
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of the securities in the portfolio, where the weights are the value-weighted
proportions: E(rV) = (D/V)r + (S/V)E(rS) where V = D + S. E(rV) is
Modigliani-Miller’s “weighted average cost of capital,” which of course
will be invariant to capital structure since by assumption the numerator of
rV is independent of capital structure and by proof (Proposition I) its de-
nominator is as well.

What both Modigliani-Miller initially and Williams failed to notice,
and only became clear later in [Stiglitz (1969)] Joseph E. Stiglitz, “A Re-
Examination of the Modigliani-Miller Theorem,” American Economic
Review 59, No. 5 (December 1969), pp. 784–793, with an even clearer
argument in his sequel paper [Stiglitz (1974)] “On the Irrelevance of
Corporate Capital Structure,” American Economic Review 64, No. 6
(December 1974), pp. 851–866, is that if risky debt is created as the 
capital structure is shifted more toward debt, in an incomplete market, 
a fundamentally new security can be created or an old security destroyed
(one that cannot be replicated by a portfolio of preexisting securities 
in the economy) and this may alter state-prices, which will in turn
change the discount rates used to determine the present value of the sum
of the cash flows to debt and equity. It is thus possible in the Modigliani-
Miller proof that with changes in capital structure, although VU = VL

continues to hold, both could be higher or lower than they were before
the change.

However, in many cases, the securities created by changing capital
structure are not new since the patterns of their returns across states can
be replicated by forming a portfolio of preexisting securities. In other
cases, although firms may be able to creatively innovate new securities,
investors do not desire these patterns; so these actions should have no
effect on their total value. For example, in the mean-variance capital as-
set pricing model, since all investors divide their investable wealth be-
tween cash and the market portfolio, investors do not desire other
patterns of returns across states. Or consider an economy, as outlined by
Hakansson (1978) with a full set of state-securities on the market port-
folio macro-states and homogeneous beliefs about the residual return of
the securities of individual firms conditional on the macro-state. In that
case, all investors are perfectly happy restricting themselves to a portfo-
lio containing only macro-state securities; so capital structure changes
that create new patterns of residual returns for firms are of no interest to 
investors. Finally, consider the economy described by Ross (1976/
December) in which the returns of all securities are approximately
spanned by a small set of priced factors and where the cross-sectionally
uncorrelated residual return of any security is small relative to the size of
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the market and hence can be approximately diversified away. As long as
changes in capital structure do not create new priced factors or create
large residual return, to a good approximation, capital structure changes
will not affect value.

In practice, this influence on discount rates, if any, will typically be
negligible, but it is a refinement to the proof that could in rare circum-
stances prove significant. It may very well provide the motivation for some
of the highly innovative recapitalizations we see in practice. Charitably in-
terpreted, this seems similar to Morton’s argument.

A second, more modern way to look at the Law is to see it as a 
special case of present value additivity: The present value of the sum 
of two potentially uncertain income streams equals the sum of their sep-
arate present values. Reading Williams’ proof one can hardly fail to no-
tice that, as applied to a firm’s capitalization, this is exactly what he is
saying.

128 A HISTORY OF THE THEORY OF INVESTMENTS

State-Price Proof of the Law of the Conservation 
of Investment Value

This proof goes like this. Say a firm has two financial claims (possibly
stock and bonds) against its assets, A and B with future random pay-
offs As and Bs, across the exhaustive set of states s = 1, 2, . . . , n, and
the contractual arrangements of these claims are such that in every
state of the world s, the sum of the payoffs to both of these claims ex-
actly exhausts the operating income Xs of the firm in that state. That
is, Xs = As + Bs for all states s. Let πs be the economy-wide state-price
for state s. Then, the value of the firm:

V = ΣsπsAs + ΣsπsBs = Σsπs(As + Bs) = ΣsπsXs

Now suppose the firm changes its capital structure in such a way that
leaves its operating income unchanged state by state. In other words (as-
suming for simplicity that a third claim is not thereby created), in state s, ∆s

is now added to the payoff of asset A and correspondingly, to leave Xs un-
changed, ∆s is subtracted from the payoff of asset B. Also assume, as
Stiglitz suggests, that the change in capital structure does not create a new
desired pattern of payoffs across states (or destroy an old desired pattern
across states). In that case, since agents in the economy continue to face the 
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A similar proof, under the assumption of “complete markets” (the
economy has as many different securities as states of the world), so that the
state-prices πs exist and are unique, first appeared in Hirshleifer (1966). As
Hirshleifer points out, “the single-price law of markets” implies that a dol-
lar received in the same state but from the payoffs of different securities
must have the same state-price to convert it into its present value (an as-
sumption embodied in the preceding proof). Later Rubinstein (1976/Au-
tumn) argues and Ross (1977) clearly proves that, even in the absence of
complete markets, although state-prices will not generally be unique, state-
prices will nonetheless exist if and only if there is no arbitrage. This latter
result is sometimes referred to as “the first fundamental theorem of finan-
cial economics.” So the existence and application of the same state-price to
a dollar payoff received from different securities in the same state merely
requires the absence of arbitrage opportunities.

Another confusion in the literature, and I think in the original
Modigliani-Miller paper itself, is the difference between the irrelevancy of
capital structure for (1) firm value and for (2) the stock price (per share).
Modigliani-Miller assert at the outset that they want to prove the latter, but
end up proving only the former. Clearly, from the standpoint of stockholder-
centered corporate financial theory, it is the latter proposition that is para-
mount. It is easy to see how even if (1) is true, (2) need not be. Consider a firm
with one risky debt issue, and the firm issues new debt senior to the original
debt, using the proceeds to repurchase stock. This will increase the risk of the
original (now junior) debt holders and transfer value to the stockholders. For-
tunately, the jump from (1) to (2) is, with academic hindsight, easy to see:
Given (1), as long as with each recapitalization the original debt holders can
intelligently renegotiate their debt contracts, then (2) will hold as well.
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State-Price Proof of the Law of the Conservation 
of Investment Value (Continued)

same opportunity sets for desired investments, the state-prices πs will re-
main unchanged. Then the new value of the firm will be:

Σsπs(As + ∆s) + Σsπs(Bs – ∆s) = Σsπs(As + Bs) = ΣsπsXs = V

It is clearly unchanged from its previous value. Note that since the
payoffs of the two claims are quite arbitrary, one could be risky debt and
the other (limited liability) stock.11
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It should be kept in mind that the connection of capital structure irrel-
evancy to present value additivity (which itself must hold if there is no ar-
bitrage in perfect markets) is made with the benefit of hindsight.
Academics, perhaps as late as 1970, remained unclear about the exact as-
sumptions needed for Williams’ Law to hold, and there was considerable
confusion, particularly in the earlier literature. The field figuratively cut its
teeth on Modigliani-Miller’s Proposition I in a rite of passage from child-
hood to adulthood.

So what finally are the assumptions needed for Williams’ Law or the
Modigliani-Miller Proposition I to hold?

1. No arbitrage (that is, “all equal-sized bites of the pie have the same
taste”).

2. Operating income (from assets) is not affected by capital structure
(that is, “the total pie is fixed”).

3. The proportion of operating income that is jointly allocated to stocks
and bonds is not affected by the firm’s capital structure (that is,
roughly, “only stockholders and bondholders eat the pie”).

4. The present value function (the economy-wide state-prices) is not af-
fected by capital structure (that is, “the taste per bite of the pie is fixed”).

Assumption 1 ensures the existence, but not necessarily the unique-
ness, of state-prices. Assumption 2 rules out (1) bankruptcy costs, (2) dif-

130 A HISTORY OF THE THEORY OF INVESTMENTS

Proof of Capital Structure Irrelevancy 
for Stock Prices

To see this, start with an unlevered firm (with n outstanding shares):

VU = nSU

Now suppose the firm alters is capital structure by buying back m
shares and replacing them dollar for dollar with debt:

VL = (n – m)SL + DL = (n – m)SL + mSL = nSL

where, in general, the stock of the levered firm may sell at a different
price per share SL.

However, since VL = nSL, VU = nSU, and VL = VU, then SL = SU.
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ferential transactions costs in issuing or trading stocks and bonds, (3) man-
agerial incentives to alter operating income that are changed by capital
structure such as occurs with employee stock options or capital structure
effects on managerial salaries and perks, (4) stockholder incentives to ac-
cept high-risk, negative net present value projects that shift value from
bondholders to stockholders, and (5) conveyance of information about the
operating income of the firm to the market by signaling via capital struc-
ture. Assumption 3 rules out differential taxes for income from stock and
bonds. And assumption 4 disallows the possibility of creating or destroy-
ing desired patterns of returns not otherwise existing in the market by
changing capital structure.

The second related proposition that capital structure does not affect
the stock price requires an additional assumption:

5. There are no pure transfers between bondholders and stockholders, or
between new and old shareholders.

This assumption rules out:

� Pure asset substitution, that is, ex post risk-changing projects that can
shift value between bondholders and stockholders even though they
leave the total market value of the firm unchanged.

� Use of contractual arrangements between bondholders and stockholders
that permit ex post transfers between them such as in the earlier junior
debt example.

� Violations of “strong-form market efficiency” that permit stockholders
or managers to use inside information to issue bonds or stock in re-
sponse to the failure of the market to reflect that information in their
relative prices (for example, issue stock when it is overpriced and
bonds when the stock is underpriced).

Indeed, it has become commonplace to view the Modigliani-Miller
Theorem not as a realistic proof that capital structure is irrelevant, but
rather as a way of obtaining the list of reasons that make it relevant. Since
the publication of the original Modigliani-Miller paper in 1958, each of
these reasons has given rise to its own virtual cottage industry of academic
research. Tracing these developments takes us beyond the intended scope
of this book since, traditionally, that belongs to the subject of corporate fi-
nance as opposed to investments.

Not only did Modigliani-Miller not invent the Modigliani-Miller Theo-
rem, Modigliani-Miller did not even invent arbitrage reasoning or proof, as
it is sometimes claimed. As if it were needed, I mention just a few examples.
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From the ninth century, we have descriptions of what we would now call a
“Dutch book,” where a middleman places opposite bets with two different
individuals, but secretly at different odds so that he is sure of a profit. Ac-
cording to Edward J. Swan in [Swan (2000)] Building the Global Market:
A 4000 Year History of Derivatives (New York: Kluwer Law International,
2000), evidence from cuneiform tablets inscribed in ancient Mesopotamia
indicates that forward transactions have existed at least since 1750 B.C. A
forward transaction (agree today to make an exchange tomorrow) is such
an obvious idea often motivated by necessity that this is hardly surprising.
What is more, by the sixteenth century, secondary markets in forward con-
tracts had developed across much of Europe with forwards on stock trading
on the Amsterdam Exchange. Commodity traders for perhaps many cen-
turies and academics from at least early in the twentieth century clearly un-
derstood the role of arbitrage in determining the relation between spot and
forward prices, as well as triangular currency arbitrage. The Dutch market
for calls and puts (or “opsies” as they were then called), colorfully de-
scribed in de la Vega (1688), surely included put-call parity arbitrage trad-
ing in practice. Fisher (1907) used an arbitrage argument to justify why the
present value of cash flows from a capital project must be the same as the
present value of the cash flows from a portfolio of securities constructed to
match the project. In another context, Hotelling (1931) explains that the
price of an exhaustible resource should grow at the rate of interest to pre-
vent profitable shifting of extraction between two periods. We have also
seen that Friedman (1953/B) employs notions of arbitrage.

With this in mind, we can now see that Modigliani-Miller’s real and
enduring contribution was to point others in the direction of arbitrage rea-
soning as the most fundamental tool to derive results in financial econom-
ics. Both Modigliani in 1985 and Miller in 1990 won Nobel Prizes in
Economic Science, Modigliani “for his pioneering analyses of saving and
financial markets” and Miller primarily for his role in their 1958 paper.

1959 Gerard Debreu (July 4, 1921–December 31, 2004), Theory of
Value: An Axiomatic Analysis of Economic Equilibrium, Cowles Founda-
tion Monograph #17 (New York: John Wiley & Sons, 1959).

EXISTENCE AND OPTIMALITY OF COMPETITIVE EQUILIBRIUM

Debreu (1959) provides a formal and very general mathematical treatment
of the existence and optimality of competitive equilibrium, forming the

basis for the standard finance model. Debreu establishes competitive equi-
librium theory using the more general mathematical tools from topology

132 A HISTORY OF THE THEORY OF INVESTMENTS

ccc_rubinstein_pt02_99-308.qxd  1/12/06  1:41 PM  Page 132



rather than calculus. All the mathematics necessary for the monograph is
stated (although not proven) in the first chapter.

The economy has three sets of variables: (1) decision variables that are
chosen by agents, (2) environmental variables that are not under the con-
trol of any agent, and (3) other variables that are completely determined by
the interaction of variables of types (1) and (2) (e.g., prices). The state of
the environment is a complete history of all the environmental variables
from the beginning to the end of the economy. An event is a set of states.
The most important are dated events that are subsets of all the states de-
scribing the history of the economy up to a given date. Commodities are
distinguished by their physical characteristics, location, dates of availabil-
ity or use, and the event at which they become available or used. There are
two groups of agents: consumers and producers. Each producer chooses a
production plan that specifies his input and output of commodities at each
dated event. Each producer is characterized by a production function that
describes its ability to transform sets of commodities into other sets of
commodities, and is assumed to choose the plan permitted by its produc-
tion function with the highest present value. Each consumer chooses a con-
sumption plan that specifies his consumption of each commodity at each
dated event. Each consumer is characterized by the feasible set of con-
sumption plans available to him, his preferences among these plans (utility
function), and his endowed commodities and shares of each producer’s
profits. Each consumer is assumed to choose commodities that maximize
his preferences over his feasible consumption plans. Finally, there is a mar-
ket for exchange of the commodities to which all consumers and producers
have access that is available only at the beginning of economy but permits
the exchange of any commodity (e.g., for any future dated event). Payment
for each commodity is made only at the beginning date, and all consumers
and producers are assumed to act as price takers. There are thus two ways
for commodities to be transformed: exchange, which preserves the aggre-
gate amount of each commodity, and production, which can increase the
aggregate availability of commodities typically at the sacrifice of a reduc-
tion in the aggregate availability of other commodities. Prices are then de-
termined by the equilibrium condition that, for each commodity, the
aggregate amount demanded via exchange equals the aggregate amount
supplied via exchange (that is, aggregate planned consumption equals ag-
gregate endowed consumption plus planned production). Making the
weakest possible assumptions restricting the nature of consumer prefer-
ences and producer production functions, Debreu then demonstrates the
existence and optimality of the resulting equilibrium. The most problem-
atic of his assumptions is convexity of consumer preference and firm pro-
duction sets.
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Among other earlier papers, this monograph draws on John von Neu-
mann in [von Neumann (1938)] “A Model of General Economic Equilib-
rium,” in Karl Menger, editor, Ergebnisse eines mathematischen Seminars
(Vienna, 1938), translated from German into English in Review of Eco-
nomic Studies 13, No. 1 (1945–1946), pp. 1–9, where von Neumann was
the first to use Kakutani’s fixed point theorem to prove the existence of
equilibrium, and on Kenneth Joseph Arrow and Gerard Debreu in [Arrow-
Debreu (1954)] “Existence of an Equilibrium in a Competitive Economy,”
Econometrica 22, No. 3 (July 1954), pp. 265–290, reprinted in Collected
Papers of Kenneth J. Arrow: General Equilibrium, Volume II (Cambridge,
MA: Harvard University Press, 1983), pp. 58–91, and Arrow (1953). De-
breu won the 1983 Nobel Prize in Economic Science “for having incorpo-
rated new analytical methods into economic theory and for his rigorous
reformulation of the theory of general equilibrium.”

1959 M.F.M. Osborne, “Brownian Motion in the Stock Market,” Oper-
ations Research 7, No. 2 (March–April 1959), pp. 145–173; reprinted in
The Random Character of Stock Market Prices, edited by Paul H. Cootner
(London: Risk Publications, 2000), pp. 123–157.

BROWNIAN MOTION, RANDOM WALK, 
WEBER-FECHNER LAW OF PSYCHOPHYSICS, 

LOGNORMAL DISTRIBUTION

Francis Galton (February 16, 1822–January 17, 1911), in [Galton (1879)]
“The Geometric Mean in Vital and Social Statistics,” Proceedings of the

Royal Society of London 29 (1879), pp. 365–367, suggests that many phe-
nomena are the result of independent multiplicative effects and that the
central limit theorem should then imply that the logarithms of the observa-
tions would be normal. This led to the development of the lognormal dis-
tribution by D. McAlister in [McAlister (1879)] “The Law of the
Geometric Mean,” Proceedings of the Royal Society of London 29 (1879),
pp. 367–376.

Apparently written without knowledge of Bachelier (1900), Osborne
(1959) proposes that stock prices follow a random walk. However, unlike
Bachelier, Osborne proposes lognormal (as opposed to normal) distribu-
tions for security returns, resulting from geometric rather and arithmetic
Brownian motion. In the context of modeling stock prices, multiplicatively
lognormal returns have several advantages over Bachelier’s hypothesis: (1)
prices cannot become negative; (2) for any a > 0, equal returns more than
aeµ and less than eµ/a are equally likely, where µ is the expected natural log-
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arithm of the return; (3) products of returns are lognormal if the individual
returns are jointly lognormal (multiplicative stability); and (4) even if the
individual returns are not lognormal, a multiplicative version of the central
limit theorem holds with a limiting lognormal distribution. However, a key
drawback of Osborne’s hypothesis is that the probability is zero that the
price of a security will fall to zero (no bankruptcy is possible). Also, for se-
curity returns measured over discrete intervals, portfolio returns will not
be lognormal (additive instability).

Osborne also proposes that the cause of lognormality derives from the
Weber (1851) and Fechner (1860) hypothesis of psychophysics: Equal ra-
tios of physical stimulus correspond to equal intervals of subjective sensa-
tion. This is none other than the Daniel Bernoulli (1738) assumption of
logarithmic utility. The simple argument is this: Suppose investors have
logarithmic utility functions; then the utility of return R will be equal in
magnitude to the utility of return 1/R; that is, log R = – log (1/R). Only if
each of these outcomes is equally likely will the investors be indifferent to
the gamble since then 1/2 log (R) + 1/2 log (1/R) = 0. But in that case, the
random variable R behaves like a lognormal variable. This observation
anticipates much later work suggesting that lognormal distributions are
the outcome of an equilibrium in which investors have logarithmic utility
functions.

Observing, as had Regnault (1863) and Bachelier (1900) before him,
that in a random walk the variance of the return over a time interval in-
creases proportionally with the length of the interval, Osborne is the first
to test for a random walk by measuring the dependence of the variance on
the time interval. Osborne also seems to be the first person to publish em-
pirical tests of the random walk model using price series of individual
stocks (others had used indexes).

1960 Holbrook Working, “Note on the Correlation of First Differences
of Averages in a Random Chain,” Econometrica 28, No. 4 (October
1960), pp. 916–918; reprinted in The Random Character of Stock Market
Prices, edited by Paul H. Cootner (London: Risk Publications, 2000), pp.
158–161.

INDIVIDUAL OBSERVATIONS VS. AVERAGES, 
SPURIOUS CORRELATION, 

INDEX CONSTRUCTION AND STALE PRICES

Many economic time series, rather than a sequence of snapshot observa-
tions, are actually reported as averages of data sampled at multiple
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points. Working (1960) points out that even if the individual observations
follow a random walk, the series of averages will be spuriously positively
serially correlated. Suppose the sequential observations are X0, X1, X3, . . . ,
Xj, . . . , Xn, where Xj = Xj–1 + εj, E(εj) = 0, Var(εj) = 1 (without any loss of
generality), and Cor(εj, εj+k) = 0 for k ≠ 0. Now, suppose the series is placed
in groups of m sequential observations, (X1, X2, . . . , Xm), (Xm+1, Xm+2,
. . . , X2m), . . . . Note that the variance of Xj+m – Xj = m. Let the averages Y1
≡ (X1 + X2 + . . . + Xm)/m, Y2 ≡ (Xm+1 + Xm+2 + . . . + X2m)/m, . . . , Yi, . . . .
First, Working shows that the variance of Yi+1 – Yi equals (2m2 + 1)/3m.
Even for m relatively small, the variance is close to its limiting value as m
→ ∞ of 2/3m.

Second, Working shows that the correlation of Yi+1 – Yi with Yi – Yi–1
equals 1/2(m2 – 1)/[(2m2 + 1)]. Even for m relatively small, the correlation is
close to its limiting value as m → ∞ of +1/4.

To see this intuitively, suppose a time series has moved up in the first
period. If I average the observed prices during this period, this average will
likely be less than the closing level for the period. But when I observe the
average price in the next period, since the constituent price changes are as-
sumed independent, the second-period average is likely to be higher than
the first-period average (since the new prices start out as changes from the
previous closing level). Continuing to reason out other possible price
changes over the two periods in this way, it is easy to see that using aver-
ages will generate spurious positive correlation.

An ex post application of Working’s result applies to Alfred Cowles
3rd’s article, [Cowles (1937)] “Some A Posteriori Probabilities in Stock
Market Action,” Econometrica 5, No. 3 (July 1937), pp. 280–294, in
which Cowles reports the results of what may be the first published
“runs tests” of stock index price changes. These tests check to see if
there are more trends (price changes of the same sign following each
other) or more reversals (price changes of opposite sign following each
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Illustration of Working’s Result on Spurious 
Serial Correlation

For example, suppose m = 3 and n = 6; then Y2 – Y1 = [(X3 + ε4) + (X3 +
ε4 + ε5) + (X3 + ε4 + ε5 + ε6)]/3 – [(X3 – ε3 – ε2) + (X3 – ε3) + X3]/3 = (ε2 +
2ε3 + 3ε4 + 2ε5 + ε6)/3. Since the ε are uncorrelated and since the Var(ε) =
1, then Var(Y2 – Y1) = (12 + 22 + 32 + 22 + 12)/32 = 19/9 < 3.
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other) than should happen under the null hypothesis of a random walk.
Cowles had reported that trends outnumbered reversals, and this was
statistically significant at a very high level (although perhaps not eco-
nomically significant enough to lead to a profitable trading strategy after
considering trading costs). In his subsequent 1960 article, [Cowles
(1960)] “A Revision of Previous Conclusions Regarding Stock Price Be-
havior,” Econometrica 28, No. 4 (October 1960), pp. 909–915, pub-
lished in the very same issue of the journal as Working’s paper, Cowles
retracts some of his earlier results, having discovered that some of his in-
dex numbers had been computed from the average of high and low
prices. Although these are not strictly the arithmetic averages of prices
Working examined, the same intuition leading to spurious serial correla-
tion should apply.

In addition, Cowles notes that his earlier study could suffer from an-
other related problem. In most cases, he was using closing index levels,
but these index levels actually consisted of (possibly weighted) arithmetic
averages of the closing prices of individual stocks. If the individual stocks
registered their last trades at different times during the day, the index will
be an average of relatively new and relatively stale prices. In practice,
since the individual stocks in the index tend to have positively correlated
price changes with other stocks in the index, the staleness means that if
the index has trended up for the day, it will actually register with a smaller
price change over the day than would have occurred had all the stocks
traded at their (probably) higher levels at the end of the day. Again, be-
cause of the independence assumption, the next day changes in the index
will really start from this unreported higher level, inducing, as in the aver-
aging case for a single stock, positive serial correlation in day-to-day in-
dex changes.

Alexander (1961) also points out a similar error made by Kendall
(1953), who examined 22 price series—19 British industrial stock in-
dexes, 2 cash wheat price series, and spot cotton in New York. With one
exception, Kendall found all the series behaved like random walks. The
one exception was the cotton series, which caused Kendall to conclude
that generalization from several confirming data sets can be dangerous
(the fact that the only cows one has seen are white does not imply that
black cows do not exist). However, as Alexander writes: “Alas, Kendall
drew the wrong moral. The appropriate one is that if you find a single
exception, look for an error” (p. 241). It turns out that all the other se-
ries were single prices observed at a specified time each week or month,
while the cotton series was an average of the weekly closing prices over
each month.
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1960 Ronald H. Coase (December 29, 1910–), “The Problem of Social
Cost,” Journal of Law and Economics 3 (October 1960), pp. 1–44;
reprinted in R.H. Coase, The Firm, the Market and the Law (Chicago:
University of Chicago Press, 1988), pp. 95–156.

COASE THEOREM, PROPERTY RIGHTS, 
MODIGLIANI-MILLER THEOREM

Does the allocation of property rights affect production? For example,
suppose I have a factory upstream from you that spews out pollutants

into the water that poison its use so that your downstream factory must
pay additional costs to truck in water to operate. Is the production of our
two factories affected by the allocation of property rights that might re-
quire that I am liable for the damages I cause your business? A corollary
question relates to the role of law: To achieve optimal productive outcomes
for the economy, do we need laws that make me liable? Coase (1960) is
clear that laws need to specify how the property rights to the stream are
distributed; his remaining question is whether it matters just how these
rights are distributed between us.

Coase argues that the answer is generally no. To see this à la Williams
(1938) suppose a single individual owns both factories and maximizes
profits (presumed to lead to socially optimal productive outcomes). If the
damage to the profits of the downstream factory caused by the pollution
exceeds the increase in profits to the upstream factory from polluting, he
will not pollute. Consider instead what would happen between us, assum-
ing we are profit maximizers but I am not legally liable for the pollution.
If I continue to pollute, our total profits will be lower than if I were to
stop. Therefore, as a profit maximizer, you will come to me and offer to
pay me to cease pollution. While the size of that side payment will be a
matter of negotiation, it will nonetheless be a zero-sum contribution to
profits—my gain will be your loss. Nonetheless, it will be mutually opti-
mal if I accept a sufficient side payment that causes me as a profit maxi-
mizer to cease polluting. In that way, there will be more profit to be
distributed, depending on the negotiation, between us. More generally, it
should now be easy to see that the location of property rights should have
no effect on the summed profit (and therefore the individual production)
from the two factories.

The Coase Theorem, as this is now called, is quite similar to the
Modigliani-Miller Theorem (Modigliani-Miller 1958). Both show that a
decision, one with regard to legal structure and the other financial struc-
ture, is irrelevant to the allocation of real assets. Both argue that the irrele-
vancy becomes clear if the full range of opportunities is appreciated—in
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one case, the opportunity for the two individuals to make zero-sum side
payments, and in the other case, the opportunity for an investor to obtain
homemade leverage by borrowing or lending outside the firm to offset the
firm’s own financial leverage. Both theorems also require similar circum-
stances. The Modigliani-Miller Theorem relies on trading costs that do not
favor one financial arrangement over another, and the Coase Theorem pre-
sumes that the negotiating cost of arranging the side payment is not af-
fected by the allocation of liability. Also, the Modigliani-Miller Theorem
presumes that changing capital structure does not affect state-prices, while
the Coase Theorem presumes that the change in the output prices and
other costs of the factory are not affected by the different decisions we
could make due to the dependency of our personal wealth on the alloca-
tion of property rights. I think the main lesson of both the Coase Theorem
and the Modigliani-Miller Theorem is to consider the full range of choices
that are available to economic agents.

In 1991, Coase was awarded the Nobel Prize in Economic Science “for
his discovery and clarification of the significance of transactions costs and
property rights for the traditional structure and functioning of the economy.”

1961 and 1964 Sidney S. Alexander, “Price Movements in Speculative
Markets: Trends or Random Walks,” Industrial Management Review 2
(May 1961), pp. 7–26, and “Price Movements in Speculative Markets:
Trends or Random Walks, No. 2,” Industrial Management Review 5, No.
1 (Spring 1964), pp. 25–46, reprinted in The Random Character of Stock
Market Prices, edited by Paul H. Cootner (London: Risk Publications,
2000), pp. 237–259, 419–457.

RANDOM WALK, FILTER RULES, EFFICIENT MARKETS

A relatively early paper by Alexander (1961) may have been the first to
systematically examine mechanical technical trading strategies (and,

as a result, test for nonlinear dependence in price series). In particular,
Alexander tests the efficacy of the “filter trading rule”: After an X per-
cent rise in price, buy and stay long until the price falls X percent from a
subsequent high; then sell short and stay short until the next X percent
reversal occurs from a subsequent low; ignore price changes less than X
percent. Alexander finds that, applied to buying U.S. stock market in-
dexes using daily closing levels from 1897 to 1959, the filter strategy ap-
pears profitable before trading costs and annual profits increase
systematically as the filter is reduced. However, as frequently happens 
in this type of research, subsequent scrutiny and analysis reveals hidden
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biases and reverses previous conclusions, as in Cowles (1960). Benoit
Mandelbrot, in [Mandelbrot (1963)] “The Variation of Certain Specula-
tive Prices,” Journal of Business 36, No. 4 (October 1963), pp.
394–419, reprinted in The Random Character of Stock Market Prices,
edited by Paul H. Cootner (London: Risk Publications, 2000), pp.
369–412, points out that Alexander biased his results by assuming that
an investor could buy (or sell) at exactly X percent higher (or lower)
than the new low (or new high), when in fact because of discretely
quoted prices and jumps, he would typically only be able to buy (or sell)
at somewhat higher (or lower) prices. Adjusting for this bias in his se-
quel paper, Alexander (1964) finally concludes on a sorrowful note:
“The bold profits of Paper 1 must be replaced with rather puny ones.
The question still remains whether even these profits could possibly be
the result of a random walk. But I must admit the fun has gone out of it
somehow” (p. 423).

Eugene F. Fama and Marshall E. Blume, in [Fama-Blume (1966)]
“Filter Rules and Stock-Market Trading,” Journal of Business 39, No. 1,
Part 1 (January 1966), pp. 226–241, point out a second bias resulting
from failure to consider dividends. Unlike Alexander, who examines in-
dexes for which dividend adjustment is quite difficult, Fama and Blume
look at individual stocks and show that since the profits from short sales
(part of Alexander’s filter strategy) are reduced by dividends, filter rule
profits are reduced, when compared to buy-and-hold 100 percent long in-
vesting. In addition, the spurious correlation of indexes noted first by
Cowles (1960) may also appear in an index filter test but not in a test
based on individual stocks. They also show that for all of the 30 Dow
Jones Industrial Average (DJIA) stocks during their sample period, even
slight trading costs tend to eliminate profits. However, if these costs are
ignored, the smallest filters on the order of 0.5 percent, 1.0 percent, and
1.5 percent do show profits (of course, the smaller the filter, the greater
the turnover and trading costs). Wrapping up this line of research, Fama
and Blume write:

In conclusion, there appears to be both positive and negative de-
pendence in price changes. The order of magnitude of the depen-
dence is so small, however, that our results add further evidence
that for practical purposes the random-walk model is an adequate
description of price behavior. (p. 240)

1961 John F. Muth (1930–), “Rational Expectations and the Theory of
Price Movements,” Econometrica 29, No. 3 (July 1961), pp. 315–335.
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1972 Robert E. Lucas Jr. (September 15, 1937–), “Expectations and the
Neutrality of Money,” Journal of Economic Theory 4, No. 2 (April 1972),
pp. 103–124.

RATIONAL EXPECTATIONS, AGGREGATION OF INFORMATION

M uth (1961) is the first to formalize the idea of rational expectations.
Muth adopts a new equilibrium concept that adds this to the usual re-

quirements: The expected future price that agents use in determining their
own current demands (and a price that their own current aggregate demands
affect) is in fact the correct expectation of that price. Muth calls such an ex-
pected price the “rational expectations equilibrium price.” In particular, sup-
pose that at date 0 each firm must commit itself in advance to produce output
q to be sold at date 1 for price p set in the market at date 1, and suppose that
each firm seeks to maximize its own expected profits. p is assumed to be a
function D of aggregate output Q, and ε is a random variable summarizing
all other stochastic factors affecting demand so that p = D(Q, ε). The optimal
q will clearly be some function H of E(p), so that q = H[E(p)]. If there are N
identical firms, then the aggregate output will be Q = NH[E(p)]. Putting this
together, p = D{NH[(E(p)], ε}. Therefore, E(p) = E(D{NH[E(p)], ε}). This is
the additional equilibrium condition Muth adds. That is, at date 0 each firm
in determining its output q uses its own estimate E(p) of the future selling
price such that the price at date 1 that results from all firms then supplying
the aggregate output Q, itself, has the same expectation E(p).

Lucas (1972) carries Muth (1961) a valuable step further, delving more
deeply into the process of the formation of rational expectations by sup-
posing that agents infer from current prices (p) specific information about
the environment (X) that helps them determine their demands, which in
turn helps to determine current prices. Before he observes the current price
p, no agent knows everything he would like to know about X. Agents then
can use current prices, and their assumed knowledge of the pricing func-
tion p(X), to learn more about the current realization of X. In essence, they
solve p = p(X) implicitly for X. This is perhaps the first example of a for-
mal model in which information that is used to determine prices is ex-
tracted by agents from those prices.

J.R. Green in [Green (1973)] “Information, Efficiency and Equilib-
rium,” Discussion Paper #284 (March 1973), Harvard Institute of Eco-
nomic Research, Harvard University, uses the same concept of equilibrium
but in the context of a model with informed and uninformed agents where
the uninformed agents use current prices and their knowledge of the pric-
ing function to extract the information only initially given to the informed
agents.
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Although Muth is surely the first to formalize the idea of rational ex-
pectations, he was not the first to state it. Working (1958) was able to an-
ticipate Muth as well as Lucas, and later Grossman (1976):

Traders accustomed to act primarily on the basis of new informa-
tion recognized as deserving to have a price effect may view an ad-
verse price movement as a warning that the price is responding to
other information which they do not have. Such a trader, having
bought on the basis of that information, may therefore sell
promptly if the price movement goes contrary to his expectations.
(p. 196)12

Lucas won the 1995 Nobel Prize in Economic Science “for having de-
veloped and applied the hypothesis of rational expectations, and thereby
having transformed macroeconomic analysis and deepened our under-
standing of economic policy.”

1961 Merton Howard Miller and Franco Modigliani, “Dividend Policy,
Growth, and the Valuation of Shares,” Journal of Business 34, No. 4 (Oc-
tober 1961), pp. 411–433.

DIVIDEND POLICY, EARNINGS GROWTH AND SHARE PRICES, 
DISCOUNTING EARNINGS VS. DIVIDENDS, 
INVESTMENT OPPORTUNITIES APPROACH

I t was once popularly believed that since the stock price equals the present
value of all future dividends (Williams 1938), firms that voluntarily shift

a higher portion of their earnings to dividends might be able to increase
their stock price. In a sequel paper to Modigliani-Miller (1958), Miller-
Modigliani (1961) show this is not true. Paradoxically, in perfect markets,
a firm’s dividend policy will not have any effect on its current stock price.
The rough intuition is simple: Ceteris paribus, to the extent a firm pays out
greater dividends, it will have less earnings to reinvest. In turn, this will re-
duce future earnings, which will eventually reduce future dividends. One
can have more dividends now or more dividends later, but not both; more-
over, shareholders are indifferent to this trade-off. Another way to see this
is to ask what should happen to the stock price, ceteris paribus, immedi-
ately after a dividend is paid. The dividend can be viewed as a partial liqui-
dation (a dividend of 100 percent of the firm would be a complete
liquidation after which the stock would be worth zero). On the one hand,
shareholders are better off since they receive the dividend; on the other,
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they are worse off because the firm now has less to invest by the amount of
the dividend; so the stock price falls by the amount of the dividend. Taking
these together, the shareholder is no better off as a result of the dividend.

Miller and Modigliani’s formal proof of dividend irrelevancy can more
easily be grasped using a Williams (1938) style argument than using the argu-
ment they supplied. To keep matters very simple, assume certainty and perfect
markets, and consider an all-equity firm. To focus directly on the marginal ef-
fects of dividend policy, hold the investment policy of the firm fixed. In that
case, if a firm decides to increase its dividends, in order to undertake the same
investments it will need to issue additional shares. Now consider the position
of a single investor who not only owns all the current stock of the firm but
also purchases all the new shares as they are issued over time. To such an in-
vestor, the present value of his investment in the firm will be:

where the sum is taken from 1 to ∞, Dt is the total dividend paid at date t, Nt

is the amount of additional equity capital raised at date t, r(t) is the current
(date t = 0) annualized riskless discount return for dollars received at date t,
and P0 is the current (date t = 0) total value of the equity. To keep the invest-
ment policy fixed, if the firm now increases its dividend at any date t to Dt′ =
Dt + ∆Dt, it must also increase the additional equity raised at date t to Nt′ = Nt

+ ∆Nt. Clearly, as long as ∆Dt = ∆Nt, then P0 will be unchanged. So I conclude
that dividend policy will have no influence on the firm’s stock price since its
effects can be undone by issuing new or repurchasing old equity. Seen in these
terms, Miller and Modigliani’s dividend irrelevancy theorem is transparent.

These arguments seem to hold the investment policy of the firm fixed.
But that is not really required. Again, as in the case of the Modigliani-
Miller (1958), dividend policy irrelevancy can be interpreted as an immedi-
ate and simple consequence of present value additivity. From this
perspective, it is easy to see that if a firm reduces its dividend in one period
and reinvests the extra retained earnings in a zero net present value project
that provides increased future dividends, then (provided state-prices are
not affected) the present value of the firm’s dividends, and hence its current
stock price, will remain unchanged. Myron J. Gordon, in [Gordon (1963)]
“Optimal Investment and Financing Policy,” Journal of Finance 18, No. 2
(May 1963), pp. 264–272, makes just this argument under certainty, but
mistakenly claims that it will not hold under uncertainty. This mistake was
corrected first by Michael J. Brennan in [Brennan (1971)] “A Note on Div-
idend Irrelevance and the Gordon Valuation Model,” Journal of Finance
26, No. 5 (December 1971), pp. 1115–1121. A two-line parsimonious
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proof appears in [Rubinstein (1976/September)] Mark Rubinstein, “The
Irrelevancy of Dividend Policy in an Arrow-Debreu Economy,” Journal of
Finance 31, No. 4 (September 1976), pp. 1229–1230.

Since many firms have never paid dividends and it is not clear when
they will start, dividend discount models are difficult to apply in practice.
Academic accountants, in particular, have tried to find some other equiva-
lent way to value stocks without being forced to specify dividends. One
might be tempted simply to discount future earnings. However, David Bo-
denhorn in [Bodenhorn (1959)] “On the Problem of Capital Budgeting,”
Journal of Finance 14, No. 4 (December 1959), pp. 473–492 (see particu-
larly p. 489), is one of the first to argue that simply discounting earnings is
double counting. He writes:

The dispute between net income and dividends should be settled in
favor of dividends. Consider a firm with a net income of $100 the
first year, of which it retains $50 and pays $50 in dividends, so that
net income in subsequent years is $105. The net income theory says
that the value of this stock is the present value of $100 this year plus
$105 next year and in perpetuity. This, however, constitutes double
counting of the $50 of retained earnings and the resulting $5 a year
addition to the income stream. The correct present value of the firm
is the value of $100 this year less the $50 which is retained, so that
there is only $50 this year, and plus the $105 which will be earned
in each subsequent year. Thus the value of the stock is the present
value of the net income stream minus the present value of retained
earnings. But net income less retained earnings is dividends, so that
we are really discounting the dividend stream. (p. 489)13

In their paper, Miller and Modigliani make one of the first careful at-
tempts to reformulate the dividend discount model equivalently in terms of
related variables like cash flows, earnings, and growth opportunities—vari-
ables that may be more easily directly estimated than dividends from ac-
counting information. For example, according to the investment
opportunities approach, P0 = (X0/r*) + ΣtIt[(ρt – r*)/r*]/rt, where the sum-
mation is taken from 1 to ∞, X0 is earnings at date 0, It is investment at
date t, ρt is the annualized rate of return on the investment undertaken at
date t, and r* ≡ r – 1. This treats net income from the current assets of the
firm X0 as a perpetuity (hence discounted by r*) and separate from the net
income from future investment opportunities. The gross income from in-
vestment at date t is ρtIt, and the cost of financing this investment is r*It,
which are themselves perpetuities (hence discounted by r*) but starting at
date t (hence discounted further by rt).
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The sources of value can be given further detail since X0/r* can be bro-
ken into two parts: the current firm book value Y0 and the present value of
the abnormal future cash flows on this book value investment, Y0(ρ0 –
r*)/r*. So putting this all together, I have a tripartite division of value:

In words, the market price per share of a firm equals the sum of its cur-
rent book value (that is, the date 0 terminal value of retained cash flows from
all its previous investments), the present value of the future abnormal earn-
ings from its existing investments (assumed for simplicity to be a perpetuity),
and the present value of abnormal earnings from its future investment oppor-
tunities (each assumed for simplicity to be a perpetuity).
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Derivation of the Investment Opportunities 
Formulation of Present Value

Here is a derivation of the investment opportunities formulation from
the dividend discount model (Williams 1938). Assume the discount rate
is constant so that r ≡ r(t). Define Y0 ≡ X0/r*. From our prior discussion,
Dt = Xt – It, X0 = ρ0Y0 and Xt+1 = Xt + ρtIt for t ≥ 1. Therefore,

D1 = X1 – I1 = ρ0Y0 – I1
D2 = X2 – I2 = X1 + ρ1I1 – I2 = ρ0Y0 + ρ1I1 – I2
D3 = X3 – I3 = X2 + ρ2I2 – I3 = ρ0Y0 + ρ1I1 + ρ2I2 – I3

. . .

Substituting into the dividend discount model:
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This approach may have first appeared in simplified form in [Walter
(1956)] James E. Walter, “Dividend Policies and Common Stock Prices,”
Journal of Finance 11, No. 1 (March 1956), pp. 29–41 (see particularly p.
32). The more general version appears in Bodenhorn (see particularly p.
490). Alternatively, according to the stream of earnings approach, P0 =
Σt[Xt – Στr*Iτ]/r

t, where the first summation is taken from 1 to ∞, the sec-
ond summation is taken from 1 to t, and Xt is earnings at date t.

1961 Daniel Ellsberg, “Risk, Ambiguity, and the Savage Axioms,” Quar-
terly Journal of Economics 75, No. 4 (November 1961), pp. 643–669.

RISK VS. UNCERTAINTY, ELLSBERG PARADOX, 
INDEPENDENCE AXIOM, SUBJECTIVE PROBABILITY

Yes, this is the same Daniel Ellsberg of Pentagon Papers fame. Whether
all uncertainty is measurable by probabilities has long been a contro-

versy in economics. The chief advocate of the idea that not all uncertainty
can be quantified is Knight (1921), and the chief advocates of the opposite
view are de Finetti (1937) and Savage (1954). To show that the issue still
has life, Ellsberg (1961) describes a choice of gambles that cleverly sorts
this out. Consider two opaque urns, the first known to contain 50 black
balls and 50 red balls, and the second containing 100 black or red balls of
unknown proportions. You will get a significant prize if you can draw out
a red ball in one draw. From which urn do you prefer to draw the ball? In
a second chance, you will get a significant prize if you draw out a black
ball in one draw. From which urn do you prefer to draw? In each case, if
you prefer to draw from the same urn, it is easy to see that you cannot be
using the Savage axioms (and are probably influenced by the lack of
knowledge about the composition of the second urn). To see this, suppose
in both cases you choose to draw from the first urn. If you follow the Sav-
age axioms, in the first chance, one would infer you believe you are more
likely to draw a red ball from the first urn; similarly, in the second chance,
one would infer you believe you are more likely to draw a black ball from
the first urn. Since both statements cannot simultaneously be true, you can-
not be using the Savage axioms.

From his experience with the gamble, Ellsberg claims that most indi-
viduals prefer to draw in both cases from the first urn. Even after it is ex-
plained to them how that preference violates the Savage axioms, many
continue to persist in their choice. Diehards like myself, of course, are stub-
bornly indifferent between drawing from either urn.

To close in on the Savage axiom that is most likely to blame for the
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failure of the predictions of Savage’s theory, Ellsberg proposes a second re-
lated gamble. Consider a single opaque urn known to contain 30 red balls
and 60 balls that are either yellow or black, in unknown proportion. A sin-
gle ball is to be drawn at random from the urn. You can make one of two
bets with the following payoffs (A) depending on the ball drawn:

Red Black Yellow

(A1) $100 $    0 $0 (“Bet on red”)
(A2) $    0 $100 $0 (“Bet on black”)

Consider now another choice between two bets under the same circum-
stances but where the payoffs (B) are:

Red Black Yellow

(B1) $100 $    0 $100 (“Bet on red and yellow”)
(B2) $    0 $100 $100 (“Bet on black and yellow”)

Savage’s axiom, the sure-thing principle, his version of the Marschak (1950)
and Samuelson (1966) independence axiom in a von Neumann–Morgen-
stern (1947) context, says your choice between the gambles in A should not
be affected by altering the common yellow outcome in B. Therefore, if you
prefer (A1) to (A2), you should also prefer (B1) to (B2).

In Ellsberg’s experience, most people prefer (A1) to (A2), since (A1) is
merely “risky” while (A2) is “uncertain”; but most also prefer (B2) to (B1),
since (B2) is merely “risky” while (B1) is “uncertain.”
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Illustration of the Sure-Thing Principle

To see this, I can arbitrarily assign utility 1 to $100 and utility 0 to $0,
and let p1, p2, and p3 be the subjective probabilities you assign to red,
black, and yellow, respectively. Therefore, the corresponding expected
utilities of the gambles are:

(A1) = p1, (A2) = p2, (A3) = p1 + p3, (A4) = p2 + p3

Clearly, if (A1) is preferred to (A2), then I can infer that p1 > p2. Then,
since p1 + p3 > p2 + p3, it must also be true that (B1) is preferred to (B2).
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1961 Leo Breiman (January 27, 1928–), “Optimal Gambling Systems for
Favorable Games,” Proceedings of the 4th Berkeley Symposium on Mathe-
matical Statistics and Probability 1 (Berkeley: University of California
Press, 1961), pp. 65–78.

LONG-RUN INVESTMENT, LOGARITHMIC UTILITY, 
REBALANCING, DARWINIAN SURVIVAL

Markowitz (1952/March) concentrates on advisable behavior for an in-
vestor with a single-period horizon. Breiman (1961) asks what a “long-

run” investor should do who can repeatedly make the same bet, reinvesting
his profits as he goes along. Would his optimal betting strategy be any dif-
ferent than if he were faced with only a single bet? Breiman begins:

Assume that we are hardened and unscrupulous types with an infi-
nitely wealthy friend. We induce him to match any bet we wish to
make on the event that a coin biased in our favor will turn up
heads. That is, at every toss we have a probability p > 1/2 of dou-
bling our bet. If we are clever, as well as unscrupulous, we soon
begin to worry about how much of our available fortune to bet at
every toss. Betting everything we have on heads on every toss will
lead to almost certain bankruptcy. On the other hand, if we bet a
small, but fixed, fraction of our available fortune at every toss,
then the law of large numbers informs us that our fortune con-
verges almost surely to plus infinity. What to do?14

Breiman’s answer (for positive expected rate of return gambles even
with otherwise arbitrary probability distributions) is to choose a fraction
of our fortune at each toss that maximizes the expected logarithmic utility
of our fortune after the toss. He advises this because the log strategy pos-
sesses a number of attractive features: (1) compared to any different strat-
egy, the log strategy leads almost surely to more wealth in the long run; (2)
the log strategy never risks ruin; and (3) the log strategy asymptotically
minimizes the expected time to reach a prespecified target level of wealth.
Indeed, these features appear so attractive that some have suggested that
the log is the best long-run strategy for any (nonsatiated and risk-averse)
expected utility of wealth maximizer. However, Mossin (1968) shows this
conjecture is not true.

Somewhat earlier Henry Allen Latané in [Latané (1959)] “Criteria for
Choice Among Risky Ventures,” Journal of Political Economy 67, No. 2
(April 1959), pp. 144–155, was one of the first to advocate maximizing ex-
pected logarithmic utility because of its favorable capital growth proper-
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ties. His work, initially presented in 1956, was contemporaneous and inde-
pendent of similar results by J.L. Kelly Jr. in [Kelly (1956)] “A New Inter-
pretation of Information Rate,” Bell System Technical Journal 35, No. 4
(July 1956), pp. 917–926.

Mark Rubinstein, in [Rubinstein (1991)] “Continuously Rebalanced
Investment Strategies,” Journal of Portfolio Management 18, No. 1 (Fall
1991), pp. 78–81, derives results similar to those of Breiman, but under the
assumption that the return of the gamble is lognormal. This leads to sim-
plified derivations and permits the exact calibration of results given the
mean and variance of the gamble and the return of a riskless alternative.
The paper focuses on the properties of investment strategies that continu-
ally rebalance over time between a riskless and a risky security to some
constant proportion (α ≥ 0) in the risky security. Assume X and Y are val-
ues after elapsed time t from following two different rebalancing strategies
(based on different values of α). Since the risky security is lognormal, X
and Y will also be (bivariate) lognormal under continuous rebalancing. A
simple expression is then derived for the probability that the first strategy
will outperform the second:

where x ≡ log X, y ≡ log Y, µx ≡ E(x), µy ≡ E(Y), σx
2 ≡Var(x), σy

2 ≡ Var(y),
and ρ ≡ Cor(x, y).
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Proof of Expression for prob(X > Y )

For a proof of this, let z ≡ x – y:

prob(X > Y) = prob(log X > log Y) = prob(x > y) 
= prob(x – y > 0) = prob(z > 0)

Since X and Y are bivariate lognormal, x and y are bivariate normal.
Then z must be itself normal with parameters:

µz ≡ µxt – µyt = (µx – µy)t

(Continued)

σ σ ρσ σ σ σ ρσ σ σz x x y y x x y yt t t t t2 2 2 2 22 2≡ − + = − +( ) ( )
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It is easily shown from this that if X is the result of selecting α to max-
imize logarithmic utility and Y is the result of any different strategy,
prob(X > Y) > 1/2. So over any time period t, the logarithmic utility strategy
will probably beat any other strategy matched against it. Since µx = E(log
X), if α is chosen to maximize this, for a given different strategy leading to
Y, that choice will maximize the difference between µx – µy, which will in
turn maximize prob(X > Y) and surely make it greater than 1/2. Moreover,
as t → ∞, this probability goes to 1 since (µx – µy)√t → ∞; so we say that
given a long-enough time period, the log utility strategy will almost surely
beat any other strategy. Also, the expected time in years to reach any pre-
specified target return, a, greater than the riskless return, is minimized by
the log strategy and equals (log a)/µ where µ is the expected logarithm of
the return per annum of the log strategy.
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Proof of Formula for Expected Time to Reach 
a Target Return

Here is a proof. Let a > 1 be the target return (for example, a = 2 means
your target is to double your initial stake). The expected time to reach
the target return E(t) is:

where the integral is taken from t = 0 to t = ∞. Therefore, the strategy
that maximizes µ also ends up minimizing E(t).
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Proof of Expression for prob(X > Y ) (Continued)

Since prob(z > 0) = prob[(z – µz)/σz > –µz/σz] and (z – µz)/σz is a stan-
dard normal variable,

Putting all this together:
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But how long will it take to be pretty sure the log strategy will be
ahead using the empirical reality of the U.S. stock market? Calibrating the
model to U.S. data, it would take 208 years for the log strategy to have at
least a 95 percent probability of beating an investment of 100 percent in
bonds, and 4,700 years for the log strategy to have a 95 percent probabil-
ity of beating 100 percent stocks. So while the log utility strategy, as is well
known from many other papers as well, has theoretically desirable long-
run properties, in practice the long run may be long indeed.

An extreme defense of logarithmic utility appears in [Stein (2002)]
Hans-Werner Stein, “Weber’s Law and the Biological Evolution of Risk
Preferences: The Selective Dominance of the Logarithmic Utility Func-
tion,” CESifo Working Paper No. 770 (September 2002). Echoing Charles
Darwin (February 12, 1809–April 19, 1882) in  [Darwin (1872)] The Ori-
gin of Species by Means of Natural Selection, Great Books of the Western
World: Darwin (Franklin Center, PA: Franklin Library, 1978), Stein argues
that surrogate preferences are formed as the unconscious natural outcome
of the struggle for survival:

The true preference of evolution is genetic survival and domi-
nance, but for the purpose of efficiently directing our behavior na-
ture has replaced this preference with a rich body of surrogate or
instrumental preferences, all too often without even revealing the
trick to us. We like to rest after a long walk because we feel tired,
and not in order to help our body restore its chemical and physical
balance. We avoid pain because it hurts, not because we con-
sciously want to avoid damage to our muscles, tendons, organs or
joints. We like to eat because we feel hungry, not to refill our en-
ergy reservoirs, and we drink when we are thirsty, not because we
have diagnosed that our blood has become too thick. We like it
warm when we feel cold, and the other way around, because that
gives us a pleasant feeling, not because we know that the body
temperature has to stay at 37° Celsius. And of course, we like to
have sex when we have found an attractive partner, because this is
how we feel, not because we want to reproduce our genes. In all
cases, we use our intelligence to find ways to satisfy our surrogate
preferences, which basically aim at maintaining our genetic fitness
and ensure reproduction, without really making us know what we
are doing. (p. 4)15

Stein assumes that humans have lexicographic preferences in that
they place survival above all other concerns. He then equates wealth with
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survival and number of offspring and concludes that preferences must be
such that humans never willingly risk zero wealth. Second, he argues that
preferences will evolve according to the property of “selective quality,”
which favors preferences that, with a probability close to one, lead to
higher population in the long run. Third, evolved preferences will also
have the property of “selective dominance,” which results in population
path sizes that become infinitely larger than the size of populations with
any other preferences. Stein concludes that while nature may have tried
many decision rules for managing wealth, once it stumbled upon the rule
of maximizing the expected logarithmic utility of wealth, that rule would
have forced out all others since it beats all other rules in terms of selective
quality and dominance.

1962 James P. Quirk and Rubin Saposnik, “Admissibility and Measur-
able Utility Functions,” Review of Economic Studies 29, No. 2 (February
1962), pp. 140–146.

1970 Michael Rothschild (August 2, 1942–) and Joseph E. Stiglitz (Feb-
ruary 9, 1943–), “Increasing Risk, I: A Definition,” Journal of Economic
Theory 2, No. 3 (September 1970), pp. 225–243.

STOCHASTIC DOMINANCE, INCREASING RISK

The von Neumann–Morgenstern (1947) expected utility theorem is silent
concerning whether more wealth is preferred to less. To add this condi-

tion to the rationality axioms, the assumption is made that utility is a mo-
notonically increasing function of wealth. This raises the interesting
question: If all you know is that a rational investor prefers more wealth to
less (and his utility depends only on wealth), when comparing two alterna-
tive probability distributions of his future wealth, is it ever possible to say
that one distribution must be preferred to the other? For two probability
distributions of future wealth, Quirk-Saposnik (1962) seek a necessary and
sufficient condition such that one of the distributions is preferred to an-
other if and only if the expected utility of one of the distributions is higher
than the expected utility from the other, for all monotonically increasing
utility functions of wealth. Their condition is this: Wealth distribution A
will have this dominance property compared to wealth distribution B if
and only if for every level of wealth X, the cumulative probability of
wealth under A is lower (or equal) than the cumulative probability under B
(that is, for every level X, the probability that wealth WA < X is lower than
or equal to the probability that WB < X).
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This condition for dominance is superior to conditions based on mo-
ments. For example, consider two future wealth distributions across two
equally probable states: WA = (2 6) and WB = (1 3). A mean-variance mo-
ment condition cannot decide between them since A has a higher variance
than B. However, the dominance condition implies that as long as more
wealth is preferred to less, A is preferred to B.16

Josef Hadar and William R. Russell, in [Hadar-Russell (1969)] “Rules
for Ordering Uncertain Prospects,” American Economic Review 59, No. 1
(March 1969), pp. 25–34, and independently G. Hanoch and Haim Levy,
in [Hanoch-Levy (1969)] “The Efficiency Analysis of Choices Involving
Risk,” Review of Economic Studies 36, No. 3 (July 1969), pp. 335–346,
christen this property “first-degree stochastic dominance.” They go on to
derive a stronger related condition, “second-degree stochastic dominance,”
for probability distributions where the utility function exhibits both risk
aversion and greed, that is, monotonic conditions on both the first and sec-
ond derivatives with respect to wealth.

Rothschild-Stiglitz (1970) provides three very general conditions under
which an individual will find one gamble (Y) more risky than another gam-
ble (X): (1) Y is equal to X  plus noise, (2) every risk averter prefers X to Y,
and (3) other things being equal, Y has more weight in the tails than X.
The key result is that these three conditions are equivalent.

1962 Edmund S. Phelps (July 26, 1933–), “The Accumulation of Risky
Capital: A Sequential Utility Analysis,” Econometrica 30, No. 4 (October
1962), pp. 729–743.
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Intuitive Illustration of Dominance Property

One way to make this intuitive is to consider two identical probability dis-
tributions of future wealth A and B such that for all possible wealth levels
W(s), probabilities pA(s) = pB(s). Suppose, for convenience, the levels of
wealth are organized from lowest to highest so that W(1) < W(2) < · · · <
W(n). Therefore, trivially, the expected utility of A and B are equal:
ΣspA(s)W(s) = ΣspB(s)W(s). Now leave B the same but redistribute the prob-
ability of A for just two states k > j so that pA(k) > pB(k) and to compensate
pA(j) < pB(j). Clearly, with this change, ΣspA(s)W(s) > ΣspB(s)W(s). Note also
that for every level of wealth W(h < j) and W(h ≥ k), ΣspA(s) = ΣspB(s),
where the sum is taken up to h; but for every level of wealth W(k > h ≥ j) =
X, ΣspA(s) < ΣspB(s), where the sum is taken up to h.
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INTERTEMPORAL CONSUMPTION AND INVESTMENT, 
TIME-ADDITIVE UTILITY, LOGARITHMIC UTILITY, 

UNCERTAIN LIFETIME, LIFE INSURANCE

Phelps (1962) is the first to consider the multiperiod consumption prob-
lem with uncertainty, and so extends Fisher (1930) to uncertain invest-

ment returns. Phelps assumes that a risk averse consumer/investor
maximizes his time-additive utility function of consumption U(Ct) with
constant time preference ρ over a finite lifetime: Σtρ

tE[U(Ct)]. In each pe-
riod he allocates his wealth between consumption and an investment in a
single risky security with independent and identically distributed returns
over time. He solves the problem for the optimal consumption and portfo-
lio choices using dynamic programming as suggested by Markowitz
(1959). He shows that in the special case of logarithmic utility, U(Ct) = log
Ct, the optimal consumption at each date depends on wealth, time prefer-
ence, and remaining lifetime, but it does not depend on the probability dis-
tribution of the return of the risky security. An earlier paper by Frank
Plumpton Ramsey, in [Ramsey (1928)] “A Mathematical Theory of Sav-
ing,” Economic Journal 38, No. 152 (December 1928), pp. 543–559, con-
sidered a similar economy but over an infinite horizon and where the
problem was to allocate wealth at each date between consumption and a
riskless security.

Menahem E. Yaari in [Yaari (1965)] “Uncertain Lifetime, Uncertain
Insurance, and the Theory of the Consumer,” Review of Economic Studies
32, No. 2 (April 1965), pp. 137–150, writes another relatively early paper
on consumption under uncertainty. In contrast with Phelps, Yaari assumes
that the returns on investments are certain but the consumer’s lifetime is
uncertain. Yaari assumes the consumer knows the probability that he will
die at each date in the future. In his most general case, the consumer is as-
sumed to maximize:

where π(t) is the probability of death at date t, Ω(t) = ∫t
Tπ(τ)dτ (integral

taken from t to T) is the probability the consumer will still be alive at date
t, ρ(t) is the cumulated time preference at date t, β(t) is a time-discount
function for bequests, and V(Wt) is the bequest utility function of final
wealth Wt at death. The integral is taken from 0 to T, after which the con-
sumer will not be alive.

Yaari considers two types of opportunity sets: the first with only a risk-
less investment available at each date with completely predictable and

∫ +0[ ( ) ( ) ( ) ( ) ( ) ( )]Ω t t U C t t V W dtt tρ π β
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known returns over time, and the second with life insurance also available.
Under the simplest situation, β(t) = 0 and Ω (t) = 1 for all t, similar to that
considered by Fisher (1930), Yaari shows that

where r(t) is the instantaneous riskless rate of return at date t and for sim-
plicity in this description I assume here that there is a constant ρ > 0 such
that ρ(t) = e–ρt. If now I add the complication of an uncertain lifetime so
that Ω(t) < 1 for all t (but still no bequest), then the same result holds but
with ρ replaced by ρ – [π(t)/Ω(t)], so the rate of time preference is reduced
by the conditional probability (actually density) of death at date t given
that it is known that the consumer has been alive up to that date. Thus the
chance of early death, just as Fisher (1930), pp. 216–217, informally sug-
gested, will increase the preference of earlier over later consumption.

How are these conclusions modified by the availability of life insur-
ance? Yaari assumes this exists in the form of an actuarially fair life an-
nuity—see discussion under de Witt (1671)—that pays him an income
equal to his optimal consumption each year until he dies, and nothing
thereafter. If it is to be actuarially fair, the instantaneous interest rate the
consumer receives from the annuity equals r(t) + [π(t)/Ω(t)]. Note that
this is greater than the market riskless rate of return because the insur-
ance company can afford to compensate the consumer at a higher rate
while he remains alive since its obligation ceases at his death. As a result
the consumer will choose to invest only in a life annuity and not choose
to invest in the purely riskless investment. But, as Yaari interestingly
points out, this creates the opportunity for a sort of Ponzi scheme: Since
all debts are forgiven at death, the consumer will be tempted to sell an
unlimited amount of life annuities, funding the interest owed with the
sale of further life annuities, and thereby eliminate all constraints on his
consumption. In real life, the fact that this temptation will become
stronger as he becomes older may explain why insurance companies es-
sentially refuse to sell life insurance to individuals after they reach a suffi-
cient age; see Akerlof (1970) for another completely different reason for
the failure of the life insurance market.

1963 William Forsyth Sharpe (June 16, 1934–), “A Simplified Model
for Portfolio Analysis,” Management Science 9, No. 2 (January 1963),
pp. 277–293.
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1992 William Forsyth Sharpe, “Asset Allocation: Management Style and
Performance Measurement,” Journal of Portfolio Management 18, No. 1
(Winter 1992), pp. 7–19.

PORTFOLIO SELECTION, 
MEAN-VARIANCE ANALYSIS, 

MARKET MODEL, 
RESIDUAL VS. SYSTEMATIC RISK, 

MULTIFACTOR MODELS, 
STYLE FACTOR PORTFOLIOS

Sharpe (1963) contains the first detailed development of the diagonal or
market model of security returns that reduces the number of inputs

required for mean-variance portfolio choice, and was shown later
(Treynor-Black 1973) to substantially simplify the calculation of optimal
mean-variance portfolios. The model can be interpreted as making the fol-
lowing assumption: The realized excess return of security j is a linear re-
gression against the excess return of a single marketwide factor M (which
is the same for all securities):

rj – r = αj + (rM – r)βj + εj

where αj and βj are defined such that E(εj) = ρ(εj, rM) = 0.

If we assume that the “market factor” is literally the return of the
“market portfolio” of all securities, then this implies that the beta of the
market portfolio, defined as βM ≡ Σjχjβj, where the χj are market value pro-
portions, must itself be 1.

156 A HISTORY OF THE THEORY OF INVESTMENTS

Tautological Market Model Construction

So far the model is tautological. To see this, suppose we observe a time
series of security returns rj1, rj2, . . . , rjt, . . . and corresponding market
returns rM1, rM2, . . . , rMt, . . . . If all we say is that for every date t, rjt – r
= αj + (rMt – r)βj + εjt, as long as I place no restrictions on εjt, there must
exist an αj and βj such that the equation holds. If I add the requirement
that E(εj) = 0, this can be done by choosing αj so that E(rj) – r = αj +
[E(rM) – r]βj = 0. Now, if I add the further requirement that ρ(εj, rM) = 0,
we can guarantee this by choosing βj such that Cov(εj, rM) = 0, that is, by
requiring that Cov[rj – r – αj – (rM – r)βj) = 0. Solving this for βj, we
choose βj = Cov(rj, rM)/Var(rM).
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Another result of some interest is that even though individual stock al-
phas can be nonzero (αj ≠ 0 for any security j), the market alpha, defined as
αM ≡ Σjχjαj, must itself be 0.

To this tautological construction, Sharpe adds the assumption that for
any two different securities j and k, ρ(εj, εk) = 0. This allows a clear separa-
tion of systematic or marketwide risk measure βj from residual or security
specific risk Var(εj). Sharpe writes:

The major characteristic of the diagonal model is the assumption
that the returns of various securities are related only through com-
mon relationships with some basic underlying factor. . . . This
model has two virtues: it is one of the simplest that can be con-
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To see this, suppose that χj for j = 1, 2, . . . , m represent the total market
value proportions of securities j so that rM ≡ Σjχjrj and Σjχj = 1. Then, βM

≡ Σjχjβj must equal 1 since by the preceding equation for βj, βM = Σjχjβj =
ΣjχjCov(rj, rM)/Var(rM) = Cov(Σjχjrj, rM)/Var(rM) = Cov(rM, rM)/Var(rM) =
Var(rM)/Var(rM) = 1.

Proof That the Market Alpha Equals Zero

To see this, restating the market model we have

rj – r = αj + (rM – r)βj + εj for all securities j

Multiplying through by χj and summing over all securities:

Σjχjrj – rΣjχj = Σjχjαj + (rM – r)Σjχjβj + Σjχjεj

Since rM ≡ Σjχjrj, Σjχj = 1, αM ≡ Σjχjαj and βM ≡ Σjχjβj, then:

rM – r = αM + (rM – r)βM + Σjχjεj

Taking expectations of both sides and letting µM ≡ E(rM):

µM – r = αM + (µM – r)βM + ΣjχjE(εj)

Since by construction E(εj) = 0 and I have shown that βM = 1, µM – r
= αM + (µM – r)[1]  and therefore αM = 0.
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structed without assuming away the interrelationships among se-
curities, and there is considerable evidence that it can capture a
large part of such interrelationships. (p. 281)17

This is a cross-sectional application of the market model. A second ap-
plication to a time series for the same security is rendered nontautological
by assuming that ρ(εj,t, εj,t+k) = 0 where εj,t is the residual component ob-
served for security j at date t and εj,t+k is the residual component observed
for the same security k dates after date t.

It is sometimes useful to assume that the market model and capital as-
set pricing model (CAPM) of Sharpe (1964), Lintner (1965/February),
Mossin (1966), and Treynor (1999) hold at the same time. In that case, it is
trivial to see that αj = 0 for all securities.

Eugene F. Fama, in [Fama (1973)] “A Note on the Market Model
and the Two-Parameter Model,” Journal of Finance 28, No. 5 (Decem-
ber 1973), pp. 1181–1185, which corrects his earlier article, [Fama
(1968)] “Risk, Return and Equilibrium: Some Clarifying Comments,”
Journal of Finance 23, No. 1 (March 1968), pp. 29–40, finds a logical
inconsistency in the market model that survives even if rM and εj are
jointly normal, as for example, Treynor-Black (1973) were later to 
assume.
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Simplification from the Market Model for Solving 
the Portfolio Selection Problem

Using the market model assumptions, it is easy to show that:

(1) µj = r + (µM – r)βj + αj

(2) σj
2 = βj

2σM
2 + ωj

2

(3) σjk = βjβkσM
2

where µj ≡ E(rj), µM ≡ E(rM), σM
2 ≡ Var(rM), ωj

2 ≡ Var(εj), σjk ≡ Cov(rj, rk).
Without the market model, the inputs required to solve the mean-vari-
ance portfolio selection problem selecting from a riskless security and m
risky securities would be m means µj, m variances σj

2, 1/2m(m – 1) co-
variances σjk and 1 riskless return r for a total of 1/2m(m + 3) + 1 esti-
mates. With the market model, we would need m alphas αj, m betas βj,
m residual variances ωj

2, and r, µM and σM
2 for a total of 3(m + 1) esti-

mates. For example, if m = 100, without the market model we would
need 5,151 estimates; with the market model, only 303 estimates.
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This model has provided the standard way of measuring the inputs
into models of optimal portfolio construction. In addition, it provides a
key ingredient for later empirical tests of the Sharpe (1964), Lintner
(1965/February), Mossin (1966), Treynor (1999) equilibrium model of the
determinants of security expected returns. Many of its statistical features
have been examined in subsequent papers. For example, John D. Martin
and Robert C. Klemkosky in [Martin-Klemkosky (1975)] “Evidence of
Heteroscedasticity in the Market Model,” Journal of Business 48, No. 1
(June 1975), pp. 81–86, separately test whether εj is independent of rM.
They propose three alternative statistical tests. The first is to calculate the
correlation of |εj| with rM. The second is the Bartlett test, which, for
grouped similar-sized observations of rM, examines the range of the corre-
sponding observations of εj. The third is the Goldfield-Quandt test, which
begins by ordering the observed rMt from lowest to highest. Then omit the
middle (say, third) range of observations. Separately regress the observa-
tions in the lowest third and highest third, separately measuring the stan-
dard deviation of εj. If there is no heteroscedasticity, the two standard
deviations should be close to each other. For their sample, Martin and
Klemkosky conclude that heteroscedasticity for most stocks is not a prob-
lem for the market model.

About 30 years later, Sharpe (1992) revisits his market model, but now
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An Inconsistency in the Market Model If the 
“Index” Is Identified as the Market Portfolio

If χjj is the market proportion for security j, so that Σjχj = 1, then it fol-
lows from the market model that Σjχjrj – r = (rM – r)Σjχjβj + Σjχjεj. Since
rM = Σjχjrj and it is easy to see from the market model that the market
portfolio, itself, has Σjχjβj = 1, then Σjχjεj = 0. But this contradicts the
market model assumption that for all securities j and k, ρ(εj, εk) = 0,
since for any values εj for all but the last security k, this condition fully
determines εk. For example, suppose the market contains just two securi-
ties, we would then have χε1 + (1 – χ)ε2 = 0. Therefore, ε1 = –[(1 –
χ)/χ]ε2. This implies that ρ(ε1, ε2) = –1, which clearly contradicts the key
assumption of the market model that ρ(ε1, ε2) = 0. However, for most
practical purposes as Fama notes, this inconsistency can be ignored. In a
“large” market, say where χj ≅ 1/m, then Var(Σjχjεj) = [ΣjVar(εj)]/m2. If
Var(εj) is bounded from above, then as m → ∞, Var(Σjχjεj) → 0 so that
Σjχjεj ≅ 0.
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admits many factors. According to a multifactor model of managed portfo-
lio returns:

rPt = ΣkβPkFkt + εPt for securities P = 1, 2, . . . , J

and factors h, k = 1, 2, . . . , K

where rPt is the realized return of portfolio P at time t with enough factors
Fk so that the residual component εPt is independent across all the managed
portfolios (as well as serially independent over time) in the selected uni-
verse. Sharpe defines style analysis to be the application of a multifactor
model where:

1. The factor exposures for any managed portfolio are constrained to
sum to 1 (that is, ΣkβPk = 1).

2. Each factor is perfectly replicated by an identifiable portfolio of securi-
ties with no short holdings and can be managed at low trading costs.

3. No two factor portfolios contain the same securities.
4. Typically, the factor exposures are constrained to be nonnegative (that

is, βPk ≥ 0).

The factor exposures are derived from observed security and factor re-
turns using quadratic programming to minimize the variance of the resid-
ual return εPt. These constraints mean that the realized return of a managed
portfolio can be broken apart into a style component that can be replicated
by a portfolio of factor portfolios and a selection component εPt. The
squared correlation of the style components with the managed portfolio re-
turn measures the proportion of the variance of the portfolio return ex-
plained by style, and one minus this squared correlation is the proportion
of the variance of the portfolio return explained by selection.

Sharpe suggests using 12-factor portfolios that replicate (1) Treasury
bills, (2) intermediate-term government bonds, (3) long-term government
bonds, (4) corporate bonds, (5) mortgage-related securities, (6) large-cap
value stocks, (7) large-cap growth stocks, (8) medium-cap stocks, (9) small-
cap stocks, (10) non-U.S. bonds, (11) European stocks, and (12) Japanese
stocks. As an illustration, Sharpe applies style analysis to the performance of
the Fidelity Magellan Fund from 1985 to 1989, using monthly returns. The
fund’s style is to be exposed to large-cap growth stocks, medium-cap stocks,
and small-cap stocks; and its style explains 97.3 percent of the variance of its
return. The fund outperformed its style benchmark by a cumulated 25 per-
cent over the five years, both highly statistically and economically significant.
However, it must be remembered that Sharpe has not adjusted this perfor-
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mance for selecting Magellan after the fact of its extreme performance from
a large universe; see comments concerning Magellan under Graham-Dodd
(1934). Indeed, Sharpe reports that 636 mutual funds over the same period
(his universe of observed funds) underperformed their benchmark style by
0.89 percent per year on average, inclusive of costs.

1963 Paul Anthony Samuelson (May 15, 1915–), “Risk and Uncertainty:
A Fallacy of Large Numbers,” Scientia (May–April 1963), pp. 1–6;
reprinted in The Collected Scientific Papers of Paul A. Samuelson, Volume
1 (Cambridge, MA: MIT Press, 1966), pp. 153–158.

TIME-DIVERSIFICATION, RISK AVERSION AND GAMBLING, 
LAW OF LARGE NUMBERS, PROBABILISTIC PREFERENCES

Some individuals say that while they are not willing to accept a favorable
gamble if it is offered only once, they will accept the gamble if it can be

accepted repeatedly. For example, while they may be unwilling to accept a
one-shot opportunity to win $100 with a two-thirds probability at the cost
of losing a like amount one-third of the time, they may be quite happy to
accept a multishot opportunity to face this gamble successively 100 times.
Implicitly, they may be applying what they think is a version of the Jakob
Bernoulli (1713) law of large numbers, or alternatively they may be using a
decision rule based on accepting gambles with a sufficiently large probabil-
ity of winning. The probability of winning the one-shot gamble is 2/3, while
the probability of coming out ahead after accepting the multishot gamble is
almost 1:

Using the normal approximation to the binomial, this probability approxi-
mately equals:

Samuelson (1963) shows that under one assumption that may very
well apply, such a choice between the one-shot and multishot gambles is
time-inconsistent.
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Intuitively, the law of large numbers is inappropriately applied. It relates
to situations where risks are subdivided, not added. To see this, had the mul-
tishot gamble been a repeated chance to win $1 two-thirds of the time and
lose $1 one-third of the time, this could be rationally accepted even though
the one-shot opportunity to win $100 would be rejected (in this case, the sin-
gle-shot and multishot gambles have the same mean outcome, but the multi-
shot gamble has a much lower variance due to the law of large numbers).

Samuelson also shows that the criterion of selecting among pairs of
gambles the gamble with the highest probability of winning fails to satisfy
the von Neumann–Morgenstern (1947) transitivity axiom. That is, of the
outcomes X, Y, and Z of three gambles, even though prob(X > Y) > 1/2 and
prob(Y > Z) > 1/2, it may nonetheless be that prob(Z > X) > 1/2.
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Proof of Samuelson’s Result 
on Time Diversification

The proof is simple. Suppose that at each income or wealth level within
a range, you are averse to accepting a gamble; then, Samuelson asserts,
no sequence of the same independent gambles offered n times (that
leaves you within that range) should be accepted. To see this, consider
the last or nth gamble in the sequence. By assumption, irrespective of
whether you have accepted the n – 1 earlier gambles, you will not accept
it. Then the nth – 1 gamble becomes the last gamble, which by a similar
argument you will also not accept. Therefore, working backwards, you
will not even accept the 1st gamble; so you will not accept the sequence.

Illustration of Intransitivity of 
Probabilistic Preferences

To see this, consider flipping a slightly biased coin twice where the pay-
offs of the three gambles are:

Outcome HH HT TH TT
Probability .26 .25 .25 .24

X 1 1 –10 –10
Y 0 0 0 0
Z –1 10 –1 10

prob(X > Y) = .51 and prob(Y > Z) = .51, yet prob(Z > X) = .74
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Samuelson won the 1970 Nobel Prize in Economic Science “for the
scientific work through which he has developed static and dynamic eco-
nomic theory and actively contributed to raising the level of analysis in
economic science.”

1964 Lawrence Fisher and James H. Lorie, “Rates of Return on Invest-
ments in Common Stocks,” Journal of Business 37, No. 1 (January 1964),
pp. 1–21.

HOLDING-PERIOD RETURN, EQUITY RISK PREMIUM PUZZLE

Theoretical models and empirical procedures are only two of the trian-
gular vertices needed for research. The third vertex is reliable data.

That is why the founding of the Center for Research in Securities Prices
at the University of Chicago, sponsored by Merrill Lynch, Pierce, Fenner
& Smith, Inc., marks a significant moment in the development of mod-
ern financial economics. For the first time, a systematic attempt was 
undertaken to carefully construct complete databases covering the his-
torical record of security prices. Fisher-Lorie (1964) is the first survey of
this data to be published. It describes the organization of the data file
covering monthly closing prices of all New York Stock Exchange
(NYSE) stocks from January 1926 through December 1960. It also pre-
sents summary results describing the realized holding period returns in-
clusive of dividends from a portfolio containing all NYSE stocks over
different time periods. Many were surprised at the high returns (relative
to interest rates) that were reported—an empirical fact called “the risk
premium puzzle” 20 years later. Very quickly this database was used in
systematic studies measuring the serial correlation of successive price
changes, the effects of dividends on stock prices, and the construction of
stock market averages.

A subsequent paper by Fisher and Lorie, [Fisher-Lorie (1968)] “Rates
of Return on Investments in Common Stocks: The Year-by-Year Record,
1926–65,” Journal of Business 41, No. 3 (July 1968), pp. 291–316, ex-
tends their earlier paper another five years and provides tables of detailed
year-by-year returns. A significant expansion of these reported returns to
U.S. Treasury bonds, Treasury bills, and U.S. inflation appears in [Ibbot-
son-Sinquefield (1976)] Roger G. Ibbotson and Rex A. Sinquefield,
“Stocks, Bonds, Bills, and Inflation: Year-by-Year Historical Returns
(1926–1974),” Journal of Business 49, No. 1 (January 1976), pp. 11–47.
Ibbotson Associates now commercially sells an annually updated book ti-
tled Stocks, Bonds, Bills and Inflation: Yearbook.
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1964 John W. Pratt, “Risk Aversion in the Large and in the Small,”
Econometrica 32, Nos. 1/2 (January–April 1964), pp. 122–136.

1965/B Kenneth Joseph Arrow, “The Theory of Risk Aversion,” Essay 3
in Essays in the Theory of Risk Bearing (Chicago: Markham, 1971), pp.
90–120 (first published without appendix in 1965 as Lecture 2 in Aspects
of the Theory of Risk Bearing, pp. 28–44, Yrjo Jahnsson Lectures,
Helsinki); reprinted in Collected Papers of Kenneth J. Arrow: Individual
Choice under Certainty and Uncertainty, Volume III (Cambridge, MA:
Harvard University Press, 1984), pp. 147–171.

RISK AVERSION, ABSOLUTE RISK AVERSION, 
RELATIVE RISK AVERSION, FAVORABLE GAMBLES THEOREM

Pratt (1964) develops the ideas of absolute and relative risk aversion in
terms of the risk premium demanded to accept a gamble. If U(W) is the

utility of wealth, then A(W) ≡ – U″(W)/U′(W) is absolute risk aversion, and
R(W) ≡ – WU″(W)/U′(W) is relative risk aversion.

Unlike the utility function itself, which is unique up to an increasing
linear transformation, or U″(W), which is unique up to a positive multi-
plicative constant, A(W) and R(W) are unique functions; that is, they de-
termine the utility function up to an increasing linear transformation. This
makes it possible to use these measures to compare risk aversion across dif-
ferent individuals. Consider two investors, a and b, and a gamble that adds
or subtracts a small amount ∆ to or from their wealth with equal probabil-
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A measure of risk aversion is the certainty equivalent π defined as
around current wealth such that it leads to the same utility as a 50–50
gamble of ∆ > 0:

For small risks (∆ near zero), it can be shown that π = 1/2σ∆
2A(W0).

U W U W U W( ) ( ) ( )0 0 0
1
2

1
2

− ≈ + + −π ∆ ∆

ccc_rubinstein_pt02_99-308.qxd  1/12/06  1:41 PM  Page 164



ity. To accept this gamble, investor a has to be paid more dollars than in-
vestor b if and only if Aa(W) > Ab(W). Consider another gamble, which
changes wealth either to W∆ or to W/∆ for small ∆ > 1 with equal proba-
bility. To accept this gamble, investor a has to be paid a larger fraction of
his wealth than investor b if and only if Ra(W) > Rb(W). According to
Pratt, the original formulation of the idea of absolute risk aversion was ac-
tually contained in an unpublished note by Robert Schlaifer, in  [Schlaifer
(1961)] “Utility Functions for Reasonably Cautious Behavior,” dated No-
vember 13, 1961.18

Arrow (1965/B) develops properties of absolute and relative risk
aversion independently of Pratt. Arrow considers an investor’s alloca-
tion of his wealth between a riskless and a risky security. If A′(W) > (=)
[<] 0, the investor is said to have increasing (constant) [decreasing] ab-
solute risk aversion. Arrow shows that, as his wealth rises, an investor
will decrease (keep constant) [increase] his dollar investment in the risky
security if and only if his utility function has increasing (constant) [de-
creasing] absolute risk aversion. Similarly, if R′(W) > (=) [<] 0, the in-
vestor is said to have increasing (constant) [decreasing] relative risk
aversion. Arrow shows that, as his wealth rises, an investor will decrease
(keep constant) [increase] the proportion of his wealth that he allocates
to the risky security if and only if his utility function has increasing (con-
stant) [decreasing] relative risk aversion. It is generally thought that, em-
pirically, almost all investors behave as if they have decreasing absolute
risk aversion, and the majority behave as if they have decreasing relative
risk aversion. A summary of Arrow’s results first appeared in [Arrow
(1963/February)] “Comment on James Duesenberry: The Portfolio Ap-
proach to the Demand for Money and Other Assets,” Review of Eco-
nomics and Statistics 45, No. 1, Part 2, Supplement (February 1963),
pp. 24–27.

Arrow also derives a second fundamental result: Under very general
conditions, a nonsatiated risk averter always commits some positive
amount of his wealth (perhaps slight) to a favorable gamble. For simplifi-
cation, suppose the riskless (cash) rate of return is 0 and an investor with
initial wealth W0 must decide how much to allocate from cash into a risky
investment R with expected rate of return E(rR) > 0, therefore a favorable
gamble. Suppose that  0 ≤ A ≤ W0 is the amount of initial wealth allocated
to the risky investment. Then future wealth W1 = W0 + ArR. The investor is
assumed to choose A so as to maximize his expected utility of future
wealth E[U(W1)] = E[U(W0 + ArR)] ≡ J(A), where J is a function mapping A
onto expected utility. Arrow shows that risk aversion U″(W1) < 0 implies
that A > 0 if and only if E(rR) > 0 (pp. 98–102).

The Classical Period: 1950–1980 165

ccc_rubinstein_pt02_99-308.qxd  1/12/06  1:41 PM  Page 165



Intuitively, for sufficiently small gambles (small because the investor
commits only a very small amount of wealth), the risk per unit of the
amount committed to the gamble can be made as small as one would like
while the positive expected return per unit committed remains constant,
and its salubrious effect will eventually at a small enough commitment out-
weigh the negative effects of the risk. In other words, for small risks the

166 A HISTORY OF THE THEORY OF INVESTMENTS

Proof of Arrow’s Result That Rational Risk-Averse 
Investors Always Invest a (Possibly Small) 
Positive Amount in a Favorable Gamble

To prove this, observe that:

J′(A) = E[U′(W1)rR] and J″(A) = E[U″(W1)rR
2]

By risk aversion U″(W1) < 0; therefore, J″(A) < 0 for all A. Given
that J(A) is therefore everywhere concave to the origin, J(A) can have
only one of three possible shapes: (1) it can reach a peak at J(0) and be
decreasing as A increases from 0 to W0; (2) it can reach an interior peak
at J(A) for 0 < A < W0 so that it decreases on each side of A; or (3) it can
reach a peak at J(W0) and be decreasing as A decreases from W0 to 0. In
the first case, J′(0) ≤ 0. Then at maximum A = 0, W1 = W0 so U′(W1) =
U′(W0), a positive constant. So from the preceding equation for J′(A), if
follows that J′(A) = U′(W0)E(rR) ≤ 0. So for case (1), A = 0 if and only if
E(rR) ≤ 0 and the contrapositive of this states A > 0 if and only if E(rR) >
0. For case (2), J′(A) = E[U′(W1)rR] = 0. This can be decomposed as:

J′(A) = E[U′(W1)]E(rR) + Cov[U′(W1), rR] = 0

Because of risk aversion, as rR increases, U′(W1) decreases, so
Cov[U′(W1), rR] < 0. Therefore E[U′(W1)]E(rR) > 0, and since nonsatia-
tion implies E[U′(W1)] > 0, then E(rR) > 0. So for case (2), for an interior
value of A to be an optimum, E(rR) > 0.  For case (3), at maximum A =
W0, J′(W0) ≥ 0, so by the preceding equation for J′(A), J′(A) = E[U′(W0 +
W0rR)rR] ≥ 0 so an argument similar to case (2) follows even more
strongly. Thus summarizing all cases, A > 0 if and only if E(rR) > 0.
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utility function becomes approximately linear and risk aversion almost dis-
appears for gambles with outcomes constrained to this region.

Since the Sharpe (1964), Lintner (1965/February), Mossin (1966),
Treynor (1999) CAPM satisfies the conditions for Arrow’s result, it can
immediately be concluded that in that model no investor shorts the mar-
ket portfolio. So short-selling constraints will not affect the conclusions of
this model.

1964 William Forsyth Sharpe, “Capital Asset Prices: A Theory of Market
Equilibrium under Conditions of Risk,” Journal of Finance 19, No. 3 (Sep-
tember 1964), pp. 425–442.

1965 John Lintner, “The Valuation of Risk Assets and the Selection of
Risky Investments in Stock Portfolios and Capital Budgets,” Review of
Economics and Statistics 47, No. 1 (February 1965), pp. 13–37.

1966 Jan Mossin (1936–1987), “Equilibrium in a Capital Asset Mar-
ket,” Econometrica 34, No. 4 (October 1966), pp. 768–783.

1999 Jack L. Treynor, “Toward a Theory of Market Value of Risky As-
sets,” written in 1962 but published only recently in Asset Pricing and
Portfolio Performance, edited by Robert A. Korajczyk (London: Risk Pub-
lications, 1999), pp. 15–22.

CAPITAL ASSET PRICING MODEL (CAPM), 
MEAN-VARIANCE ANALYSIS, MARKET PORTFOLIO, 

BETA, RISK PREMIUM, SYSTEMATIC RISK, 
JOINT NORMALITY COVARIANCE THEOREM, 

TOBIN SEPARATION THEOREM, HOMOGENEOUS BELIEFS

Markowitz (1952/March) and Markowitz (1959) were interested in de-
cision rules that can be recommended to rational investors (normative

modeling). Sharpe (1964) then asked what would happen if everyone in the
economy actually followed Markowitz’s advice (prescriptive modeling).
This led to the first published derivation of the capital asset pricing model
(CAPM) that relates expected security return (µj) to the sum of the riskless
return r plus the product of marketwide risk aversion (θ > 0) and the co-
variance of security return with the return of the market portfolio [Cov(rj,
rM)]; that is, µj = r + θCov(rj, rM).
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Alternatively, the CAPM equation can be interpreted as providing a
prescription for discounting an uncertain cash flow received at the end of a
single period.

Fama (1968), p. 37, equation 18, restates the CAPM in what has be-
come its most popular “beta” form:

This can be rearranged to show that βj = (µj – r)/(µM – r). Like the centi-
grade scale set to 0 at the freezing point of water and 100 at its boiling
point, the beta scale for measuring the risk of securities is set to 1 for the
market portfolio M. A security, then, with a beta of 2, for example, is ex-
pected to have an excess rate of return (over the riskless rate) that is double
the excess rate of return of the market. Of all the legacies of the CAPM to
civilization, this may turn out to be the most enduring.

Building on Markowitz (1952/March), Roy (1952), and Tobin (1958),
the model assumes all investors choose their optimal portfolio of securities

µ µ β βj M j j
j M

M

r r
r r

r
− = − ≡( )

( , )

( )
   where   

Cov  

Var
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Actually, Sharpe wrote the equation somewhat differently. Defining Bj ≡
Cov(rj, rG)/σG

2, he shows that Bj = – [r/(µG – r)] + [1/(µG – r)]µj, where G
is any mean-variance efficient portfolio, all of which are perfectly corre-
lated with each other; see Sharpe (1964), p. 438, footnote 22. Note that
he does not draw the inference that G is perfectly correlated with (and
therefore could be) the market portfolio containing all securities in the
economy in value-weighted proportions.

To see this, define rj ≡ Xj /Pj where Pj is the current price of security j and
Xj is its (random) end-of-period value (perhaps price plus dividends).
Then the CAPM equation can be written equivalently as:

P
E X

r r rj
j

j M

=
+

( )

( , )θCov  
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considering only its portfolio mean and portfolio variance of return, that
investors are greedy in the sense that they like portfolio expected return,
portfolio variance held equal, and risk averse in the sense that they dislike
portfolio variance, portfolio expected return held equal. A riskless security
is available and security markets are perfect and competitive. Although in-
vestors are assumed to have the same beliefs (they agree about the expected
returns and covariance of returns with each other for all securities), they
are allowed to have different degrees of risk aversion (that is, different
trade-offs between portfolio expected return and portfolio variance of re-
turn). The paper implies that for pricing purposes, the correct measure of
security risk is not its own variance of return but rather its systematic risk:
its covariance of return with the return of the market portfolio, a portfolio
that contains all securities in the economy, each individually weighted by
its proportion of the value of all securities in the market.
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Rubinstein’s Derivation of the Capital 
Asset Pricing Model (CAPM)

One way to derive the CAPM equation follows (Rubinstein 1973/Octo-
ber). Each investor i = 1, 2, . . . , I is assumed to solve the following
portfolio selection problem:

by choosing portfolio proportions xij for securities j = 0, 1, . . . , m,
where by convention I regard security j = 0 as riskless and securities j =
1, . . . , m as different risky securities. Using the technique of Lagrangian
multipliers, this can be restated as:

The first-order conditions (which are guaranteed to describe a max-
imum since U′(W1

i ) > 0, U″(W1
i ) < 0) are:

W0
iE[rjU′(W1

i)] = ξi (all i and j)
(Continued)

max [ ( )] ( )
{ }x

i
i

j ij j i j ij
ij

E U W x r x0 1Σ Σ− −ξ

max [ ( )]
{ }x

i
i i i

j ij j j ij
ij

E U W W W x r x1 1 0 1   subject to      and   = =Σ Σ
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Rubinstein’s Derivation of the Capital 
Asset Pricing Model (CAPM) (Continued)

In particular, for the riskless security (j = 0): W0
i rE[U′(W1

i)] = ξi.
Therefore,

rE[U′(W1
i )] = E[rjU′(W1

i)] = µjE[U′(W1
i)] + Cov[rj, U′(W1

i )]

so that,

µj = r + {–E[U′(W1
i )]}–1Cov[rj, U′(W1

i)]

From Tobin (1958) one way to justify mean-variance preferences is
to assume all securities have returns rj that are jointly normally distrib-
uted. Since weighted sums of jointly normally distributed random vari-
ables, in particular W1

i , are themselves normal, it follows that (rj and
W1

i ) are also jointly normal. The joint normality covariance theorem, as
derived by Rubinstein (1973/October) and Stein (1973) states: If x and y
are jointly normal, g(y) is any differentiable function of y, and E|g′(y)| <
∞, then Cov[x, g(y)] = E[g′(y)]Cov(x, y). Using this:

Cov[rj, U′(W1
i)] = E[U″(W1

i)]Cov(rj, W1
i)

Substituting into our previous result:

First, rewrite this as:

(µj – r)θi
–1 = Cov(rj, W1

i)

Now, sum or aggregate over all investors:

(µj – r)Σiθi
–1 = Cov(rj, ΣiW1

i )

Aggregation requires that W0
MrM = ΣiW1

i since aggregate holdings must
total to the market portfolio. Finally, substituting into the previous result:

µj = r + θCov(rj , rM) with θ ≡ W0
M (Σiθi

–1)–1 > 0 (for all securities j)

µ θ θj i j
i

i

i

i
r r W

E U W

E U W
= + ≡ − ′′

′
>Cov    with   ( , )
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1

1

1
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A key intuition behind the CAPM is the implication of Tobin’s (1958)
portfolio separation result: With the existence of a riskless security, an in-
vestor’s choice of the proportional composition of his subportfolio of risky
securities is independent of his degree of risk aversion and his wealth. In
Sharpe’s equilibrium extension, this implies that all investors in the econ-
omy (since they all have the same beliefs, all have mean-variance prefer-
ences, and differ only with respect to their risk aversion and wealth) end up
investing in the same subportfolio of risky securities. That is, wealthier and
less risk-averse investors might allocate more dollars to this subportfolio,
but the proportionate composition of the portfolio will be the same for all
investors. If the supply of securities is to equal the demand for them in
equilibrium, this portfolio must then be the market portfolio: If all securi-
ties are held by someone, that is the only portfolio they can all hold and be
holding the same portfolio. That is why all investors will measure the risk
of a security by the covariance of its return with the return of the market
portfolio, since that measures the contribution of that security to the
variance of the return of the portfolio they all end up holding. The mar-
ket portfolio is Tobin’s tangency portfolio, and is therefore itself mean-
variance efficient. This model brings the market portfolio front and
center for the first time.

In [Merton (1990)] “Introduction to Portfolio Selection and Capital
Market Theory: Static Analysis,” in Robert C. Merton, Continuous-Time
Finance, Chapter 2 (Malden, MA: Blackwell, 1990), pp. 16–56, Merton
comments:

Because the market portfolio can be constructed without the
knowledge of preferences, the distribution of wealth, or the joint
probability distribution for outstanding securities, models [such as
the CAPM] in which the market portfolio can be shown to be effi-
cient are more likely to produce testable hypotheses. In addition,
the efficiency of the market portfolio provides a rigorous micro-
economic justification for the use of a “representative man” to de-
rive equilibrium prices in aggregated economic models, i.e. the
market portfolio is efficient if and only if there exists a concave
utility function such that maximization of its expected value with
initial wealth equal to national wealth would lead to the market
portfolio as the optimal portfolio. (p. 44)19

At once this is good news and bad news. It is good news because the
critical variable for measuring risk (the return of the market portfolio) is
now finally identified; it is bad news because application of the model to
real-life problems, in principle, means one has to know how the market
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value of the total of all assets in the world changes over time—a number
that is clearly hard to find on the Internet!

More empirical effort may have been put into testing the CAPM
equation than any other result in finance. The results are quite mixed and
in many ways discouraging. Not that the equation has been shown to be
false; rather, problems in measuring the return of the market portfolio
(Roll 1977) and in measuring expected returns have, perhaps, made it im-
possible to show that it is true, even if it were. At bottom, as subsequent
generalization of the model shows, the central message of the CAPM is
this: Ceteris paribus, the prices of securities should be higher (or lower) to
the extent their payoffs are slanted toward states in which aggregate con-
sumption or aggregate wealth is low (or high). Intuitively, this follows
from consumer/investor diminishing marginal utility (risk aversion) as it
aggregates to affect equilibrium prices. The true pricing equation may not
take the exact form of the CAPM, but the enduring belief of many finan-
cial economists is that, whatever form it takes, it will at least embody this
principle.

The discovery of the capital asset pricing model is one of the more
mysterious events in the history of the theory of investments. Although
Sharpe is invariably given credit, three other financial economists, Lint-
ner (1965/February), Mossin (1966), and Treynor (1999), are variably
given equal credit. So what is the story? Fortunately, financial detective
Craig W. French, in [French (2003)] “The Treynor Capital Asset Pricing
Model,” Journal of Investment Management 1, No. 2 (Second Quarter
2003), pp. 60–72, provides a solution to the mystery. Motivated by
Markowitz (1952/March) and Tobin (1958), all four economists adopted
nearly the same set of assumptions (mean-variance preferences, perfect
and competitive markets, existence of a riskless security, and homoge-
neous expectations) and reached nearly the same two key conclusions:
(1) all investors, irrespective of differences in preferences and wealth, di-
vide their wealth between the same two portfolios: cash and the market
portfolio, and (2) equivalent versions of the CAPM pricing equation
given earlier. One can quibble, as shown, that Sharpe actually did not
conclude or emphasize that all investors hold the market portfolio since
he permitted some securities to be replicable by others and so allowed for
a singular covariance matrix of security returns. However, in the absence
of replication, all investors under his assumptions would indeed hold the
market portfolio.

It seems likely that Treynor and Sharpe discovered these results inde-
pendently and at nearly the same time. Adding to the mystery is that
Treynor had circulated an earlier paper (“Market Value, Time and Risk,”
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dated August 8, 1961), which contained some of the results of his 1962
paper, and Sharpe’s preliminary results (which include the result that in
equilibrium all securities will have expected return beta ordered pairs
that fall along a straight line with an intercept at the riskless rate) first
appeared in his June 1961 doctoral dissertation at UCLA, “Portfolio
Analysis Based on a Simplified Model of the Relationships among Securi-
ties,” which was extended to the final form of his version of the CAPM
and presented at a seminar in January 1962. Even earlier, in 1960,
Treynor gave a draft of his 1961 paper to Lintner at Harvard, so it is un-
clear to what extent Lintner’s 1965 published paper was influenced by
Treynor (however, Lintner neither cites nor mentions Treynor in his pa-
per). Since Mossin references Sharpe, it seems likely that his work was
not independent.

Compared to the other formulations by Treynor, Lintner, and Mossin,
Sharpe derives his using a geometric argument. Of the three derivations,
Mossin’s, the last to be written, is easily the most clearly and precisely ex-
pressed with mathematics.

Lintner (1965/February), published five months following Sharpe,
begins with the Tobin (1958) separation property, which follows from
mean-variance preferences. Although he states that mean-variance prefer-
ences themselves are consistent with expected utility maximization under
quadratic utility or jointly normal security returns, he does not take ad-
vantage of this correspondence to derive more specific results. But he
clearly states and proves that the separation theorem of Tobin (1958),
taken to an equilibrium of investors with the same beliefs, leads to “the
same stock mix will be optimal for every investor,” where the propor-
tions for each stock in this portfolio “can be interpreted as the ratio of
the aggregate market value of the ith stock to the total aggregate market
value of all stocks” (p. 25). He also usefully decomposes the CAPM risk
adjustment term into the product of (1) what he calls the “market price
per dollar of risk,” which is the same for all securities, and (2) the stock’s
risk, different for each security, which is the sum of its own variance of
returns plus the sum of the covariances of its return with the returns of
all other stocks. Lintner’s writing style, unfortunately, makes his results
difficult to digest. He habitually uses very long sentences stating precisely
all conditions and frequently italicizes words to help the reader pull out
the most significant ideas. Despite this, it is often difficult to tell what is
important and what isn’t. In the case of stock risk, for example, he fails
to see that in real life with a large number of available stocks, a stock’s
own variance will almost always be swamped by the sum of its covari-
ances, and is not significant in determining its risk.
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Lintner’s first sequel paper, [Lintner (1965/December)] “Security
Prices, Risk and Maximal Gains from Diversification,” Journal of Finance
20, No. 4 (December 1965), pp. 587–615, lays out the CAPM model more
clearly. He tries to generalize the CAPM to heterogeneous beliefs, but is
unable to develop closed-form results. In [Lintner (1970)] “The Market
Price of Risk, Size of Market and Investor’s Risk Aversion,” Review of
Economics and Statistics 52, No. 1 (February 1970), pp. 87–99, Lintner
examines a special case of the CAPM in which all investors have exponen-
tial utility of wealth functions, with different exponents (A):

U(Wi) ∼ –Aie
–Wi/Ai

With this, he is able to develop a special case of the result in the prior
proof, where θi = Ai and θ ≡ W0

M(Σiθi
–1)–1, the harmonic mean of investor

risk aversions, a result similar to Wilson (1968). Using these precise results,
Lintner becomes the first to develop the comparative statics of the CAPM.
For example, he asks what happens to the market price of risk as, other
things being equal, more investors are added to the market. Finally, in
[Lintner (1969)] “The Aggregation of Investor’s Diverse Judgments and
Preferences in Purely Competitive Securities Markets,” Journal of Finan-
cial and Quantitative Analysis 4, No. 4 (December 1969), pp. 347–400,
Lintner also derives results under the generalizations of heterogeneous in-
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Proof That Own Variance Has Negligible Effects 
on Value in Large Markets

To see this, consider the market portfolio with proportionate holdings
x1, x2, . . . , xj, . . . , xk, . . . , xm with returns r1, r2, . . . , rj, . . . , rk, . . . , rm

where m is the number of securities in the market portfolio so that its re-
turn rM = Σjxjrj. Now for a given security k, calculate Cov(rk, rM) =
Cov(rk, Σjxjrj) = xkVar(rk) + Σj≠kxjCov(rk, rj). To highlight the result, sup-
pose that all xj = 1/m and all the covariances are equal (to Cov). Then

Therefore, as m becomes large, the relative influence of Var(rk) com-
pared to Cov on Cov(rj, rM) becomes negligible.

Cov  Var Cov( , ) ( )r r
m

r
m

mk M k=
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vestor assessments of security mean returns and covariances and restric-
tions limiting short selling. Unfortunately, his closed-form results with
these two generalizations are quite complex.

Although Mossin seems unaware of Lintner’s papers, concerning
Sharpe’s, he writes:

The paper by Sharpe gives a verbal-diagrammatical discussion of
the determination of asset prices in quasi-dynamic terms. His gen-
eral description of the character of the market is similar to the one
presented here, however, and his main conclusions are certainly
consistent with ours. But his lack of precision in the specification
of equilibrium conditions leaves parts of his arguments somewhat
indefinite. The present paper may be seen as an attempt to clarify
and make precise some of these points. (p. 769)20

A model of clarity, Mossin begins by setting forth all the simultaneous
equations that describe the model. He counts unknowns and finds they
equal the number of equations. He assumes investors maximize a utility
function with arguments that are the mean and variance of the return of
his portfolio. However, like Sharpe, Lintner (1965/February), and Treynor,
he does not explicitly investigate the implications of quadratic utility or
jointly normal distributions (as in the earlier proof). He concludes that “in
equilibrium, prices must be set such that each individual will hold the same
percentage of the total outstanding stock of all risky assets” (p. 775), im-
plying that all individuals hold what we would now call the “market port-
folio” along with an investment in cash.

The CAPM has had enormous repercussions on subsequent academic
work in finance. It is now commonly used by professionals as the back-
bone of approaches to evaluate investments and measure the performance
of investment managers. Moreover, it can be given some credit for encour-
aging the development of index funds in the decades since its discovery.
The capital asset pricing model takes its name from Sharpe’s paper, and his
paper was the principal basis for him being awarded the 1990 Nobel Prize
in Economic Science.

1965 Eugene F. Fama (February 14, 1939–), “The Behavior of Stock-
Market Prices,” Journal of Business 38, No. 1 (January 1965), pp. 34–105.

RANDOM WALK, LOGNORMAL DISTRIBUTION, 
FAT TAILS, STABLE-PARETIAN HYPOTHESIS, RUNS TESTS, 
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FILTER RULES, EFFICIENT MARKETS, 
WEEKEND VS. TRADING DAY VARIANCE, 

MUTUAL FUND PERFORMANCE

Fama (1965) empirically informs much of subsequent theoretical work
in asset pricing, particularly work based on the random walk model

and normality or lognormality of security returns. As Bachelier (1900),
Working (1949/May), Roberts (1959), and Alexander (1961) did before
him, Fama argues that a random walk (serial independence of successive
price changes) should follow as a natural consequence of market equilib-
rium, since if it were false, investors would try to take advantage of 
the dependence to earn excess profits and in so doing eliminate the 
dependence. Fama fails to realize what became apparent later that since
the factors used to discount future cash flows need not be serially in-
dependent in equilibrium, neither will the price changes themselves.
Nonetheless the association of random walks with rationally set 
equilibrium prices persists, and is, in practice, a reasonable first-order
approximation.

His paper provides evidence pertaining to the probability distribu-
tion of the natural logarithms of stock returns. Like Kendall (1953) he
finds normality an acceptable first-order approximation, but observes
there are too many observations near the mean and in the extreme tails—
that is, that the kurtosis is much higher than 3 (for the normal distribu-
tion). According to Mandelbrot (1963), the first person that he can
discover to observe fat tails for price series was Wesley C. Mitchell in
[Mitchell (1915)] “The Making of Index Numbers,” introduction to In-
dex Numbers and Wholesale Prices in the United States and Foreign
Countries, Bulletin No. 173 (U.S. Bureau of Labor Statistics, 1915).
Among others, it was also noted by Osborne (1959) and Alexander
(1961). Fama considers three empirical models of this discrepancy: stable-
Paretian distributions (described in Mandelbrot), mixture of normals,
and nonstationarity, and concludes after much discussion that the empir-
ical evidence favors the stable-Paretian hypothesis. Unfortunately, it is
fair to say that the stable-Paretian assumption has been abandoned by
later research, which now seems to favor nonstationarity as the principal
source of fat tails. The earliest fairly convincing papers along these lines
are Press (1967) and Rosenberg (1972).

Fama also presents empirical evidence from his examination of indi-
vidual New York Stock Exchange (NYSE) stocks in favor of random
walks: serial correlation tests, runs tests, and Alexander (1961)-style fil-
ter tests. The one observation that Fama concludes controverts the ran-
dom walk hypothesis is the Mandelbrot (1963) observation that large
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price changes tend to be followed by large price changes but of random
sign (so they cannot be easily used to make profits). Fama speculates
that this would arise in a market in which new highly significant infor-
mation hits the market, creating an over- or underreaction that is cor-
rected as the market has more time to reach a more precise consensus.
He concludes:

There is some evidence that large changes tend to be followed by
large price changes of either sign, but the dependence from this
source does not seem to be too important. There is no evidence,
however, that there is any dependence in the stock-price series that
would be regarded as important for investment purposes. That is,
the past history of the series cannot be used to increase the in-
vestor’s expected profits. (p. 87)21

Fama summarizes in a famous sentence that the observed verification
of the random walk hypothesis is “consistent with the existence of an ‘effi-
cient’ market for securities, that is, a market where, given the available in-
formation, actual prices at every point in time represent very good
estimates of intrinsic values” (p. 90).

Fama is one of the first to note an important empirical contradiction to
the random walk hypothesis if time is measured by closing prices and cal-
endar days: Weekend variance of returns (typically Friday close to Monday
close), instead of being three times the size of intraweek one-day close-to-
close as it would be under that hypothesis (Regnault 1863; Bachelier
1900), is actually only 22 percent times larger. For example, if the annual-
ized standard deviation of intraweek one-day closes is 20 percent, instead
of being 35 percent over the weekend, it is only 22 percent.

Fama also provides his own test of mutual fund performance—shortly
to be eclipsed by tests that correct returns for risk, as in Treynor (1965)
and Sharpe (1966). He reaches similar conclusions to earlier mutual fund
studies by Irwin Friend, F.E. Brown, Edward S. Herman, and Douglas
Vickers, in [Friend-Brown-Herman-Vickers (1962)] A Study of Mutual
Funds: Investment Policy and Investment Company Performance, Report
of the Committee on Interstate and Foreign Commerce, House Report No.
2274, 87th Congress, Second Session (August 28, 1962) and by Ira
Horowitz in [Horowitz (1963)] “The Varying (?) Quality of Investment
Trust Management,” Journal of the American Statistical Association 58,
No. 304 (December 1963), pp. 1011–1032. He finds neither any evidence
that the average fund outperformed the market nor any evidence of perfor-
mance persistence, casting doubt on whether any mutual fund in his sam-
ple outperformed the market by skill.
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1965 William Forsyth Sharpe, “Risk-Aversion in the Stock Market:
Some Empirical Evidence,” Journal of Finance 20, No. 3 (September
1965), pp. 416–422.

CAPITAL ASSET PRICING MODEL (CAPM), 
RISKLESS RETURN, BETA

Sharpe (1965) is the first (of what was to become several hundred) pub-
lished empirical tests of the CAPM. Sharpe examines 34 mutual funds

during the period 1954–1963, using annual returns. He assumes that their
portfolios are mean-variance efficient. In that case the CAPM predicts that
their expected return (µj) and standard deviation of return (σj) will be lin-
early related: µj = a + bσj, with b > 0 and a interpreted as the riskless re-
turn. Since the actual (ex ante) µj and σj are unobservable, he employs the
now well-established procedure of using the realized mean and standard
deviation of returns as ex post estimates. He finds that a = 1.038 and b =
.836 and is highly statistically significant, confirming to a good approxima-
tion the predictions of the theory.

However, Richard R. West in [West (1968)] “Mutual Fund Perfor-
mance and the Theory of Capital Asset Pricing: Some Comments,” Jour-
nal of Business 41, No. 2 (April 1968), pp. 230–234, points out that
Sharpe’s test of the CAPM may not really test that model at all. Suppose
that each of the 34 mutual funds P consisted of an investment of propor-
tion (1 – xP) in cash with return r and 0 < xP ≤ 1 in the Dow Jones Indus-
trial Average (DJIA) with return rM. So the realized return rP of the fund
at any time period is rP = (1 – xP)r + xPrM. In this simple case, the stan-
dard deviation of the fund return σP = xPσM and beta of the fund are βP =
xPβM. The assumption that any of the 34 funds actually held the DJIA,
while clearly false, nonetheless, for practical purposes, is a close approx-
imation to the truth since Sharpe finds that 90 percent of the variance of
return of a typical fund is explained by the co-movement of the fund’s
return with the DJIA.

Now suppose we look at the results from investing in these funds over
a period in which the market went up, in particular, rM > r. Over such a pe-
riod, the CAPM would seem to be verified since funds with higher betas
(since they have higher xP) will also have higher realized returns. Sharpe’s
period 1953–1963 just happens to be a period when rM > r. In contrast,
1937–1946 was a period in which rM < r. Just looking at that period,
Sharpe’s approach would have rejected the CAPM since higher-beta funds
would have experienced lower returns. West’s criticism then shows that de-
veloping a statistical test that could reject the CAPM in the late 1960s re-
mained an open problem.
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1966 William Forsyth Sharpe, “Mutual Fund Performance,” Journal of
Business 39, No. 1, Part 2, Supplement (January 1966), pp. 119–138.

1966 Jack L. Treynor and K.K. Mazuy, “Can Mutual Funds Outguess
the Market?,” Harvard Business Review 44, No. 4 (July–August 1966),
pp. 131–136.

CAPITAL ASSET PRICING MODEL (CAPM), 
MUTUAL FUND PERFORMANCE, SHARPE RATIO, 

MARKET TIMING VS. SECURITY SELECTION

To this point, investment performance had been measured simply by
comparing realized returns to a market index, with no adjustment for

risk. But with the development of the CAPM, a specific risk adjustment
was now theoretically justified. Jack L. Treynor, in [Treynor (1965)] “How
to Rate Management of Investment Funds,” Harvard Business Review 43,
No. 1 (January–February 1965), pp. 63–75, had proposed that mutual
funds be evaluated using the ratio of the realized excess return (over the
riskless return) to their realized beta (µP – r)/βP, while Sharpe (1966) pro-
poses using the ratio SP ≡ (µP – r)/σP on the grounds that funds should be
penalized for incomplete diversification. This later ratio, which Sharpe
called “the reward-to-variability ratio” is now widely known among pro-
fessional investors as the Sharpe ratio.

Using this measure, Sharpe provides the first test of the persistence of
mutual fund performance. Looking at the same 34 funds he examined in
Sharpe (1965) he compares their performance over 1944–1953 with their
performance over 1954–1963. He finds evidence of persistence: “An in-
vestor selecting one of the 17 best funds in the first period would have an
11:6 chance of holding one of the 17 best in the second period” (p. 127).
However, relatively good performance is largely but not completely ex-
plained by low management fees, which ranged from .25 percent to 1.50
percent per year (he does not try to analyze the effects on performance of
turnover and loads, which were a one-time charge of about 8.5 percent).
Comparing the realized Sharpe ratios of his 34 funds (not including load
charges) to the returns of the DJIA (without any trading costs), he con-
cludes that “the odds are greater than 100 to 1 against the possibility that
the average mutual fund did as well as the Dow Jones portfolio from 1954
to 1963” (p. 137).

Net of management expenses, 11 funds outperformed the DJIA in
terms of their Sharpe ratios and 23 underperformed. However, adding
back management expenses, this ratio was 19 to 15. So Sharpe concludes
that management expenses are the major reason the average fund under-
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performed the DJIA and, absent these expenses, the average fund had
about the same performance as the DJIA.

Treynor-Mazuy (1966) is the first published test of the market-timing
ability of mutual funds within the context of the CAPM. A fund presum-
ably will invest relatively more of its total assets in the market at times it is
bullish, and less when it is bearish. For a fund that cannot time the market,
the graph of its “characteristic line,” that is, its excess return as a function
of the market’s excess return, will be straight. For a fund that can success-
fully time the market, its characteristic line will be convex to the origin.
Therefore, to isolate market timing, Treynor and Mazuy add a term, qua-
dratic in the market return, to the market model regression equation of
Sharpe (1963). The sign of this will indicate market timing, positive and
significant for success, or insignificantly different from zero for no forecast-
ing ability. Only one of the 57 mutual funds in their sample shows evidence
of market timing ability at the 95 percent significance level. All the other
funds seem to have linear characteristic lines. They end with a suitable
quotation from Joseph de la Vega (1688):

Profits on the exchange are the treasures of goblins. At one time
they may be carbuncle stones, then coals, then diamonds, then
flint-stones, then morning dew, then tears.

1966 Benjamin F. King, “Market and Industry Factors in Stock Price Be-
havior,” Journal of Business 39, No. 1, Part 2, Supplement (January 1966),
pp. 139–190.
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Sharpe reaches this conclusion as follows. He measures the average SP

over 10 years from 1954 to 1963 for each of his 34 funds. The standard
deviation across the funds of SP was 0.08057. Assuming a normal distrib-
ution for SP, the standard deviation of the sample mean of the fund Sharpe
ratios should then be 0.08057/√34 = .01383. The sample mean of the
funds was 0.633 and the DJIA mean was 0.677. Therefore, the sample
fund mean was 2.46 standard deviations below the DJIA mean. The odds,
then, that the true fund mean was actually above the DJIA realized Sharpe
ratio were 144 to 1.
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1967 Kalman J. Cohen and Jerry A. Pogue, “An Empirical Evaluation of
Alternative Portfolio-Selection Models,” Journal of Business 40, No. 2
(April 1967), pp. 166–193.

1974 James L. Farrell Jr., “Analyzing Covariation of Returns to Deter-
mine Homogeneous Stock Groupings,” Journal of Business 47, No. 2
(April 1974), pp. 186–207.

MULTIFACTOR MODELS, INDUSTRY FACTORS, 
SECTOR FACTORS, CLUSTER ANALYSIS

K ing (1966) examines 63 NYSE stocks between 1929 and 1960, drawn
from a variety of industries. King shows that the return of an equity

proxy for the market portfolio is strongly correlated with the returns of
typical stocks, as Sharpe (1963) no doubt had in mind. However, in addi-
tion to the market proxy, there are other industry factors that were useful
in explaining the co-movement of stock returns. This subsequently led to
considerable interest in identifying other factors that could explain co-
movement besides the market proxy. The search for factors was on and has
continued ever since. Cohen-Pogue (1967) proposed multifactor extensions
of the single-factor market model. The first assumes that the realized return
of each stock is a linear function of the realized return of its industry or
sector plus uncorrelated noise across securities. Then, the industry returns
are assumed to be related by a general covariance matrix. The second ex-
tension is similar except the industry return is assumed to be a linear func-
tion of the realized market return plus uncorrelated noise across industries.
These realized return models were at first presumed to be potentially con-
sistent with the CAPM. The CAPM says there could be many sources of
co-movement, but only one source, the market portfolio, is priced (that is,
only the market portfolio affects expected portfolio returns). Somewhat
heretically at the time, Merton (1973/September) and Ross (1976/Decem-
ber) in different ways then raised the possibility that other factors that
could show up in a multifactor realized return model might end up being
priced as well.

Another approach to determine the factors that determine stock re-
turns is to let the data speak for themselves. Cluster analysis provides a
simple and appealing way to do this. As this stepwise algorithm is de-
scribed by Farrell (1974):

1. Identify n basic underlying variables (100 common stock monthly
returns from 1961 to 1969).
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2. Adjust these variables for known common factors and use these ad-
justed variables in place of the original basic underlying variables (εj

= rj – aj + βjrM, where rM is the monthly S&P 425 index).
3. Set x ← n.
4. Calculate 1/2 x(x – 1) simple paired correlation coefficients.
5. Stop if all paired correlations are zero or negative.
6. Locate the two variables with the highest paired correlation.
7. Combine the two variables into a single composite variable.
8. Replace the two variables with the composite variable leaving a to-

tal of x – 1 variables.
9. Set x ← x – 1.

10. If x ≠ 1, return to step 3; otherwise stop.

Eventually, this procedure produced four clusters:

Cluster 1: (Hewlett-Packard, Perkin Elmer, AMP, Maryland Cup, Bur-
roughs, Ampex, Trane, ITT, MMM, Baxter Labs), (Zenith, Mo-
torola, Polaroid, Texas Instruments), Becton Dickinson, National
Cash Register, (Corning Glass, International Flavor and Fra-
grance, IBM, Avon, Xerox), Eastman Kodak, Harcourt Brace,
(Pam Am, UAL, United Aircraft), Chesebrough-Ponds, NALCO,
TRW, Honeywell, Merck.

Cluster 2: (Virginia Electric, American Electric, Central & Southwest,
Florida Power, Columbia Gas), (Procter & Gamble, General
Foods, Chase Manhattan, Coca-Cola, Transamerica, Household
Finance, CIT, Northwest Bancorp, CPC International), (Gillette,
Quaker Oats, Campbell Soup, Kellogg), (Hershey, Reynolds),
American Home Products, (Kraftco, Sears, Federated Department
Stores, National Biscuit).

Cluster 3: (American Metal Climax, Kennecott, American Smelting,
Pullman), (Clark Equipment, International Harvester, Joy, Interna-
tional Paper, Alcoa), (Eaton, Borg Warner, Otis, National Lead),
(Bethlehem Steel, National Steel, Gardner Denver, Rohm & Haas,
Johns Manville, Ingersoll Rand, Goodyear), (Georgia Pacific, Wey-
erhaeuser), (Caterpillar, Timkin, Sunbeam, Deere), (American
Can, Continental Can, Consolidated Freight, Cincinnati Milling,
Babcock Wilcox, Square D), (American Standard, Monsanto,
Burlington, Mohasco).

Cluster 4: Standard of California, Texaco, Jersey Standard, Mobil,
Standard of Indiana, Gulf, Union Oil, Shell.
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Items in parentheses are subclusters. For example, the three aircraft
companies make a clear subcluster being more highly correlated with each
other than any of the other stocks. Cursory examination of the stocks in
each cluster suggests identifying cluster 1 with growth stocks, cluster 2
with stable stocks, cluster 3 with cyclical stocks, and cluster 4 with oil
stocks. What makes this conclusion particularly compelling is that these
cluster identifications were not assumed in advance, but the data automati-
cally arranged themselves in these groups. The average computed percent-
age variations in monthly return for each cluster for the market factor and
the cluster factor (created out of a value-weighted index of all stocks in a
cluster) are:

Farrell shows that standard stock classifications, with the addition of a
separate oil category, are very useful artifices to explain the cross-sectional
variation in stock returns and that the Markowitz (1959) and Sharpe
(1963) market model with its single market factor index and assumed zero
cross-sectional correlation of residual returns leaves a lot to be desired.

John D. Martin and Robert C. Klemkosky, in [Martin-Klemkosky
(1976)] “The Effect of Homogeneous Stock Groupings on Portfolio Risk,”
Journal of Business 49, No. 3 (July 1976), pp. 339–349, suggest a way to
measure the deficiency in the market model. Recall that the market model
states that rj – r = αj + (rM – r)βj + εj where αj and βj are defined such that
E(εj) = ρ(rM, εj) = 0. To this tautological construction, the assumption is
made that for any two different securities j and k, ρ(εj, εk) = 0. Consider
any portfolio P with proportional composition (x1, x2, . . . , xm) such that
Σjxj = 1. The variance of the portfolio return is:

σP
2 = βP

2σM
2 + Σj xj

2ωj
2

where βP ≡ Σjxjβj, σM
2 ≡ Var(rM), and ωj

2 ≡ Var(εj). Since ρ(εj, εk) = 0, many
covariance terms do not appear. To the extent there are positive industry or
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Cluster Market Factor Cluster Factor

Growth stocks 31% 15%
Stable stocks 29 12
Cyclical stocks 33 9
Oil stocks 31 31
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sector cross-sectional correlation effects, if these are considered, σP
2 will be

larger. So a way to consider the significance of extra-market covariation is
to compare, for a given portfolio, σP

2 estimated from the market model us-
ing the earlier equation with either σP

2 estimated from a market model gen-
eralization that considers these effects or σP

2 estimated from the realized
portfolio returns.

1967 John P. Shelton, “The Value Line Contest: A Test of the Predictabil-
ity of Stock-Price Changes,” Journal of Business 40, No. 3 (July 1967), pp.
251–269.

INDIVIDUAL INVESTOR PERFORMANCE

Most tests of the performance of investors have by necessity concerned
financial intermediaries such as mutual funds. As much as we would

like to examine the performance of individual investors on their private ac-
counts, we simply have not had the information (until more recently).
However, the 1965–1966 Value Line Contest provided a brief opportunity
to examine the skill of 18,565 ordinary investors. Value Line ranks stocks
from 1 to 5, with the stocks it expects to perform best ranked 1. Contes-
tants were required to choose a portfolio of 25 stocks from the 350 stocks
ranked 4 and 5 on November 25, 1965, investing an equal dollar amount
in each stock. At the same time, Value Line selected a portfolio of 25 stocks
from the 100 stocks it ranked 1. The winning contestant was to be the in-
dividual whose portfolio over the following six months had the best real-
ized performance, and in particular, outperformed Value Line’s portfolio. It
turned out that only 20 investors were able earn higher returns than Value
Line. But that was not the focus of Shelton (1967). He asked whether the
average contestant was able to outperform the average of 18,565 ran-
domly chosen 25-stock portfolios (each chosen from the 350-stock uni-
verse). Shelton concluded that the average randomly selected portfolio lost
5.95 percent of its value, while the average portfolio chosen by a contes-
tant lost only 4.77 percent. Moreover, with such a large sample size, this
difference (1.18 percent) was extremely statistically significant, about 49
standard deviations away from 0 percent.

Alas, positive empirical results of this sort, upon more careful analysis,
are often overturned. Two years later, Warren H. Hausman, in [Hausman
(1969)] “A Note on ‘The Value Line Contest: A Test of the Predictability of
Stock-Price Changes,’ ” Journal of Business 42, No. 3 (July 1969), pp.
317–330, argues that in effect the sample size was much smaller than
18,565 portfolios since the contestants did not choose their portfolios in-
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dependently. They may have, for example, been influenced by the same
news events or the same characteristics, such as high earnings per share
(EPS) growth. Indeed, the data reveals that contestants concentrated their
investments in the same stocks. Hausman concludes:

The fact that investors (or contest entrants) tend to agree with
each other need not mean they know anything of value. Neither
does the fact that, on a single occasion, they outperformed a
random selection of stocks, especially if the degree of superiority
was quite small when evaluated by means of the relevant mea-
sures of chance. As Shelton points out, there can be no substi-
tute for additional observations made at different points of time.
(p. 320)22

1967 S. James Press, “A Compound Events Model for Security Prices,”
Journal of Business 40, No. 3 (July 1967), pp. 317–335.

1972 Peter D. Praetz, “The Distribution of Share Price Changes,” Jour-
nal of Business 45, No. 1 (January 1972), pp. 49–55.

1972 Barr Rosenberg, “The Behavior of Random Variables with Nonsta-
tionary Variance and the Distribution of Security Prices,” an unpublished
but frequently cited working paper, Graduate School of Business, Univer-
sity of California at Berkeley (December 1972).

1982 Robert F. Engle (November 10, 1942–), “Autoregressive Condi-
tional Heteroscadasticity with Estimates of the Variance of United King-
dom Inflation,” Econometrica 50, No. 4 (July 1982), pp. 987–1008.

STABLE-PARETIAN HYPOTHESIS, VOLATILITY,
NONSTATIONARY VARIANCE, STOCHASTIC VOLATILITY, 

FAT TAILS, EXCESS KURTOSIS, AUTOREGRESSIVE 
CONDITIONAL HETEROSCEDASTICITY (ARCH)

M andelbrot (1963) used stable-Paretian distributions to explain the
fat tails observed by Osborne (1959) and Alexander (1961) in the

frequency distributions of returns of stocks. However, financial econo-
mists were reluctant to adopt this model primarily because they would
have to give up variance as their favored measure of risk (since the vari-
ance of a stable-Paretian random variable is infinite). In the end, the 
stable-Paretian hypothesis proved a dead end, particularly as alternative
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finite-variance explanations of stock returns were developed. Press
(1967) was perhaps the first to propose such an alternative in what
proved to be the first application of Poisson-jump processes to stock
price behavior. He assumed that successive price changes behaved ac-
cording to the following model:

∆P(t) ≡ log P(t + 1) – log P(t) = ΣkYk + ε(t)

where the sum is taken n(t – 1) to n(t), and ε(t) is a serially independent
stationary normal random variable distributed as N(0, σ1

2 ); Y1, Y2, . . . , Yk,
. . . is a sequence of mutually independent normally distributed random
variables distributed as N(θ, σ2

2 ); and n(t) is a Poisson process with para-
meter λt representing the expected number of stock price–relevant events
that occur between times t and t + 1. One is free to think of n(t) as a num-
ber of trades, but it is not necessary to do this. It is easy to show then that
the first two central moments of ∆P(t) are given by:

E[∆P(t)] = λθ and Var[∆P(t)] = σ1
2 + λ(θ2 + σ2

2)

The first four cumulants are:

K1 = E[∆P(t)], K2 = Var[∆P(t)], K3 = λθ(θ2 + 3σ2
2), 

K4 = λ(θ4 + 6θ2σ2
2 + 3σ2

4 )

Standardized skewness and kurtosis are:

Press claims that the sign of Skw[∆P(t)] is the same as the sign of θ, the
distribution of ∆P(t) is more peaked than the normal, there exists an ex-
treme enough level of ∆P(t) such that the distribution has more probability
than the normal after that level, and the smaller |θ|, the less extreme this
level needs to be.

To estimate the four parameters (λ, θ, σ1
2, σ2

2 ) from a time series, Press
advises using the method of matching cumulants. To do this, suppose that
∆P(1), ∆P(2), . . . , ∆P(t), . . . , ∆P(T) is the observed time series of log
stock price differences, and the sample noncentral moments are defined as
mr = (Σt[∆P(t)]r)/T for r = 1, . . . , 4. Press assumes that the time series con-
sists of uncorrelated and identically distributed random variables. It then
follows that the sample cumulants are (see Maurice G. Kendall, The Ad-

Skw    and   Kurt[ ( )] [ ( )]
/

∆ ∆P t
K

K
P t

K

K
= =3

2
3 2

4

2
2
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vanced Theory of Statistics, Volume I [New York: Hafner Publishing,
1958], p. 70):

K1 = m1, K2 = m2 – m1
2 , K3 = m3 – 3m1m2 +2m1

3 ,
K4 = m4 – 3m2

2 – 4m1m3 + 12m1
2 m2 – 6m1

4

Then equate Kr = Kr for r = 1, . . . 4 and solve the four equations for the
four parameter unknowns (λ, θ, σ1

2 , σ2
2 ). Press shows that once θ is solved

for implicitly, the remaining three parameters can be solved in closed form.
An alternative way to generate fat tails is to assume instead the vari-

ance of the distribution of log price differences is itself a random variable
which can take a different value each time period. Praetz (1972) is the first
to investigate this possibility. In this case,

where σ2 ≡ Var(∆P), f and g are densities, and the integral is taken from 0
to ∞. For g, Praetz specifically proposes an inverted gamma distribution.

Unfortunately, this model has a serious problem. As Praetz himself notes,
actual volatility clusters. There are often consecutive periods of abnormally
high volatility and other consecutive periods of abnormally low volatility. But
Praetz has assumed that the level of variance is random so that unusually high
variance today is likely to be followed by normal variance. A much better hy-
pothesis is to suppose that the change in the level of variance is an indepen-
dent and identically distributed random variable. This allows for volatility
clustering. The first to propose a model of this sort is Rosenberg (1972). Also,
prior to Rosenberg, economists, including Press and Praetz, had assumed that
individual price changes or (log) returns were serially identically distributed.

Using the 100-year history of serial changes in the logarithms of the
monthly price levels of the S&P Composite Stock Price Index (1871–1971),
Rosenberg calculates that the standardized kurtosis of the frequency distrib-
ution of the time series (the ratio of the fourth central moment to the square
of the second central moment) is 14.79, much larger than 3 for a normal
distribution. While maintaining the assumption that each individual price
change is drawn from a normal distribution, Rosenberg argues that a po-
tential explanation for the high kurtosis is nonstationarity of the variance of
the normal distribution from which the price is drawn. He proposes a
model where the price change is drawn in two steps. First, the variance is
drawn from a given nonstationary distribution; second, the price change is
drawn from a normal distribution with the updated variance.

He begins by showing that when the variance of a time series of ran-
dom variables is nonstationary (perhaps even nonstochastic) then the pop-
ulation kurtosis will be greater than the kurtosis of the individual variables
(3 in the case of the normal distribution).

∆ ∆P f P g d= ∫ ( | ) ( )σ σ σ2 2 2
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Rosenberg’s Proof That Nonstationary 
Variance Leads to Increased Kurtosis

Suppose that the changes in the natural logarithm of prices in the time
series of a single security are distributed as: zt ≡ log Pt – log Pt–1 = µt +
σtεt, for t = 1, 2, . . . , n, where εt are serially independent and identically
distributed random variables with a mean 0, variance 1, and kurtosis γ.
In general, εt can follow a stochastic process and, if so, σt is independent
of εt. However, for now, assume that future values of σt are known even
though they are time-dependent. Define yt as the de-meaned version of zt

so that yt ≡ zt – µt = σtεt. Then, E(yt) = 0, E(yt
2) = σt

2, and E(yt
4) = γσt

4

where γ ≡ E(εt
4). Therefore, the standardized kurtosis of yt is:

Now, suppose that I calculate the expectations of the sample mo-
ments and µ1, µ2, and µ4 of the time series of realized values of yt:

So the standardized kurtosis of the time series of realized values of yt is:

It is easy to see that if σt = σ, so that variance is stationary, then
n[Σtσt

4]/[Σtσt
2]2 = 1. But if σt varies at all from date to date, then

n[Σtσt
4]/[Σtσt

2]2 > 1, so E(µ4)/[E(µ2)]
2 > γ.

For example, suppose n = 2 and I set a = σ1
2 and b = σ2

2 , then the
standardized kurtosis of the time series is 2(a2 + b2)/(a + b)2. If a = b,
then this ratio equals 1; but if a ≠ b, then a little algebra shows that the
ratio is greater than 1.
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Rosenberg then employs a simple model of stochastic volatility: The
predicted next-month squared price change (the current variance) equals a
fixed linear function of the previous 10 squared monthly price changes:

where the sum is taken from k = 2 to k = m = 11 (the first 32 months
from January 1871 to July 1873 were used to establish a sample size of
10 months). Regression estimates taken over the subperiod August
1873–December 1950 yield α = .001 and β = .666, with the latter quite
significantly different from 0 with a t-statistic of 10.06. This implies that
simple as the variance forecasting model is, it works. This may be the
first published evidence for security prices for what later became known
as volatility clustering, that is, the tendency for variance to change sto-
chastically but slowly over time so that there are extended periods of
consistently low variance and extended periods of consistently high vari-
ance. This simple volatility model reduces the standardized kurtosis of εt

to an upper bound between 4.61 and 6.19, a significant reduction in the
sample kurtosis calculated from a constant volatility model. Moreover,
for longer sampling intervals for two, three, four, five, and six months,
this upper bound is reduced to between 2.17 and 4.45. Rosenberg em-
phasizes that this considerable reduction of kurtosis is achieved with a
very simple model of predicted variance; presumably more sophisticated
predictive models would bring this even closer to 3. Rosenberg propheti-
cally concludes that this:

suggests that better forecasting models for the variance will ex-
plain virtually all of the nonnormality in the empirical frequency
distribution of NYSE stock price changes. . . . The apparent kurto-
sis of the empirical frequency distribution is the result of mixing
distributions with predictably differing variances. . . . The results
of the experiment have widespread implications for financial man-
agement and the theory of security markets. Some of these are the
following: (i) the requirements for forecasts of price variance; (ii)
the opening of the study of the determinants of price variance as a
field of economic analysis; (iii) the need to respond to fluctuations
in variance in portfolio management; (iv) the role of fluctuations
in variance, through their effect on the riskiness of investment and,
hence, on the appropriate risk premium, as an influence on the
price level. (pp. 39–40)23

y
y

mt
k t k2 2

2

1
= +

−
= −α βΣ
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A decade later Engle (1982) labeled the model that Rosenberg 
had applied to stock prices, an autoregressive conditional heteroscedas-
ticity (ARCH) model (see in particular p. 988). Though widely circu-
lated and referenced, Rosenberg’s working paper had never been
published, and Engle seemed unaware of it since he does not mention or
reference it. In 2003, Engle won the Nobel Prize in Economic Science
“for methods of analyzing economic time series with time-varying
volatility (ARCH).”

1968 Robert Wilson, “The Theory of Syndicates,” Econometrica 36, No.
1 (January 1968), pp. 119–132.

AGGREGATION, PARETO-OPTIMAL SHARING RULES,
CONSENSUS INVESTOR, EXPONENTIAL UTILITY

W ilson (1968) is the classic aggregation paper under uncertainty. A
group chooses a common action and nature chooses a state that to-

gether determine the total payoff for the group. The group then distrib-
utes this payoff to its members using a prespecified sharing rule that
specifies how the total payoff is to be divided. It is assumed that each
member evaluates potential payoffs in terms of his expected utility using
his own subjective probabilities. Wilson’s problem is to determine the cir-
cumstances under which a Pareto-optimal sharing rule can be defined
such that the same common action is chosen as if the group were a single
agent using its own utility function and subjective probabilities. Wilson
shows that such an agent exists if and only if the sharing rule is linear in
the total payoff or all agents have the same probability assessments. He
also shows that if probability assessments are the same for all agents,
concavity of the member utility functions implies concavity of the group
utility function.

This anticipates subsequent work where the sharing rule is deter-
mined via a perfect and competitive securities market equilibrium. Ru-
binstein (1974) derives implications in this context of linear sharing
rules and Constantinides (1982) derives implications in this context if
instead all agents have the same probability assessments. Wilson’s paper
also highlights the unique aggregation properties of groups whose mem-
bers all have exponential utility functions but have different probability
assessments, a setting that is commonly used in many subsequent papers
in finance.
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1968 Jan Mossin, “Optimal Multiperiod Portfolio Policies,” Journal of
Business 41, No. 2 (April 1968), pp. 215–229.

1969 Paul Anthony Samuelson, “Lifetime Portfolio Selection by Dy-
namic Stochastic Programming,” Review of Economics and Statistics 51,
No. 3 (August 1969), pp. 239–246, reprinted in The Collected Scientific
Papers of Paul A. Samuelson, Volume 3 (Cambridge, MA: MIT Press,
1972), pp. 883–890.

1969, 1970, and 1971 Nils H. Hakansson (June 2, 1937–), “Optimal In-
vestment and Consumption Strategies under Risk, an Uncertain Lifetime
and Insurance,” International Economic Review 10, No. 3 (October
1969), pp. 443–466; “Optimal Investment and Consumption Strategies
under Risk for a Class of Utility Functions,” Econometrica 38, No. 5 (Sep-
tember 1970), pp. 587–607; “Optimal Entrepreneurial Decisions in a
Completely Stochastic Environment,” Management Science 17, No. 7
(March 1971), pp. 427–449.

MULTIPERIOD PORTFOLIO SELECTION, 
LONG-TERM INVESTMENT, PORTFOLIO REVISION, MYOPIA,

WORKING BACKWARDS, DYNAMIC PROGRAMMING, 
INDIRECT OR DERIVED UTILITY, TIME-ADDITIVE UTILITY,

CONSTANT ABSOLUTE RISK AVERSION (CARA), 
HYPERBOLIC ABSOLUTE RISK AVERSION (HARA), 

LOGARITHMIC UTILITY, POWER UTILITY, TURNPIKES

K elly (1956), Latané (1959), Markowitz (1959), and Breiman (1961) con-
sider the problem of maximizing the utility of wealth after many periods

of potential portfolio revisions where investors allocate their accumulated
wealth in each period between a riskless and a risky security. They specifi-
cally restricted their analyses to terminal logarithmic utility. In contrast,
Markowitz (1952/March), Roy (1952), and Tobin (1958) examine portfo-
lio choice only over a single period and restrict themselves to mean-variance
preferences. Mossin (1968) considers the multiperiod setting in which an in-
vestor maximizes the expected utility of his terminal wealth (at some prese-
lected horizon date T), deliberately ignoring, for purposes of simplification,
any intermediate withdrawals for consumption as in Phelps (1962).

Since, generally, the decision an investor makes in any period before
the last depends on what his subsequent decisions can be, he solves the
problem, as Markowitz (1959) originally suggested, using dynamic pro-
gramming. That is, he starts at the penultimate date T – 1, and maximizes
given terminal expected utility E[U(WT)|WT–1] as a function of the wealth
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WT–1 available at T – 1. This leads to an indirect or derived utility of
wealth VT–1(WT–1) = max E[U(WT)|WT–1] at date T – 1, where the random
wealth outcome WT is the result of allocating wealth WT–1 between the
riskless and risky security at date T – 1 to maximize expected utility.
Continuing to work backward recursively, he solves for VT–2(WT–2) = max
E[VT–1(WT–1)|WT–2], and so on, until he reaches date 1 when he can now de-
termine the current optimal allocation between the riskless and risky secu-
rity simply by maximizing E[V1(W1)|W0] based on the current known
wealth W0. Mossin makes the important simplifying random walk assump-
tion that the security returns in each period are independent of the security
returns available in other periods.

Decision making would be vastly simplified if the investor could
choose myopically, that is, at each date treat his decision then as if it
were his last. Mossin therefore asks: What class of terminal utility of
wealth functions U(WT) is necessary and sufficient for myopia? He
proves that only utility functions with constant relative risk aversion
(CRRA) (logarithmic and power utility) have the myopia property. That
is, at each date t, such investors optimally choose their allocation be-
tween the riskless and the risky security using Vt(Wt+1) = U(Wt+1). In
other words, to make the optimal dollar allocation at each date, the 
investor need only know his wealth and the returns available over 
the current period; in particular, he does not have to consider the 
time remaining to his horizon date T or the available returns after the
current period.

192 A HISTORY OF THE THEORY OF INVESTMENTS

Proof of Sufficiency of CRRA for Myopia

Sufficiency of CRRA is easy to see. First consider an investor who maxi-
mizes the expected logarithmic utility of his date T = 2 wealth: E[U(W2)]
= E[log(W2)] = E[log(W0rP1rP2)] where W0 is his known initial wealth, rP1
is the random return from his chosen portfolio over the first period (from
date 0 to date 1), and rP2 is the random return from his possibly revised
(at date 1) portfolio over the second period from date 1 to date 2. Ob-
serve that:

E[log(W0rP1rP2)] = E[log(W0rP1) + log(rP2)]
E[log(W0rP1) + log(rP2)] = E[log (W0rP1)] + E[log(rP2)]

E[log(W0rP1)] + E[log(rP2)] ∼ E[log(W1)]
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Moreover, Mossin shows that for constant relative risk aversion
(CRRA), the optimal proportionate allocation between the two securities is
even independent of the investor’s wealth Wt, only being dependent on the
current period’s security returns.
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Proof of Sufficiency of CRRA for Myopia (Continued)

The notation ∼ indicates “is equivalent up to an increasing linear
translation to.” In this case, in the third step, we simply have an additive
constant E[log(rP2)] that we can omit without affecting our date 0 portfolio
choices. This gives rise to utility of wealth W1 at date 1. Therefore, V1(W1)
= log(W1) and we have myopia. Notice that the myopia under logarithmic
utility is quite robust since it will hold even if rP1 and rP2 were to end up
correlated, say, due to changing but correlated investment opportunities.
That is, even if these variables were correlated we would still have the sec-
ond step since the expectation of the sum of two random variables equals
the sum of their separate expectations, even if they are correlated.

Now consider power utility: E[U(W2)] = E[W2
b] = E[(W0rP1rP2)

b] for
0 < b < 1. In this case:

E[(W0rP1rP2)
b] = E[(W0rP1)

brP2
b ]

E[(W0rP1)
brP2

b ] = E(rP2
b )E[(W0rP1)

b]
E(rP2

b )E[(W0rP1)
b] ∼ E(W1

b )

In this case, the multiplicative constant E[rP2
b ] can be omitted without

affecting our date 0 portfolio choices. Again, we find myopia since V1(W1)
= W1

b . However, note here that we need to assume rP1 and rP2 are not cor-
related random variables since otherwise step 2 would not go through.
That is, the expectation of the product of two random variables equals the
product of their separate expectations only if they are not correlated.

Proof that CRRA Is Sufficient for Investment 
Choices to Be Independent of Initial Wealth

This is quite easy to see. Consider a single-period situation in which an
investor maximizes his expected utility of his future wealth, E[U(W1)],
where future wealth W1 equals current wealth W0 times portfolio 
return rP so that W1 = W0rP. The investor therefore maximizes 

(Continued)
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It follows that if these returns are stationary, the investor will rebal-
ance at every date to the same portfolio proportions. Mossin defines “par-
tial myopia” to permit some modest foresight about the future, namely,
knowledge of future riskless returns and the time remaining to the horizon,
but still no knowledge of the returns of the risky security after the current
period. He shows that the hyperbolic absolute risk aversion (HARA) or
“homothetic” class of utility functions is necessary and sufficient for par-
tial myopia. While these results generally depend crucially on the indepen-
dence assumption of security returns over time, Mossin neglects to
mention that for the very special case of logarithmic utility, they do not.

This HARA class of utility functions plays an important role in subse-
quent research because the class has convenient myopia, separation
(Hakansson 1969/December; Cass-Stiglitz 1970), and aggregation (Wilson
1968; Rubinstein 1974) properties, making it ideally suited for obtaining
closed-form solutions to consumption and portfolio decision rules, and to

194 A HISTORY OF THE THEORY OF INVESTMENTS

Proof that CRRA Is Sufficient for Investment 
Choices to Be Independent of Initial Wealth (Continued)

E[U(W0rP)]. In general, initial wealth W0 cannot be separated from this
objective. However, in the CRRA case of logarithmic utility, U(W1) =
log(W1). Therefore, the investor maximizes:

E[U(W1)] = E[log(W0rP)] = E[log(W0) + log(rP)] 
= log(W0) + E[log rP] ∼ E[log rP]

Because utility functions are “unique up to an increasing linear
transformation,” the choices of the investor are not changed by adding a
constant to each outcome. Since, as we have seen, initial wealth enters as
an additive constant, it will not affect choices.

Alternatively, consider the remaining CRRA utility functions, U(W1)
= W1

b for 0 < b < 1:

E[U(W1)] = E[(W0rP)
b] = E[(W0

b )(rP
b )] = W0

b E[rP
b ] ∼ E[rP

b ]

Because utility functions are “unique up to an increasing linear trans-
formation,” the choices of the investor are not changed by multiplying
each outcome by a positive constant. Since, as we have seen, initial wealth
enters as a positive multiplicative constant, is will not affect choices. It is
not hard to see that these utility functions exhaust the set of risk-averse
utility functions for which initial wealth does not affect choices.
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equilibrium prices. The following utility functions belong to and exhaust
the HARA class:

(1) U(Wt) ∼ (b/(1 – b))(A + BWt)
1–b (B ≠ 0, 1)

(2) U(Wt) ∼ – Ae –Wt/A (B = 0)

(3) U(Wt) ∼ log(A + Wt) (B = 1)

where A and B are constants, b ≡ B–1, and ∼ means “is equivalent up to an
increasing linear transformation to.” Utility functions (2) are the limit of
(1) as B → 0, and utility functions (3) are the limit of (1) as B → 1. Loga-
rithmic utility is bounded neither above nor below. Power utility with b < 1
is bounded from below but not from above, and with b > 1 is bounded
from above but not from below. These functions are all the solutions to the
differential equation:

The left-hand side of this equation is the inverse of absolute risk aver-
sion, sometimes called “risk tolerance.” So the HARA class is also termed
the “linear risk tolerance” class. It is easy to see from this that utility func-
tions (2) constitute all utility functions with constant absolute risk aversion
(CARA), and utility functions (1) and (3) where A = 0 constitute all utility
functions with constant relative risk aversion (CRRA). B (or b) is often re-
ferred to as “cautiousness.”

Mossin ends the paper with some comments about portfolio “turn-
pikes,” (a singularly appropriate appellation from Leland (1972): A port-
folio has the turnpike property if in the limit as the investor’s horizon
recedes into the future, his current portfolio choice becomes independent
of his horizon. He notes that the HARA class has this property since in this
limit, HARA investors become CRRA investors, and he conjectures that
these turnpike results may carry over even to a much wider class of utility
functions than HARA.

Samuelson (1969), under the generalization of an additive utility func-
tion of consumption over time, redevelops the portion of Mossin’s results
that show the sufficiency of CRRA utility for myopia. In addition, he shows
that the consumer/investor’s portfolio proportions are also chosen indepen-
dently of his consumption decisions, as does Hakansson (1970). He points
out that any lingering belief that the logarithmic utility strategy is the only
rational risk-averse investment rule for long-term investors has been perma-
nently set to rest. CRRA, for example, even if it were the result of turnpike
investing, only contains logarithmic utility as a special and not the only case.

Hakansson (1971) is the third and most general in a sequence of papers

− ′
′′

= +U W
U W

A BWt

t
t
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beginning with Hakansson (1970) and Hakansson (1969/October). Build-
ing on Phelps (1962) in this paper, an individual is assumed to maximize
the expected utility of lifetime consumption with a final bequest, allocating
his wealth among consumption, bequest, life insurance, many risky securi-
ties, and a riskless security (riskless over a single period). The individual is
allowed to have state-dependent future preferences and an uncertain life-
time, and his investment opportunities including the riskless return are al-
lowed to vary stochastically over time, with possible serial correlation.
Specific results are derived for the case of time-additive utility with con-
stant relative risk aversion and state-dependent rates of time preference.

Nils H. Hakansson, in [Hakansson (1974)] “Convergence to Isoelastic
Utility and Policy in Multiperiod Portfolio Choice,” Journal of Financial
Economics 1, No. 3 (September 1974), pp. 201–224, follows Mossin’s sug-
gestion that the CRRA class of utility of terminal wealth functions may
have significant turnpike properties. The first extension of Mossin’s results
is by Hayne Ellis Leland, in [Leland (1972)] “On Turnpike Portfolios,” in
Mathematical Methods in Investment and Finance, edited by G.P. Szego
and K. Shell (Amsterdam: North-Holland, 1972), pp. 24–33. Hakansson
weakens the turnpike conditions considerably (always under conditions of
serial independence of security returns). He concludes that “the conditions
for convergence are weakened further, to the point where they appear suffi-
ciently broad to encompass perhaps most utility functions of practical in-
terest.” Stephen A. Ross, in [Ross (1974)] “Portfolio Turnpike Theorems
for Constant Polices,” Journal of Financial Economics 1, No. 2 (July
1974), pp. 171–198, also derives related turnpike results.

Further work by Barry Goldman, in [Goldman (1974)] “A Negative
Report on the ‘Near-Optimality’ of the Max-Expected Log Policy As Ap-
plied to Bounded Utilities for Long-Lived Programs,” Journal of Financial
Economics 1, No. 1 (May 1974), pp. 97–103, shows that the most impor-
tant special case of the CRRA class, logarithmic utility, is generally not a
good turnpike strategy for investors with bounded terminal utility of
wealth functions. Hakansson confirms that such investors never have turn-
pike utility functions that are logarithmic.

1968 Michael C. Jensen (1939–), “The Performance of Mutual Funds in the
Period 1945–1964,” Journal of Finance 23, No. 2 (May 1968), pp. 389–416.

MUTUAL FUND PERFORMANCE, ALPHA, 
BETA, MARKET MODEL, LUCK VS. SKILL

M easurements of mutual fund performance not only are useful for deter-
mining the allocation of investors’ funds among managers, but perhaps

even more significant, they provide perhaps the best empirical test of
whether securities are rationally priced. Compared to others, these tests
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have several advantages: (1) they are based on actual, not paper, profits and
losses; (2) they are the results of strategies that were actually, and not imag-
inatively, implemented using coexisting investment technology and knowl-
edge; (3) properly examined, the results are free from data-mining and
survivorship bias; (4) they now cover more than 60 years of investing by
thousands of different funds; (5) they summarize the success of a large num-
ber of smart and highly compensated managers who devoted most of their
waking hours to detecting mispriced securities; and (6) they implicitly test a
large number of strategies, including those that may be difficult to translate
into a testable algorithm. If these funds, being relatively sophisticated in-
vestors, cannot outperform the simple buy-and-hold index fund strategy,
then it must be very difficult, if not impossible, for normal investors to beat
the market even if they devote several hours a day in the attempt.

Jensen (1968) argues that earlier measures of investment performance
developed by others such as Treynor (1965) and Sharpe (1966), while they
allow one to rank the performances of different portfolios, do not provide
an absolute standard for comparison. Therefore, he suggests his now-famous
“alpha” measure of performance. The Sharpe (1964), Lintner (1965/
February), Mossin (1966), Treynor (1999) CAPM equation implies that in
equilibrium, for any portfolio P:

µP = r + (µM – r)βP

where r is the riskless return, µM is the expected return of the market port-
folio, and µP and βP are the expected return and beta of the portfolio.
Jensen argues that if an investment manager can select a portfolio that out-
performs the market, given its level of risk, then for that portfolio:

µP = αP + r + (µM – r)βP where αP > 0

This provides Jensen’s absolute standard of performance. Jensen fur-
ther argues that since it would be perverse for a manager to knowingly
choose a portfolio for which alpha would be negative, if a manager has no
skill, his alpha will be zero.

Of course, this is itself an internal contradiction to the CAPM since un-
der its assumptions (in particular, all agents have the same beliefs), αP must
equal zero for all portfolios. Moreover, even if one were to imagine a plausi-
ble generalization of the CAPM that would allow mispricing so that alpha
were positive for some held portfolios, it would seem that an adding-up con-
straint would mean that alpha would then have to be negative for other held
portfolios (this was shown earlier in my discussion in the context of the mar-
ket model). But moving on (such details never stop a determined empiricist),
using the Markowitz (1959) and Sharpe (1963) diagonal or market model to
convert this from expected to realized returns, Jensen proposes:

rP – r = αP + (rM – r)βP + εP
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where rP and rM are realized returns and E(εj) = ρ(rM, εj) = 0. Underlying
this, at the security level, for any two different securities j and k, ρ(εj, εk) = 0
and their returns rj and rk are assumed to be jointly normally distributed.
Jensen argues that this equation can represent the realized returns of secu-
rities over time, as well as in the cross section, and that for the same held
portfolio the serial correlation of its epsilon will be zero. If it were not,
then the manager would use this information to earn additional expected
returns, which would become part of the portfolio’s alpha; so in the end,
the serial correlation of epsilon must be zero.

Of course, any regression of portfolio returns against the market pro-
vides only an estimate of alpha, not the true alpha. Fortunately, the setup
allows the machinery of the Gauss-Markov Theorem to apply, so that the
sampling distribution estimate of alpha will conform to a t-distribution
with nP – 2 degrees of freedom, where nP is the number of observations
over time for portfolio P. Using this, we can determine the statistical signif-
icance of alpha.

Application of the market model, as outlined by Jensen, strictly re-
quires that the beta of a portfolio βP be an intertemporal constant, a condi-
tion that is not realistic. However, Jensen cleverly attempts to argue that
this will mean that estimates of βP will be biased downward, so that the es-
timates of αP will be biased upward. Unfortunately (and this is not well-
known), Jensen seems to have made a mathematical error, so that variation
of the sample estimate of portfolio beta will instead be biased upward, and
thus alpha will be biased downward.

198 A HISTORY OF THE THEORY OF INVESTMENTS

An Apparent Error in Jensen’s Analysis

To see this, Jensen argues that the performance of a portfolio derives
from two sources: market timing and security selection. There will be a
normal beta around which the manager, in attempting to exploit his
market timing skill, will vary the actual beta of his portfolio. If βN is the
normal beta, if the manager is bullish at time t, he will choose βPt > βN;
and if he later becomes bearish at some other time t, he will then choose
βPt < βN. To capture this, we can suppose that βPt = βN + uPt where E(uPt)
= 0 and uPt is normally distributed. Clearly, the manager will try to make
uPt positively correlated with πt ≡ rMt – µMt so that we can suppose that
uPt = aPπt + wPt where E(wPt) = 0, ρ(πt, wPt) = 0 and wt is normally dis-
tributed. Jensen again argues that aP ≥ 0 since aP < 0 would be con-
sciously irrational; aP = 0 then implies no market timing skill.
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However, this bias is not likely to be significant, at least for Jensen’s
sample. Recall that Treynor-Mazuy (1966) find very little evidence of mar-
ket timing skill in their sample of mutual funds (that is, aP ≈ 0, in the earlier
argument).

Jensen gathers annual prices and dividends covering 115 mutual funds
from Wiesenberger’s Investment Companies (Arthur Wiesenberger, Invest-
ment Companies, New York: Arthur Wiesenberger & Company, 1955 and
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An Apparent Error in Jensen’s Analysis (Continued)

The least squares estimate of the true βN is βN where

Successively substituting the market model for rPt – rt, then βN + uPt for
βPt, and then aP(rMt – µMt) + wPt for uPt leads to:

Eliminating all constants in the covariance and setting some terms to
zero due to zero-correlation assumptions:

It is easy to show that for any random variable x, Cov(x2, x) = E(x3)
– µσ2 – µ3. Also, it is easy to show that for any random variable x, E[(x
– µ)3] = E(x3) – 3µσ2 – µ3. Now, if x is normally distributed (as rMt is), the
skewness E[(x – µ)3] = 0. Putting this together, Cov(x2, x) = 2µσ2. Using
this result and substituting above:

E(βN) = βN – aP(µM + r) + aP(2µM) = βN + aP(µM – r) > 0
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1965) during 1955–1964, and as much data as was available on these
funds from 1945 to 1954. He measures the beta of each fund using natural
logarithms of this time series from 1945 to 1964 using the market model.
The average beta across all the funds was .840, so failing to adjust for risk
would bias the funds’ performance against the funds in any comparison
with the market. The correlation coefficient of the market model regression
was .930, indicating, as Sharpe had previously found, that most of the
variance of the funds’ returns can be explained by the market return. As in
Sharpe (1966), load charges are ignored since the objective is to measure
managerial forecasting skill rather than returns to investors. The average
alpha from the market model regression of fund returns net of manage-
ment expenses was –1.1 percent; 76 funds had a negative alpha, and 39
funds had a positive alpha. Using gross returns (with management ex-
penses added back), the average alpha becomes –0.1 percent. Correcting
further for the small amounts of cash held by the funds, the average alpha
becomes –0.04 percent, virtually zero, and the funds split about evenly be-
tween negative and positive alphas.

Although there is no evidence that the average fund can outperform
the market, there is still the possibility that at least one of the funds outper-
formed the market by skill. Using the time series regression for each fund
and using returns net of management expenses, Jensen calculates the t-values
of their alphas. Fourteen funds had negative alphas and three funds had
positive alphas with significance at the 5 percent level. However, with 115
funds, assuming normally distributed residual returns εP in the market
model regression, just by chance about five or six should have had positive
alphas at the 5 percent significance level. Jensen concludes his paper with:

The evidence on mutual fund performance discussed above indi-
cates not only that 115 mutual funds were on average not able to
predict security prices well enough to outperform a buy-the-market-
and-hold policy, but also that there is very little evidence that any
individual fund was able to do significantly better than that which
we expected from mere random chance. It is also important to
note that these conclusions hold even when we measure the fund
returns gross of management expenses (that is, assume their book-
keeping, research, and other expenses except brokerage commis-
sions were obtained free). Thus on average the funds were
apparently not quite successful enough in their trading activities to
recoup even their brokerage expenses. (p. 415)24

Unfortunately, one assumption that is untested in Jensen’s paper is that
the cross-sectional correlation of the residual returns of different fund
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portfolio returns is zero. Even if the market model assumption as applied
to individual securities j and k that ρ(εj, εk) = 0 were correct—and we know
from King (1966), for example, that is isn’t—since mutual fund portfolios
contain many of the same securities, for two such portfolios P and Q it
would be very unlikely that ρ(εP, εQ) = 0. Jensen needs this assumption to
interpret the cross-sectional significance of alpha. To see how this could in
principle play out, if all 115 mutual funds held exactly the same portfolio,
then cross-sectional differences in alpha would not be significant since they
are really calculated from a sample of 1.

About 10 years later, Norman E. Mains in [Mains (1977)] “Risk, the
Pricing of Capital Assets, and the Evaluation of Investment Portfolios:
Comment,” Journal of Business 50, No. 3 (July 1977), pp. 371–384,
proved once again that even the most careful of empiricists often fails to
take everything into consideration. In particular, Jensen assumed that fund
dividends received over the year were reinvested in the fund at the end of
the year (since he was using only annual returns). Jensen believed that the
bias imparted by this would be negligible. Mains pointed out that in a pe-
riod like Jensen’s of significantly increasing stock returns, this bias could be
important. Jensen also assumed that the fund betas were constant over his
20-year observation period but measured his alphas based on the last 10
years. In fact, according to Mains, the betas of most of the funds were
lower in the last 10 years than in the first, imparting a downward bias to
measured alphas. Redoing Jensen’s alpha test with these corrections re-
versed Jensen’s conclusions so that the average fund has about a zero, in-
stead of negative, alpha on a net return basis. However, to correct for the
problem of dividend reinvestment, Mains gathered monthly data, which
had to be voluntarily supplied by the mutual funds, but only 70 of Jensen’s
original 115 funds supplied data. Unfortunately, the different sample not
only prohibits a direct comparison with Jensen’s results, but also could be
biased since it may be that only the better-performing funds tended to sup-
ply their monthly data.

Jensen’s paper is a landmark in the long history of testing investor per-
formance—perhaps inaugurated by Cowles (1933)—convincing many fi-
nancial economists that not only did the average U.S. equity mutual fund
in his exhaustive sample not outperform a value-weighted market index,
but also there was little evidence that even one fund outperformed this in-
dex other than by chance.

1968 Hayne Ellis Leland (July 25, 1941–), “Savings and Uncertainty:
The Precautionary Demand for Saving,” Quarterly Journal of Economics
82, No. 3 (August 1968), pp. 465–473.
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UNCERTAIN ENDOWED INCOME, 
SUBSTITUTION VS. INCOME EFFECTS, 

PRECAUTIONARY SAVINGS, 
ABSOLUTE RISK AVERSION

Consider the two-period exchange problem for the consumer under
certainty:

where Y0 and Y1 are endowed income at dates 0 and 1, r is the marketwide
riskless return on investment, C0 and C1 are the consumer’s consumption
choices at dates 0 and 1, U(•) is the utility of consumption, and ρ is the pa-
tience factor; see Fisher (1930). One question of interest is what effect,
other things being equal, increasing r has on future consumption. On the
one hand, increasing r implies that the same current dollar consumption
now permits more dollar consumption in the future so that to balance out
utility over time—which the consumer likes to do since U″(•) < 0—the con-
sumer will choose to increase current consumption. This motivation is
called the substitution effect. On the other hand, increasing r also implies
that any sacrifice of current consumption for future consumption is more
efficient since any savings earns higher interest. This opposing motivation
is called the income effect.

Increasing future income Y1, other things being equal, unambiguously
decreases savings for future consumption out of current consumption.
Generalizing the model to allow for uncertainty surrounding future income
Y1 introduces other questions of comparative statics. Leland (1968) asks
the question: Under what circumstances, for a fixed mean of Y1, does in-
creasing the variance of Y1 lead to increased saving for future consumption
out of current income Y0? Increased savings for this reason is called pre-
cautionary savings. Naively one might have supposed that risk aversion
would lead to precautionary savings, but Leland shows this is not correct.
By using a local Taylor series argument, which implies that risk is locally
identified with variance, Leland concludes that increasing absolute risk
aversion—see Pratt (1964)—is necessary and sufficient for a positive pre-
cautionary demand for savings.

1969 Eugene F. Fama, Lawrence Fisher, Michael C. Jensen, and Richard
Roll, “The Adjustment of Stock Prices to New Information,” International
Economic Review 10, No. 1 (February 1969), pp. 1–21.
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EVENT STUDIES, STOCK SPLITS, EARNINGS ANNOUNCEMENTS,
MARKET MODEL, WORLD EVENTS, ACCOUNTING CHANGES,

BLOCK TRADING, SECOND-HAND INFORMATION

James Clay Dolley in [Dolley (1933)] “Characteristics and Procedure of
Common Stock Split-Ups,” Harvard Business Review 11, No. 3 (April

1933), pp. 316–326, inaugurates hundreds of so-called event studies, a ba-
sic test of the rationality of market prices. If stock markets are working
properly, stock prices should: (1) immediately increase with the publicity of
good news, (2) immediately decrease with the publicity of bad news, and
(3) thereafter not change at least in a predictable way as a result of the pre-
viously released news. In particular, Dolley studied the behavior of stock
prices immediately after a stock split occurs and provided a simple count
of stocks that increased and stocks that decreased in price. Over the next
35 years, event studies gradually increased in sophistication, controlling
for general market price movements and other confounding events. In the
late 1960s, two studies brought the technique to maturity: Ray Ball and
Phillip Brown, in [Ball-Brown (1968)] “An Empirical Evaluation of Ac-
counting Income Numbers,” Journal of Accounting Research 6, No. 2
(Autumn 1968), pp. 159–178, on earnings announcements, and Fama-
Fisher-Jensen-Roll (1969) on the response of stock prices to announce-
ments of stock splits.

The authors of the latter study argue that stock splits per se should
leave the total market value of the firm’s equity unchanged. For example, if
a firm splits its stock 2:1, its stock price should be cut in half. However,
complicating the stock market response is the signal conveyed by a split. In
particular, firms often increase total dividends in conjunction with splits by
not cutting dividends in proportion to the split. Since John Lintner’s article,
[Lintner (1956)] “Distribution of Incomes of Corporations among Divi-
dends, Retained Earnings, and Taxes,” American Economic Review 46,
No. 2 (May 1956), pp. 97–113, it has been known that once firms raise
dividends, they are very reluctant to lower them. Therefore, raising divi-
dends tends to signal that the management of the firm is optimistic about
its future prospects. As a result, the announcement of split, if accompanied
by a dividend increase, should tend to move stock prices up.

The authors use a version of the Markowitz (1959) and Sharpe (1963)
market model:

log rjt = αj + βj log rMt + εjt

where rjt is the return of stock j for month t, rMt is similar to the return of
the S&P 500 index for month t, and εjt obeys the standard restrictions of
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the market model. Least squares estimates (αj, βj) were calculated for 622
stocks over the period 1926–1960, which included 940 splits (of 25 per-
cent or more). For each split, define month t = 0 as the month in which the
split occurs, t = –1 as one month before the split, t = 1 as one month fol-
lowing the split, and so on. Now, for month k define εk as the cross-sec-
tional average of the residuals:

where nk is the number of splits with data available in month k. Note
that this sum is taken over residual returns measured over different calen-
dar months for different splits. Finally, define the cumulative average
residual as:

Εm ≡ Σkεk

where the sum is taken from –29 (29 months before the splits) to month m.
For all splits in the database, the cumulative average residuals rise

steadily as m goes from –29 to 0 and levels off from m = 0 to m = 30. The
authors argue this is just what one would expect from a rational market.
Prior to the split date, stocks to be split should on average have experi-
enced rising prices (in part because increases in dividends are expected),
but after that date there should be no further information in the split that
is not reflected in the stock price at the end of the split month. However, if
the sample is divided between splits followed by dividend increases and
those followed by dividend decreases, it turns out that the stocks with in-
creases continue to have slightly increasing cumulative average residuals
after the split, and stocks with dividend decreases have sharply declining
cumulative average residuals after the split. But since most stocks have div-
idend increases following splits, the sum of the cumulative average across
both stocks with dividend increases and decreases is approximately zero.
The authors take the whole of this evidence to be consistent with rational
markets.

Two years later, Victor Niederhoffer published another event study in
[Niederhoffer (1971)] “The Analysis of World Events and Stock Prices,”
Journal of Business 44, No. 2 (April 1971), pp. 193–219. If stock markets
are rational, then stock market indexes should tend to have greater
changes after significant marketwide events. To test this, Niederhoffer cre-
ates a list of 432 world events over the period 1950–1966, defined as
events described by headlines in the late city edition of the New York
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Times (news usually happening before 9:00 P.M. of the previous day) that
span five to eight columns across the front page. As one would have ex-
pected, the price change of the S&P Composite Index on the next day
tended to be much greater in absolute magnitude than usual. Moreover, the
Mandelbrot (1963) prediction that large price changes tend to be followed
by large price changes is also confirmed, but Mandelbrot’s other prediction
that these subsequent price changes will be of random sign is not con-
firmed. Indeed, Niederhoffer notes that the Fama (1965) confirmation of
this relates to individual stocks and not a stock index. For the index,
Niederhoffer finds that index continuations are more likely than index re-
versals, so that the market would appear typically to underreact to world
events over the first succeeding day. Unfortunately, the result could be spu-
rious since, as Niederhoffer readily admits, he has not corrected for the in-
dex staleness problem first noted by Cowles (1960).

In 1972, Robert S. Kaplan and Richard Roll, in [Kaplan-Roll (1972)]
“Investor Evaluation of Accounting Information: Some Empirical Evi-
dence,” Journal of Business 45, No. 2 (April 1972), pp. 225–257, report
the results of another event study using the same methodology as Fama,
Fisher, Jensen, and Roll. They test the widely believed view, at least among
corporate executives, that changes in external accounting methods that af-
fect reported earnings per share affect share price. Until the Kaplan-Roll
study, this view had never been tested systematically. They test two
changes. In 1964, many firms shifted from gradually amortizing to imme-
diately crediting the benefits of the investment tax credit. Second, from
1962 to 1968 a number of firms shifted from accelerated to straight-line
depreciation. Using cumulative average residuals, they find little evidence
that these changes (although they clearly impacted reported earnings per
share) affect share prices; any such effects were short-lived and quickly re-
versed. One problem with this study, however, is that firms that make these
changes to prop up their reported earnings may be self-selected to be firms
that insiders believe are expected to perform poorly in the future.

Fama, Fisher, Jensen, and Roll provide empirical evidence supporting a
key implication of efficient markets: Stock prices respond to new relevant
information. The opposite side of this implication is that stock prices do
not respond to irrelevant information. Myron Scholes, in [(Scholes (1972)]
“The Market for Securities: Substitution versus Price Pressure and Effects
of Information on Stock Prices,” Journal of Business 45, No. 2 (April
1972), pp. 179–211, provides perhaps the first study to provide evidence in
support of this. He shows that when sellers dispose of a large block of
stock, although the price typically falls in response, it quickly bounces
most of the way back as investors apparently arbitrage between it and
close substitutes.
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As a final example of an event study, Peter Lloyd Davies and Michael
Canes, in [Davies-Canes (1978)] “Stock Prices and the Publication of Sec-
ond-Hand Information,” Journal of Business 51, No. 1 (January 1978),
pp. 43–56, examine the effects of buy and sell recommendations for New
York Stock Exchange (NYSE) stocks that appeared in the “Heard on the
Street” column in the Wall Street Journal during 1970–1971. The authors
presume that these recommendations are based only on public information
and therefore represent a second-hand opinion or analysis of already avail-
able information. In a fully rational market, where all information is im-
mediately reflected in stock prices the moment it becomes public, there
should be no price reaction to second-hand information. Despite this, the
authors calculate an average abnormal return on the day of the column of
about 1 percent for buy recommendations and about –2 percent for sell
recommendations. However, considering trading costs, the authors con-
clude that even these changes do not lead to a profitable trading rule, so in
that weak sense the predictions of a rational market are not overturned.
Unfortunately, the authors cannot really be sure that the news column does
not contain previously unreleased information, and if occasionally some of
the information in the column were really new to the market, then the pre-
dictions of a rational market might remain unrefuted even in a strong
sense.

1970 Eugene F. Fama, “Multiperiod Consumption-Investment Deci-
sions,” American Economic Review 60, No. 1 (March 1970), pp.
163–174; “Multiperiod Consumption-Investment Decisions: A Correc-
tion,” American Economic Review 66, No. 4 (September 1976), pp.
723–724.

1974 Eugene F. Fama and James D. MacBeth, “Tests of the Multiperiod
Two-Parameter Model,” Journal of Financial Economics 1, No. 1 (May
1974), pp. 43–66.

STATE-DEPENDENT UTILITY, 
INTERTEMPORAL CONSUMPTION AND INVESTMENT, 

WORKING BACKWARDS, 
IMPLIED OR DERIVED UTILITY, RISK AVERSION

A utility function is state-dependent if in addition to depending on dol-
lar consumption and/or wealth, it also depends on other initially un-

certain aspects of the state. There are at least six important ways the
utility function can have this dependency: (1) it can depend on other ex-
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ogenous, initially uncertain aspects of the state, such as health or the
weather; (2) it can depend on the uncertain future prices of physical com-
modities on which dollar consumption will be spent; (3) it can depend
stochastically on the value of incompletely marketable assets such as hu-
man capital; (4) it can depend directly on the choice of other economic
agents created, for example, by production externalities or keeping up
with the Joneses; (5) it can depend on the results of as yet unperformed
calculations or an incomplete self-knowledge that is gradually revealed
over time; and (6) in a multiperiod model, it can depend on state vari-
ables that summarize what is known about the way the opportunity set
of investments or the opportunity set of unmarketable human capital is
changing over time.

Fama (1970/March) first shows that if a consumer/investor’s utility
of lifetime consumption function, U(C0, C1, C2, . . . , CT–1, WT), where Ct

is dollar consumption at date t and WT is a bequest at death at date T, is
strictly increasing and strictly concave in the stream of consumption
over his lifetime, then working backwards—as, for example, in Mossin
(1968)—his single-period (two-date) date t derived utility function
Vt(Ct, Wt+1|St) will also be strictly increasing and strictly concave in con-
temporaneous consumption Ct and end-of-period wealth Wt+1, where St is
the dated event at date t. So the consumer/investor’s sequential single-
period decisions inherit risk aversion from his utility function of lifetime
consumption. Fama then derives the key condition for the standard fi-
nance single-period (two-date) risk-averse model of consumption and
portfolio choice to be embedded in a multiperiod consumption model,
where the investor is risk-averse over his lifetime consumption. Fama
shows that this requires that the derived single-period utility function be
state-independent, so that Vt(Ct, Wt+1|St) = Vt(Ct, Wt+1). This generally re-
quires that the opportunity set of security prices follow a (possibly nonsta-
tionary) random walk.

Of course, Fama’s results should not be taken to show that with state
independence, the derived single-period utility function is myopic and
therefore that the same function is simply used repeatedly over time. In-
deed, his results allow for this function to depend on past levels of con-
sumption, perhaps building in habit formation, and on the time T – t
remaining until his death.

Fama-MacBeth (1974) empirically tests a special case of this re-
quirement: that attempts to hedge against anticipated future changes 
in expected returns not affect contemporaneous returns. Their empirical
results support this. In particular, they examine whether next-period 
returns on market portfolio and riskless return proxies depend on 
the returns of these proxies in the earlier period; these are chosen to
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summarize the investor’s opportunity set since they are suggested as suf-
ficient statistics by the portfolio separation property of the mean-variance
equilibrium model—see Sharpe (1964), Lintner (1965/February),
Mossin (1966), and Treynor (1999). They conclude that there is no evi-
dence of any change in the expected returns of these proxies over their
sample period, 1953–1972, so obviously there is no serial dependence.
In particular, although nominal interest rates fluctuate, almost all change
comes from changes in the anticipated rate of inflation, rather than
changes in the real rate. A by-product of this analysis is the observation
that the expected rate of inflation extractable from one-month U.S.
Treasury bill rates at date t is a useful predictor of the realized rate of in-
flation between dates t and t plus one month, and therefore a strategy of
rolling over one-month T-bills will be a useful hedge against inflation. By
contrast, common stocks, often thought to be an inflation hedge, are in
the short run, at least, overwhelmed by other factors affecting their re-
turns, making them difficult in practice to use as a short-term hedge
against inflation.

Theoretical models explicitly including more complex state-variables
than merely wealth or consumption include [Roll (1973/November)]
Richard Roll, “Assets, Money and Commodity Price Inflation under Un-
certainty,” Journal of Money, Credit and Banking 5, No. 4 (November
1973), pp. 903–923. In the context of a single-period economy, Roll ex-
tends the standard finance model to uncertain prices for consumption
goods (commodities). John B. Long, Jr., in [Long (1974)] “Stock Prices, In-
flation and the Term Structure of Interest Rates,” Journal of Financial Eco-
nomics 1, No. 2 (July 1974), pp. 131–170, extends this to a multiperiod
economy allowing both for uncertain prices of consumption goods and in-
vestment opportunities that are intertemporally stochastically dependent.

1970 Eugene F. Fama, “Efficient Capital Markets: A Review of Theory
and Empirical Work,” Journal of Finance 25, No. 2 (May 1970), pp.
383–417.

1970 Charles P. Jones and Robert H. Litzenberger, “Quarterly Earnings
Reports and Intermediate Stock Price Trends,” Journal of Finance 25, No.
1 (March 1970), pp. 143–148.

EFFICIENT MARKETS, RANDOM WALK, 
WEAK VS. SEMISTRONG VS. STRONG FORM EFFICIENCY, 

FULLY REFLECT INFORMATION, 
MINIMALLY VS. MAXIMALLY RATIONAL MARKETS, 
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PROPERLY ANTICIPATED PRICES, MARTINGALES, 
EARNINGS ANNOUNCEMENTS

Fama (1970/May) is probably the most widely cited review ever pub-
lished in financial economics. The paper popularizes the term “efficient

markets” to describe markets in which prices “fully reflect” all available
information. Following a suggestion from Harry V. Roberts, it also inaugu-
rates the now-familiar nested trichotomy of hypotheses: “weak form effi-
cient” (prices fully reflect historical prices), “semistrong form efficient”
(prices fully reflect all publicly available information, including historical
prices), and “strong form efficient” (prices fully reflect all private as well as
public information). Many financial economists would now amend this
distinction to say that “weak form efficiency” means that prices fully re-
flect all publicly available technical or market-generated information, such
as past prices, trading volume, short sales, and so on, while “semistrong
form efficient” means that prices additionally fully reflect all publicly avail-
able fundamental information.

What is more, this tripartite distinction as originally designed is clearly
a concoction of the empirical mind. A theorist would never have dreamed
it up; yet like lemmings, most financial economists have accepted it uncriti-
cally. By contrast, Rubinstein (2001) claims that a theoretically fundamen-
tal distinction should be made between (1) markets that are maximally
rational in that all agents are rational—the usual assumption in most theo-
retical research, (2) markets that are rational in the sense that prices are set
as if all agents were rational, and (3) markets that are only minimally ra-
tional in the sense that although markets are not rational, there are
nonetheless no profit opportunities. For example, if I tell you stock prices
are too volatile relative to fundamentals, the market may not be rational,
but it still may be minimally rational since there may be no way for you to
profit from that observation.

Clearly the phrase “fully reflect” needs to be carefully defined to place
the efficient markets hypothesis on firm footing. Unfortunately, Fama’s at-
tempt to do so leaves much to be desired and has confused many readers.
The current date 0 price P0 of a security is said to fully reflect the informa-
tion set Φ available at date 0 if:

E(P1|Φ) = E(r1|Φ)P0

where r1 is the (random) return of the security between dates 0 and 1, P1 is
the (random) price of the security at date 1, and E(x|Φ) is the expected
value of the random variable x fully utilizing the information contained in
Φ. This appears to be a tautology, and therefore is not a useful definition.
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Although Fama is far from clear and this may be putting words into his
mouth, the definition can be interpreted nontautologically as discussed in
Rubinstein (1975), slightly rephrased:

Using information set Φ, forecast the probability distribution of
prices (P1) that will be realized at date 1. Input this data into a
model of market equilibrium determining expected returns. From
these and the expected date 1 prices, the date 0 security value,
given the information set Φ and the market equilibrium model,
can be computed. Compare this computed value with the price
(P0) actually observed in the marketplace. If these are the same,
then the actual security price is said to “fully reflect” Φ.25

As Fama himself concedes, this definition is limited only to expected
returns, while a more encompassing definition would have the whole
probability distribution forecast from Φ fully reflected in the current price;
but he argues that couching the definition only in terms of expected re-
turns is more empirically operational. For example, the random walk
model, which requires that the time series of returns be independently and
identically distributed, is a much stronger notion of efficiency. Fama also
points out there is no inconsistency between the random walk model and
the use of past information in assessing the distributions of future returns
(say for forecasting future means and variances); however, the model does
say that the sequence (or order) of past returns is not relevant to these
forecasts.

Five years earlier, Paul Anthony Samuelson, in [Samuelson (1965)]
“Proof That Properly Anticipated Prices Fluctuate Randomly,” Industrial
Management Review 6, No. 1 (Spring 1965), pp. 321–351, reprinted in
The Collected Scientific Papers of Paul A. Samuelson, Volume 3 (Cam-
bridge, MA: MIT Press, 1972), pp. 782–790, drew an important distinc-
tion between a random walk and expectationally driven definitions of
market efficiency. Suppose there is a security with a single payoff XT at
date T where  XT is a random variable. Suppose the time series of prices of
a security with this payoff is . . . . Pt–2, Pt–1, Pt, Pt+1, Pt+2, . . . . Finally, define
the price change ∆Pt+1 ≡Pt+1 – Pt for any pair of dates t and t + 1. Samuelson
begins by defining “properly anticipated prices” as prices that, at every date
t ≤ T have the property that, based on the information available at Φt at
date t (which, in particular, includes the present and all past price realiza-
tions for that security, . . . Pt–2, Pt–1, Pt), equal the expected value of XT.
That is, for all t ≤ T:

Pt = E(XT|Φt)
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In particular, PT = XT. He then proves that the “prices fluctuate randomly”
since it follows that for all t ≤ T, Pt = E(Pt+1|Φt) or alternatively that
E(∆Pt+1|Φt) = 0, and E(∆Pt+1 ∆Pt+2 · · · ∆PT|Φt) = E(∆Pt+1|Φt) E(∆Pt+2|Φt)
· · · E(∆PT|Φt) = 0. In words, prices follow a martingale, and successive
price changes are mutually uncorrelated.

This implies that if “prices are properly anticipated,” all the informa-
tion in the past price series that is useful for forecasting next period’s ex-
pected price is contained in the current price. In the distinction that Fama
emphasizes, observe that this is a much weaker assertion than to say all in-
formation in the past price series that is useful for forecasting the probabil-
ity distribution of next period’s price is contained in the current price, or
even in a knowledge of the current price and the probability distribution of
the past period’s return (this would be a conclusion from a random walk
model, as Fama defines it).

Following his tripartite division of versions of efficient markets, Fama
begins his empirical survey by reviewing papers dealing with “weak form
efficiency,” including Fama (1965), Alexander (1961), Alexander (1964),
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Proof of Samuelson’s Result on 
“Properly Anticipated Prices”

Proof of the martingale property follows trivially from the law of iter-
ated expectations. By the assumption of “properly anticipated prices,”
Pt = E(XT|Φt) and Pt+1 = E(XT|Φt+1). Therefore, E(Pt+1|Φt) =
E[E(XT|Φt+1)|Φt] = E(XT|Φt) = Pt, where the second equality follows from
the law of iterated expectations since Φt ⊂ Φt+1.

Proof that successive price changes are mutually uncorrelated starts
with the observation that Cov(∆PT, ∆Pt+1 ∆Pt+2 · · · ∆PT–1) < > 0 implies
that for at least one possible realization of ΦT–1, since ∆Pt+1 ∆Pt+2 · · ·
∆PT–1 ⊂ ΦT–1, then E(∆PT|ΦT–1) ≠ 0. By the contrapositive, the first con-
clusion, E(∆PT|ΦT–1) = 0, then implies Cov(∆PT, ∆Pt+1 ∆Pt+2 · · · ∆PT–1) =
0. Since for general random variables E(XY) = Cov(X, Y) + E(X)E(Y),
we must have:

E(∆PT ∆Pt+1 ∆Pt+2 · · · ∆PT–1|Φt) = Cov(∆PT, ∆Pt+1 ∆Pt+2 · · · ∆PT–1) 
+ E(∆PT| Φt) E(∆Pt+1 ∆Pt+2 · · · ∆PT–1|Φt)

= E(∆PT| Φt) E(∆Pt+1 ∆Pt+2 · · · ∆PT–1|Φt)

By induction, the second conclusion above follows.

ccc_rubinstein_pt02_99-308.qxd  1/12/06  1:41 PM  Page 211



Fama-Blume (1966), and Victor Niederhoffer and M.F.M. Osborne in
[Niederhoffer-Osborne (1966)] “Market Making and Reversal on the
Stock Exchange,” Journal of the American Statistical Association 61, No.
316 (December 1966), pp. 897–916. Niederhoffer and Osborne are per-
haps the first to take systematic tests of the random walk hypothesis to the
transaction level. They note that reversals occur several times more fre-
quently than continuations. But this does not provide an opportunity for
profits for public investors since the extra reversals are typically fluctua-
tions across the market makers’ best bid and ask prices. Fama’s examples
of papers dealing with semistrong efficiency include Fama-Fisher-Jensen-
Roll (1969) on stock splits, Ball-Brown (1968) on earnings announce-
ments, Roger N. Waud, in [Waud (1970)] “Public Interpretation of Federal
Reserve Discount Rate Changes: Evidence on the ‘Announcement Effect,’ ”
Econometrica 38, No. 2 (March 1970), pp. 231–250, and Scholes (1972).
Fama’s discussion of strong form efficiency focuses on Jensen (1968). In
1970, Fama could conclude:

In short, evidence in support of the efficient market model is ex-
tensive, and (somewhat uniquely in economics) contradictory evi-
dence is sparse. (p. 416)

Just as Fama (1970/May) was declaring the victory of the efficient
markets hypothesis, the first significant crack in its edifice appeared. In
another event study, Jones-Litzenberger (1970) uncovers one of the ear-
liest market anomalies seeming to violate market rationality, even to the
extent of providing economically and statistically significant abnormal
profit opportunities. They hypothesize that investors may react slowly to
the release of fundamental information. In particular, they form a port-
folio of firms that experience a quarterly earnings announcement that is
unexpectedly very high (relative to earnings trends over the past eight
quarters). They compare the return of this portfolio from the second
month of the 10th quarter (which gives ample time for the earnings to
have been public information) to the second month of the 12th quarter
to a risk-adjusted market return. They find that in every one of the 10
overlapping periods from 1964 to 1967 that they examine, the selected
portfolio outperforms the market, with economically significant excess
returns.

1970 David Cass (July 19, 1937–) and Joseph E. Stiglitz (February 9,
1943–), “The Structure of Investor Preferences and Asset Returns, and
Separability in Portfolio Allocation: A Contribution to the Pure Theory
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of Mutual Funds,” Journal of Economic Theory 2, No. 2 (June 1970),
pp. 122–160.

HYPERBOLIC ABSOLUTE RISK AVERSION (HARA), 
PORTFOLIO SEPARATION, QUADRATIC UTILITY, 
CONSTANT RELATIVE RISK AVERSION (CRRA), 

NORMAL DISTRIBUTION

That the hyperbolic absolute risk-averse class of utility functions (which
includes logarithmic, quadratic, and exponential utility) is sufficient for

portfolio separation (two funds where one is riskless) had been already
demonstrated, for example, in  [Hakansson (1969/December)] Nils H.
Hakansson, “Risk Disposition and the Separation Property in Portfolio Se-
lection,” Journal of Financial and Quantitative Analysis 4, No. 4 (Decem-
ber 1969), pp. 401–416. In the absence of restrictions placed on
probability distributions of returns, Cass-Stiglitz (1970) show these condi-
tions are necessary as well. Moreover, they also show that quadratic utility
or constant relative risk aversion (CRRA) is necessary and sufficient for
portfolio separation with one or two portfolios where neither is riskless;
they also derive more general conditions for portfolio separation if there is
a complete market.

A related problem is to discover the class of joint probability distribu-
tions of security returns that, in the absence of restrictions on utility func-
tions beyond risk aversion, leads to portfolio separation. From Tobin
(1958), normal distributions were known to be sufficient. Stephen A. Ross,
in [Ross (1978/April)] “Mutual Fund Separation in Financial Theory—The
Separating Distributions,” Journal of Economic Theory 17, No. 2 (April
1978), pp. 254–286, characterizes a somewhat broader class that are nec-
essary and sufficient for two-fund separation with a riskless security.

In 2001, Stiglitz won the Nobel Prize in Economic Science for his
analysis of markets with asymmetric information.

1970 George A. Akerlof (June 17, 1940–), “The Market for ‘Lemons’:
Quality Uncertainty and the Market Mechanism,” Quarterly Journal of
Economics 84, No. 3 (August 1970), pp. 488–500.

ADVERSE SELECTION, ASYMMETRIC INFORMATION,
RATIONAL EXPECTATIONS

Akerlof (1970) explains one of the reasons complete markets do 
not exist. Consider the market for second-hand cars that contains a
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continuous range of quality from very good to very bad cars. Suppose
the seller knows the quality of his car, but the buyer doesn’t. The buyer
knows the probability distribution of car qualities but not the quality of
any individual car. The buyer will then expect to buy a car of average
quality and will pay only enough for a car of average quality. Sellers of
better than average cars will then not receive enough for their cars and
will withdraw them from the market. This reduces the average quality of
the remaining pool. Buyers will then lower their purchase price to the
average of the remaining cars. In turn, sellers with better than average
cars in this new pool will withdraw from the market. This process will
continue until there is virtually no car left in the market. Thus the mar-
ket self-destructs and disappears. Akerlof gives perhaps a better exam-
ple: the absence of a market for medical insurance for people over 65
who do not already have it. Although the paper’s emphasis is on adverse
selection, less remarked but still important is that this is one of the first
to use the observation that prices convey information (in this case, pri-
vate information known by the seller about the quality of the commod-
ity being sold) that helps agents make decisions.

When markets are faced with self-destruction, special mechanisms
often come into play to shore them up. The first line of defense is tech-
niques to reduce information asymmetries such as repeat purchasing
from the same seller, product labeling, published reviews by third par-
ties, such as Consumer Reports, and third-party certification such as the
Good Housekeeping Seal. Other more drastic measures include making
sellers liable for defects and imposing minimum quality standards. This
last method is examined by Hayne Ellis Leland, in [Leland (1979)]
“Quacks, Lemons, and Licensing: A Theory of Minimum Quality Stan-
dards,” Journal of Political Economy 87, No. 6 (December 1979), pp.
1328–1346, which includes a mathematically formal model of Akerlof’s
lemons example.

In 2001, Akerlof won the Nobel Prize in Economic Science for his
analysis of markets with asymmetric information.

1970 William H. Beaver, Paul Kettler, and Myron Scholes (July 1,
1941–), “The Association between Market Determined and Accounting
Determined Risk Measures,” Accounting Review 45, No. 4 (October
1970), pp. 654–682.

1988 Laxmi Chand Bhandari, “Debt/Equity Ratio and Expected Com-
mon Stock Returns: Empirical Evidence,” Journal of Finance 43, No. 2
(June 1988), pp. 507–528.
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ACCOUNTING BETA, FINANCIAL LEVERAGE, 
OPERATING LEVERAGE

B eaver-Kettler-Scholes (1970) is the first study to measure security beta
from fundamental risk factors such as numbers derived from accounting

statements. The authors find that dividend payout, financial leverage, and
measures of earnings yield instability not only are correlated with beta, but
can predict the next period’s beta better than the last period’s beta “naively”
measured by the Markowitz (1959) and Sharpe (1963) market model.

Robert S. Hamada, in [Hamada (1969)] “Portfolio Analysis, Market
Equilibrium, and Corporation Finance,” Journal of Finance 24, No. 1
(March 1969), pp. 13–31, was the first to develop a theoretical connection
between beta and a firm’s debt-equity ratio. Let Bj and Sj be the current mar-
ket values of the debt and equity of firm j, and let βj* be the beta of an other-
wise identical unlevered firm. If the debt is riskless, it is easily shown that

Mark Rubinstein, in [Rubinstein (1973/March)] “A Mean-Variance Syn-
thesis of Corporate Financial Theory,” Journal of Finance 28, No. 1
(March 1973), pp. 167–181, carries this the next step further showing how
beta depends as well on operating leverage (that is, the difference between
output selling price and variable cost) as well as financial leverage.

For many years, as a matter of theory, other things being equal, beta
was expected to be an increasing function of corporate leverage, as justi-
fied, for example, by Hamada and Rubinstein. While the CAPM of Sharpe
(1964), Lintner (1965/February), Mossin (1966), and Treynor (1999) im-
plies that corporate leverage should influence expected returns indirectly
though beta, leverage should have no separate influence on expected re-
turns. Bhandari (1988) tests these assertions and obtains two principal re-
sults. Looking at all stocks traded on the NYSE from 1948 to 1981, he
examines 17 two-year intervals using real returns (deflated for inflation).
He measures beta by regressing returns on samples taken two years before
and two years after each sampling period, and measures leverage by the
debt-equity ratio at the beginning of each two-year sample, defined as the
ratio of the (difference between the book value of assets minus the book
value of equity) divided by the market value of equity. First, looking at
only manufacturing firms, a cross-section regression of beta against lever-
age has an average .51 correlation, varying in a narrow range from a low
of .35 during the subperiod 1958–1959 and .69 during the subperiod
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1952–1953. This is supportive of the CAPM theory. Second, after account-
ing for beta and firm size, leverage seems to be a third factor that explains
realized returns, implying a difference of 5.83 percent per annum rate of
return between the maximum and minimum leverage portfolios in the
manufacturing subsample. So, apart from its influence on beta, leverage
tends to increase realized returns, a new anomaly heretofore unexplained
by theory.

1971 Robert C. Merton (July 31, 1944–), “Optimal Consumption and
Portfolio Rules in a Continuous-Time Model,” Journal of Economic The-
ory 3, No. 4 (December 1971), pp. 373–413; reprinted in Robert C. Mer-
ton, Continuous-Time Finance, Chapter 5 (Malden, MA: Blackwell, 1990),
pp. 120–165.

1973 Robert C. Merton, “An Intertemporal Asset Pricing Model,”
Econometrica 41, No. 5 (September 1973), pp. 867–887; reprinted with
updated footnotes in Robert C. Merton, Continuous-Time Finance, Chap-
ter 15 (Malden, MA: Blackwell, 1990), pp. 475–523.

INTERTEMPORAL CONSUMPTION AND INVESTMENT, HARA,
CRRA, CARA, CONTINUOUS-TIME, CONTINUOUS-STATE CAPM,

INTERTEMPORAL ASSET PRICING, STOCHASTIC CALCULUS,
STATE-DEPENDENT UTILITY, STOCHASTIC OPPORTUNITY SET

Robert C. Merton, in [Merton (1969)] “Lifetime Portfolio Selection un-
der Uncertainty: The Continuous-Time Case,” Review of Economics

and Statistics 51, No. 3 (August 1969), pp. 247–257, reprinted with up-
dated footnotes in Robert C. Merton, Continuous-Time Finance, Chapter
4 (Malden, MA: Blackwell, 1990), pp. 97–119, introduces stochastic cal-
culus (Ito’s lemma) into the theory of finance to solve in continuous time
the problem posed by Samuelson (1969) and Hakansson (1970). Merton
(1971) extends his earlier results to more general utility functions. Mean-
variance results in discrete time are justified by either multivariate normal-
ity of security returns (which is inconsistent with limited liability) or
quadratic utility (which is inconsistent with nonsatiation beyond some
level of wealth and implies increasing absolute risk aversion). Both of these
assumptions have serious problems for some purposes. Merton’s key result
is to show yet a third scenario in which optimal portfolio choices can be re-
duced to choices over mean and variance: (1) all security returns follow
geometric Brownian motion (that is, they are lognormal over all time inter-
vals), and (2) consumer/investors trade in continuous time.
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An intuitive way to see why this works is to examine the logarithm of
a lognormally distributed security return log rj. It is commonplace to ap-
proximate this with log rj ≅ rj – 1. Since log rj is normally distributed, if this
approximation were exact, rj itself would be normally distributed. This ap-
proximation, of course, gets better as rj gets closer to 1. Merton makes ex-
actly the assumptions needed for the approximation to work: rj is
measured over an infinitesimal interval, and there are no jumps between
successive price changes, so that rj measured over this interval is always
close to 1. In other words, in his continuous-time, continuous-state model
we lose nothing by regarding the continuously observed returns as normal,
even though cumulated over any finite interval they are not (that is, they
are lognormal over any finite interval and the normal approximation is not
accurate). Therefore, mean-variance portfolio choice is optimal at each
moment in time as long as the investor can continuously revise his choices.
So the new justification for mean-variance analysis does not come for free:
continuous-time trading with continuous-state returns. Whether or not we
may want to pay that price depends on the circumstances.

Merton also derives closed-form consumption/portfolio results for hy-
perbolic absolute risk aversion (HARA) utility, which include as special
cases constant relative risk aversion (CRRA) and constant absolute risk
aversion (CARA) (e.g., exponential utility) that he derived in his earlier pa-
per. One of the nice features of these results is that the consumption and
portfolio decision rules are expressed as simple functions of the first and
second moments of security returns.

Just as Sharpe (1964) had asked what would happen if all investors
followed the advice of Markowitz (1952/March), so too Merton (1973/Sep-
tember) asks what are the implications of all investors following the pre-
scriptions of Merton (1971). He derives an equilibrium by supposing that
all consumer/investors in the economy follow the optimal consumption
and portfolio decision rules that he derived in Merton (1971) and that
markets clear at each date and state. As would be expected, he finishes
with a version of the capital asset pricing model, applying over an instanta-
neous time interval, under continuous time and continuous states. The
model takes a significant step forward since this version of the single-
period CAPM is clearly embedded in a multiperiod consumption and in-
vestment economy.

Equally important, Merton derives an extension of the CAPM where
the opportunity set of security returns evolves over time as a function of
the evolution of the riskless local return. Merton shows that this leads to
an additional CAPM term resulting from the extent a security is a hedge
against future shifts in the opportunity set. Corresponding to this result is a
three-fund separation theorem: All investors divide their wealth among the
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same three mutual funds: a riskless security, the market portfolio, and a
third fund that hedges them against shifts in the opportunity set over time.
Merton is careful to choose as his extra source of risk something that re-
sults directly from his embedding of his generalized CAPM in a multi-
period economy, showing that the single-period discrete-time model of
Sharpe (1964), Lintner (1965/February), Mossin (1966), and Treynor
(1999) need not be simply reinterpreted as holding over an instantaneous
interval. However, it is easy to see that, more generally, the addition of an-
other source of risk, in effect, makes utility functions state-dependent so that
consumer/investors will want to hedge this new risk. This state-dependence
could come from a variety of sources (see my discussion under Fama (1970/
March)) such as uncertain contemporaneous inflation as in Long (1974), not
only from shifts in opportunity sets, although that is certainly potentially an
important source of nonwealth risk.

1972 Jack Hirshleifer (August 26, 1925–July 26, 2005), “Liquidity, Un-
certainty and the Accumulation of Information,” in Uncertainty and Ex-
pectations in Economics, edited by Carter and Ford (Oxford: Basil
Blackwell, 1972), pp. 136–147.

TERM STRUCTURE OF INTEREST RATES, IRREVERSIBILITY

Afrequently made empirical observation is that the term structure of in-
terest rates is typically upward sloping. In an effort to explain this bias,

Hirshleifer (1972) looks behind financial markets to the markets for real
assets that underlie them. He argues that necessary conditions for the bias
are uncertainty about future interest rates and the ability to defer decisions
about future consumption until the future when some of the uncertainty
will be resolved. This, in itself, does not create a bias but sets the scene for
it. The bias fundamentally stems from the physical irreversibility of pro-
duction. If forward and reverse storage were both equally possible, then
there would be no bias to the term structure. But in real life, while it is pos-
sible to store commodities forward in time, it is generally not possible to
store commodities backward (“reverse storage”)—somewhat like the im-
possibility of traveling backwards in time. In Hirshleifer’s three-date
model, consumption can be transferred from date 0 to date 2 in two ways:
(1) by committing resources to date 2 in a way that cannot be reversed
(these are long-term assets); (2) by storing consumption from date 0 to
date 1, and then, depending on the information that then becomes avail-
able, storing consumption from date 1 to date 2 (these are short-term as-
sets). The second technology is more flexible or liquid since it can take
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advantage of enfolding information. The market for real assets then passes
this liquidity advantage to the financial market so that in equilibrium the
marginal demands for shorter- and longer-term bonds are equal: In com-
pensation for their valued liquidity, shorter-term bonds must have yields
lower than longer-term bonds.

1972 Merton Howard Miller and Myron S. Scholes, “Rates of Return in
Relation to Risk: A Re-Examination of Some Recent Findings,” in Studies
in the Theory of Capital Markets, edited by Michael C. Jensen (New York:
Praeger, 1972), pp. 47–78.

1972 Fischer Sheffey Black, Michael C. Jensen, and Myron S. Scholes,
“The Capital Asset Pricing Model: Some Empirical Tests,” in Studies in the
Theory of Capital Markets, edited by Michael C. Jensen (New York:
Praeger, 1972), pp. 79–121.

CAPITAL ASSET PRICING MODEL (CAPM), 
GROUPING DATA, ALPHA, BETA, ZERO-BETA CAPM

B lack-Jensen-Scholes (1972) is the best-known early test of the Sharpe-
Lintner-Mossin-Treynor capital asset pricing model (CAPM) where

great care is taken to deal with a number of statistical issues that called
earlier tests into question. Most of these earlier tests were cross-sectional
tests regressing Rj = γ0 + γ1βj + εj for j = 1, 2, . . . , m, the total number of se-
curities in the sampled universe; the excess realized returns are Rj ≡ rj – r
and RM ≡ rM – r, and βj ≡ Cov(Rj, RM)/Var(RM) is the estimated measure of
the true systematic risk βj. The CAPM makes the clear prediction that γ0 =
0 and γ1 = RM ≡ rM – r.

Perhaps the earliest test of this sort is by George W. Douglas, in [Dou-
glas (1969)] “Risk in the Equity Markets: An Empirical Appraisal of Mar-
ket Efficiency,” Yale Economic Essays 9, No. 1 (Spring 1969), pp. 3–45.
He finds that the prediction of the CAPM that covariance with all other se-
curities should swamp their own variance as a determinant of realized re-
turn—see discussion under Sharpe (1964)—is not supported by the data.
Indeed, returns are related to variance, not covariance. In addition, in a re-
lated finding from unpublished tests by John Lintner that are reported by
Douglas, Lintner finds that market model residual risk is an economically
and statistically significant determinant of realized returns, again contrary
to the CAPM. Miller-Scholes (1972) reexamine these tests very carefully
considering potential biases created by changing interest rates, sources of
possible nonlinearity in the return-beta relation, heteroscedasticity of the
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residual (that is, correlation of the variance of the residual with the level of
returns), measurement errors in beta, correlation of residual risk with beta,
an inadequate proxy for the market return, and nonnormality or skewness
of returns. Even with this more careful analysis, they are unable to clearly
overturn the Douglas and Lintner results. In addition, Miller and Scholes
present evidence that the alphas of individual securities seem to be nega-
tively correlated with their betas, further evidence that the CAPM is incor-
rect or its empirical tests misspecified.

Following Miller and Scholes, Black, Jensen, and Scholes argue that
cross-sectional tests suffer from a number of difficulties and propose in-
stead an alternative time-series test similar to Jensen (1968). This test re-
gresses Rjt = αj + βjRMt + εjt where the residual return is assumed to be
serially uncorrelated and normally distributed, constructed to have a zero
mean and zero correlation with the market return. In this regression, the
CAPM has the clear prediction that αj = 0. Note that so far as proposed by
the active assumption of the Markowitz (1959) and Sharpe (1963) market
model, for any two securities j and k, the correlation ρ(εjt, εkt) = 0 has not
been made.

Unfortunately, this simple time-series test gives no way to aggregate
tests across different securities and so uses the available information very
inefficiently. The Jensen (1968) solution to this problem is to interpret j as
a mutual fund portfolio and to make the questionable assumption that the
residual returns εjt have zero cross-correlation. Black, Jensen, and Scholes
do not do this; instead they adopt a clever and now classic device to over-
come this problem: grouping data into systematic risk classes. In particular,
securities are grouped into 10 beta classes, with the lowest beta securities
in the first class (K = 1) to the highest beta securities in the tenth class (K =
10), with 10 percent of the universe in each class. They then run the regres-
sion RKt = αK + βKRMt + εKt for K = 1, 2, . . . , 10 where αK and βK are the
portfolio alpha and beta of the Kth group. This procedure also accom-
plishes the goal of providing a large dispersion of observations across beta,
which makes the regression less sensitive to measurement errors in beta.

Another potential problem would arise if the betas used to allocate secu-
rities to different groups were measured over the same time period used to
estimate the group alpha. Clearly, the security beta will be measured with a
random error, causing at least some of the securities, say in the lowest (or
highest) beta group, to have a spuriously measured low (or high) beta. This
would mean that β1 (or β10) would be biased low (or high). In turn, in the re-
gression, this would cause α1 (or α10) to be biased high (or low). To avoid
this, Black, Jensen, and Scholes measure the beta used to allocate stocks to
groups from an earlier (five-year) period than the subsequent (one-year) pe-
riod covered by the regression. Although this earlier beta is measured inde-
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pendently of the beta measured in the regression, the known stationarity of
beta, especially for portfolios—see Marshall E. Blume, in [Blume (1971)]
“On the Assessment of Risk,” Journal of Finance 26, No. 1 (March 1971),
pp. 1–10—means that the earlier beta will be highly correlated with the beta
in the subsequent regression period and so will still do a good job in dividing
up the universe of securities into distinct risk classes.

The study covered all NYSE stocks from 1926 to 1965 using monthly
returns resulting in 10 estimated alpha-beta pairs, a pair for each group.
Group betas ranged from a low of .499 to a high of 1.561 (of course, cen-
tered around a beta of 1 for the universe). In contradiction to the CAPM,
like Miller and Scholes before them, in the time-series regression the al-
phas were negative for the highest-beta portfolios and positive for the
lowest-beta portfolios, with most of the alpha coefficients statistically sig-
nificant. Black (1972) sees the negative correlation of alpha with beta as
evidence of borrowing constraints that prompt less risk-averse investors
to hold high-beta stocks as a substitute for leverage, thereby pushing up
their prices and lowering their expected return. However, the Douglas and
Miller-Scholes finding that residual volatility contributes to explain real-
ized group returns is not confirmed. The grouping procedure produced a
correlation ρ(RKt, RMt) > .950 for all but the highest-beta (K = 10) group.
As a result, another advantage of the grouping procedure is to consider-
ably reduce the standard deviation of the residual εKt and thereby make
the measured group alphas more likely to be statistically significantly dif-
ferent from zero, if in fact the alphas are.

Black, Jensen, and Scholes also revisit the cross-sectional test, but
modified so as to allow for a random intercept. One justification for this
comes from the Black (1972) and Rubinstein (1973/January) zero-beta
generalization of the CAPM, which does not assume that riskless borrow-
ing and lending is possible. This results in a pricing equation of the form:

µj = (1 – βj)µZ + βjµM

where rZ is the return of a portfolio with zero beta (and µZ is its expecta-
tion), ideally for purposes of coefficient estimation, the return of the mini-
mum variance zero-beta portfolio.

This is tested using a two-factor market model:

rKt = (1 – βK)rZt + βjrMt + εKt = rZt + βK(rMt – rZt) + εKt

Black, Jensen, and Scholes conclude, again using their grouping proce-
dure, that this model is supported by the data in the following sense: Over the
entire 35-year period, the average rK (averaged over time) is a linear function
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of βK (as K is spanned from K = 1 to 10) with intercept γ0 and slope equal to
the average rM (averaged over time) minus γ0. Furthermore, the slope is posi-
tive, consistent with the generalized model, which would predict that on aver-
age rM > rZ. However, since the intercept rZ > rF (averaged over the entire
period) and the slope is less than rM – rF, the standard CAPM is rejected. In
addition, over each of the three nonoverlapping nine-year subperiods and one
last eight-year subperiod, the substantial linearity is evident, but the intercept
and slope vary depending on the subperiod. Indeed, in the last subperiod
(April 1957–December 1965) the slope is actually negative (consistent with
the two-factor model but not consistent with the standard CAPM).

Unfortunately, a serious weakness of these tests is failure to identify
the intercept. Although theory, as I have noted, suggests that the intercept
could be the realized return of a zero-beta portfolio, since the return on
this portfolio is elusive, Black, Jensen, and Scholes do not confirm this cor-
respondence. Therefore, in the two-factor regressions, rZt is little more than
a plug factor that helps to make the regressions come out linear.

1972 Fischer Sheffey Black (January 11, 1938–August 31, 1995), “Capi-
tal Market Equilibrium with Restricted Borrowing,” Journal of Business
45, No. 3 (July 1972), pp. 444–455.

1973 Mark Rubinstein (June 8, 1944–), “The Fundamental Theorem of
Parameter-Preference Security Valuation,” Journal of Financial and Quan-
titative Analysis 8, No. 1 (January 1973), pp. 61–69.

ZERO-BETA CAPM, PORTFOLIO SEPARATION, 
JOINT NORMALITY COVARIANCE THEOREM, 

AGGREGATE RISK AVERSION, 
SKEWNESS PREFERENCE CAPM, COSKEWNESS

B lack (1972) generalizes the capital asset pricing model (CAPM) for the
absence of a riskless security. He shows that a zero-beta risky portfolio,

in this case, plays the same role as the riskless return. This result was also
contemporaneously and independently derived by others, but is known as
the Black model (perhaps because Black was the only one who chose to de-
vote an entire paper to it). He also shows that a version of the two-fund
portfolio separation property continues to hold even in the absence of a
riskless security; for jointly normally distributed returns, this parallels the
Cass-Stiglitz (1970) earlier result for quadratic utility.

Rubinstein (1973/January) independently derives the zero-beta version
of the CAPM using a transparent proof.
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Rubinstein’s Derivation of the Zero-Beta CAPM

One way to derive the zero-beta CAPM equation follows. Each in-
vestor i = 1, 2, . . . , I is assumed to solve the following portfolio se-
lection problem:

by choosing portfolio proportions xij for different risky securities j =
1, . . . , m. Using the technique of Lagrangian multipliers, this can be re-
stated as:

The first-order conditions, which are guaranteed to describe a maxi-
mum since U′(W1

i ) > 0, U″(W1
i ) < 0, are:

W0
iE[rjU′(W1

i )] = ξi (all i and j)

By multiplying through by a set of xij (that sum to 1) that define an ar-
bitrary portfolio return rP ≡ Σjxijrj, and summing over all securities, I have:

W0
iE[rPU′(W1

i)] = ξi (all i and P)

Combining these two equations, for any security j and any arbitrary
portfolio P, I can substitute out the Lagrangian multiplier and obtain:

E[rjU′(W1
i )] = E[rPU′(W1

i )]

Therefore,

µjE[U′(W1
i )] + Cov[rj, U′(W1

i )] = µPE[U′(W1
i )] + Cov[rP, U′(W1

i )]

From Tobin (1958), one way to justify mean-variance preferences is
to assume all securities have returns rj which are jointly normally distrib-
uted. Since weighted sums of jointly normally distributed random vari-
ables, in particular W1

i , are themselves normal, it follows that (rj and W1
i )

are also jointly normal. The joint normality covariance theorem, as de-
rived by Rubinstein (1973/October) and Stein (1973) states: If x and y

(Continued)

max [ ( )] ( )
{ }x

i
i

j ij j i j ij
ij

E U W x r x0 1Σ Σ− −ξ
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i i i

j ij j j ij
ij
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The paper is also the first to interpret the risk-aversion parameter θ in
the CAPM, µj = r + θCov(rj, rM), in terms of general expected utility. It is
shown that this parameter is an aggregation of the risk aversions of all in-
vestors, where each investor’s risk aversion is measured by something quite
similar to absolute risk aversion. In [Rubinstein (1973/October)] “A Com-
parative Statics Analysis of Risk Premiums,” Journal of Business 46, No. 4
(1973/October), pp. 605–615, Rubinstein shows that in discrete time un-
der joint normality of security returns the risk measure is an aggregation of
– E[U″(W1)]/E[U′(W1)] (as I have reproduced earlier here in my CAPM
proof). In continuous time, Merton (1973/September) derives a similar re-
sult for each agent, but where the risk measure is exactly absolute risk
aversion in terms of initial wealth—which is the limit as the time interval
between trades approaches zero of the discrete-time measure.

The emphasis of Rubinstein’s paper, however, is on generalizing the
capital asset pricing model for preference toward higher-order moments of
portfolio returns, such as skewness and kurtosis. In particular, Rubinstein

224 A HISTORY OF THE THEORY OF INVESTMENTS

Rubinstein’s Derivation of the Zero-Beta CAPM (Continued)

are jointly normal, g(y) is any differentiable function of y, and E|g′(y)| <
∞, then Cov[x, g(y)] = E[g′(y)]Cov(x, y). Using this:

µjE[U′(W1
i)] + E[U″(W1

i)]Cov(rj, W1
i) = µPE[U′(W1

i)] + E[U″(W1
i)]Cov(rP, W1

i)

Now divide both sides by E[U′(W1
i)], define θi � – E[U″(W1

i)]/
E[U′(W1

i)] > 0, and reorganize the order of the terms:

(µj – µP)θi
–1 = Cov(rP, W1

i) + Cov(rk, W1
i)

Aggregating this over all investors (following the earlier approach in
my CAPM derivation under Sharpe (1964)):

µj = [µP – θCov(rP, rM)] + θCov(rj, rM) with θ ≡ W0
M(Σiθi

–1)–1 > 0

(for all securities j and for arbitrary portfolios P).
As long as two different securities exist (and one can be short sold),

then it is possible to construct a portfolio Z with a zero beta (but posi-
tive variance). For such a portfolio since Cov(rZ, rM) = 0, we have finally:

µj = µZ + θCov(rj, rM)26
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derives the logical extension of the CAPM for skewness preference under
cubic utility with the separation property. The net result is an additional
term in the CAPM formula that accounts for the extent to which a security
adds skewness to the market portfolio:

µj = r + θ1Cov(rj, rM) + θ2Cos(rj, rM, rM)

where Cos(rj, rM, rM) ≡ E[(rj – µj)(rM – µM)2] and risk aversion and skewness
preference tend to imply that θ1 > 0 and θ2 < 0.

Very little interest was shown in the skewness model for the next 27
years. Then, Campbell R. Harvey and Akhtar Siddique, in [Harvey-Siddique
(2000)] “Conditional Skewness and Asset Pricing Tests,” Journal of Fi-
nance 55, No. 3 (June 2000), pp. 1263–1295, empirically test the model,
where it is assumed to hold over each successive period, and where its pa-
rameters are nonstationary, being conditional on information at the begin-
ning of each period. They show that conditional skewness helps to explain
the cross-sectional variation of security returns, even in the presence of fac-
tors based on size and book-to-market ratio. They find that systematic
skewness has a surprisingly large risk premium of 3.6 percent per annum
over their sample period. In addition, they show that skewness picks up
much of the effect on returns previously attributed to momentum.

1973 Jack L. Treynor and Fischer Sheffey Black, “How to Use Security
Analysis to Improve Portfolio Selection,” Journal of Business 46, No. 1
(January 1973), pp. 66–86.

PORTFOLIO SELECTION, 
CAPITAL ASSET PRICING MODEL (CAPM), MARKET MODEL,

PORTFOLIO SEPARATION, MARKET PORTFOLIO, 
RISKLESS SECURITY, ALPHA, BETA, 
RESIDUAL VS. SYSTEMATIC RISK, 

MARKET TIMING VS. SECURITY SELECTION, SHORT SALES

The Markowitz (1952/March) and Roy (1952) mean-variance portfolio
choice problem with many risky securities, supplemented by a riskless

security (Tobin 1958), seems to require solution by numerical analysis.
However, Treynor-Black (1973) ingeniously show how, in combination
with the Markowitz (1959) and Sharpe (1963) diagonal or market model,
rj – r = αj + (rM – r)βj + εj, the solution can be derived in closed form. In par-
ticular, their solution shows how the trade-off between security alpha (αj)
and security residual variance, ωj

2 ≡ Var(εj), affects the optimal allocation
of an investor’s portfolio. By inspection of their solution, it is easy to derive
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the portfolio separation property of this type of model (the optimal pro-
portional composition of the risky security portfolio is independent of in-
vestor risk aversion), to see how differences in beliefs of investors, captured
by the alphas an investor assigns to securities, lead to portfolios that depart
from the market portfolio, and to sort out security selection and market
timing motivations for portfolio positions.

Their solution technique is motivated by the structure of the market
model and is reminiscent of the simplifications created by the use of state-
securities. A $1 out-of-pocket investment in security j is divided into three
parts: (1) 1 – βj dollars in the riskless security (with return r), (2) βj dollars
in the market portfolio (with return rM), and (3) one dollar invested in the
security j but completely financed by borrowing 1 – βj dollars and selling βj

dollars of the market portfolio. Although this latter investment costs noth-
ing, it will have a random return equal to the security’s residual return, εj.
An investor can then think of constructing his portfolio with proportions γ
invested in the riskless security, β invested in the market portfolio, and hj in-
vested in the residual return of risky security j, so that his portfolio return rP

= γr + βrM + Σjhjεj where Σjhj = 1. β can be interpreted as the passive invest-
ment plus potentially a market-timing component (which is later sorted out
by their analysis) and the hj can be interpreted as “active bets.” This way of
breaking down security returns effectively inverts a matrix early, and per-
mits closed-form solutions for γ, β, and {hj} that are then translated back
into closed-form solutions for the proportions held of the actual securities.

Their solution is:

where x0 ≡ the proportion of the portfolio P value invested in the
riskless security

xj ≡ the proportion of the portfolio P value invested in
risky security j(Σj=0, . . . , mxj = 1)

χj ≡ the market value proportion of security j in the
portfolio M of all available securities so that Σj

χ
j = 1

λ ≡ measures the investor’s risk aversion (the higher λ,
the more risk averse the investor)

µM, σM
2 ≡ mean and variance of return of portfolio M27
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Several sensible conclusions follow:

1. Index fund condition. If αj = 0 for all j, then the investor divides 
his investable wealth between the riskless security and an index 
fund M.

2. Market timing condition. The market timing component of the invest-
ment is determined by the ratio (µM – r)/σM

2; as the investor’s opinion
about this ratio changes over time, he will invest more or less in the
market component M.

3. Security selection condition. If αj > 0, the investor tends to concentrate
more than the market proportion χj in security j.

4. Avoidance of diversifiable risk. The greater the residual risk ωj
2 (other

things held constant), the less the investor holds of security j.
5. Portfolio separation. The proportionate composition of the investor’s

holdings of risky securities is easily shown to be independent of the in-
vestor’s risk aversion λ; to see this, consider the proportions for any
two risky securities xj and xk and calculate the ratio xj /xk.

Unfortunately, the introduction of short-selling restrictions will de-
stroy the closed-form nature of these results. Indeed, the optimal solution
can easily involve extremely large long positions offset by extremely large
short positions, and therefore the solution will generally be impractical in
the presence of even modest trading costs or uncertainty about estimates of
expected return and risk. To see this intuitively, in an extreme case, sup-
pose that two of the securities have almost perfectly positively correlated
returns but somewhat different prices. Although this is not an arbitrage op-
portunity, in the absence of trading costs, the investor may want to take
advantage of this by taking a hugely long position in one of the securities
offset by a similar-sized short position in the other security. Edwin J. Elton,
Martin J. Gruber, and Manfred W. Padberg in [Elton-Gruber-Padberg
(1976)] “Simple Criteria for Optimal Portfolio Selection,” Journal of Fi-
nance 31, No. 5 (December 1976), pp. 1341–1357, find a relatively simple
solution algorithm in a context similar to Treynor-Black but when no short
selling is allowed.

1973 Robert C. Merton, “The Relationship between Put and Call Option
Prices: Comment,” Journal of Finance 28, No. 1 (March 1973), pp.
183–184.

DERIVATIVES, OPTIONS, ARBITRAGE, 
PUT-CALL PARITY RELATION, 
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EUROPEAN VS. AMERICAN OPTIONS, 
PAYOUT PROTECTION, OPTION EARLY EXERCISE

I t is still popularly believed that investor optimism, even if the underlying
asset price remains unchanged, will tend simultaneously to push call

prices up and put prices down. However, the long-practiced strategy of
conversion—buying a call, selling short its underlying asset, and lending
the call’s strike price—is a way of creating the same payoff as a put (and a
way used in practice to create puts from calls, when no puts are being
traded). Although this strategy had been known certainly as early as
1688, at least for options on forward contracts, in [de la Vega (1688)]
Joseph de la Vega, Confusion de Confusiones, reprinted in Martin Frid-
son, editor, Extraordinary Popular Delusions and the Madness of
Crowds; and Confusion de Confusiones (New York: John Wiley & Sons,
1996), Hans R. Stoll, in [Stoll (1969)] “The Relationship between Put and
Call Option Prices,” Journal of Finance 24, No. 5 (December 1969), pp.
801–824, may have been the first to express this relation algebraically,
proving that it holds under the twin assumptions of no arbitrage and per-
fect markets.

Arguably the most important arbitrage relation for options, the put-
call parity relation states:

P0 = C0 – S0d
–t + Kr–t

where P0 and C0 are the contemporaneous values of an otherwise iden-
tical put and call, with common strike price K, common years to expi-
ration t, written on an underlying asset with concurrent price S0 and 
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Proof of the Put-Call Parity Relation

To see this, the payoff from the call may be written max(0, St – K) where
St is the (random) underlying asset price at expiration. The payoff from
the put is then max(0, K – St). Observe that for every value of St at expi-
ration:

max(0, K – St) = max(0, St – K) – St + K

If I now take present values of each side of this equation, we will
have the put-call parity relation stated earlier.
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annualized payout return d, and where the annualized riskless re-
turn is r.

As Cox points out in Cox-Rubinstein (1985), given the underlying
asset price and the riskless return (as well as the payout return), put-call
parity implies that the difference between otherwise identical call and
put values cannot depend on the expected return of the underlying asset.
To prove this, he simply observes that the put-call parity relation can be
written:

C0 – P0 = S0d
–t – Kr–t

Therefore, the difference C0 – P0 can depend only on S0, r, d, K, and t. Al-
though the independence of this difference from the expected return con-
tradicts common belief, if it were not so there would be an arbitrage
opportunity.

In his comment, Merton (1973/March) points out that while true for
European options (that is, options that cannot be exercised early), the put-
call parity relation will not hold for American options because it may be
optimal to exercise the call or the put early. Samuelson-Merton (1969) had
already pointed out that payout-protected calls should never be exercised
early, but absent payout protection, it may pay to do so. In his comment,
Merton argues that puts (with or without payouts) may be optimally exer-
cised early.

Merton further argues that it will generally pay to exercise many (if
not most) in-the-money puts early, so this is of considerable practical
relevance.
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Optimal Early Exercise of American Puts: 
An Extreme Example

An easy way to see this is to consider an extreme case: an American put
with one year to expiration and a strike price equal to $100. Now sup-
pose its underlying asset price falls immediately almost to zero. If you
now exercise the put, you will receive almost $100, close to the most
you could ever receive from the put (assuming the underlying asset price
cannot fall below $0). You can either receive (almost) $100 now, or wait
and receive at most $100 later. Clearly, as long as interest rates are posi-
tive, you would prefer to exercise now so as to be able to reinvest the
$100 and earn interest.
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1973 Marshall E. Blume and Frank Husic, “Price, Beta and Exchange
Listing,” Journal of Finance 28, No. 2 (May 1973), pp. 283–299.

1974 Marshall E. Blume and Irwin Friend, “Risk, Investment Strategy
and the Long-Run Rates of Return,” Review of Economics and Statistics
56, No. 3 (August 1974), pp. 259–269.

1977 S. Basu, “Investment Performance of Common Stocks in Relation
to Their Price-Earnings Ratios: A Test of the Efficient Market Hypothesis,”
Journal of Finance 32, No. 3 (June 1977), pp. 663–682.

1981 Rolf W. Banz in “The Relationship between Returns and Market
Value of Common Stocks,” Journal of Financial Economics 9, No. 1
(March 1981), pp. 3–18.

SIZE EFFECT, BETA, PRICE EFFECT, 
MARKET-TO-BOOK ANOMALY

B lume-Husic (1973) is an unrecognized classic in empirical financial eco-
nomics since it is probably the first evidence for what later has become

known as the “size effect,” one of the most puzzling anomalies. Using
monthly data from 1932 to 1971 on NYSE stocks, each month stocks are
sorted by month-end price into quintiles, and stocks are also sorted into
quintiles based on beta measured from a regression of the prior 60-month
returns. Then, each month 25 portfolios are formed from the Cartesian
product of these two quintiles. Monthly returns of these 25 portfolios are
then regressed against price and beta with the result that over the whole
period return was positively and insignificantly related to beta but nega-
tively and significantly related to price. However, if instead returns are re-
gressed against price and the future beta of the portfolio (measured over
the next 60 months), then though the coefficient on price continues to be
negative, it is smaller in absolute value than in the first regression using
past beta. Taken together, these regression results suggest a “price effect”
where low-priced stocks tend to have higher future returns than measured
beta would suggest, whether beta is measured over the prior 60 months or
over the future 60 months. In addition, beta changes over time, and using
the past 60 months of data to measure current beta contains measurement
error that is correlated with price: For low-priced stocks, future betas will
tend to be higher than past betas. For example, for stocks priced in January
1967, the portfolio with the highest-past-beta stocks and the lowest-
priced-stocks had a future beta of 1.49, while the portfolio with the high-
est-past-beta stocks and the highest-priced stocks had a future beta of 1.24.

230 A HISTORY OF THE THEORY OF INVESTMENTS

ccc_rubinstein_pt02_99-308.qxd  1/12/06  1:41 PM  Page 230



It appears from the article that this directional discrepancy is consistent
over subsamples taken every five years; that is, holding past beta constant,
lower-priced stocks had very consistently higher future betas.

The paper raises two questions: (1) why does price anticipate changes
in beta? and (2) why should price predict returns, even after considering
the effect of price on future beta? At this point, in 1973, one could have
proposed the following answer for question (1). Among the stocks in the
portfolio of low-priced stocks are recent arrivals. These are stocks whose
prices have recently fallen. Since firms rebalance their capital structures
only periodically, the fall in stock price will cause an automatic increase in
their debt/equity ratios measured in market value terms. In turn, this will
cause their betas to be higher in the future than in the past.

Although, strictly speaking, Blume and Husic are measuring a price ef-
fect and not a size effect, clearly the two are closely related. Not only, as a
matter of fact, do low-priced stocks tend to be smaller in terms of market
capitalization than high-priced stocks, but many of the low-priced stocks
at a given time have presumably only recently become low-priced, so they
are smaller in terms of market capitalization than they used to be.

A subsequent paper, Blume-Friend (1974), tests for the size effect more
directly. This paper examines stock returns covering nonoverlapping five-
year periods from 1938 to 1968. Stocks are assigned to beta deciles in each
five-year period. Five-year returns are compared for equally weighted ver-
sus proportionally weighted portfolios. Equally weighted portfolios are
proxies for small stocks and proportionally weighted portfolios for large
stocks. Breaking the entire period into three decades, the averages of the
two five-year returns in each decade are:
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Five-Year Stock Returns, Sorted by Size
1938–1948 1948–1958 1958–1968

Beta Decile Equal Proportional Equal Proportional Equal Proportional

Lowest 62% 44% 85% 75% 103% 92%
2 96 54 96 112 101 91
3 93 71 105 130 101 84
4 93 69 97 204 101 56
5 94 73 90 126 124 90
6 119 86 103 101 104 88
7 108 76 104 125 142 78
8 105 66 94 107 130 116
9 128 109 102 162 153 108

Highest 96 74 77 145 137 101
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Although the authors do not provide measures of statistical signifi-
cance, casual empiricism suggests that the size effect documented here is
both statistically and economically significant, but not temporally consis-
tent. While small firms appear on average to outperform large firms (even
while holding beta constant), there can be significant periods of time when
this normal relation is reversed.

The authors conclude:

These substantial period-dependent differences in performance be-
tween equally weighted and proportionally weighted portfolios, or
equivalently between large and small stock issues, may indicate
that there is another (or more than one) important factor affecting
returns which is not allowed for in current return generating func-
tions. . . . The gap in performance between equally weighted and
proportionally weighted portfolios appears too great to be ex-
plained by the greater liquidity risks attached to equal weighting
but of the wrong sign (in two out of three instances) if greater
unique risks are attached to proportional weighting. Additional
testing will be required to confirm whether a size-related factor is
necessary in explaining returns of individual securities. (p. 267)28

The more definitive research that Blume and Friend called for was
published seven years later in Banz (1981), the paper commonly credited
with the discovery of the size effect. Surprisingly, this paper fails to discuss
or cite the earlier related work of Blume and Husic or Blume and Friend.
The paper follows the methodology established by Black and Scholes
(1974) of stratifying the universe of securities (in this case, monthly price
data on all NYSE stocks between 1926 and 1975) into quintile portfolios
sorted on the basis of the key variable—market value proportion—and
then each quintile portfolio is itself subdivided into five subportfolios
sorted by beta. Then, each month, the realized returns of 25 portfolios are
regressed against beta and the key variable, in this case a measure of size:

with ϕjt defined as the market value proportion of security j and ϕMt as the
average market value proportion. Similar to Blume and Husic, Banz con-
cludes that although size does anticipate changes in beta, in addition it has
an independent effect on returns: Other things being equal, smaller firms
tend to have higher realized rates of return. Banz finds the size effect to be
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highly economically significant. To dramatize his results, he considers a
zero-beta portfolio, formed by going long the smallest 10 (or 50) firms
and going short the largest 10 (or 50) firms, which earns about 20 percent
(or 12 percent) per annum on average from 1931 to 1975!—and both
these returns are statistically significant. Returns on zero-beta portfolios
that replace the largest 10 (or 50) firms with medium-size firms give about
the same results. This shows that by far the largest impact on the results
comes from the smallest firms, which seem to be underpriced, not mispric-
ing of the larger firms. Breaking this up into nonoverlapping five-year in-
tervals, the smallest stocks outperform larger stocks in seven of the nine
subperiods. Notably, the size effect, as strong as it is on average, is
nonetheless reversed in each of the two five-year periods between 1946
and 1955: During that decade, larger stocks outperformed the smallest
stocks. This closely confirms the earlier findings by Blume and Friend.
Banz concludes:

There is no theoretical foundation for such an effect. We do not
even know whether the factor is size itself or whether size is just a
proxy for one or more true but unknown factors correlated with
size. (p. 16)

At the time of Banz’s study, candidates for this missing factor included
price-earnings (P/E) ratios, book-to-market ratios, and the extent to which
different stocks are held in widely diversified portfolios. For example,
Roger W. Klein and Vijay S. Bawa, in [Klein-Bawa (1977)] “The Effect of
Limited Information and Estimation Risk on Optimal Portfolio Diversifi-
cation,” Journal of Financial Economics 5, No. 1 (August 1977), pp.
89–111, argue theoretically that if investors face relatively high costs of
gathering information for some firms, this will increase the estimation risk
for these securities. Investors will then have less demand for these securi-
ties, which will decrease their prices and correspondingly tend to increase
their realized returns. So if the smallest firms have the highest information
costs, they will seem riskier to most investors, and hence have lower prices
and tend to have higher realized returns.

A related anomaly concerns the market-to-book ratio (or in per-share
terms, the P/E ratio). Popular market wisdom often comes down on the
side of low-P/E-ratio stocks. It is said that the potential of these stocks is
unappreciated by the market and that a portfolio of low-P/E stocks will
tend to outperform the market portfolio. While the prior large-sample
studies of several other researchers had tended to support this hypothesis,
Basu (1977) was the first to provide persuasive evidence since earlier stud-
ies were questionable because of either survivorship bias, failure to adjust
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for risk, trading costs, differential taxation, or use of a trading strategy
based on earnings before they were known.

Basu examined 753 NYSE stocks from April 1957 to March 1971.
At the end of each year, the P/E ratio of each stock was calculated by di-
viding the total market value of the stock on December 31 by its reported
annual earnings (before extraordinary items). These stocks were then
placed into five ranked portfolios, with the highest-P/E-ratio stocks in the
first portfolio, and so on. The portfolios were assumed to be purchased
on April 1 of the succeeding year (by which time the earnings would
surely have been reported) and held for the next 12 months. On April 1
of the next year, the proceeds from each of the portfolios were reinvested
in the new revised portfolio of the same rank. The highest- and lowest-
P/E-ratio portfolios had per-annum compound rates of return of 9.3 per-
cent and 16.3 percent, respectively, a difference that was both statistically
and economically significant. Moreover, none of the potential explana-
tions mentioned earlier (risk, trading costs, etc.) was capable of changing
this conclusion.

1973 Fischer Sheffey Black and Myron S. Scholes, “The Pricing of Op-
tions and Corporate Liabilities,” Journal of Political Economy 81, No. 3
(May–June 1973), pp. 637–659.

1973 Robert C. Merton, “Theory of Rational Option Pricing,” Bell Jour-
nal of Economics and Management Science 4, No. 1 (Spring 1973), pp.
141–183, reprinted with updated footnotes in Robert C. Merton, Continu-
ous-Time Finance, Chapter 8 (Malden, MA: Blackwell, 1990), pp.
255–308.

1974 Robert C. Merton, “On the Pricing of Corporate Debt: The Risk
Structure of Interest Rates,” Journal of Finance 29, No. 2 (May 1974), pp.
449–470, reprinted in Robert C. Merton, Continuous-Time Finance,
Chapter 12 (Malden, MA: Blackwell, 1990), pp. 388–412.

1976 Henry A. Latané (1907–1984) and Richard J. Rendleman Jr.
(1949–), “Standard Deviations of Stock Prices Ratios Implied in Option
Prices,” Journal of Finance 31, No. 2 (May 1976), pp. 369–381.

1977 Robert C. Merton, “On the Pricing of Contingent Claims and the
Modigliani-Miller Theorem,” Journal of Financial Economics 5, No. 2
(November 1977), pp. 241–249, reprinted with updated footnotes in
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Robert C. Merton, Continuous-Time Finance, Chapter 13 (Malden, MA:
Blackwell, 1990), pp. 413–427.

DERIVATIVES, OPTIONS, OPTION PRICING, 
BLACK-SCHOLES FORMULA, LOGNORMAL DISTRIBUTION,

VOLATILITY, DYNAMIC STRATEGIES, 
SELF-FINANCING STRATEGIES, ARBITRAGE, 

PORTFOLIO REVISION, REPLICATING PORTFOLIO, 
DYNAMIC COMPLETENESS, DOWN-AND-OUT OPTIONS, 

HEDGE RELATION, BULL SPREAD RELATION, 
BUTTERFLY SPREAD RELATION, TIME SPREAD RELATION,

PAYOFF FUNCTION, IMPLIED VOLATILITY, 
CORPORATE SECURITIES AS OPTIONS, 

DEFAULT OPTION, STATE-PRICES

B lack-Scholes (1973) is the classic paper on derivatives pricing. Black
and Scholes assume the return of the asset underlying a standard Euro-

pean call or put follows geometric Brownian motion as first described in a
finance context by Osborne (1959). Therefore, (1) the local return of the
underlying asset is continuous; that is, its price can go from S0 to St only if
it traverses all the prices in between; and (2) the local volatility of the un-
derlying asset return is constant. They then offer two proofs of their pric-
ing formula for the option, one based on the Merton (1973/September)
intertemporal CAPM and one based, apparently at Merton’s suggestion,
on the idea that a self-financing dynamic strategy in an option and its un-
derlying asset is locally riskless. Each proof leads to the same stochastic
partial differential equation. The solution of this equation, subject to the
boundary condition of the value of the option at its expiration max(0, St –
K) is the celebrated and widely used Black-Scholes formula for the current
value of a call C0 in terms of the current price S0, payout return d (not in-
cluded in the original formula) and volatility σ of its underlying asset, the
riskless return r, and the strike price K and current time to expiration t of
the call:

where N(•) is the standard normal distribution function. A key feature of
this formula is the dog that didn’t bark: Given the six variables that deter-
mine the value of a call, it is not necessary to know as well the expected re-
turn of the underlying asset over the life of the call.
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The real significance of the formula to the financial theory of invest-
ments lies not in itself, but rather in how it was derived. Ten years ear-
lier the same formula had been derived by Case M. Sprenkle, in
[Sprenkle (1962)] “Warrant Prices as Indicators of Expectations and
Preferences,” Yale Economic Essays 1 (1962), pp. 178–231, reprinted in
The Random Character of Stock Market Prices, edited by Paul H. Coot-
ner (London: Risk Publications, 2000), pp. 504–578, and A. James
Boness, in [Boness (1964)] “Elements of a Theory of Stock-Option
Value,” Journal of Political Economy 72, No. 2 (April 1964), pp.
163–175. Sprenkle derived the current value of a call by integrating the
option payoff assuming a lognormal distribution for the underlying as-
set price. The result contains the expected underlying asset rate of return
m and an unspecified option payoff risk-adjusted discount rate x. Boness
specialized Sprenkle’s formula for the case when investors are assumed
to have “risk-neutral preferences,” setting the expected underlying asset
rate of return equal to the option payoff discount rate (m = x). He then
obtains exactly what later became known as the Black-Scholes formula.
Despite his statement that “investors in puts and calls are indifferent to
risk” and the fact that he used the same discount rate for options to dif-
ferent stocks, he did not interpret this as the riskless rate of return r – 1.
Indeed, he calculated this parameter by choosing the value of x that
caused the best fit between option values (as computed by his formula)
and market prices. The first person to interpret x as the riskless rate of
return r – 1 may well have been Edward O. Thorp, then a mathemati-
cian at the University of California, Irvine, although he never published
this result. But neither Boness nor Thorp understood the crucial idea
that continuous-time, continuous-state arbitrage arguments could be
used to justify equating this discount rate to the riskless rate of return—
although Thorp came close since he clearly understood the idea of dy-
namically hedging an option with a position in its underlying asset, as
can be seen from his article, [Thorp (1969)] “Optimal Gambling Sys-
tems for Favorable Games,” Review of the International Statistical Insti-
tute 37, No. 3 (1969), pp. 273–293, and his book with Sheen T. Kassouf
[Thorp-Kassouf (1967)], Beat the Market (New York: Random House,
1967), particularly pages 81–83.

In their second and more enduring proof, apparently suggested by
Robert C. Merton, Black and Scholes show that a hedge position in the
underlying asset and the call can be chosen to be locally riskless, and
that no knowledge of the asset’s expected return is required to know the
correct hedge ratio. By continually revising the hedge as the underlying
asset price moves using only accumulated profits and losses from the
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hedge, the hedge can be maintained as locally riskless through the op-
tion’s expiration date. In subsequent work, this argument is typically
turned around to say that by continually revising a “self-financing”
portfolio containing the underlying asset and cash over the life of the
option, it is possible to replicate the expiration-date payoff of the op-
tion. Therefore, if there is no arbitrage, the initial cost of establishing
the hedge must equal the concurrent value of the option. Indeed, as 
Cox may have pointed out for the first time, in [Cox-Rubinstein (1985)]
John C. Cox and Mark Rubinstein, Options Markets (Englewood Cliffs,
NJ: Prentice-Hall, 1985), the Black-Scholes formula itself says what 
the initial hedge components must be: buy d–tN(x) units of the under-
lying asset, each worth S0, financed by risklessly borrowing Kr–t

N(x – σ√–
t).

This reversal of the initial Black and Scholes proof (from stock 
and option replicating cash to stock and cash replicating option) first 
appears in Merton (1977). He points out that this way of looking at
the problem makes it clear that the value of the call is not assumed 
to follow an Ito process, but can rather be proven to do so (since its 
own stochastic process can be replicated by correctly managing a port-
folio containing only its underlying asset and cash). Moreover, one 
can determine the value the option would need to have even if it does
not exist.

Revisiting Arrow (1953), Arrow was troubled: As I remarked earlier, if
one took full account of the number of decision-relevant states, the number
of securities required to complete the market would be vast. Somewhat
overshadowed by the idea of state-securities, Arrow’s 1953 paper also con-
tains his principal solution to this difficulty: the first published occurrence
of the idea that an initially incomplete market can be effectively completed
by opportunities for portfolio revision over time—the key idea behind
many subsequent models of intertemporal equilibrium as well as modern
option pricing theory.

Let’s take a simple example and consider the evolution of states 
over just three future dates. In the diagram, the state at the current date
(0) is assumed known. Three states, A, B, and C can occur at date 1.
Each of these gives birth to three more states at date 2, and in turn each
of these gives birth to three more states at date 3, for a total of 27 possi-
ble states at date 3. As in the Problem of Points, knowing what state oc-
curs at an earlier date limits the possible states that can occur at
subsequent dates. So if A occurs, then only the states emerging out of
that node can occur at date 2; in that case, the states emerging out of B
and C will not occur.
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Suppose we consider an economy in which investors purchase securi-
ties at date 0 with the ultimate goal of accumulating wealth at date 3.
Analogous to Pascal and Fermat, Arrow considers two ways markets for
securities could be organized. One possibility is that at date 0, 27 securities
are available that have different payoffs at date 3. With 27 states and 27
different securities, we have a complete market. Investors can distinguish
among all 27 states at date 3 by investing in a buy-and-hold portfolio of
the 27 securities in the market at date 0. To conserve on the number of se-
curities, Arrow proposes instead that only three securities be available at
date 0, which will have different values at date 1 covering the three states,
A, B, and C, that can occur; so the market is initially incomplete. Now if
state A occurs, Arrow supposes that a new market with three securities be-
comes available at date 1 that will have different values over the three pos-
sible states that could then occur at date 2. Investors can liquidate their
portfolios and reinvest in the new securities that then become available.
Similarly, at date 2, given the state that occurs, again a new market with
three securities becomes available with different values (or payoffs) over
the three possible states that could then occur at date 3. In this second way
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of organizing the market for securities, the total number of securities re-
quired would be only three at each date, or 3 + 3 + 3 = 9 securities in total.
The second way has miraculously conserved on the number of securities or
markets that would be needed to complete the market. Instead of 27 secu-
rities, we can accomplish this with 9. To distinguish these two ways of or-
ganizing the market, financial economists say that that second method is a
dynamically complete market, since investors must revise their portfolios
over time to achieve the effects of completeness.29

Note, however, that in this case markets to commodities open up at
date 1 that were not available at date 0. In contrast, Black and Scholes
show how opportunities to trade over time in the same “long-lived” securi-
ties (the securities initially available at date 0) will dynamically complete
the market. Although the number of markets that must be opened over
time is essentially the same as in Arrow, the number of eventually traded
instruments that must be created is not. Indeed, Black and Scholes show
how just two securities are sufficient to dynamically complete the market!
So the real significance of the Black-Scholes model for general work in as-
set pricing, to the extent it pushes beyond Arrow, is its demonstration of
the role of long-lived securities in completing the market.

Other than this, the situations envisioned by Arrow and Black-Scholes
are at core very similar. To see this intuitively, imagine that you are trying to
decide what securities to hold now. Suppose the market is incomplete in the
sense that there are insufficient securities to tailor-make a buy-and-hold
portfolio that will deliver the most preferred outcomes in the distant future;
instead you plan to rely on revising the portfolio you choose today in inter-
mediate markets to make up for the missing securities. But to know what to
do today, you need to know now, for each intermediate state, on what terms
you will be able to revise your portfolio in these intermediate markets.30

So Arrow’s solution does not really reduce the information investors
need to make their current decisions compared with a complete market.
How can investors know what future state-prices will be without conven-
ing the markets? Arrow’s solution is not ultimately satisfactory.

The same criticism can be made of the Black-Scholes (1973) option
pricing model. That model assumes the volatility of the underlying security
and future interest rates can be predicted in advance (and indeed remain
constant). But knowing future volatility and interest rates is tantamount to
knowing in advance the state-prices to be established in future markets.31

More generally, financial economists are often keen to adopt this method
of solving Arrow’s problem when they assume that investors know aspects
of the stochastic process of the behavior of security prices into the future,
even though the markets for these securities have yet to convene. For ex-
ample, even to assume that the return over time of the market portfolio fol-
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lows a random walk has implications for the evolution of future state-
prices, which, since these are determined by future subjective probabilities
and risk aversion, has implications for the evolution of these fundamental
variables. If social risk aversion changes as total market wealth changes,
then it will be difficult for the return of the market portfolio to have the
same risk-neutral probability distribution over time, making it unlikely for
the return of an arbitrary stock to have the same risk-neutral distribution,
violating a key assumption of the Black-Scholes model.32

Merton (1973/Spring) is a complementary paper to Black-Scholes
(1973) that extends the new option pricing theory in a number of ways. He
shows that with predictably changing interest rates, European options
should be valued using the interest rate on a zero-coupon bond maturing
on the option expiration date. He adds predictable payouts on underlying
assets and devises a generalized formula incorporating uncertain future
riskless returns. He also produces perhaps the first closed-form formula for
an exotic option, namely for “down-and-out” barrier calls (similar to stan-
dard calls except if, during the life of the call, its underlying asset price falls
below a prespecified barrier level, the option becomes worthless).

In addition, in a more general setting than Black and Scholes, assum-
ing only no arbitrage and perfect markets, Merton derives a number of
“general arbitrage inequalities” relating the price of a call or a put to its
concurrent underlying asset price (“the hedge relation”), the relation be-
tween the values of two otherwise identical options differing only by strike
price (“the bull spread relation”), the relation among the values of three
otherwise identical options differing only by strike price (“the butterfly
spread relation”), and the relation between two otherwise identical options
differing only by time to expiration (“the time spread relation”):

For American calls:

� Hedge relation: S0 ≥ C0 ≥ max(0, S0 – K, S0d
–t – Kr–t).

� Bull spread relation (for two otherwise identical calls with K1 < K2):
C(K1) > C(K2) and C(K1) – C(K2) ≤ K2 – K1.

� Butterfly spread relation (for three otherwise identical calls with K1 <
K2 < K3): C(K2) ≤ λC(K1) + (1 – λ)C(K3) where λ ≡ (K3 – K2)/(K3 – K1).

� Time spread relation (for two otherwise identical calls with t1 < t2):
C(t2) ≥ C(t1).

If the calls are European, then the hedge relation formula is changed to
S0d

–t ≥ C0 ≥ max(0, S0d
–t – Kr–t), the bull spread relation is changed to C(K1)

> C(K2) and C(K1) – C(K2) ≤ (K2 – K1)/r
–t, and the time spread relation need

not hold as long as the underlying asset has payouts prior to the calls’ expi-
ration dates.
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Mark B. Garman, in [Garman (1976)] “An Algebra for Evaluating
Hedge Portfolios,” Journal of Financial Economics 3, No. 4 (October
1976), pp. 403–427, shows that, in the absence of restrictions on the prob-
ability distribution of the underlying asset price and provided the underly-
ing asset is itself considered a payout-protected call with a zero strike price,
these conditions are necessary and sufficient for there to be no buy-and-
hold arbitrage opportunities among all coexisting calls to the same under-
lying asset. Yaacov Z. Bergman, Bruce D. Grundy, and Zvi Wiener, in
[Bergman-Grundy-Wiener (1996)] “General Properties of Option Prices,”
Journal of Finance 51, No. 5 (December 1996), pp. 1573–1610, ask to
what extent these arbitrage characteristics derived from option payoff
functions are inherited by the option pricing function prior to expiration.
They show that given a constant riskless return and a univariate diffusion
process for the underlying asset price (a continuous-time, continuous-state
process where the local volatility is a continuous function only of the con-
current asset price and time), any European derivative (with an arbitrary
continuous payoff function and therefore not limited to standard calls and
puts) inherits at all times in its life the key features of its payoff function:
upper and lower delta bounds and monotonicity and convexity or concav-
ity with respect to the underlying asset price.

Merton also shows that the value of an option on a portfolio of 
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Proof of the Butterfly Spread Relation 
for Standard Options

To illustrate how these are proven, examine the butterfly spread rela-
tion, where to simplify suppose the strike prices are equally spaced so
that K3 – K2 = K2 – K1, and the options are all European. Consider the
payoff of a butterfly spread where one call is purchased with strike price
K1, two calls are sold with strike price K2, and one call is purchased with
strike price K3. The payoff from this position is:

max(0, St – K1] – [2 max(0, St – K2)] + max(0, St – K3)

Now consider all possible realizations of St ranging from zero to in-
finity. It is easy to see that this payoff can never be negative (and could
be positive). Therefore, if there is no arbitrage, the present value of the
position, C(K1) – 2C(K2) + C(K3), must also be nonnegative. This in-
equality then can be rewritten to give the butterfly spread relation.
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underlying assets will be less than the value of the corresponding portfo-
lio of options, each on a single one of the same underlying assets.

An important application of the Black-Scholes formula has been to re-
cover the risk-neutral distribution of the asset underlying the option from
the option’s price. Since Black and Scholes assume a risk-neutral lognormal
distribution, this amounts to recovering its standard deviation. Both acade-
mics and practitioners term this the option’s “implied volatility.” This is
done by implicitly inverting the Black-Scholes formula, taking the current
option price (C0) as given and solving for the unknown volatility (σ). As re-
strictive as this is, this nonetheless may be the first practical method to re-
cover state-prices from the prices of ordinary securities. The first to publish
this was Latané-Rendleman (1976).

As Black and Scholes point out in their paper and its very title, the the-
ory can be applied to corporate securities (stocks and bonds) since they can
be interpreted as options. To see this, consider a firm financed completely by
stock and a single issue of zero-coupon debt. The shareholders then have a
“default option”: that is, at the maturity of the debt, they can choose to
pay off the debt principal or to default. In the former case, they then own
what remains of the firm after paying off the debt, and in the latter case
they forfeit their ownership to the bondholders and end up with nothing.
The stockholders will exercise their option to default whenever the value of
the firm at the maturity date is less than the debt principal. Therefore, the
stock can be interpreted as a call option on the value of the firm with a
strike price equal to the debt principal and a time to expiration equal to the
time to maturity of the debt. Similarly, the debt can be interpreted as a
portfolio containing a default-free zero-coupon bond with the same princi-
pal and maturity as the debt and a sold put option on the value of the firm
with a strike price equal to the debt principal and a time to expiration
equal to the time to maturity of the debt; see the payoff representations of
stock and bonds in my arbitrage proof of the Law of the Conservation of
Investment Value in connection with Modigliani-Miller (1958).

Merton (1974) applies this idea to the pricing of zero-coupon corpo-
rate debt and shows how the default premium is a function of underlying
firm volatility, bond maturity, and the ratio of promised principal repay-
ment to the concurrent value of the firm. In subsequent years, this model
has been extended by others to encompass callable and convertible corpo-
rate debt with coupons, junior debt, safety covenants, and the interaction
between corporate choice of the risk of its assets and the composition of its
capital structure, leading to the endogeneity of bankruptcy. Indeed, as sub-
sequent work has shown, option pricing methods are the key to the valua-
tion of a very wide range of securities.

Yet another way to view the contribution of Black, Scholes, and Mer-
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ton is to see the Black-Scholes model as opening the door to operationaliz-
ing the abstract results of Arrow (1953). Until 20 years later in 1973, it
was hard to see how the idea of state-securities was anything more than a
very useful theoretical abstraction. As long as state-prices could not be
measured, their practical applications were clearly severely limited. But af-
ter 1973, with the subsequent refinements of Breeden-Litzenberger (1978)
and Rubinstein (1994) and with the simultaneous expansion of the market
for exchange-traded options, it now became possible to estimate the state-
price distribution (and even its stochastic process over time) used by the
market. This new linkage between fundamental finance theory and practice
remains an area of considerable promise.

Perhaps no other invention in economics or finance has had such wide-
spread application in so short a time. Within a year or two after its publi-
cation, the Black-Scholes formula became the valuation standard for the
first U.S. exchange-traded options on the newly formed Chicago Board
Options Exchange. The exchange first opened its doors for trading on
April 23, 1973, nearly coincident with the publication of the Black and
Scholes paper. Indeed, along with its binomial generalization (Cox-Ross-
Rubinstein 1979) and Rendleman-Bartter 1979), the Black-Scholes for-
mula may now be the most widely used algorithm with embedded
probabilities in human history. As Gerald R. Faulhaber and William J.
Baumol, in [Faulhaber-Baumol (1988)] “Economists as Innovators Theo-
retical Research,” Journal of Economic Literature 26, No. 2 (June 1988),
pp. 577–600, point out, economic inventions with the shortest time be-
tween discovery and implementation tend to be those (1) that help cope
with future uncertainty and (2) that are used in markets that are easy to en-
ter and exit so that competitive pressures are particularly powerful—condi-
tions that were particularly well met for the new option pricing theory.

Merton and Scholes won the 1997 Nobel Prize in Economic Science
“for a new method to determine the value of derivatives” (Black had died
prematurely in 1995).

1973 Stephen E. LeRoy, “Risk Aversion and the Martingale Property
of Stock Prices,” International Economic Review 14, No. 2 (June 1973),
pp. 436–446.

EFFICIENT MARKETS, RANDOM WALK, MARTINGALES, 
RISK AVERSION, CONSTANT RELATIVE RISK AVERSION (CRRA)

Early attempts to formalize the notion of efficient markets by Samuelson
(1965) define efficient markets in terms of a martingale: The expected
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next price of any security conditional on information set Φ equals (a possi-
bly time-dependent) constant times the current price: E(Pt+1|Φ) = kPt. The
crucial part of this is that k is nonstochastic; otherwise, it would be a tau-
tology. In particular this should hold if Φ equals the history of the past re-
turns of the security so Φ = rt–1, rt–2, rt–3, . . . An equivalent way to write
Samuelson’s definition is in terms of returns, where rt = Pt+1/Pt and k is iden-
tified as the unconditional expected return E(rt):

E(rt|rt–1, rt–2, rt–3>, . . .) = E(rt)

This implies that, given the current price, knowledge of the past real-
ized returns of a security is of no help in forecasting expected future re-
turns. Why? Because to the extent they might have been of some help, their
influence has already been factored into the current price of the security
(Bachelier 1900; Working 1949/May; Working 1958).

Under risk neutrality, the martingale result should hold since then
E(rt|rt–1, rt–2, rt–3, . . .) = r, the riskless return. Under risk aversion, for most
securities, the CAPM suggests E(rt) > r. Moreover, LeRoy (1973) claims
that under risk aversion the conditional expected return will be random
and therefore not equal its unconditional value. Consider the market port-
folio: Samuelson’s definition implies E(rMt|rMt–1, rMt–2, rMt–3, . . .) = E(rMt).
Suppose the previous market portfolio return rMt–1 had been high; then the
representative investor might become less risk averse and therefore demand
a lower risk premium in the next period. Thus E(rMt|rMt–1) would fall in
equilibrium, so that E(rMt|rMt–1) ≠ E(rMt). This makes the conditional return
a random variable since it is a function of the random variable rMt–1. Like-
wise, any security with return correlated with the return of the market
portfolio will also have E(rt|rt–1) ≠ E(rt). So Samuelson’s definition of effi-
cient markets does not make sense under risk aversion.

Rescuing Samuelson slightly, from the perspective of an intertemporal
additive utility of consumption equilibrium, Rubinstein (1976/Autumn)
shows that, while LeRoy’s result generally holds under risk aversion, it need
not. In particular, if the representative agent has constant relative risk aver-
sion (CRRA) and aggregate consumption follows a random walk, then
the value of the market portfolio will follow a random walk. Therefore,
E(rMt|rMt–1, rMt–2, rMt–3, . . .) will be a constant independent of past returns.

The assumption that security prices follow a random walk is much
stronger than the martingale restriction, for then the entire distribution of
next period’s return, not just its mean, is independent of realized past re-
turns. If f(•) is the subjective probability distribution of returns, a random
walk requires: f(rt|rt–1, rt–2, rt–3, . . .) = f(rt). Clearly, security returns can
obey the martingale restriction, even if they do not follow a random walk.
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For example, consider a two-period default-free zero-coupon bond. Know-
ing its initial date 0 price, its return between dates 0 and 1 completely de-
termines its return between dates 1 and 2 (its maturity). So the bond price
does not follow a random walk. But it does obey the martingale restriction
since knowing its price at date 1, irrespective of its previous returns, fully
determines its return between dates 1 and 2. Alternatively, if the martingale
restriction does not hold, then security prices cannot follow random walk.

1974 Fischer Sheffey Black and Myron S. Scholes, “The Effects of Divi-
dend Yield and Dividend Policy on Common Stock Returns and Prices,”
Journal of Financial Economics 1, No. 1 (May 1974), pp. 1–22.

DIVIDENDS, PRICED VS. NONPRICED FACTORS

B lack-Scholes (1974), the very first article in the maiden issue of the Jour-
nal of Financial Economics, provides evidence that dividend yield can-

not be shown with confidence to be a priced factor, after considering
normal CAPM risk adjustments, with returns measured either before or af-
ter taxes. Black and Scholes interpret their results as implying that in-
vestors should ignore distinctions between income in the forms of
dividends or capital gains since it is not clear if the investor will benefit
from this consideration, while if he concentrates his investment, say, in
low- or in high-dividend-paying stocks, he is sure to lose some of the bene-
fits of diversification. As a corollary, in a world in which investors opti-
mally ignore dividends, corporations cannot use dividend policy to
influence their stock prices (apart from information signaling effects).

To examine these issues, Black and Scholes develop a new empirical
methodology. Their goal is to estimate γ2t in the following regression
equation:

with δjt defined as the dividend yield of security j and δMt as the dividend
yield on the market portfolio. Their first step, for each month, is to divide
the security universe into 5 portfolios stratified by dividend yield and then
to subdivide each of these into 5 portfolios stratified by beta (measured over
the previous five years), for a total of 25 portfolios. Each month these 25
portfolios are reconstituted. In the second step, each month, out of these 25
intermediate portfolios, a final portfolio P is constructed where the weights

rjt t t jt t
jt Mt

Mt
jt= + +

−







 +γ γ β γ

δ δ
δ

ε0 1 2
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across the 25 intermediate portfolios are chosen to minimize the variance of
return of the final portfolio. The final portfolio tends to consist of long posi-
tions in high-yield stocks and short positions in low-yield stocks with an
overall beta near zero and a low variance of return. In the third step, even
though βP should turn out to be near zero, to eliminate any effect from
nonzero betas, the following time-series regression over different subperiods
is used to estimate a single γ2 for each subperiod from each regression:

rPt – rt = γ2 + βP(rM – r) + εPt

It turns out that for the entire period, and every subperiod, the esti-
mate of γ2 is not statistically significant.

1974 Mark Rubinstein, “An Aggregation Theorem for Securities Markets,”
Journal of Financial Economics 1, No. 3 (October 1974), pp. 225–244.

1982 George M. Constantinides, “Intertemporal Asset Pricing with Het-
erogeneous Consumers and without Demand Aggregation,” Journal of
Business 55, No. 2 (April 1982), pp. 253–267.

1985 Hal R. Varian, “Divergence of Opinion in Complete Markets: A
Note,” Journal of Finance 40, No. 1 (March 1985), pp. 309–317.

AGGREGATION, HETEROGENEOUS BELIEFS, 
MARKET-EQUIVALENCE THEOREM, PORTFOLIO SEPARATION,

STATE-SECURITIES, CONSENSUS VS. COMPOSITE INVESTOR,
LOGARITHMIC UTILITY, AVERAGE OR REPRESENTATIVE MAN

Rubinstein (1974) specializes the very general group decision-making set-
ting of Wilson (1968) to an explicit securities market equilibrium con-

text. Rubinstein derives conditions for the standard finance model under
many states in which, although consumer/investors may have heteroge-
neous levels of wealth, patience, risk aversion, and beliefs, prices are set as
if there were a single representative consumer/investor whose wealth, pa-
tience, risk aversion, and/or beliefs are simple aggregates of those charac-
teristics for the individual consumer/investors.

This is the first paper to use the market-equivalence theorem in the
context of apparently incomplete markets but which have the property of
universal portfolio separation (all investors choose optimally from the
same two mutual funds, one of which is riskless); in that context optimal
choices and equilibrium prices will be the same if it is assumed that a full
set of state-securities exists (complete markets).
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Simplifying the Portfolio Selection Problem 
with State-Securities

Consider the standard portfolio selection problem:

where W0 is current wealth, rsj is the return on security j = 0, 1, 2, . . . , m
in state s, ps is the subjective probability of state s, and xj is the proportion
of the investor’s portfolio devoted to security j. xj > 0 indicates a purchase,
xj < 0 indicates a (short) sale, and all wealth is allocated to securities so
that Σjxj = 1. Ws1 ≡ W0Σjxjrsj can be interpreted as random future wealth—
the combined result from the investor making choices (xj) and from nature
choosing which state occurs. U(Ws1) is utility given future wealth Ws1. To
find the optimal portfolio choices, I usually use a Lagrangian multiplier λ,
setting up the problem as:

Differentiate this with respect to xj and set the derivative equal to 0.
This leads to the condition: Σs ps[U′(Ws1)rs j)] = λ/W0. This says that at the
optimal set of portfolio proportions, the expected marginal utility of
earning return from each security is identical for all securities and more-
over equal to λ/W0. In general, this problem cannot be solved in closed
form. To see the problem, suppose there are three states (s = 1, 2, 3) and
three securities (j = 1, 2, 3), writing this out in longhand where rs j repre-
sents the return on security j in state s:

(Continued)

p U W x r x r x r r

p U W x r x r x r r

p U W x r x r x r r
W

1 0 1 11 2 12 3 13 12

2 0 1 21 2 22 3 23 22

3 0 1 31 2 32 3 33 32
0

{ [ ( )] }

{ [ ( )] }

{ [ ( )] }

′ + +
+ ′ + +

+ ′ + + = λ
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p U W x r x r x r r

p U W x r x r x r r
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+ ′ + + = λ

max [ ( )] ( )
{ }x

s s j j sj j j
j

p U W x r xΣ Σ Σ0 1− −λ
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{ }x
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j

p U W x r xΣ Σ Σ0 1   subject to   =
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Simplifying the Portfolio Selection Problem 
with State-Securities (Continued)

x1 + x2 + x3 = 1

We have four equations in four unknowns, λ and (x0, x1, x2). But
since generally U′(W1) is a nonlinear function of W1 (to build in risk
aversion), these equations cannot be analytically solved. That is, each
unknown cannot be isolated on the left-hand side of an equation whose
right-hand side does not contain the other unknowns.

Now, suppose there is a complete market, where the investor can
buy a full set of state-securities. In that case, the portfolio selection
problem can be stated as:

where xs is the proportion of the investor’s portfolio devoted to state-se-
curities that pay off only in state s. rs is the return on state security s
(which, of course, is only nonzero if state s occurs). Thus, Ws1 ≡ W0xsrs

can be interpreted as the investor’s future wealth in state s. As before,
but differentiating by xs, we derive: psU′(W0xsrs)rs = λ/W0. Again, with
three states, writing this out in longhand, we need to solve:

x1 + x2 + x3 = 1

for λ and (x1, x2, x3). Clearly, these equations are much easier to solve.

p U W x r r
W

p U W x r r
W

p U W x r r
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The paper draws a distinction between consensus and composite eco-
nomic characteristics. In each case, equilibrium prices are set as if there
were a single representative agent with the consensus or composite charac-
teristics. Composite characteristics depend only on exogenously specified
parameters (in particular, they do not depend on prices), while consensus
characteristics can depend as well on variables such as prices that are en-
dogenous to the economy.

Michael John Brennan and Alan Kraus, in [Brennan-Kraus (1978)]
“Necessary Conditions for Aggregation in Securities Markets,” Journal
of Financial and Quantitative Analysis 13, No. 3 (September 1978), pp.
407–418, define the aggregation problem as the derivation of equilib-
rium security prices that are independent of the allocation of initial
wealth across investors. This is a stronger assumption than that of Wil-
son (1968), so the result must be a subset of his derived conditions.
While Rubinstein derived a set of sufficient conditions for aggregation,
Brennan and Kraus show that these are also necessary. Earlier papers
that provide pieces of a similar result for an economy under certainty in-
clude: (1) [Gorman (1953)] W.M. Gorman, “Community Preference
Fields,” Econometrica 21, No. 1 (January 1953), pp. 63–80, who shows
that a necessary condition for aggregation, as defined by Brennan and
Kraus, is that the Engle curves of investors be parallel straight lines.
These conditions were apparently first discovered by Giovanni Battista
Antonelli, privately published in 1886 in [Antonelli (1886)] “Sulla teoria
matematica della economia politica,” translated from Italian into 
English as “On the Mathematical Theory of Political Economy,” in 
Preferences, Utility and Demand, edited by J.S. Chipman, L. Hurwicz,
M.K. Richter, and H.F. Sonnenschein (Harcourt Brace, 1971), pp.
333–360; and (2) [Pollack (1971)] Robert A. Pollack, “Additive Utility
Functions and Linear Engle Curves,” Review of Economic Studies 38,
No. 4 (October 1971), pp. 401–414, who shows that a necessary 
and sufficient condition for an investor to have linear Engle curves is
HARA utility.

Rubinstein (1974) also contains a new result concerning aggregation
of heterogeneous probability beliefs in the context of perhaps the simplest
rational competitive equilibrium model with risk aversion embodying this
form of heterogeneity.
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Illustration of an Economy with 
Heterogeneous Beliefs

In particular, let:

s = 1, . . . , S enumerate the exhaustive set of possible states, only
one of which can occur at date 1.

πs be the date 0 price to a dollar received at date 1 if and only if state
s occurs.

i = 1, . . . , I enumerate the set of different investors in the economy,
who differ only with respect to the subjective probabilities they
assign to states.

ps
i be the subjective probability believed by investor i that state s will

occur.

Cs
i be the number of dollars chosen by investor i to be consumed in

state s.

W0 be the initial wealth of each investor at date 0; initially before
exchange this is composed of given endowments to date 1 con-
sumption Cs to be divided among claims to consumption at date
1 such that each investor i’s state-by-state choices of consump-
tion are constrained so that their present value equals his initial
wealth (that is, W0 ≡ ΣsπsCs = ΣsπsCs

i).

Each investor is assumed to maximize his expected logarithmic util-
ity of date 1 consumption, Σsps

ilog(Cs
i). Therefore, we can concisely sum-

marize each investor’s problem as:

where λi is the Lagrangian multiplier for investor i. Differentiating by
Cs

i, the first-order condition for a maximum is:

p

C
s
i

s
i i s= λ π

max log( ) ( )
{ }C

s s
i

s
i

i s s s
i

s
i

p C C WΣ Σ− −λ π 0
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We are now in position to ask a critical question: To what extent do
heterogeneous beliefs across investors affect equilibrium prices? In par-
ticular, does increasing dispersion of beliefs across different investors
have any systematic effect on security prices? To isolate a pure disper-
sion effect, suppose for a given state we consider a “mean-preserving
spread” of beliefs across different investors. Such a change leaves the
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Illustration of an Economy with 
Heterogeneous Beliefs (Continued)

Summing this over all states, using the property Σsps
i = 1, and substi-

tuting in the wealth constraint, it is quite easy to see that λi = 1/W0. Now
using the first-order condition, we have:

This has the very sensible and transparent implications that any in-
vestor’s optimal holdings of claims to state s consumption, other things
being equal, increases with his current wealth (W0), increases with the
probability he assigns to state s, and decreases with the cost of claims to
state s.

What is more, summing the above equation over all investors, we
have:

where Cs
M ≡ (ΣiCs

i)/I and ps
M ≡ (Σsps

i)/I. Cs
M has the natural interpretation

of per-capita consumption. Rearranging this, we can say that in equilib-
rium, state-prices are set as if there exists a representative agent with
subjective beliefs ps

M that are a simple arithmetic average of the separate
beliefs of all investors in the economy. That is,

Other things being equal, state-prices will be higher the higher this
average belief.33
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arithmetic average (mean) belief the same. For example, suppose there
are just two investors i = 1, 2, and for a given state s, ps

1 = .3 and ps
2 = .5.

The average belief ps
M = (.3 + .5)/2 = .4. An example of an increase in be-

lief dispersion with a mean-preserving spread would be a change in be-
liefs to ps

1 = .1 and ps
2 = .7, thus preserving the mean of (.1 + .7)/2 = .4.

Trivially, for our example, it is only the mean that matters; pure belief
dispersion has no effect. So I conclude that in the case of logarithmic
utility, moving from homogeneous to heterogeneous beliefs has no effect
on current prices since the only property of investor beliefs that affects
prices is their mean across investors for each state.

However, Varian (1985) shows that logarithmic utility is a knife-edge
case (as it is in so many other situations). For example, if we suppose more
generally that all investors have utility functions with constant relative risk
aversion (of which logarithmic utility is but a special case), for economies
in which investors are more (or less) risk averse than logarithmic utility,
pure increases in the dispersion of beliefs will tend to reduce (or increase)
current security prices. Varian concludes that since several pieces of empir-
ical evidence suggest investors are more risk averse than logarithmic utility,
pure increases in dispersion of beliefs will tend to reduce security prices.

252 A HISTORY OF THE THEORY OF INVESTMENTS

Intuitive Explanation of Varian’s Result 
on Heterogeneous Beliefs

To understand the intuition behind Varian’s analysis, first reconsider the
logarithmic utility case where optimal consumption choice for state s by
investor i is:

Following our two-investor example, where belief dispersion is in-
creased as ps

1 changes from .3 to .1, and ps
2 changes from .5 to .7, the first

investor can decrease his consumption and by ∆Cs
1 = γs(.1 – .3) = – .2γs

while second investor 2 can increase his consumption by ∆Cs
2 = γs(.7 – .5)

= .2γs, an exactly offsetting amount, with no pressure on γs (that is, state-
prices) to change as well. However, suppose instead the two investors
have more general power utility functions [1/(1–b)](Cs

i)1–b. Here b mea-
sures (proportional) risk aversion, with a minimum of b = 0 signifying risk
neutrality, and increases in b implying greater and greater risk aversion. In
the limiting case of b = 1, this can be shown to imply logarithmic utility. 
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Constantinides (1982) also specializes the very general group decision-
making setting of Wilson (1968) to an explicit securities market equilib-
rium context. Constantinides derives the following theorem as a
justification for assuming a representative investor. In an exchange econ-
omy with perfect, competitive, and complete markets, assume all in-
vestor/consumers have the same beliefs and potentially different
time-additive, state-independent utility functions that are increasing,
strictly concave, and differentiable. Then there is another otherwise
identical economy (with the same equilibrium state-prices) with just one
representative agent (endowed with aggregate consumption) who has
the same beliefs and also has a time-additive utility function that is in-
creasing, strictly concave, and differentiable. Constantinides shows that
the Rubinstein (1976/Autumn) aggregation assumptions are much more
restrictive than necessary to obtain a representative investor. However,
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Intuitive Explanation of Varian’s Result 
on Heterogeneous Beliefs (Continued)

Therefore, for b > 1, the investors are more risk averse than logarithmic
utility investors. Using this utility function, the first-order condition that
replaces the earlier one can be written:

Now for, say, b = 2, consider the same change in belief dispersion: If
state-prices remain unchanged, the two investors will want to change
their state s consumption by:

Since these changes tend not to be exactly offsetting, the state-price
for s must change. In fact, if this price does not change, since the in-
creasingly pessimistic investor 1 will want to sell more than the increas-
ingly optimistic investor 2 will want to buy, to the contrary, the state s
price will need to fall to cause these changes in state s consumption for
the two investors to exactly offset.
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∆

C

C

s s s

s s s

1 1 1

2 2 2

1 3 231

7 5 130

= − = −

= − =

γ γ

γ γ

( . . ) .

( . . ) .

   and   

C ps
i

s
i

s
i b

s
i

i s

b

= ≡






γ γ
λ π

( ) /
/

1
1

1
   with   

ccc_rubinstein_pt02_99-308.qxd  1/12/06  1:41 PM  Page 253



in general it will not be easy to show explicitly how the characteristics of
the representative investor are an aggregation of the traits of individual
investors, and for this, Rubinstein’s special cases are useful.

1975 Marshall E. Blume and Irwin Friend, “The Asset Structure of Indi-
vidual Portfolios and Some Implications for Utility Functions,” Journal of
Finance 30, No. 2 (May 1975), pp. 585–603.

1975 Marshall E. Blume and Irwin Friend, “The Demand for Risky As-
sets,” American Economic Review 65, No. 5 (December 1975), pp. 900–902.

DIVERSIFICATION, RISK AVERSION, 
CAPITAL ASSET PRICING MODEL (CAPM)

B lume-Friend (1975/May) document one of the first pieces of anomalous
evidence standing against the hypothesis of rational investor behavior. Us-

ing databases containing information about the composition and size of port-
folios held by individual taxpayers in the United States (partially derived from
income tax returns, which require individuals to list their sources of dividend
income), they find that individuals are surprisingly undiversified, with the me-
dian household receiving income from only two payers. Modern investment
theory, of course, suggests that individuals should instead be highly diversi-
fied. Even large net worth households (in excess of $1,000,000 exclusive of
homes) typically receive payments from only 14 sources. The Sharpe-Lintner-
Mossin-Treynor CAPM implies that every firm must have the same number
of shareholders; in particular, every investor must be a shareholder. Potential
explanations—holdings in mutual funds, trading costs, locked-in capital
gains, and heterogeneous expectations—cannot explain this anomaly. How-
ever, the results of John L. Evans and Stephen H. Archer, in [Evans-Archer
(1968)] “Diversification and the Reduction of Dispersion: An Empirical
Analysis,” Journal of Finance 23, No. 5 (December 1968), pp. 761–767, sug-
gest that portfolios with even just 10 randomly selected stocks are expected to
have a standard deviation of return almost as small as the standard deviation
of portfolios containing hundreds of stocks. Indeed, K.H. Johnson and D.S.
Shannon, in [Johnson-Shannon (1974)] “A Note on Diversification and the
Reduction of Dispersion,” Journal of Financial Economics 1, No. 4 (Decem-
ber 1974), pp. 365–372, show that given the randomly selected securities, if
instead of investing in an equally dollar-weighted portfolio, the weights are
chosen to minimize risk taking into account the estimated correlations of
their returns, the number of securities can be reduced even further.

In Blume-Friend (1975/December), the authors use their wealth composi-
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tion information regarding relatively riskless and risky assets to infer proper-
ties of investor utility functions (assuming, of course, that investors have util-
ity functions). They find that the typical investor has approximately constant
relative risk aversion (CRRA) with a relative risk aversion coefficient of 2,
somewhat more risk averse than would be implied by logarithmic utility.

Virtually all empirical studies of modern asset pricing models have
used the realized frequency distributions of security prices as proxies for
the expectational distributions that actually appear in the theories. So,
should a model be rejected, one can never be sure that the problem lies
with the model and not with this proxy. John G. Cragg and Burton G.
Malkiel, in [Cragg-Malkiel (1982)] Expectations and the Structure of
Share Prices (Chicago: University of Chicago Press, 1982), make the first
extensive study of asset pricing models that attempts to measure investor
expectations directly. In particular, they collect forecasts from 19 invest-
ment management firms, covering 175 firms over the period 1961–1969.
They conclude that the models perform better using these forecasts as
proxies for expectations compared to using historical realizations. Perhaps
most interesting is the result that the dispersion of growth forecasts across
the investment firms concerning the same event provides a better measure
of security risk than either the historically realized variance or beta.

1975 Eugene F. Fama, “Short-Term Interest Rates as Predictors of Infla-
tion,” American Economic Review 65, No. 3 (June 1975), pp. 269–282.

1981 Eugene F. Fama, “Stock Returns, Real Activity, Inflation, and Money,”
American Economic Review 71, No. 4 (September 1981), pp. 545–565.

FISHER EFFECT, NOMINAL VS. REAL INTEREST RATE,
INFLATION, STOCK PRICES AND INFLATION

The Fisher effect relates the nominal interest rate to the real interest rate
and the rate of inflation; see Fisher (1930). In a perfect market with no

arbitrage and predictable inflation, it is quite easy to see that the nominal
riskless return (r) equals the real riskless return (ρ) times the inflation re-
turn (i): r = ρi. Actually, since the nominal return cannot fall below 1 be-
cause of the “mattress strategy,” the corrected relation is r = max(1, ρi).
Generalizing this to uncertain inflation, this relation suggests that r =
ρE(i). Fama (1975) actually examines an almost equivalent version of this
hypothesis that the nominal riskless rate of return equals the sum of the
real riskless rate of return plus the expected rate of inflation. So buried in-
side the current nominal riskless return over period ∆ is the market’s ex-
pectation of inflation over the same time interval. This is an important
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example of the implication of a well-functioning market: The prices of securi-
ties set in such a market contain valuable forecasts of future economic events,
in this case the future rate of inflation. Moreover, if the market is rational, it
should build into prices all relevant information that is humanly cost-effective
to gather. Therefore, if we can find an inexpensive method to extract this pre-
diction from the prices of riskless securities, there is no reason to hire a finan-
cial economist to do a study of the economy to forecast inflation.

Earlier attempts to extract useful predictions of inflation from ob-
served nominal interest rates were not promising. Fama is perhaps the first
to show that this could be done, at least over the period January 1953 to
July 1971 using one- to six-month U.S. Treasury bills to measure nominal
interest rates and the consumer price index (CPI) to measure inflation. His
key idea is to assume that the real rate is constant over this period so that
all variation in nominal rates can be attributed to changes in the market’s
prediction of the expected rate of inflation. Fama regresses: it = –α0 + α1rt +
α2it–1 + εt, where it, rt, and it–1 (past rates of inflation) in this equation are in-
terpreted as observed rates over the subscripted periods. His model pre-
dicts α0 = the real rate, α1 = 1, α2 = 0, and the serial correlation of εt is zero.
Making a long story short, his results confirm these predictions including
the constancy of the real rate. In addition, he estimates that variation in rt

explains about 30 percent of the variance of it for one-month bills, and
about 65 percent of the variance of it for five- and six-month bills.

Subsequently, in [Fama-Gibbons (1984)] “A Comparison of Inflation
Forecasts,” Journal of Monetary Economics 13, No. 2 (May 1984), pp.
327–348, Fama and Michael R. Gibbons improve Fama’s earlier model to
allow the real rate intercept to follow a slow-moving random walk. Fama
(1981) uses this refined model to estimate expected (–α0 + α1rt) and unex-
pected (εt) inflation by constraining the regression coefficients α1 = 1 and α2
= 0. With this in hand, Fama then tests the relation between stock market re-
turns and inflation. Naively, one might have expected that like Treasury bills,
nominal stock returns should be higher in times of high rates of inflation,
and it may be that their underlying risk-adjusted real return is a slow-moving
random walk. One would think that stocks should be good hedges against
inflation. Disturbingly, at least during the period 1953–1980, just the oppo-
site seems to be true. See, for example, John Lintner, in [Lintner (1975)] “In-
flation and Security Returns,” Journal of Finance 30, No. 2 (May 1975), pp.
259–280, Presidential Address to the American Finance Association.

Fama attempts to explain this by a “proxy argument.” He argues that
(1) stock returns are positively correlated with favorable real economic fun-
damental variables such as industrial production, and (2) inflation (particu-
larly expected inflation) is negatively correlated with these real variables,
and therefore (3) stock returns can reasonably be negatively correlated with
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inflation. Thus, Fama again, as he did with Treasury bill returns and infla-
tion, rescues the rational market hypothesis from a serious challenge. On
the way he picks up further evidence, showing empirically that stock re-
turns lead other economic variables. But why should industrial production,
for example, be negatively correlated with inflation? Fama’s quantity theory
story is that expected increases in industrial production lead to increasing
real demand for money, which because money does not usually grow suffi-
ciently, requires accommodation through reduced inflation.

1975 Mark Rubinstein, “Securities Market Efficiency in an Arrow-
Debreu Economy,” American Economic Review 65, No. 5 (December 1975),
pp. 812–824.

EFFICIENT MARKETS, FULLY REFLECT INFORMATION, 
NO TRADE THEOREMS, STATE-SECURITIES, 
CONSENSUS BELIEFS, PARETO OPTIMALITY

Rubinstein (1975) tries to give specific meaning to the phrase “equilibrium
prices reflect information,” which heretofore had been used very loosely

in the literature despite its importance. The key idea is to link this concept
with portfolio revision. Consider an economy of many consumer/investors
with arbitrarily different beliefs and preferences (except all are risk averse
and have additive utility functions of consumption). At date 0, long-lived
state-securities are available for consumption at dates 1 and 2. At date 1, no
new state-securities become available, but new information does and is het-
erogeneously distributed to investors, potentially changing the beliefs of all
consumer/investors as well as the equilibrium prices of state-securities to
date 2 consumption. This setup is designed so that at date 1 the only reason
agents have to change their previously purchased claims to date 2 consump-
tion stems from the arrival of the new information. If an agent does not re-
vise his portfolio of these claims, but is happy to continue holding his prior
claims, then it makes sense to say that despite whatever change in prices may
have occurred, he sees his new information reflected in the revised prices.

The paper then derives an intuitively plausible and specific condition
governing the intertemporal structure of the evolution of prices, which
turns out not to depend on preferences and endowments (despite the ag-
nosticism about these in its assumptions), that is necessary and sufficient
for an investor not to revise his portfolio. If this condition holds, with all
expectations assessed by an investor at date 0, his expected compound re-
turn of any state-security from date 0 to date 2 divided by the riskless re-
turn from date 0 to date 1 equals his expected return of the state-security
between date 1 and date 2—a sort of “unbiased state-price” condition.
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This, then, is a necessary condition for the investor to perceive his new in-
formation that he is to receive at date 1 reflected in the revised equilibrium
prices to date 2 consumption. Among other implications, this condition,
for example, is actually inconsistent with zero correlation in successive re-
turns of state-securities to consumption at date 2, suggesting that simple
random walk models are not the natural outcome of equilibrium even
when prices fully reflect all information.

This approach may be contrasted with Grossman’s (1976) notion of
prices fully reflecting information. His model is more about how dispersed
information gets into prices. To show this meaningfully, he is forced to ex-
amine a very restrictive economy (compared to the one here), to assume that
investors somehow know enough about the structure of the economy (the
preferences and endowments of other investors) to infer the information they
are missing from current prices, and to know that all investors are equally
well informed. This paper, in contrast, is agnostic about the process investors
use to form their beliefs. It is perfectly possible, for example, for them to
have followed the exercise that Grossman outlines. However their beliefs are
formed, the pricing condition developed in the paper is nonetheless necessary
and sufficient for their new information to be fully reflected in prices.

For all information at dates 0 and 1 to be reflected in prices, Rubin-
stein uses the idea of “consensus beliefs”: the set of identical beliefs all con-
sumer/investors would need so that in an otherwise identical economy all
prices (at dates 0 and 1) would remain unchanged. All information is said
to be fully reflected in prices if this condition is met: if all the agents were
to share their information to the point that they would reach complete
agreement, and their new beliefs would happen to be the consensus beliefs.
Unfortunately, the paper leaves the issue at this point and does not show
how to operationalize such an experiment. Grossman takes this a step fur-
ther by describing a mechanism whereby the disparate information of dif-
ferent investors becomes shared among investors so that it is reflected in
prices. But his notion of efficiency is much too restrictive to be taken as an
empirical possibility. By contrast, the notion of consensus beliefs, for ex-
ample, permits the market to be informationally efficient even if all in-
vestors do not end up having the same beliefs, whether they fail to start
that way, or fail to infer the relevant information of all other investors
from prices in the process of forming rational expectations.

Notice that Rubinstein’s notion of efficient markets is closely related to
what later became known as the Milgrom-Stokey “no trade theorem” de-
veloped in [Milgrom-Stokey (1982)] Paul Milgrom and Nancy Stokey, “In-
formation, Trade and Common Knowledge,” Journal of Economic Theory
26, No. 1 (February 1982), pp. 17–27. Traders have moved to their
Pareto-optimal positions in the first period, new information then becomes
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available, and the absence of trade is identified with prices having immedi-
ately adjusted the reflect to new information.

In a 1975 working paper that remained unpublished until 1987 (despite
several attempts to publish it), [Jaffe-Rubinstein (1987)] “The Value of In-
formation in Personal and Impersonal Markets” in Modern Finance and In-
dustrial Economics, edited by Tom Copeland (Oxford: Basil Blackwell,
1987), Jeffrey Jaffe and Mark Rubinstein clearly anticipate Milgrom-Stokey
(1982). This paper considers a “completely personal market” in which, in
addition to his own resources, tastes, and beliefs, each investor knows the
resources and tastes of all other consumers, and knows the “knowledge
type” of the information he and all others have. That is, investors agree on
the ranking of informativeness of all investors, although they do not know
the content of the information other investors possess. The paper then
proves that in such a market, investors can identify Pareto-optimal alloca-
tions independent of their beliefs. This implies the “no trade” corollary that
in such a market, if the endowed allocation is Pareto-optimal, then no in-
vestor will trade and the private value of information is zero.

1973 Richard Roll, “Evidence on the ‘Growth-Optimum’ Model,” Jour-
nal of Finance 28, No. 3 (June 1973), pp. 551–566.

1975 Alan Kraus and Robert H. Litzenberger, “Market Equilibrium in a
Multiperiod State-Preference Model with Logarithmic Utility,” Journal of
Finance 30, No. 5 (December 1975), pp. 1213–1227.

1976 Mark Rubinstein, “The Strong Case for the Generalized Logarith-
mic Utility Model as the Premier Model of Financial Markets,” Journal of
Finance 31, No. 2 (May 1976), pp. 551–571; the full version of this paper
appears in Financial Decision Making under Uncertainty, edited by Haim
Levy and Marshall Sarnat (New York: Academic Press, 1977).

LOGARITHMIC UTILITY, LOGARITHMIC UTILITY CAPM,
AGGREGATION, HETEROGENEOUS BELIEFS, 

CONSENSUS BELIEFS, LIMITED LIABILITY, 
DEFAULT-FREE ANNUITY, 

INTERTEMPORAL PORTFOLIO SEPARATION

Roll (1973/June) develops and empirically tests an alternative to the
CAPM based on maximizing logarithmic utility of wealth at the end of

one period.
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M
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r

r
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replaces the somewhat more complex CAPM formula of Sharpe (1964),
Lintner (1965/February), Mossin (1966), and Treynor (1999): µj = 
r + θCov(rj, rM). If simplicity is a desideratum for theory, it is hard to
beat this.

Kraus-Litzenberger (1975) extend Roll’s model to consumption over
many periods, showing that it continues to lead to very simple portfolio
decision rules and equilibrium pricing relations. They also show that 
the model can easily accommodate heterogeneous consumer beliefs, also
shown in Rubinstein (1974). They argue that the model is a serious 
competitor to the CAPM since it is even simpler to state and derive 
and can easily permit heterogeneous beliefs while also making no exo-
genous assumptions about probability distributions, such as joint normal-
ity. Even if investment opportunities are stochastic, as shown before by
Merton (1973/September) in continuous time, these will not complicate the
single-period pricing relation. Moreover, the CAPM, if justified by joint
normality, is inconsistent with limited liability of the market portfolio (al-
though this is not true of the continuous-time version), while the log model
implies that the market portfolio will always have positive value.

It is convenient to have at hand as rich an example as possible of the
“standard finance model” that still permits closed-form solutions for all
decision variables and prices. Rubinstein (1976/May) argues that a com-
plete markets model based on time-additive utility terms of the form log(A
+ Ct) is just such an example. This multiperiod consumption/portfolio
equilibrium model has the following properties: (1) it requires decreasing
absolute risk aversion while permitting increasing, constant, or decreasing
relative risk aversion across different agents; (2) it assumes no exogenous
specification of the contemporaneous or intertemporal stochastic process
of security returns; (3) it permits heterogeneity with respect to initial
wealth, lifetime, and time and risk preferences and beliefs; (4) it results in a
complete specification of consumption/portfolio decision and sharing rules;
(5) it explains the demand for default-free bonds of various maturities and
options; (6) it solves the aggregation problem; and (7) it results in a com-
plete endogenous specification of the contemporaneous and intertemporal
process of security prices that includes simple necessary and sufficient con-
ditions for an unbiased term structure and a random walk in the market
portfolio.

One of the features of equilibrium first observed in this paper is an in-
tertemporal separation theorem in which one of the funds is a default-free
annuity (that is, an equally weighted portfolio of zero-coupon bonds of
every maturity). This replaces the riskless security in single-period models
or in multiperiod models that impose (as this model does not) exogenous
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restrictions on future riskless returns. And so this is the first equilibrium
model that explains the demand for default-free bonds of different maturi-
ties and suggests that in addition to the market portfolio, one of the first
portfolios an economy will want to make available to its agents is a de-
fault-free annuity. To connect this with earlier literature, in the Merton
(1973/September) generalized CAPM, investors hold an unidentified port-
folio to hedge themselves against shifts in the opportunity set. Rubinstein
identifies this as a portfolio that contains zero-coupon bonds of different
maturities. These multiperiod separation results are extended further in
[Rubinstein (1981)] Mark Rubinstein, “A Discrete-Time Synthesis of Fi-
nancial Theory,” Research in Finance 3, (Greenwich, CT: JAI Press, 1981),
pp. 53–102. There it is shown, for example, in a three-date similar econ-
omy but with exponential utility, that all consumer/investors will divide
their wealth between three mutual funds: (1) the market portfolio, (2) a de-
fault-free annuity, and (3) a third fund holding long-term bonds (maturing
at date 2) and at the same time shorting short-term bonds (maturing at
date 1). Demand for the third fund comes from heterogeneous time prefer-
ence toward consumption at date 2. Consumer/investors with more (or
less) patience than average for date 2 consumption will buy (or sell) this
fund, since they will be more (or less) eager to hedge themselves against
shifts in investment opportunities.

1976 Fischer Sheffey Black, “Studies of Stock Price Volatility Changes,”
Proceedings of the 1976 Meetings of the American Statistical Association,
Business and Economics Section (August 1976), pp. 177–181.

1979 Robert Geske (July 7, 1944–), “The Valuation of Compound Op-
tions,” Journal of Financial Economics 7, No. 1 (March 1979), pp. 63–81.

1983 Mark Rubinstein, “Displaced-Diffusion Option Pricing,” Journal
of Finance 38, No. 1 (March 1983), pp. 213–217.

1996 John C. Cox, “Notes on Option Pricing I: Constant Elasticity of
Variance Diffusions,” unpublished notes, Stanford University (September
1975) and finally published as “The Constant Elasticity of Variance Diffu-
sion Option Pricing Model,” Journal of Portfolio Management, Special Is-
sue: A Tribute to Fischer Black (December 1996), pp. 15–17.

VOLATILITY, STOCHASTIC VOLATILITY, 
COMPOUND OPTIONS, CONSTANT ELASTICITY 
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OF VARIANCE (CEV) DIFFUSION MODEL, 
FINANCIAL LEVERAGE, OPERATING DIVERSIFICATION,

MYOPIA, CONTINUOUS-TIME CONTINUOUS-STATE CAPM

B lack (1976) is perhaps the first paper to verify empirically that in the
time series of stock prices, stock return volatility tends to vary inversely

with stock price changes. In particular, if a stock price rises (or falls)
quickly, its volatility or return will tend to fall (or rise). A theoretical model
with this property is proposed by Cox (1996).

While Cox simply assumes that volatility and price are inversely re-
lated, another option pricing model with this inverse relation built in
rather than simply asserted is developed in Geske (1979). As in Merton
(1974), Geske assumes that the market value of all the securities of a firm
follows geometric Brownian motion (that is, follows a lognormal random
walk).34 In that case, if the firm has debt, as the stock price rises, although
the debt perhaps becomes more valuable, the firm’s stock rises in value
even faster. This will reduce the debt-equity ratio of the firm, measured in
terms of market values. This reduction in leverage will reduce the subse-
quent risk (hence volatility) of owning the firm’s stock. So we have stock
prices rising and volatility falling.

This model is carried yet another step further in Rubinstein (1983).
Rubinstein shows that a deeper analysis of corporate determinants of stock
price volatility can produce either positive or negative correlation between
stock price changes and stock return volatility. He supposes that the assets
of the firm can be divided roughly into two categories: relatively low-risk
assets in place as a result of previous investments and the present value of
relatively high-risk opportunities to make profitable investments in the fu-
ture. As the stock price of the firm rises quickly, typically it will be the sec-
ond class of assets that rises relatively more in value than the first class of
assets. This will move the composition of the firm’s asset portfolio further
in the direction of the risky asset category. In turn this will increase the
volatility of the stock. If the asset composition effect is stronger than the
leverage effect considered by Geske, the net effect will be to see stock re-
turn volatility moving in the same direction as the stock price. This re-
search predicts that the sign as well as size of the correlation between stock
price and volatility will differ across firms not only depending on the de-
gree of their financial leverage but also depending on their asset composi-
tion between relatively low-risk and relatively high-risk assets.

1976 Barr Rosenberg and James A. Ohlson, “The Stationary Distribu-
tion of Returns and Portfolio Separation in Capital Markets: A Fundamen-

262 A HISTORY OF THE THEORY OF INVESTMENTS

ccc_rubinstein_pt02_99-308.qxd  1/12/06  1:41 PM  Page 262



tal Contradiction,” Journal of Financial and Quantitative Analysis 11, No.
3 (September 1976), pp. 393–402.

PORTFOLIO SEPARATION, STATIONARITY

Rosenberg-Ohlson (1976) is one of the first articles to point out the perils
of imposing exogenous assumptions on the intertemporal process of se-

curity prices in an equilibrium model. This runs the danger that aspects of
this process that will be determined by the equilibrium may render the ex-
ogenous assumptions inconsistent. Such an example is models that assume
there exist many different risky securities that have returns that are serially
independent and identically distributed (i.i.d.) over time, with a constant
cross-correlation structure. Clearly, it is possible to have an equilibrium
consistent with this. But, if other assumptions are additionally made that
result in portfolio separation (with a riskless security and the market port-
folio), then the equilibrium is inconsistent. Rosenberg and Ohlson show
that the combination of i.i.d. returns over time and portfolio separation
forces all risky securities to have exactly the same returns over the same pe-
riod—in essence, then, these are models with just one risky security.

The Merton (1973/September) intertemporal asset pricing model, with
two-fund separation, is a good example of a model that falls into this trap.
This degeneracy can be easily explained. In the model, at each date the
only state-variables that affect portfolio choice are available wealth and
the rates of return on available securities. With portfolio separation, the
proportionate composition of a consumer/investor’s optimal portfolio of
risky securities is dependent on only the joint distribution of security re-
turns; but if this distribution is identical at each date, then this proportion-
ate composition must also be identical at each date. Since all agents hold
the same risky portfolio, this must be the market portfolio. Therefore, the
proportionate composition of the market portfolio must be identical at
each date. But for this to be true, with constant numbers of shares, the rel-
ative prices of each security compared to each other must remain the same
over time. The only way this can occur is if, at each date, the returns of all
risky securities are the same.

1976 Mark Rubinstein, “The Valuation of Uncertain Income Streams
and the Pricing of Options,” Bell Journal of Economics and Management
Science 7, No. 2 (Autumn 1976), pp. 407–425.

CRRA INTERTEMPORAL CAPM, 
PRICING UNCERTAIN INCOME STREAMS, 
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SINGLE-PRICE LAW OF MARKETS, ARBITRAGE, STATE-PRICES,
CONSUMPTION-BASED CAPM, 

LOCAL EXPECTATIONS HYPOTHESIS, 
UNBIASED TERM STRUCTURE, RANDOM WALK, 

OPTION PRICING, TIME-ADDITIVE UTILITY, 
LOGARITHMIC UTILITY, BLACK-SCHOLES FORMULA, 

EQUITY RISK PREMIUM PUZZLE, 
JOINT NORMALITY COVARIANCE THEOREM

Rubinstein (1976/Autumn) develops the general formulation for asset
pricing from stochastic discount factors and the special case of the

CRRA discrete-time intertemporal equilibrium model that in subsequent
years was to replace the CAPM as the generator of new discrete-time finan-
cial theory and became the basis for the first paper, Mehra-Prescott (1985),
to emphasize the “risk-premium puzzle.”

Rubinstein’s paper appears to contain the first statement that, even in
an incomplete market, assuming the single-price law of markets and in-
vestor nonsatiation (which imply no arbitrage), price equals the expected
value of future weighted cash flows where the weightings of the cash flows
are the same weights used for all securities: that is, Pj = E(XjZ) where Pj is
the current price of security j, Xj are its cash flows, Z is the stochastic dis-
count factor (the same for all securities), and E is an expectation operator.
This is frequently written as 1 = E(rjZ) where rj ≡ Xj/Pj.

In the early 1970s, previous research had led to the idea of state-prices,
the use of the concept of complete markets to solve for investor portfolio
choices and equilibrium prices, and the identification of state-prices with
products of subjective probabilities and an adjustment factor for risk aver-
sion divided by the riskless return. But the question of the minimal condi-
tions for the existence of state-prices had not been worked out in its full
generality, particularly in the context of incomplete markets.

Rubinstein derives the existence of state-prices from the single-price
law, which states that two securities (or portfolios of securities) with the
same payoffs across states must have the same current price. Clearly, if this
fails, a very simple form of arbitrage is possible: (short) sell the high-priced
security, use part of the proceeds to buy the low-priced security, and pocket
the difference. Suppose I define “pseudo state-prices” as real numbers λs,
the same for any security (or portfolio), such that the price P of the security
is related to its payoffs (Xs) according to: P = ΣsλsXs. Unlike state-prices πs,
the numbers λs can be negative as well as positive. I can now state a simple
condition for the existence of such numbers:

The single-price law holds if and only if pseudo state-prices exist.
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Proof of the Relation between the 
Single-Price Law and Pseudo State-Prices

The theorem makes two separate claims:

1. If the single-price law holds, then pseudo state-prices exist.
2. If pseudo state-prices exist, then the single-price law holds.

To prove the second claim, consider two securities (or portfolios)
with respective payoffs Xs1 and Xs2. If pseudo state-prices exist, then
there exist λs such that their prices P1 = ΣsλsXs1, and P2 = ΣsλsXs2. Clearly,
if for all states Xs1 = Xs2, then P1 = P2, so the single-price law holds.

To prove the first claim, it is well-known from the theory of simulta-
neous linear equations that a necessary and sufficient condition for a so-
lution to exist is that any linear combination of the equations (this, in
effect, makes a new portfolio out of the original tableau of securities)
which reproduces the same coefficients Xs as a preexisting equation must
have the same left-hand side value P as that equation. Translated into the
language of securities, this implication is the single-price law of markets.

In particular, if there are m equations in n unknowns and m > n, for
a solution to exist, it must be possible to create m – n of the equations
from linear combinations of the remaining n equations. Stating this anal-
ogously in finance terminology, with m securities and n states such that
m > n, for state-prices to exist, for any of m – n securities it must be pos-
sible to create a portfolio from the other n securities that has the same
payoffs, and such a portfolio must have the same price as the security. In
this sense, m – n of the securities must be redundant. For example:

P1 = 1λ1 + 2λ2 + 3λ3

P2 = 1λ1 + 1λ2 + 1λ3

P3 = 1λ1 + 1λ2 + 0λ3

This reproduces our earlier example of the asset, cash, and deriva-
tive—see the discussion under Arrow (1953). These equations are lin-
early independent since no linear combination of any two of them can
reproduce the payoffs of the remaining third. In this case, pseudo state-
prices exist (indeed, since there are as many securities as states, they will
be unique). Suppose now a fourth security also exists:

P4 = 0λ1 + 1λ2 + 4λ3
(Continued)
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Notice that this result does not require any of the more stringent as-
sumptions commonly used in finance such as investor rationality, risk aver-
sion, aggregation, complete markets, normality, and so on. But the
single-price law does not by itself imply that there is no arbitrage. For ex-
ample, the single-price law is consistent with two securities with payoffs [1,
2] and [3, 4] selling for the same price. But in this case, either λ1 or λ2 must
be negative. That is, the single-price law does not by itself imply that λs > 0.
To deliver positive state-prices, Rubinstein makes the additional assump-
tion that, ceteris paribus, the larger its payoff for any state, the greater the
current price of the security. Under this assumption, the λs must be positive
and hence equivalent to the state-prices πs.

This paper also foreshadows several developments in asset pricing
theory: (1) the consumption-based intertemporal asset pricing model
(Breeden 1979); (2) the equity risk premium puzzle (Mehra-Prescott
1985); and (3) the special role of constant relative risk aversion (CRRA)
in leading to an unbiased term structure defined in terms of the “local ex-
pectations hypothesis”—the expected next period returns are the same for
all bonds, irrespective of their maturities—the definition of an unbiased
term structure advocated later in Cox-Ingersoll-Ross (1981). Rubinstein
also derives necessary and sufficient equilibrium conditions for the value
of the market portfolio to follow a random walk.

With respect to (1), Rubinstein shows that if at each date cash flows
(Xjt) of security j and aggregate per capita consumption (Ct) are bivariate
normal (but the time-series structure of stochastic security cash flows is
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Proof of the Relation between the 
Single-Price Law and Pseudo State-Prices (Continued)

To check if pseudo state-prices (λ1, λ2, λ3) still exist, I first form a
portfolio out of the first three securities that replicates the payoff of the
new security. Note that if we buy 1 unit of security 1, buy 1 unit of secu-
rity 2, and sell 2 units of security 3, we will have the same payoff in
every state as security 4:

[0 1 4] = [1 2 3] + [1 1 1] – 2[1 1 0]

So if the single-price law holds, the price of the new security must be
P4 = P1 + P2 – 2P3.
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otherwise unrestricted), in the standard finance model with additive utility
of consumption over time, the current date 0 price Pj of security j is:

a certainty-equivalent formulation of present value, where 1/RFt is the cur-
rent price of a default-free zero-coupon bond maturing at date t, and θt is
the marketwide measure of risk aversion for cash flows at date t.

With respect to (2), the paper shows that relying only on utility restric-
tions, namely CRRA, in the standard finance model with additive utility of
consumption over time: If the rate of growth rC of aggregate consumption
follows a random walk (this presumption is not required under the special
case of log utility), then the return on the market portfolio (rM) and the
growth rate of aggregate consumption (rC) are perfectly positively correlated,
differing only by a positive multiplicative constant; that is, at date t the ran-
dom outcome rMt = ktrCt where kt is most generally a time-dependent positive
constant. From this, it is an easy step to see that the logarithmic variances of
rMt and rCt, σMt

2 = Vart(log rM) and σCt
2 = Vart(log rC) must be equal at all dates;

that is, σMt
2 = σCt

2. This is the essence of what was later dubbed the equity risk
premium puzzle. We can see here that in the standard model, at a deeper
level, it derives from the property that ρ(rMt, rCt) = 1.

With respect to (3), Rubinstein shows that in the standard finance
model with CRRA and additive utility of consumption over time: If the
rate of growth of aggregate consumption follows a random walk, then (1)
the market portfolio follows a (possibly nonstationary) random walk, and
(2) the term structure of interest rates is unbiased in the sense that at each
date the next period expected returns of default-free zero-coupon bonds of
all maturities are the same. The random walk observation is immediate
from the argument in the previous paragraph. This may be the first time in
the academic literature that (1) a random walk for the market portfolio or
(2) the unbiasedness of the term structure was derived as an outcome of
equilibrium instead of simply assumed to be a property of the equilibrium.

John C. Cox, Jonathan E. Ingersoll Jr., and Stephen A. Ross, in [Cox-
Ingersoll-Ross (1981)] “A Re-Examination of Traditional Hypotheses
about the Term Structure of Interest Rates,” Journal of Finance 36, No. 4
(September 1981), pp. 769–799, describe four potentially incompatible def-
initions of an unbiased term structure. They show that in continuous time
with uncertain interest rates only one is consistent with equilibrium: the lo-
cal expectations hypothesis that all default-free bonds have the same local
expected return irrespective of their maturities. For example, the hypotheses

P
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Rj t
t t jt t
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(1) that expected future spot rates equal today’s corresponding forward
rates, or (2) that the expected terminal return of rolling over a portfolio of
short-term bonds has the same return as a currently purchased bond of the
same maturity, are not consistent with the equilibrium. Although the local
expectations hypothesis is potentially consistent with equilibrium, it need
not be. Special cases in which it is consistent with equilibrium are devel-
oped, as we have seen, in Rubinstein (1976/Autumn).

Rubinstein includes the first simple formula (relying on a special case
on additive logarithmic utility of consumption over time) consistent with
equilibrium and risk aversion for valuing an uncertain stream of income re-
ceived over many dates. This can most simply be stated as:

where RMt ≡ rM1rM2 · · · rMt is the return on the market portfolio cumulated
to date t, (Xt) are the set of possible cash flows that can be received at date
t, PV0(•) is the present value at date 0 of all future cash flows, and expecta-
tions E are assessed with respect to date 0 subjective beliefs about future
cash flows. This result is just about as simple as one could reasonably
imagine: Intertemporal time and risk adjustments are made to cash flows
simply by deflating (that is, dividing) by the corresponding cumulated re-
turn of the market portfolio, taking expected values, and adding them up.
Despite its simplicity, no probabilistic restrictions, serial or cross-sectional
(other than limited liability for the market portfolio), are required on the
cash flows or on the market portfolio return.

Some of the results of the paper rely on a special mathematical prop-
erty of jointly normal random variables borrowed from Rubinstein
(1973/October). This property substantially simplifies many results derived
in finance both here and in much subsequent research. The joint normality
covariance theorem states: If x and y are jointly normal, g(y) is any differ-
entiable function of y, and E|g′(y)| < ∞, then Cov[x, g(y)] = E[g′(y)]Cov(x,
y). This is frequently called “Stein’s lemma” since it was independently and
contemporaneously derived by C. Stein, in [Stein (1973)] “Estimation of
the Mean of a Multivariate Normal Distribution,” Proceedings of the
Prague Symposium on Asymptotic Statistics (September 1973).

Rubinstein (1976) is also known for its linkage of discrete-time asset
and option pricing models. Samuelson-Merton (1969) had already shown
that another route to the Black-Scholes formula, but in discrete time and
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for an option on the market portfolio, was to assume a representative in-
vestor with CRRA utility of wealth on the expiration date of the option
and that the return of the market portfolio is lognormally distributed. Ru-
binstein shows more generally that a formula identical to Black-Scholes
(1973) will hold in that context (even including consumption over time in
the model) for options on any underlying asset with return jointly lognor-
mal with the market portfolio.

With this, it became apparent that because of the myopia properties of
CRRA (Mossin 1968), discrete-time CRRA models and continuous-time
models are in an important sense equivalent. Myopia means that portfolio
decisions do not depend on the length of the holding period. Therefore, as
the time to the next opportunity to revise a portfolio approaches zero, a
CRRA investor sees no reason to alter his portfolio; therefore, he will
make the same portfolio decision in continuous time that he does in dis-
crete time. Any result, then, that relies on continuous trading and does not
depend on investor preferences (such as the Black-Scholes formula) will
not be changed in discrete-time under CRRA. Given this, it is hardly sur-
prising that Michael John Brennan, in [Brennan (1979)] “The Pricing of
Contingent Claims in Discrete-Time Models,” Journal of Finance 34, No.
1 (March 1979), pp. 53–68, is able to show that constant relative risk aver-
sion for the representative agent is not only sufficient but also necessary to
produce the Black-Scholes formula without continuous trading opportuni-
ties in a market where the underlying asset returns are subjectively lognor-
mally distributed.

Robert E. Lucas Jr., in [Lucas (1978)] “Asset Prices in an Exchange
Economy,” Econometrica 46, No. 6 (November 1978), pp. 1429–1445,
develops a special case of the standard finance model with many dates and
states where the investment opportunity set is assumed to follow a Markov
process (in terms of aggregate consumption levels). This is more general
than a random walk since it leaves open the possibility that the rate of
growth of aggregate consumption in any period could depend on the ag-
gregate level of consumption at the beginning of the period, but is clearly
less general than, say, Rubinstein (1976/May) and Rubinstein (1976/Au-
tumn), which largely place no restrictions on this process whatsoever. Al-
though Lucas’s paper is widely cited, in view of earlier work it is hard to
see what its marginal contribution is. Lucas seems to think that what is
new is his observation that “the presence of a diminishing rate of substitu-
tion of future for current consumption is inconsistent with . . . the condi-
tions under which the Martingale property is likely to approximately
describe a price series.” But this seems to me to be all too evident from sev-
eral earlier papers—for example, LeRoy (1973) and Rubinstein (1975).
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1976 Sanford J. Grossman, “On the Efficiency of Competitive Stock
Markets Where Traders Have Diverse Information,” Journal of Finance
31, No. 2 (May 1976), pp. 573–585.

1978 Stephen Figlewski, “Market ‘Efficiency’ in a Market with Hetero-
geneous Information,” Journal of Political Economy 86, No. 4 (August
1978), pp. 581–587.

EFFICIENT MARKETS, RATIONAL EXPECTATIONS,
AGGREGATION OF INFORMATION, EXPONENTIAL UTILITY,

CONSENSUS BELIEFS, DARWINIAN SURVIVAL

Building on Lucas (1972) and Green (1973), Grossman (1976) formally
models the Hayek (1945) idea that equilibrium prices in competitive

markets are aggregators of information. It follows from this that a rational
investor will try to learn what other investors know from the equilibrium
price itself. Grossman provides a closed-form example that captures this
circularity assuming exponential utility and normal distributions, known
from Wilson (1968) to possess desirable aggregation properties. In his
model, information is truly dispersed: Each investor gets his own private
signal and each investor believes that his information is no better than any
other investor’s. Grossman’s self-fulfilling expectations equilibrium has the
property that all the disparate information is captured in current prices
that at the same time provide information to investors that leads them to
produce in equilibrium those same prices.

In a simpler and somewhat earlier paper, Richard E. Kihlstrom and
Leonard J. Mirman, in [Kihlstrom-Mirman (1975)] “Information and
Market Equilibrium,” Bell Journal of Economics 6, No. 1 (Spring 1975),
pp. 357–376, create a model where the information possessed by a single
informed agent becomes fully revealed by the current price because there is
a one-to-one correspondence between the equilibrium price and the rele-
vant information. This equilibrium arises because the uninformed investors
start with the knowledge of the equilibrium pricing function and can invert
it. Alternatively, the uninformed investors start with almost no knowledge
of this correspondence, but as the market continues to reconvene over
time, the uninformed investors, using Bayesian expectations based on accu-
mulating past observed prices, gradually figure it out.

For Grossman, rational pricing occurs because of competitive entry into
the information-gathering business. However, since Grossman assumes ex-
ponential utility for all investors, he forsakes the opportunity to study wealth
distribution effects on the rationality of equilibrium prices and to test for the
efficacy of one of the key forces claimed to create rational pricing. As Paul
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H. Cootner, in [Cootner (2000)] The Random Character of Stock Market
Prices (original published in 1964, reprinted London: Risk Publications,
2000), p. 94, writes:

Given the uncertainty of the real world, the many actual and vir-
tual investors will have many, perhaps equally many, price fore-
casts. . . . If any group of investors was consistently better than
average in forecasting stock prices, they would accumulate wealth
and give their forecasts greater and greater weight. In the process,
they would bring the present price closer to the true value.

This argument for rational pricing is, of course, quite similar to the
Friedman (1953/A) survival argument for profit maximization.

Rubinstein (1974) and Kraus-Litzenberger (1975) show that in a com-
plete market single-period economy under perfect and competitive security
markets, if all investors i have logarithmic utility functions Ui(W1

i) = log W1
i

of future wealth W1
i but have different subjective probability beliefs ps

i

(over states s) and current wealth W0
i, equilibrium state-prices will be set as

if there is a single investor with subjective probabilities ps over states con-
structed according to the following rule:

This simple model illustrates how prices are determined by an aggrega-
tion of the heterogeneous beliefs of all investors in the economy where the
individual beliefs are weighted by the relative current wealth of each in-
vestor. Wealthier investors therefore have proportionately more influence
on market prices.

These static results are modeled dynamically in Figlewski (1978). He asks
whether, over time, Cootner’s prediction of rational pricing will occur. To
keep matters simple, Figlewski assumes a sequence of markets in which at the
end of each period nature determines the correct price of a single security,
while at the beginning of each period the market participants buy and sell
among themselves based on a price determined by their own guesses about
the price at the end of the period. This is very similar to pari-mutuel horse
race betting where over a single day the market reconvenes at the beginning
of perhaps 10 races, with 10 corresponding results from each race (hopefully
draws from nature) determining the actual payoffs. In both cases, the compli-
cations of the Keynesian (1936) “beauty contest” are avoided. Before trading,
at the beginning of each period each trader receives his own information,
which is aggregated across traders to determine the market price. Some
traders receive better information than others. A linear combination of the
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prices each predicts with this information, with weights determined by their
relative wealth and risk aversion, equals the market equilibrium price. In each
period, traders who have sold just before prices rise will transfer wealth to
those who have bought, and vice versa. Over time, some traders will become
richer and others poorer by a continuation of this process. Figlewski com-
pares these equilibrium prices to the rational price, which is defined as the
price that would have been predicted by a trader who knows all the informa-
tion possessed by the actual traders.

The key result of this model is that poorly informed traders tend not to
be driven out of the market. At first, their information may be over-
weighted in determining the market price, but as they become poorer, their
lower wealth actually leads to an underweighting of their information so
they no longer lose money to the better-informed traders. While there is a
general tendency not to stray far from the rationally set price, except by ac-
cident, the price actually set by the market is never exactly equal to the ra-
tional price. So Cootner is half right!

1976 Stephen A. Ross, “The Arbitrage Theory of Capital Asset Pricing,”
Journal of Economic Theory 13, No. 3 (December 1976), pp. 341–360.

ARBITRAGE PRICING THEORY (APT), DIVERSIFICATION, 
LAW OF LARGE NUMBERS, MULTIFACTOR MODELS, 

APT VS. CAPM, PORTFOLIO SEPARATION, 
PRICED VS. NONPRICED FACTORS, MARKET PORTFOLIO

Ross (1976/December) is the classic paper deriving the approximate arbi-
trage pricing model, known as the arbitrage pricing theory (APT). The

rough intuition behind the APT was illustrated empirically eight years ear-
lier by Evans-Archer (1968). They showed that as randomly selected stocks
are added to a portfolio, the standard deviation of the return of the portfo-
lio very quickly converges to the standard deviation of the return of the
market. Indeed, with even 10 randomly selected stocks, their six-month
standard deviation is expected to be about 1 percent per annum higher
than the standard deviation of the portfolio universe of the 470 securities
from which they were selected.

The Ross APT begins with a multifactor model of security returns rj,
with expected returns µj, with enough factors Fk so that the residual com-
ponent εj is independent across all the securities in the selected universe:

rj = µj + ΣkβjkFk + εj for securities j, l = 1, 2, . . . , 

m and factors h, k = 1, 2, . . . , K
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By construction, E(εj) = E(Fk) = ρ(εj, Fk) = 0, ρ(Fh, Fk) = 0 for h ≠ k, and
Var(Fk) = 1, and by assumption ρ(εj, εl) = 0 for j ≠ l, and Var(εj) has a finite
upper bound. Then, by forming portfolios of the other securities to mimic
the factors, the return of a particular security can be replicated up to the
residual terms in the factor model—hence the name the “arbitrage pricing
theory.” Ross then argues that it is reasonable in a “large” market (with
many securities, none of which is large relative to the entire market) for the
law of large numbers to cause the residual risk not to be priced. This re-
sults in a multifactor model of expected returns, which is an alternative to
the CAPM—for example, Sharpe (1964):

µj = r + (µ1 – r)βj1 + (µ2 – r)βj2 + · · · + (µk – r)βjk + · · · + (µK – r)βjK

where r is the riskless return and µ1, µ2, . . . , µk, . . . , µK are the expected
returns of the factor-mimicking portfolios.

While the assumptions of the model are more general than the CAPM
(not requiring assumptions about investor preferences and very weak as-
sumptions on probability distributions), at the same time the conclusions
are much less specific since the number of factors and the factors them-
selves are not identified. Moreover, which of these factors will actually end
up being priced in equilibrium (that is, many factors could have µk = r and
therefore not affect expected returns) is not identified.

Although the two models seem to be sewn from different cloth, they
are related in a very simple way. To a useful approximation (indeed the
very approximation made by the APT itself), the CAPM can be viewed as
nested within the APT. The APT points to a number of factors that might
affect security expected returns. The Sharpe (1964), Lintner (1965/Febru-
ary), Mossin (1966), Treynor (1999) CAPM says that the market portfolio
will be one of these factors, and it will be the only one that is priced. This is
a direct result of the portfolio separation property of the CAPM: All in-
vestors, irrespective of their differences, divide their wealth between the
same two mutual funds, one riskless and the other the market portfolio.
That is, even though securities may be correlated with each other for other
reasons than through their joint dependence on the market portfolio, this
correlation will not matter to these investors since they only hold the mar-
ket portfolio. For example, if they were to hold, in addition, a second risky
security portfolio that protected them against intertemporal changes in the
opportunity set, as in Merton (1973/September), then investors would also
be concerned with the correlation of security returns with that portfolio.
That concern would enter their utility functions and give rise to Merton’s
three-fund separation. Correspondingly, that would be another of the APT
factors that would almost surely be priced, while all others would continue
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not to be. So, it is really the separation properties of more completely spec-
ified asset pricing models that separate them from the APT.

The intuitive introduction to the APT in Ross (1977) was, perhaps un-
intentionally, published after this much more difficult and rigorous analy-
sis, and should probably be read first before Ross (1976/December).

1977 Richard Roll (October 31, 1939–), “A Critique of the Asset Pricing
Theory’s Tests, Part I: On Past and Potential Testability of the Theory,”
Journal of Financial Economics 4, No. 2 (March 1977), pp. 129–176.

CAPITAL ASSET PRICING MODEL (CAPM), 
MEAN-VARIANCE EFFICIENCY, MARKET PORTFOLIO

A s Lintner (1965/February), Mossin (1966), and Treynor (1999) show un-
der the conditions of the CAPM, the market portfolio is mean-variance

efficient. That is, given its level of expected return, the market portfolio has
a lower variance of return than any other available portfolio. Indeed, com-
binations of the riskless security and the market portfolio (which allow
spanning of all levels of expected return) are the only portfolios that are
mean-variance efficient. Roll (1977) turns this around arguing that if the
market portfolio is mean-variance efficient, then the CAPM expected re-
turn pricing relation holds. Therefore, the empirical content of the CAPM
comes down to the proposition that the market portfolio is mean-variance
efficient; it must be accepted or rejected solely based on that. The same
point is also made by Stephen A. Ross, in [Ross (1977/March)] “The Capi-
tal Asset Pricing Model (CAPM), Short-Sale Restrictions and Related Is-
sues,” Journal of Finance 32, No. 1 (March 1977), pp. 177–183.

Roll further argues that any mean-variance efficient portfolio must sat-
isfy the CAPM expected return pricing relation, no matter what the sur-
rounding economic conditions (even if the CAPM were false). That is, if P
is a mean-variance efficient portfolio and security j is held in that portfolio,
then µj = r + (µP – r)βjP where βjP ≡ Cov(rj, rP)/Var(rP). This is easy to see
from inspection of the first-order conditions of the mean-variance portfolio
optimization problem.

In practice, investors can only use, and empiricists can only test, the
CAPM using a proxy for the true market portfolio. For many years before
this paper, it was widely believed that if the CAPM fails to be verified by an
empirical test, it could be that the CAPM is true, but the proxy used for the
market portfolio is poor. After this paper, it was now also apparent that
even if the CAPM is verified by an empirical test, that merely means that
the proxy used for the market portfolio is mean-variance efficient, not that
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the CAPM is true. For example, suppose the true model were one in which
in addition to covariance with the market portfolio return, coskewness
with the market as in Rubinstein (1973/January) or covariance with a vari-
able proxying for stochastic changes in investment opportunities as in
Merton (1973/September) were the true model. Of course, the true market
portfolio would have to satisfy the true model. Unfortunately, one could
still observe, using a particular proxy portfolio for the market (which is
not the same as the true market portfolio) like the S&P 500 index, that the
proxy portfolio is mean-variance efficient and therefore satisfies the CAPM
pricing relation (even though the CAPM is a false model). So we have a
case of being damned if we do, and damned if we don’t. Assume the proxy
for the market portfolio is not the true market portfolio: (1) if the CAPM is
true, we may reject it because the proxy is poor (known before Roll’s pa-
per); or (2) if the CAPM is false, we may accept it because even though the
proxy is poor, it happens to be mean-variance efficient (not understood un-
til Roll’s paper).

Roll believes it is, in practice, impossible to measure the return of the
market portfolio, so in practice the CAPM cannot be proved or disproved.
Jay Shanken, in [Shanken (1987)] “Multivariate Proxies and Asset Pricing
Relations: Living with the Roll Critique,” Journal of Financial Economics
18, No. 1 (March 1987), pp. 91–110, adjusting as well as possible to Roll’s
challenge develops tools for testing the joint hypothesis that (1) the CAPM
is valid and (2) the correlation between the true but unknown market port-
folio return and that of a known proxy is at least some prespecified
amount.

1977 Burton G. Malkiel, “The Valuation of Closed-End Investment-
Company Shares,” Journal of Finance 32, No. 3 (June 1977), pp.
847–859.

CLOSED-END FUND DISCOUNTS, 
CLOSED-END VS. OPEN-END FUNDS, EFFICIENT MARKETS

I f a managed portfolio of securities is traded in addition to its constituent
securities that trade separately in the market, one would naively think

that in a rational market the market value of the portfolio should trade for
the sum of the market values of its securities. If this were not true, then ob-
vious arbitrage opportunities would be available. If the managed portfolio
traded for more (or less) than the separate securities, investors would repli-
cate the portfolio by buying (or shorting) the individual securities and
shorting (or buying) the portfolio. However, even if short sales were un-
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constrained, as long as only a few investors tried to implement the strategy,
it might fail since the managed portfolio might simply remain over- or un-
derpriced relative to the individual securities and the arbitrage profit might
never be realized. Another arbitrage strategy is to buy the shares of a man-
aged portfolio selling at a discount, take control of the portfolio, and liqui-
date it at the higher market prices of its constituent securities.
Unfortunately, in practice, the very act of trying to buy enough shares to
take control of the managed portfolio tends to push the price of the shares
up to the point when they even begin to sell at a premium, as the die-hard
core holders of the fund resist selling. This positively sloped supply curve
typically will throw the buyout strategy into a loss.

Open-end (mutual) funds make a market in their own shares every day
at the close of trading, standing willing to buy and sell those shares at their
net asset value (that is, the value of the portfolio constructed from buying
the constituent securities at their contemporaneous closing market prices).
Those funds, in effect, force out any arbitrage opportunities of the type dis-
cussed in the previous paragraph. However, although closed-end funds
trade like shares on exchanges, these funds do not make a market in their
own shares. So for these funds, discounts or premiums to net asset value
are possible.

Closed-end funds are perhaps the most evident examples of traded
portfolios that often sell at significant discounts to net asset value, often as
large as 10 to 20 percent. The closed-end fund anomaly poses one of the
most consistent and serious objections to the rational market hypothesis. A
single stock can be interpreted as a closed-end fund of physical projects,
but more complex than an actual closed-end fund because of potential syn-
ergies. If the market cannot even price the simpler closed-end funds right,
how can it correctly price individual stocks?

Many a financial economist has tried his hand at showing that closed-
end fund discounts can be consistent with rational markets. Malkiel
(1977), one of the earliest of such quixotic knights, considers a number of
explanations: (1) built-in capital gains appreciation, (2) ownership of re-
stricted stock, (3) holdings of foreign stock, (4) inferior performance of
closed-end fund managers, (5) high portfolio turnover and consequent
trading costs, and (6) high management fees. He looks at 24 closed-end
funds from 1967 to 1974. Unfortunately, these rational explanations ap-
pear to explain only a small part of the typical discounts. Indeed, his obser-
vations that the discount on closed-end fund narrows when the market
falls and widens when it rises would suggest that compared to individual
stocks, closed-end funds are better hedges against market risk and so
should, if anything, sell at a premium.

A second study by Rex Thompson, in [Thompson (1978)] “The Infor-
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mation Content of Discounts and Premiums on Closed-End Fund Shares,”
Journal of Financial Economics 6, No. 2 (1978), pp. 155-186, reports that
closed-end funds selling at discounts tend to outperform the market, seem-
ingly at variance with the hypothesis of rational pricing.

1977 Stephen A. Ross, “Return, Risk, and Arbitrage,” in Risk and Re-
turn in Finance, edited by Irving Friend and James Bicksler (Cambridge,
MA: Ballinger, 1977), pp. 189–218.

FUNDAMENTAL THEOREM, SINGLE-PRICE LAW OF MARKETS,
ARBITRAGE, STATE-PRICES, COMPLETE MARKETS, 

CAPITAL ASSET PRICING MODEL (CAPM), 
BLACK-SCHOLES FORMULA, 

PERFECT MARKETS, VALUE ADDITIVITY

Ross (1977) provides an intuitive introduction to the Ross (1976/Decem-
ber) arbitrage pricing theory (APT). The paper also includes a brief

statement and proof of one of the key results in financial economics. Ar-
row (1953) derived sufficient conditions for state-prices to exist in equilib-
rium. Ross and to a significant extent Rubinstein (1976/Autumn) show
that concavity of preferences, although important to Arrow’s other results,
is not needed simply for existence. Ross defines “no arbitrage” to be a situ-
ation in which one cannot form a portfolio of existing securities that has a
nonnegative payoff in all states, a positive payoff in at least one state, but
has a zero or negative cost. Ross gives what is the first completely clear for-
mulation of “the fundamental theorem of financial economics”:

There is no arbitrage if and only if state-prices exist.35

(See in particular pp. 201–203, 214–215.)36 Ross’ proof is in the context of
an equilibrium of nonsatiated investors, but otherwise he requires no re-
strictions on preferences. The first published version of this proof actually
appeared in [Cox-Ross (1976)] John C. Cox and Stephen A. Ross, “A Sur-
vey of Some New Results in Financial Option Pricing Theory,” Journal of
Finance 31, No. 2 (May 1976), pp. 383–402 (in particular see p. 385).
Ross provides a formal proof of his result in [Ross (1978/July)] “A Simple
Approach to the Valuation of Risky Streams,” Journal of Business 51, No.
3 (July 1978), pp. 453–475, the article that won the 1978–1979 Leo
Melamed Prize, awarded biennially by the University of Chicago for the
most outstanding work published by a business school teacher during the
award period. A very nice summary of Ross’ results is contained in [Varian
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(1987)] Hal R. Varian, “The Arbitrage Principle in Financial Economics,”
Journal of Economic Perspectives 1, No. 2 (Fall 1987), pp. 55–72.

A related condition known as the single-price law says that two port-
folios cannot be constructed with the same payoffs but different costs. The
absence of arbitrage implies the single-price law, but the single-price law
does not imply the absence of arbitrage. The presumption typically made
in finance models that there is no arbitrage is a no-lose proposition: If it is
right, it will help us to explain security prices; if it is wrong, then our
analysis will help us identify arbitrage opportunities that we can take ad-
vantage of and earn unlimited profits. This also makes it easy to see why, in
practice, arbitrage opportunities should be limited since in perfect markets
the trading activities of just one “rational” investor would eliminate them.

Ross assumes that there are perfect markets so that there are no trans-
actions frictions such as buying and selling commissions, the bid-ask
spread, short-sale constraints, differential taxes on different securities, or
leverage constraints. As an implication, from the set of available securities
investors can form arbitrary portfolios such that the payoff from the port-
folio equals the sum of the payoffs of the constituent securities. In this case,
the single-price law implies present value additivity, that is, since both have
the same payoffs, the cost or current price of a portfolio equals the
summed costs of all the securities in the portfolio.
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Ross’ No Arbitrage Theorem

To make this concrete, suppose there are just three states s = 1, 2, 3 and
three securities j = 1, 2, 3; Xsj is the payoff of security j in state s, and Pj

is the price of security j. Say we form portfolios by holding nj units of
each security (nj > 0 if the security is held long, and nj < 0 if it is held
short). The payoff of the portfolio in each state is then:

State 1 payoff = n1X11 + n2X12 + n3X13

State 2 payoff = n1X21 + n2X22 + n3X23

State 3 payoff = n1X31 + n2X32 + n3X33

Portfolio cost = n1P1 + n2P2 + n3P3

So to say that there is no arbitrage means that no matter what port-
folio weights (n1, n2, and n3) we choose, if state 1 payoff ≥ 0, state 2 pay-
off ≥ 0, and state 3 payoff ≥ 0, then portfolio cost ≥ 0 (the last inequality
is taken to mean that if at least one of the states has a positive payoff,
then the portfolio cost will be positive).
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Ross’ No Arbitrage Theorem (Continued)

The theorem makes two separate claims:

1. If there is no arbitrage, then state-prices exist.
2. If state-prices exist, then there is no arbitrage.

The second claim is easier to prove, so I will prove that first. Since I as-
sume state-prices exist where the πs > 0:

P1 = π1X11 + π2X21 + π3X31

P2 = π1X12 + π2X22 + π3X32

P3 = π1X13 + π2X23 + π3X33

Examine a portfolio that has nonnegative payoffs so that:

n1X11 + n2X12 + n3X13 ≥ 0

n1X21 + n2X22 + n3X23 ≥ 0

n1X31 + n2X32 + n3X33 ≥ 0

Multiplying through these equations by the (positive) state-prices π1, π2,
and π3 does not alter the inequalities:

π1n1X11 + π1n2X12 + π1n3X13 ≥ 0

π2n1X21 + π2n2X22 + π2n3X23 ≥ 0

π3n1X31 + π3n2X32 + π3n3X33 ≥ 0

Summing up all three inequalities, we have:

n1(π1X11 + π2X21 + π3X31) + n2(π1X12 + π2X22 + π3X32) 

+ n3(π1X13 + π2X23 + π3X33) ≥ 0

Substituting in the current prices for the terms in parentheses:

n1P1 + n2P2 + n3P3 ≥ 0
(Continued)
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Neither Rubinstein nor Ross requires a complete market for the exis-
tence of state-prices. When the number of different securities is less than
the number of states, it is still the case that state-prices will exist that will
explain the prices of all securities as long as there is no arbitrage. However,
the state-prices will not be unique. That is, there could be several sets of
state-prices that can explain the prices of the existing securities. This means
that in general if we add another security to the economy and try to guess
its exact price simply from the no arbitrage principle, we will not be able to
do so. However, even with fewer securities than states, the prices of these
securities will establish upper and lower arbitrage bounds around the price
of any additional security.

Suppose instead that the number of different securities equals the num-
ber of states (a complete market). Then the state-prices will be unique (as
illustrated earlier). Now, if any new security is added to the economy, as
long as there is no arbitrage, we can exactly price that security in terms of
the prices of other securities. This is the situation in modern option pricing
theory. The fundamental theorem guarantees that derivatives, like other se-
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Ross’ No Arbitrage Theorem (Continued)

The second claim is then proven since such a portfolio must have non-
negative cost.

Now for the first claim: If there is no arbitrage, then state-prices ex-
ist. If there is no arbitrage, the single-price law must hold, so from our
earlier analysis we know that pseudo state-prices λs exist. It remains to
show that these prices must be positive.

If there are complete markets, this is easy to prove. In that case, we
can always construct a portfolio that has a payoff off $1 in one state and
$0 in all other states. Such a security cannot have a negative price since
otherwise there is an arbitrage opportunity; therefore, the pseudo state-
price must be positive. Since we can do this for any state, all pseudo
state-prices must be positive and hence qualify as state-prices πs.

On the other hand, if markets are incomplete, then while no arbi-
trage continues to imply the existence of positive pseudo prices, the proof
is more difficult. Indeed, the discovery of this proof was Ross’ major con-
tribution to this literature. I will not provide it here but instead refer the
reader to John H. Cochrane, in [Cochrane (2001)] Asset Pricing (Prince-
ton, NJ: Princeton University Press, 2001), p. 72. Nonetheless, at this
point, I hope the reader will feel intuitively comfortable with this result.37
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curities, can be priced as weighted averages of their payoffs: P = ΣsπsXs.
The trick of the modern theory is to find a way to complete the market and
exactly determine the state-prices (πs). In that case, the options can be
priced in terms of the prices of other related securities: in particular, the
underlying asset and a riskless bond.

The fundamental theorem can be easily applied to prove the value ad-
ditivity property of present value: The present value of the two cash flows
equals the sum of their present values. Varian (1987) illustrates the use of
the fundamental theorem to prove the arbitrage lower bound for the value
of a standard European call.

The fundamental theorem can also be used to derive the valuation
equation of the CAPM. Begin with the assumption that there is no arbi-
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Use of Fundamental Theorem to Derive 
Lower Bound Value for European Call

πs = current today of $1 received if and only if state s occurs at time t

Ss = the payoff from an asset in state s at time t

S0 = the present value of the asset

d = payout return of asset over time t

r = the riskless return over time t

C0 = current value of a standard European call, with payoff max(0,
Ss – K) in state s

K = strike price of call

If there is no arbitrage, from the fundamental theorem, there must exist
state prices πs > 0 such that:

S0 = ΣsπsSs and r–t = Σsπs

C0 = Σsπsmax(0, Ss – K)

From this it follows that C0 ≥ Σsπs(Ss – K) = (ΣsπsSs) – K(Σsπs) = S0d
–t – Kr–t.

And if S0d
–t – Kr–t < 0, clearly C0 ≥ 0. Taken together: C0 ≥ max(0,

S0d
–t – Kr–t).
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trage. This means that the price Pj of any security j is related to its cash
flows Xsj by state-prices πs > 0:

Pj = ΣsπsXsj

Decompose the state-prices into subjective probabilities ps, risk aversion
adjustments Ys, and the riskless return r, so that πs = psYs/r. Then, using ex-
pectation notation:

Since, for any two random variables x and y, E(xy) = Cov(x, y) + E(x)E(y)
and since E[Y] = 1:

Assuming no dividends, the return on the security rj � Xj/Pj so that divid-
ing by Pj:

Rearranging this:

Interpreting what we have so far, we can say that if there is no arbi-
trage, there must exist a random variable Y, the same for all securities (and
portfolios38), such that the expected return of any security (or portfolio)
equals the riskless return plus an adjustment for risk. 

This conclusion is attractive since it proceeds from the most fundamen-
tal assumption in financial economics: There is no arbitrage (as well as per-
fect markets). It is nice to know at least that whatever determines Y, once
we know how to measure that variable, we can use it to value all securities
and portfolios. But it is also annoyingly unspecified since it leaves open
what determines Y. To identify Y, the CAPM makes further assumptions in-
cluding the rationality and risk aversion of investors, the joint normality of
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security returns, and identical beliefs shared by all investors. From this, as I
have shown earlier—see the discussion under Sharpe (1964)—it can be
shown that Y is determined in a simple way by the return of the market
portfolio. But, as work in asset pricing over the past 30 years has shown, we
can make other assumptions, and derive other identifications of Y that can
lead to a model that more closely resembles empirical reality.

I can also derive the Black-Scholes (or standard binomial) formula
from the perspective of the fundamental theorem. The model makes
seven assumptions. Starting with the most general and ending with the
most restrictive:

1. At least an underlying stock, (riskless) cash, and an option exist.
2. No arbitrage exists among these securities.39

3. Without including the option, the market is complete.
4. Markets are conserved through dynamic completeness.
5. Only two securities are required to dynamically complete the market.
6. States at each date recombine.
7. Future state-prices are the same as today’s state-prices.40

The first and second assumptions give us three equations: For the cur-
rent stock price S0, riskless return r, and current call price C0, respectively:

S0 = ΣsπsXs

C0 = Σsπs max[0, Xs – K]

Xs is the underlying stock price on the option’s expiration date, K is the
option’s strike price, t its annualized time to expiration, and πs are the
state-prices.

The third assumption assures us that if we know the current prices of
all securities excluding the option (including S0 and r, but in general
many others), we can derive the state-prices πs in terms of the prices of
these securities (as in the earlier example). We can then use these state-
prices to solve for the redundant option price. We will end up at this
point with an equation relating the option price C0 to the stock price S0,
the riskless return r, and the prices of potentially many other securities in
the economy.

rt

s s

= 1
Σ π
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The fourth assumption implies from Arrow (1953) that we can con-
serve on the number of markets by introducing portfolio revision over
time. This leads to a picture of the evolution of the stock price that could
be like the evolution of the state-space in the diagram given in the discus-
sion of Black-Scholes (1973).

The contribution of Black-Scholes (1973) can be interpreted as making
three additional very clever assumptions. First, they assume that only two
securities, namely the stock and cash, are sufficient to dynamically com-
plete the market. This implies on any date one can form a portfolio con-
taining just these two securities that will be able to recreate the return
pattern of the option over the next period. This means that the state-space
evolution is restricted to binomial moves in the stock price over time.

Stopping at this assumption, a key aspect of the Black-Scholes model is
now achieved: If the state-space evolution of the stock price is known, the
current option value C0 can now be uniquely determined in terms of S0 and
r without needing to know the prices of any other securities.41 Indeed, sub-
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stantial effort has been expended to value options in such a path-depen-
dent setting; but without further assumptions, no simple formula captures
this value, and the options are usually valued using a numerical working-
backwards approach reminiscent of Pascal-Fermat (1654).

To arrive at their formula, Black and Scholes assume that this state-
space recombines so that adjoining nodes coming from different states
join together as in the “Recombining Binomial State-Space Evolution”
diagram.

Without assumption 7, this permits the binomial up and down move
sizes to vary over time and to be dependent on the concurrent stock price.
For example, volatility (as captured by the move sizes) could be lower at
high stock prices and higher at low stock prices.42

Finally, Black and Scholes assume that the state-prices are constant
over time, so that at any node if πu and πd are the state-prices at date 0,
then they will also be the state-prices at all future nodes: In Black-Scholes
terminology, the stock volatility is constant and the riskless return is con-
stant since r = 1/(πu + πd). In sum, starting with the equations given earlier
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that follow from assumptions 1 and 2, Black and Scholes have succeeded
in identifying the state-prices in a way that leads to their formula. In terms
of the standard binomial option pricing model, the state-prices over n bi-
nomial up (u) and down (d) moves through expiration become:

C0 = Σs=0 . . . n πs max[0, S0u
sdn–s – K]

with

At this point, the economics is finished; with a little mathematics as
shown in Cox-Ross-Rubinstein (1979), one can derive the world-famous
Black-Scholes formula.

Stewart C. Myers, in [Myers (1968)] “A Time-State-Preference
Model of Security Valuation,” Journal of Financial and Quantitative
Analysis 3, No. 1 (March 1968), pp. 1–33, develops many of the implica-
tions of the idea that investors can be considered to trade a complete set
of state-securities with payoffs across all states and dates. In particular, he
derives a general statement for valuing cash flows over time, from the point
of view of an individual consumer/investor, expressed as the sum of the ex-
pected cash flows, where each cash flow is weighted by the ratio of the
marginal utility of consumption at that state and date divided by the mar-
ginal utility of current consumption.

Apparently independently, in the context of markets that are not
necessarily complete, John B. Long Jr., in [Long (1972)] “Consumption-
Investment Decisions and Equilibrium in the Securities Market,” in
Studies in the Theory of Capital Markets, edited by Michael C. Jensen
(New York: Praeger, 1972), pp. 146–222 (see in particular pp. 169–170),
also derives a similar equation.

Perhaps the earliest appearance of a similar approach to the preceding
CAPM proof is in [Beja (1971)] Avraham Beja, “The Structure of the Cost
of Capital under Uncertainty,” Review of Economic Studies 38, No. 3
(July 1971) pp. 359–368, particularly p. 364, eq. 3.4.3. However, although
Beja proposes the pricing relation P = ΣsπsXs and the inequality πs > 0, he
does not investigate the conditions for the existence of state-prices and he
makes the unnecessary assumption of complete markets. Clearly trying to
maintain a high standard of generality, he also does not make the corre-
spondence, as in Myers (1968) and Rubinstein (1976/Autumn), between
the state-prices (πs) and marginal utilities.
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1977 Edward M. Miller, “Risk, Uncertainty, and Divergence of Opin-
ion,” Journal of Finance 32, No. 4 (September 1977), pp. 1151–1168.

SHORT SALES, HETEROGENEOUS BELIEFS, 
PORTFOLIO SEPARATION, FAVORABLE GAMBLES THEOREM,

AGGREGATION OF INFORMATION

A cademic literature on short sales and stock prices has had a renaissance
in the early twenty-first century. This literature argues that several ex-

amples of apparently anomalous security price behavior may at their root
simply be attributed to the failure to appreciate the full implications of
constraints on short sales.

The standard finance paradigm for market equilibrium under uncer-
tainty is the CAPM of Sharpe (1964), Lintner (1965/February), Mossin
(1966), and Treynor (1999). That model has one key assumption that will
here concern us: Beliefs about the future joint return distributions of all se-
curities are the same for all investors. In this context, as is well known
from the portfolio separation property of that model: If all investors have
the same beliefs and a riskless security exists, then every investor divides
his wealth between cash and a single mutual fund, the market portfolio,
which contains all securities in the market. Arrow (1965/B) has proven in a
very general risk-aversion setting that every investor will want to invest at
least part of his wealth in positive amounts in a favorable gamble. The
market portfolio then being a favorable gamble (since its equilibrium ex-
pected return exceeds the riskless return), all investors will have a long po-
sition in the market. Restrictions on short sales would then not be binding
since no investor would go short the market (and therefore any risky secu-
rity). Investors lend, borrow, and buy risky securities, but none short.
However, once one allows for different beliefs, then intuitively investors
who are sufficiently pessimistic about the returns of certain securities,
other things being equal, may want to short these securities, with the other
side of their transaction taken up by comparatively optimistic investors.

Perhaps the most intriguing form of market segmentation derives from
short-selling constraints. These constraints are particularly interesting be-
cause (1) they are bound up with heterogeneous beliefs (since, as men-
tioned, in the original CAPM with homogeneous beliefs these constraints
are not binding); (2) each investor chooses the extent to which he will be
bound by them (unlike the pure segmentation models); and (3) several fea-
tures of real-world U.S. markets erect barriers to short selling:

1. To short sell, a lender of the shares must be found and motivated to
temporarily part with his shares. The proceeds of the short sale are
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held as collateral to help protect the stock lender. The interest rate on
that collateral that is returned to the short seller is called the “rebate
rate.” To motivate the lender to lend his shares, the rebate rate is lower
than the full interest rate that is earned on the collateral. So the lender
earns the difference between that interest rate and the rebate rate. In
times of very restricted supply, the rebate rate can even be negative so
the short seller not only earns no interest on the short-sale proceeds
but pays an additional fee to the lender.

2. To understand the lack of symmetry from loss of interest on short
sales, consider a “short sale against the box”: being long and short the
same stock simultaneously. If the investor does not receive any interest
on the proceeds of the short sale, even though he must invest his own
funds to buy the long side, this position has a zero payoff. If the short
sale were symmetric, the investor should be able to earn the riskless re-
turn on the investment (which would have occurred had he earned the
interest on the proceeds of the short sale).

3. If after the short sale occurs the broker can no longer find a willing
lender to continue the short sale, the short seller may be forced to
cover prematurely.

4. Short selling is potentially vulnerable to another investor who succeeds
in intentionally monopolizing the floating supply of stock in a “short
squeeze.”

5. Investors cannot short sell after a downtick or after a zero-downtick.
6. If the stock price jumps up more than 100 percent before a short seller

can close out the position, the short seller will experience a greater loss
than would the long buyer who suddenly experiences the largest possi-
ble stock price decline (of 100 percent due to limited liability). How-
ever, shorting by buying put options does not have this drawback.

7. All profits and losses from short sales are treated relatively unfavor-
ably as short-term capital gains irrespective of the short-sale holding
period.

8. Many institutional investors, particularly mutual funds, are contractu-
ally precluded from short selling.

Short selling by buying put options largely circumvents the first six of
these barriers. However, while the loss of the interest on the proceeds of
short sales is not clearly visible in a put purchase, it can be inferred using
the put-call parity relation from the price of the put relative to the price of
an otherwise identical call. Several empirical studies suggest that the im-
plicit rebate rate earned by a put buyer is often significantly less than the
market riskless rate—for example, Stephen Figlewski and Gwendolyn P.
Webb, in [Figlewski-Webb (1993)] “Options, Short Sales, and Market
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Completeness,” Journal of Finance 48, No. 2 (June 1993), pp. 761–777,
and Eli Ofek, Matthew Richardson, and Robert F. Whitelaw, in [Ofek-
Richardson-Whitelaw (2002)] “Limited Arbitrage and Short Sale Restric-
tions: Evidence from the Options Markets,” Journal of Financial
Economics 74 (November 2004), pp. 305–342.

Asymmetric restrictions such as these lead Miller (1977) to postulate
that relatively pessimistic investors will often not register their opinions in
the market since they will find short selling quite costly. On the other hand,
the same reservations do not stop an optimistic investor from going long.
As a result, particularly when there is substantial divergence of opinion
about a stock and short sales are difficult, Miller argues that current stock
prices will tend to reflect only the more optimistic information since the
negative opinions of would-be short sellers never make it into the stock
price. The Hayek (1945) model of information pooling fails, and the cur-
rent price of such stocks becomes higher than the price they would have in
a market in which all available information is reflected in the price.

A very similar observation was made about 40 years earlier by
Williams (1938):

In multiple stock markets, each stock will be held only by those
who like that particular stock issue better than any other, and
those who prefer some other stock will not be owners of that
particular stock, even though they may entertain an opinion on
that one along with opinions on all others. . . . In other words, in
a multiple stock market there is a tendency for most people to
think all stocks but their own too high. If most people are right
in their opinion of the other fellow’s investments, then it would
follow that stocks in general have a tendency to sell too high, be-
cause almost every stock will enjoy some distinction of its own,
and will tend to gather around itself its own special group of en-
thusiasts who will bid its price up too high. If every stock is
somebody’s favorite, then every price should be viewed with
skepticism. (pp. 28–29)43

To some extent, the Williams-Miller argument can also be traced to
Lintner (1969), who presents apparently the first formal analysis of the for-
mation of equilibrium prices under binding short selling constraints (short
selling is simply not permitted). Although Miller cites Lintner’s paper,
strangely he mentions only the portion of the paper that does not deal with
short-selling constraints. But the clear connection between heterogeneous
beliefs and short selling, which was subsequently to be the heart of the
short-selling literature, was forged by Lintner.

The Classical Period: 1950–1980 289

ccc_rubinstein_pt02_99-308.qxd  1/12/06  1:41 PM  Page 289



To derive more specific results, to the assumptions usually made for
the CAPM, as in Lintner (1970), Lintner in addition assumes that all in-
vestors have exponential utility functions, known from Wilson (1968),
which Lintner references, to produce aggregate closed-form results even
when agents have differing beliefs. Lintner’s first important conclusion is
that, for a given security, its equilibrium price is determined only by those
investors who hold that security. Those who in the absence of short-selling
constraints would have tended to short it and, in the presence of these con-
straints, now have zero holdings, play no direct role in determining its
equilibrium price. That is, only the preferences and beliefs of those in-
vestors that end up holding a security have a direct influence on its equilib-
rium price. The preferences and beliefs of those who do not hold the
security only indirectly affect its price via their effect on the prices of other
securities that are held in common. For example, suppose there are three
securities, 1, 2, and 3 and two investors, A and B. Say in equilibrium in-
vestor A holds securities 1 and 2, and investor B holds securities 2 and 3.
Then investor B affects the price of security 1 only indirectly though his in-
fluence on the price of security 2, which in turn affects the demand for se-
curity 1 by investor A. Surprisingly, despite what some seem to believe,
Lintner does not draw the Williams-Miller conclusion that securities will
tend to be priced higher because they will be held by relatively optimistic
investors. Instead, Lintner simply says that the pricing of any security will
only depend directly on the beliefs and risk aversions of the investors who
hold it, and that in determining its price greater weight is given to the risk
aversions and beliefs of those investors who hold more of the security. In-
deed, as Lintner points out (pp. 395–396), in his model the fewer investors
in a security (in his terminology, “the smaller the market”), the higher the
risk premium of that security and the lower therefore its market price,
other things being equal. In effect, because investors have available fewer
desirable securities, they diversify less and tend to hold portfolios with
higher variance. This, in turn, tends to reduce the desirability and therefore
prices of risky securities. Lintner also points out that there is a formal cor-
respondence between markets with short-selling constraints and markets
without them but where subsets of investors are simply ignorant of subsets
of securities and therefore do not trade in them—a correspondence revis-
ited by Merton (1987). So Lintner, since he draws conclusions only about
pure segmentation issues, would have concluded the opposite of Williams
and Miller: that short-selling constraints, by reducing the size of the mar-
ket, should tend to reduce prices.

Robert Jarrow, in [Jarrow (1980)] “Heterogeneous Expectations, Re-
strictions on Short Sales, and Equilibrium Prices,” Journal of Finance 35,
No. 5 (December 1980), pp. 1105-1113, refines the Williams-Miller hy-
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pothesis further. A disconcerting implication of the Markowitz
(1952/March) and Roy (1952) mean-variance portfolio selection model in
the case of unconstrained short sales is that the optimal portfolio often in-
cludes very large long positions in some securities hedged and financed by
very large short positions in other securities. In an extreme case, suppose
securities A and B have almost perfectly positively correlated returns, but
the investor believes that the expected return of security A is slightly higher
than that of security B. He can exploit this small difference in expected re-
turns by shorting a large amount of security B and using the proceeds to
fund correspondingly large purchases of security A—almost a riskless arbi-
trage. In this case, imposing short-sale constraints not only eliminates the
short sales in security B, tending to increase its price, but it also can signifi-
cantly reduce the size of long positions in security A, tending to decrease its
price. Jarrow concludes that a priori considering both these effects means
that short-sale constraints can drive the prices of some securities up and
others down. However, he also proves that in the context of Lintner’s het-
erogeneous expectations model, if the only source of disagreement among
investors is their expected returns (in particular, investors have identical
beliefs about covariances), then the imposition of short-selling constraints
will only increase the prices of risky securities.

Although antecedents to Miller’s paper can be found in Williams
(1938), Lintner (1969), William Forsyth Sharpe, in [Sharpe (1970)] Portfo-
lio Theory and Capital (New York: McGraw-Hill, 1970), pp. 104–113,
and perhaps others, Miller is the first to emphasize several implications of
this hypothesis and a surprising number of apparently anomalous observa-
tions that contradict standard models but can be potentially explained by
asymmetric short-selling restrictions:

1. One should not be surprised to find that warrants, particularly near-
expiration warrants, tend to be overpriced, as claimed by Thorp-Kassouf
(1967), since it is precisely these securities that will be most attractive to
optimistic investors as a result of their high implicit leverage.

2. Syllogistically, since divergence of opinion tends to be correlated with
increased risk and since securities with the greatest divergence of opin-
ion, by Miller’s theory, tend to be the most overpriced, then ironically
increased risk and overpricing (hence lower expected returns) for secu-
rities with divergent opinions tend to go together. For example, over-
pricing of stocks at initial public offerings (IPOs), another apparent
anomaly, may then be explained by the fact that it is at the moment of
the IPO when divergent opinion about the stock is often at its greatest.

3. High turnover and relatively divergent opinions tend to go together;
therefore, high turnover is the market trace evidence of divergence.
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Again, one should not be surprised to find that stocks with high
turnover tend to have lower returns, as claimed by Phillip L. Cooley
and Rodney L. Roenfelt in [Cooley-Roenfelt (1975)] “A Comparative
Multivariate Analysis of Factors Affecting Stock Returns,” Financial
Review (1975), pp. 31–41.

4. Barr Rosenberg and Walt McKibben, in [Rosenberg-McKibben
(1973)] “The Prediction of Systematic and Specific Risk in Common
Stocks,” Journal of Financial and Quantitative Analysis 8, No. 2
(March 1973), pp. 317–333, provide evidence that high turnover and
high beta tend to be observed together. Therefore, one should not be
surprised to find that high-beta stocks have lower returns than the
CAPM would predict, as found by Black-Jensen-Scholes (1972),
among many others.

5. Miller speculates that the closed-fund discount anomaly may be at
least partially due to short-sale restrictions. It is not that closed-end
funds are selling at a discount, but rather that individual securities are
selling at a premium. Investors who are optimistic about individual
stocks cannot take optimal advantage of their beliefs by purchasing
managed portfolios of stocks, but will instead prefer to purchase spe-
cific stocks.

The Williams-Miller argument also has an unfortunate side effect: Since
prices will not reflect, as Hayek (1945) argued, the beliefs of the pool of all
potential investors, realized returns cannot be used without bias to infer
their ex ante probability distribution, as is often assumed in empirical work.

As Joram Mayshar, in [Mayshar (1983)] “On Divergence of Opinion
and Imperfections in Capital Markets,” American Economic Review 73,
No. 1 (March 1983), pp. 114–128, points out, Lintner’s model fails to en-
dogenize explicitly the decisions of investors not to hold certain securities.
To achieve clean results, Mayshar develops a special case of Lintner’s het-
erogeneous beliefs exponential utility CAPM with short-selling constraints.
In particular, he assumes that investors have identical preferences and be-
liefs except for differing opinions about the mean, which for each security
can be arrayed continuously from the least pessimistic to the most opti-
mistic. To prevent the decision to hold security j from depending on the
prices of other risky securities and their expected returns, Mayshar cleverly
assumes that the realized return of every security has a structure as in the
Markowitz (1959) and Sharpe (1963) diagonal or market model, rj – r = αj

+ (rM – r)βj + εj, where both long and short positions are permitted in the
market factor and all investors have the same probability beliefs about the
market factor. That means, then, that investor diversity is limited strictly to
different alphas, αj. In addition, to get around complexities created by se-
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curity endowments, he assumes that all investors start with positions that
are 100 percent cash, and then trade from there to reach their holdings of
risky securities. It then follows that the investors in security j will be those
with the highest alphas. There will exist some point αj* for each security j
where all investors with alphas below that amount will not hold the secu-
rity and all investors with alphas above will. Unlike the standard CAPM,
the equilibrium price will then be determined in addition to the other vari-
ables in that model by the number of investors nj holding that security and
its average alpha: (Σkαk)/nj, where the sum is taken from 1 to nj, only for
those investors with long positions.

Stephen Figlewski, in [Figlewski (1981)] “Informational Effects of Re-
strictions on Short Sales: Some Empirical Evidence,” Financial and Quanti-
tative Analysis 16, No. 4 (November 1981), pp. 463–476, conducts an
early, fairly direct test of the Williams-Miller hypothesis. The hypothesis
implies that if one can identify stocks and times when dispersion of beliefs
is unusually high, one should find those stocks at those times to be over-
priced. Figlewski uses the percentage of outstanding stock held short as an
indicator of belief dispersion. Considering the significant cost of short sell-
ing, those who do may have very negative information compared to those
who hold the stock. The opposite position has often been argued: that
stocks with high short interest should be underpriced since at some point
the short sellers will need to cover by buying stock and this will force the
price up in the future. Covering the period 1973–1979, Figlewski’s empiri-
cal evidence, however, supports both the Williams-Miller hypothesis and
his use of the short-interest percentage as an indicator of belief dispersion,
but the identified stocks are not found to be sufficiently overpriced to com-
pensate for the loss of interest on the proceeds of the short sale likely to be
experienced by most investors. His results also confirm what may be the
earliest published test of the predictability of short interest by Joseph J.
Seneca, in [Seneca (1967)] “Short Interest: Bearish or Bullish?,” Journal of
Finance 21, No. 1 (March 1967), pp. 67–70, who covers the earlier
1946–1965 period using midmonthly announcements of open interest.

Joseph Chen, Harrison Hong, and Jeremy C. Stein, in [Chen-Hong-
Stein (2002)] “Breadth of Ownership and Stock Returns,” Journal of Fi-
nancial Economics 66, Nos. 2–3 (November/December 2002), pp.
171–205, test the Williams-Miller hypothesis by using breadth of stock
ownership, defined as the number of investors with long positions in the
stock, as a measure of pent-up short-selling demand (that is, the fewer in-
vestors, the more pent-up demand since the harder it will be to locate share
lenders). If this proxy works and the hypothesis is true, then reductions in
breadth of ownership should forecast reduced future stock returns. Chen,
Hong, and Stein confirm this prediction for their sample of mutual funds
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for which they have breadth information. They presume that all invest-
ments of these funds are long since very few mutual funds engage in short
sales. For this sample, their prediction is confirmed. Moreover, they also
show that breadth and momentum are positively correlated. Therefore, it
is possible that part of the anomalous observation that momentum can
predict returns (see N. Jegadeesh and Sheridan Titman, in [Jegadeesh-
Titman (1993)] “Returns to Buying Winners and Selling Losers: Implica-
tions for Stock Market Efficiency,” Journal of Finance 48, No. 1 (March
1993), pp. 65–91) may be simply that momentum is a by-product of
changes in breadth, which in turn influences stock returns due to the
Williams-Miller hypothesis.

The Williams-Miller hypothesis can also potentially explain other
more recent anomalous observations. Karl B. Diether, Christopher J. Mal-
loy, and Anna Scherbina, in [Diether-Malloy-Scherbina (2002)] “Differ-
ences of Opinion and the Cross Section of Stock Returns,” Journal of
Finance 57, No. 5 (October 2002), pp. 2113–2141, attempt to explain
why it appears that, compared to otherwise similar stocks, stocks with
higher dispersion in analysts’ earnings forecasts tend to have lower future
stock market returns. Arguing that this dispersion proxies for differences
in opinion about these returns, the Williams-Miller hypothesis can be used
to explain the future lower stock market returns (since these securities tend
to be the most overpriced). Supporting this explanation is the additional
observation that the dispersion effect is greater for small stocks—stocks
that are particularly difficult to short and have no exchange-traded op-
tions, where shorting could otherwise be easily accomplished by selling
calls or buying puts. The dispersion effect also seems to be stronger for
growth stocks where a given level of earnings-estimate dispersion trans-
lates into a larger disagreement over current value.

1978 Nils H. Hakansson, “Welfare Aspects of Options and Super-
shares,” Journal of Finance 33, No. 3 (June 1978), pp. 759–776.

OPTIONS, COMPLETE MARKETS, PORTFOLIO SEPARATION,
MARKET PORTFOLIO, HETEROGENEOUS BELIEFS, 

MARKET-EQUIVALENCE THEOREM

To have the benefits of a complete market as in Arrow (1953), it would
seem we need as many different securities as there are states of the

world. However, in certain interesting cases, the number of securities can
be dramatically economized. The CAPM separation theorem says that only
two securities are needed: a riskless security and a share in a marketwide
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index fund. Merton (1973/September) suggests that a third fund may be re-
quired to allow investors to hedge stochastic changes in investment oppor-
tunities. Rubinstein (1976/May) shows that a natural candidate for such a
fund is a default-free annuity maturing at the end of an investor’s life (sim-
ilar to Social Security in the United States). Thus, an intertemporal version
of two-fund separation can be achieved even with stochastic investment
opportunities, provided the riskless security is interpreted as a default-free
annuity.

Hakansson (1978) finds another way to reduce the number of securi-
ties and yet satisfy the needs of investors. He permits arbitrary and hetero-
geneous risk-averse investor utility functions of wealth. He also assumes
arbitrary probability beliefs attached to states. His key restriction is to sup-
pose that although different investors have different beliefs, their only
source of disagreement is about outcomes of the market portfolio. Since in-
vestors’ subjective probabilities about individual security returns, condi-
tional on the outcome of the market portfolio, are the same, then
state-securities on the market portfolio are the only securities needed by
the market. In other words (by the market-equivalence theorem), a com-
plete market would lead to the same allocations and prices.

Breeden-Litzenberger (1978) takes this a step further to intertemporal
time-additive utility of consumption. They show that, if conditional on
the aggregate level of consumption, all consumer/investors agree on the
probabilities of all states, then the market can be effectively completed
only by trading state-securities on aggregate consumption. They interpret
this as a diversification result. Consider a subset of states for which aggre-
gate consumption is the same, but securities have different returns condi-
tional on aggregate consumption. Consumer/investors will not choose to
vary their consumption across these states since that would create unnec-
essary risk for which they will not be compensated (by, say, higher ex-
pected returns) since that conditional risk is not priced in equilibrium.
Without the assumption of conditional agreement, the agents would take
opposing side bets on the states and more securities would be required.
This leads to a simplification in the valuation function for cash flows in
terms of macro states. In the general case, over dates t = 0, 1, . . . , T and
dated events s(t),

PV0(X0, {X1}, {X2}, . . . , {XT}) = ΣtΣs(t) πt,s(t)Xt,s(t)

where πt,s(t) is the current price of a state-security that pays $1 if and only if
dated event s(t) occurs at date t.

Consider macro dated events S(t) such that for all dated events s(t) ∈
S(t), the level of aggregate consumption Ct,s(t) is the same. Under the 
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conditions of Breeden and Litzenberger, the preceding present value for-
mula simplifies to:

PV0[X0, (X1), (X2), . . . , (XT)] = ΣtΣS(t) πt,S(t) E[Xt|S(t)]

where πt,S(t) is current price of $1 received if and only if macro state S(t) oc-
curs and E[•] is the universally held subjective expected value of Xt condi-
tional on S(t).

In practice, this suggests that if the major source of disagreement
among investors relates to aggregate market returns, most of the market’s
risk distribution function can simply be met by state-securities or options
on the market portfolio. Stephen A. Ross, in [Ross (1976/February)] “Op-
tions and Efficiency,” Quarterly Journal of Economics 90, No. 1 (February
1976), pp. 75–89, had already shown that in place of state-securities, a full
set of standard calls can also complete the market.

Hakansson’s paper preceded the creation of exchange-traded index op-
tions in the United States by five years. Today, despite the fact that the indi-
vidual equity option market had a 10-year head start and despite the fact
that options are now traded on thousands of equities, the daily trading vol-
ume of S&P 500 and S&P 100 index options alone typically exceeds the
volume of all traded equity options.

1978 Haim Levy, “Equilibrium in an Imperfect Market: A Constraint on
the Number of Securities in the Portfolio,” American Economic Review
68, No. 4 (September 1978), pp. 643–658.

1987 Robert C. Merton, “A Simple Model of Capital Market Equilib-
rium with Incomplete Information,” Journal of Finance 42, No. 3 (July
1987), pp. 483–510, his Presidential Address to the American Finance
Association.

MARKET SEGMENTATION, NONMARKETABLE ASSETS, 
CAPITAL ASSET PRICING MODEL (CAPM), NEGLECTED STOCKS

R ealistic modeling of barriers to exchange such as trading costs, short
selling, and so on, present challenging tractability problems. One way

to circumvent these is to exogenously impose some form of market seg-
mentation where investors are simply precluded from holding, exchanging,
or short selling some securities. One of the earliest and perhaps the sim-
plest of these is described by David Mayers, in [Mayers (1972)] “Nonmar-
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ketable Assets and Capital Market Equilibrium under Uncertainty,” in
Studies in the Theory of Capital Markets, edited by Michael C. Jensen
(New York: Praeger, 1972), pp. 223–249. Mayers considers a generaliza-
tion of the standard Sharpe-Lintner-Mossin-Treynor CAPM that allows for
nonmarketable assets that are held in the portfolio of each investor, for ex-
ample the present value of future labor income. In another context, Ken-
neth Joseph Arrow and R.C. Lind in [Arrow-Lind (1970)] “Uncertainty
and the Evaluation of Public Investment Decisions,” American Economic
Review 60, No. 3 (June 1970), pp. 364–378, consider the effect of the
number of investors in a firm on the firm’s socially optimal discount rate
for its physical investments. They conclude that in a segmented market this
discount rate varies inversely with the spread of ownership, which implies
that discount rates should typically be lower for publicly financed (that is,
federal government) investments than for privately financed investments
since the former has more (implicit) investors.

Another very simple example developed by Mark Rubinstein, in [Ru-
binstein (1973/December)] “Corporate Financial Policy in Segmented Se-
curities Markets,” Journal of Financial and Quantitative Analysis 8, No.
4 (December 1973), pp. 749–761, serves to bring out the key point of this
literature.
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Example of Segmented Securities Markets

One way of writing a basic conclusion of the Sharpe-Lintner-Mossin-
Treynor CAPM is:

where r = the riskless return
Wt

M = the dollar value of overall market wealth at dates t = 0, 1
IM = the number of investors in the economy, assumed to be

identical
θ = a measure of the risk aversion of the representative investor

One way to think of this result is as an equation determining the current
wealth W0

M as a function of the other variables, all of which are given.

(Continued)
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Example of Segmented Securities Markets (Continued)

Suppose the economy M were broken into two similar and disjoint
parts, J and K, such that

E(W1
J ) = E(W2

K ) Var(W1
J ) = Var(W1

K )

For the two similar smaller economies, we would then have:

The market has now been completely segmented since the investors in
economy J can only trade securities in economy J but not the other, and
likewise investors in economy K can only trade securities in economy K
but not the other. A standard example comes from international finance
where J and K are viewed as two countries with no overlapping securi-
ties or investors.

The question I wish to answer is whether segmenting the market tends
to increase or decrease overall current wealth; that is, is W0

M > W0
J + W0

K or
is W0

M < W0
J + W0

K?
Rewriting the equation for larger economy M:

Now subtracting this from the separate equations for economies J and K
we can conclude:

W0
M > W0

J + W0
K if and only if ρ(W1

J, W1
K ) < 1

where ρ(W1
J , W1

K ) is the correlation of W1
J and W1

K. (Assumed here is that
θ will remain unchanged after segmenting the original market; although
this is not always correct, any change is likely to be second order.)44
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Intuitively, as long as the two smaller economies J and K have future
market wealth that is not perfectly positively correlated, the investors in each
will be better off if the economies merge into M since all investors can reduce
portfolio risk through expanded opportunities for diversification. Current
wealth therefore becomes more valuable in the merged economy. In interna-
tional finance, this is the prima facie case for international diversification,
where expanding the size of the market tends to increase security prices.

Blume-Friend (1975/May) document that investors typically hold
stock portfolios with very few securities. The Sharpe-Lintner-Mossin-
Treynor CAPM implies that every firm must have the same number of
shareholders; in particular, every investor must be a shareholder. This find-
ing motivates Levy (1978). Levy modifies the original CAPM by assuming
that each investor i has an exogenously specified number of risky securities
mi that he can hold in his portfolio (in addition to the riskless security). So
while all securities are held by some investors, not all investors hold the
same risky securities. In the cross-sectional regression:

rj – r = γ0 + γ1βj + γ2ωj
2 + εj

where rj = the realized return of security j
r = the corresponding riskless return

βj = the measured beta of security j
ω j

2 = the variance of the residual term (εj) of a market model re-
gression

εj = the remaining unexplained variation in rj

The original CAPM predicts that γ0 = 0, γ1 = rM – r, and γ2 = 0 where rM is
the return on the market portfolio. In fact, almost every investigator reports
that γ0 > 0, γ1 < rM – r, and γ2 > 0. Levy shows that in principle his model is ca-
pable of simultaneously explaining all three empirical deviations from the
CAPM. In particular, with most investors holding perhaps only a few securi-
ties in their portfolios, it is not surprising that ωj

2 becomes more important to
them than βj as a measure of security risk. In Levy’s model, βj reflects the cor-
relation of the return of security j with the return of a portfolio containing all
the securities in the market. A Levy investor who may hold only very few se-
curities may not be very concerned about the market as a whole.

More general models of segmentation with international segmentation
in mind include [Errunza-Losq (1985)] “International Asset Pricing under
Mild Segmentation: Theory and Test,” Journal of Finance 40, No. 1
(March 1985), pp. 105–124, by Vihang Errunza and Etienne Losq. In this
paper, a group of unrestricted investors can trade all securities, but a sec-
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ond group, the restricted investors, can trade only a subset of these securi-
ties. The securities that can be traded by all investors are called eligible and
those available only to the unrestricted investors are called ineligible. Not
surprisingly, the eligible securities are priced as if the market is not seg-
mented, while the ineligible securities have lower prices (with what the au-
thors call “super” risk premiums) than they would have in a fully
unsegmented market. The intuition here is the same as in the simpler set-
ting of Rubinstein (1973/December).

Perhaps the most elaborately developed segmentation model is that of
Merton (1987). Merton uses a model very similar to that of Levy in which
different investors are exogenously assumed to be restricted to just a few
securities, with each investor potentially constrained to allocate his wealth
among a different and possibly small subset of all available securities. On
top of Levy’s assumptions, using a version of the Markowitz-Sharpe mar-
ket model, he assumes that all investors can invest as well in an “index
fund,” which captures the common exposures of all existing securities to a
marketwide risk factor. Different investors know about different subsets of
securities, but all investors who know about a security agree about the key
parameters describing its return distribution. As a result, Merton’s model
fits into a category of segmentation models with homogeneous beliefs.

In addition to the findings of Blume-Friend (1975/May), Merton moti-
vates his model from results of subsequent papers by Avner Arbel, Steven
Carvell, and Paul J. Strebel, summarized by Avner Arbel in [Arbel (1985)]
“Generic Stocks: An Old Product in a New Package,” Journal of Portfolio
Management 11, No. 4 (Summer 1985), pp. 4–13, that show that “ne-
glected” but not necessarily small firms (that is, firms with relative little in-
stitutional following) tend to have higher realized returns than would be
predicted even considering the “small firm effect.” Indeed, they present evi-
dence that once one has controlled for neglect, size has no separate effect on
returns. They hypothesize that neglected or generic firms tend to have
higher returns because investors need compensation for the greater diffi-
culty of obtaining information about these firms, in comparison to the
“brand name” and typically larger well-known firms. Supporting this is evi-
dence of greater dispersion of earnings forecasts among analysts for ne-
glected firms compared to widely followed firms. They argue that the
January effect, found by Marc Reinganum, in [Reinganum (1983)] “The
Anomalous Stock Market Behavior of Small Firms in January: Empirical
Tests for Year-End Tax Effects,” Journal of Financial Economics 12, No. 1
(June 1983), pp. 89–104, if caused by end-of-year tax selling to realize
losses, is much more likely to characterize neglected firms since much of the
stock of well-known firms tends to be owned by tax-exempt institutions.
Moreover, release of new information by all firms tends to be concentrated
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in January, but this release is more critical for neglected firms in dispelling
uncertainty. Supporting this, they present evidence that not only does the
dispersion of earnings forecasts tend to reach a seasonal low for all firms in
January, but this reduction is particularly pronounced for neglected firms.

Among his many results, Merton confirms the simpler segmentation
models that prices vary with the size of the market. In particular, other
things being equal, firms with larger exposure to the common factor (simi-
lar to βj), larger residual variance (similar to ωj

2), larger market value, and
fewer investors will tend to have lower prices and higher expected returns.
Perhaps his most interesting result is to point out that it is not size mea-
sured by the proportion of the market value of the firm to total market
wealth that counts, but rather the market value of the firm relative to the
aggregate wealth of the investors who consider investing in that firm (p.
495). The simple intuition underlying these results is that if the typical in-
vestor must confine himself to just a few securities instead of the market
portfolio, the investor will benefit less from diversification and place a
lower current value on the risky securities he owns. Similarly, if fewer in-
vestors must hold the stock of the same firm, then its risk is less easily re-
duced through diversification and therefore investors are only willing to
pay less for the stock of that firm.

1978 Douglas T. Breeden (September 29, 1950–) and Robert H. Litzen-
berger, “Prices of State-Contingent Claims Implicit in Option Prices,”
Journal of Business 51, No. 4 (October 1978), pp. 621–651.

OPTION PRICING, STATE-PRICES, BUTTERFLY SPREADS,
LOGNORMAL DISTRIBUTION, BLACK-SCHOLES FORMULA,

CRRA INTERTEMPORAL CAPM

The mean-variance approach to portfolio selection and equilibrium has
had widespread application in practice, while the state-price approach,

although quite useful as a theoretical device, has been much harder to apply.
Practical application becomes grounded on the shoals of measuring the
state-prices. As late as 1972, Michael C. Jensen, in [Jensen (1972/Autumn)]
“Capital Markets: Theory and Evidence,” Bell Journal of Economics and
Management Science 3, No. 2 (Autumn 1972), pp. 357–398, had written:

While the state-preference [state-price] approach is perhaps more
general than the mean-variance approach and provides an elegant
framework for investigating theoretical issues, it is unfortunately
difficult to give it empirical content.
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All this was to change with the development of the Black-Scholes
(1973) option pricing model. Latané-Rendleman (1976), in the very re-
strictive context of risk-neutral lognormality, showed how the missing pa-
rameter of the state-price distribution, volatility, can be recovered from the
prices of exchange-traded options. Breeden-Litzenberger (1978) show how
this can be done without presupposing that the risk-neutral distribution is
anything in particular, let alone lognormal. They recover the state-prices
from the current prices of standard European options on the same underly-
ing asset with the same time to expiration, when there exists a continuum
of options spanning all strike prices.

In this wide-ranging paper, Breeden and Litzenberger also derive similar
results to Rubinstein (1976/Autumn) for valuing a stream of uncertain cash
flows under time-additive CRRA utility of consumption. Rosenberg-Ohlson
(1976) had already shown that the Merton (1973/September) continuous-
time, continuous-state security pricing model under intertemporally nonsto-
chastic investment opportunities implies that the returns of all risky
securities are identical. Breeden and Litzenberger show, moreover, that Mer-
ton’s model also implies that consumer/investors must have CRRA to sus-
tain the constant opportunity set. This means that, despite appearances to
the contrary, Merton’s model is a special case of the Rubinstein (1976/
Autumn) discrete-time CRRA equilibrium model, where the returns of the
(single) risky security follow geometric Brownian motion, the riskless return
is constant, and trading takes place continuously.

302 A HISTORY OF THE THEORY OF INVESTMENTS

Intuition Behind the Breeden-Litzenberger 
Formula for State-Prices

First, discretize the state space. Consider expiration-date security prices
between a low price of Ki and a high price of Ki+1. The discrete state-
price for this interval is approximated by examining the price of a but-
terfly spread: Buy one call with strike Ki and price C(Ki), buy one call
with strike Ki+1 and price C(Ki+1), and sell two calls with strike K ≡ (Ki +
Ki+1)/2 and price C(K). The price of the butterfly is then C(Ki) – 2C(K) +
C(Ki+1). Define ∆K ≡ K – Ki = Ki+1 – K. The ratio [C(Ki) – 2C(K) +
C(Ki+1)]/(∆K)2 can be interpreted as a finite difference approximation to
∂2C/∂K2, which in turn equals the recovered state-price density.
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1978 Michael C. Jensen, “Some Anomalous Evidence Regarding Market
Efficiency,” Journal of Financial Economics 6, No. 2 (1978), pp. 95–101.

EFFICIENT MARKETS

J ensen (1978) introduces the most famous issue of the Journal of Finan-
cial Economics, marking a turning point in acceptable academic work

in finance. Heretofore, research questioning the rationality of market
prices was difficult to publish because, like good Bayesians, most financial
economists had such a strong prior belief in rational markets that they sus-
pected apparent nonconfirming evidence contained empirical errors. As
Jensen states in a famous paragraph:

I believe there is no other proposition in economics which has
more solid empirical evidence supporting it than the Efficient Mar-
ket Hypothesis. That hypothesis has been tested and, with very
few exceptions, found consistent with the data in a wide variety of
markets: the New York and American Stock Exchanges, the Aus-
tralian, English and German stock markets, various commodity
futures markets, the Over-the-Counter markets, the corporate and
government bond markets, the option market, and the market for
seats on the New York Stock Exchange. Yet, in a manner remark-
ably similar to that described by Thomas Kuhn in his book, The
Structure of Scientific Revolutions, we seem to be entering a stage
where widely scattered and as yet incohesive evidence is arising
which seems to be inconsistent with the theory. As better data be-
come available (e.g. daily stock price data) and as our econometric
sophistication increases, we are beginning to find inconsistencies
that our cruder data and techniques missed in the past. It is evi-
dence which we will not be able to ignore. (p. 95)45

The issue includes papers on the delayed reaction of stock prices to
earnings announcements, potentially profitable trading rules based on
closed-end fund discounts, violations of the general arbitrage conditions
for standard option prices (Merton 1973/Spring), profitable trading
strategies using information contained in option implied volatilities (La-
tané-Rendleman 1976), an example of two virtually identical invest-
ments selling at different prices, and positive abnormal returns using
stock split information (Fama-Fisher-Jensen-Roll 1969). The floodgates
holding back research results questioning rational markets had been
breached.
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1979 John C. Cox, Stephen A. Ross, and Mark Rubinstein, “Option
Pricing: A Simplified Approach,” Journal of Financial Economics 7, No. 3
(September 1979), pp. 229–263.

1979 Richard J. Rendleman Jr. and Brit J. Bartter, “Two-State Option
Pricing,” Journal of Finance 34, No. 5 (December 1979), pp. 1093–1110.

OPTION PRICING, BINOMIAL OPTION PRICING MODEL, 
BLACK-SCHOLES FORMULA, RECOMBINING BINOMIAL TREES,

WORKING BACKWARDS, OPTION EARLY EXERCISE

H ere is the widely known article developing the binomial option pricing
model. Cox-Ross-Rubinstein (1979) (CRR) assume a sequence of mar-

kets over time with just two long-lived securities available at each dated
event, one riskless (cash) and the other risky (underlying asset). The risky
security is assumed to experience a binomial return between each trading
date, say up or down; moreover, the up and down returns are assumed to
be the same at every dated event. Graphically, this traces out a recombining
binomial tree of prices; see discussion under Ross (1977). Each time the
market reconvenes (a node in the tree), an investor can revise his portfolio;
then one of the two dated events occurs; then the market reconvenes again;
then the investor reinvests his accumulated profits and losses in a revised
portfolio; and so on. Because at each date there are just as many securities
(two) as possible dated events (two), the market is dynamically complete. If
one considers yet an additional security (an option) with payoff completely
determined by the realized price of the original risky security at the expira-
tion date and if there is no arbitrage, then the added security is redundant,
in the sense that its payoff can be replicated by revising a (self-financing)
portfolio of the original two securities over time. This strategy leads to a
replicating portfolio that perfectly mimics the payoff of the added security.
Therefore, it is possible to determine the current value of an arbitrary secu-
rity in terms of the current price of the original risky security and the risk-
less return. CRR then parameterize the binomial process of the original
risky security so that as the time interval between successive binomial price
changes (and successive opportunities to revise the replicating portfolio)
approaches zero, the price process of the original risky security approaches
geometric Brownian motion. They suppose the added security is a standard
call. Then the current binomial value of the call approaches its Black-Scholes
value in the limit.

The binomial approach to derivatives has three advantages over Black-
Scholes (1973): (1) its much simpler mathematical structure clarifies the
underlying economics; (2) since its proof only requires an elementary

304 A HISTORY OF THE THEORY OF INVESTMENTS

ccc_rubinstein_pt02_99-308.qxd  1/12/06  1:41 PM  Page 304



mathematical background, it has popularized Black-Scholes option pricing
techniques among professionals and no doubt encouraged the rapid expan-
sion of derivatives trading around the world; and (3) the backwards recur-
sive solution algorithm can easily be modified to handle a substantial
expansion of the types of securities that can be valued. It is obvious, for ex-
ample, that the approach can be used to value any security whose entire
payoff occurs at a single date in the future and is an arbitrary function of
the price of the underlying risky security at that date. CRR show that
American options (options that can be exercised prior to their expiration)
can easily be valued using a slight modification of the recursive solution al-
gorithm. American options are examples of a more general class of deriva-
tives whose payoff depends not just on their underlying asset price at
expiration, but also on the path taken by the underlying asset in getting
there. Others have subsequently shown how the binomial approach can be
extended to value a large variety of exotic or nonstandard derivatives, in-
cluding path-dependent derivatives based on barriers or look-back fea-
tures, derivatives with payoffs depending on the price of more than one
risky security, derivatives whose payoff depends on value of other deriva-
tives, derivatives with forward start features, derivatives with extendible
expiration dates, derivatives with payoffs at different dates, and so on.

From the more general perspective of asset pricing, the binomial ap-
proach to derivatives significantly enlarges the complexity of long-lived se-
curities that can be handled in equilibrium models. The paper suggests that
the continuous-time, continuous-state models initiated by Merton (1969,
1971, 1973/September) can be alternatively modeled as discrete-time
processes suitably parameterized so that as the time interval between suc-
cessive returns goes to zero, the return process of all the securities ap-
proaches multivariate geometric Brownian motion. Initially, there was
some question about how this analogy could be carried over to more com-
plex economies with more than one risky long-lived security. In the context
of Merton’s continuous-time, continuous-state economy, to complete the
market by portfolio revision it quickly became apparent that there needed
to be just as many long-lived risky securities as state-variables for the arbi-
trage reasoning to work. To see the difficulty, suppose there were just three
securities: one riskless and two risky (A and B), each with binomial re-
turns. Over a single period, it would now seem that there would be four
joint outcomes (up for both A and B; up for A, down for B; down for A, up
for B; down for both A and B). Unfortunately, that leads to four states and
these cannot be spanned by only three securities; so the value of a fourth
security (say, a call) cannot be determined simply by arbitrage reasoning.
However, Hua He, in [He (1990)] “Convergence from Discrete- to Contin-
uous-Time Contingent Claims Prices,” Review of Financial Studies 3, No.
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4 (1990), pp. 523–546, shows how this generalization would work. He
proves that if the distribution of A and B were reduced to only three joint
outcomes and properly parameterized, this would preserve the arbitrage
reasoning while at the same time converging to joint geometric Brownian
motion in the continuous-time, continuous-state limit. This is an important
result because it shows how binomial models need to be generalized to
mimic a continuous-time model with many state variables, rendering the
distinction between discrete-time and continuous-time, continuous-state
models moot.

A glimmer of the model appeared in Cox-Ross (1976), which contains
a continuous-time binomial jump model (see particularly p. 389). The dis-
crete-time binomial approach to option pricing was originally suggested by
William Forsyth Sharpe in [Sharpe (1978)] Investments (Englewood Cliffs,
NJ: Prentice-Hall 1978). Rendleman-Bartter (1979) independently devel-
oped many of its implications.

1979 Douglas T. Breeden, “An Intertemporal Asset Pricing Model with
Stochastic Consumption and Investment Opportunities,” Journal of Finan-
cial Economics 7, No. 3 (September 1979), pp. 265–296.

INTERTEMPORAL CONSUMPTION AND INVESTMENT,
CONSUMPTION-BASED CAPM, CONTINUOUS-TIME,
CONTINUOUS-STATE CAPM, CONSUMPTION BETA, 

MARKET PORTFOLIO, LOGNORMAL DISTRIBUTION,
STOCHASTIC OPPORTUNITY SET

The Merton (1973/September) derivation of an intertemporal asset pric-
ing model with stochastically changing investment opportunities over

time resulted in a multibeta version of the CAPM, with an additional beta
term for each additional state variable. Breeden (1979) shows that in Mer-
ton’s continuous-time, continuous-state framework, if a beta is defined
relative to the growth rate of aggregate consumption, rather than the re-
turn of the market portfolio, then the model is considerably simplified
since the multiple beta terms collapse to a single beta capturing the sensi-
tivity of the return of a security to the growth of aggregate consumption.
Breeden also shows that each consumer/investor chooses a portfolio that
provides the highest possible correlation of his consumption with aggre-
gate consumption.

The single-beta result was first shown by Rubinstein (1976/Autumn) in
a discrete-time multiperiod generalization of the CAPM with joint normal-
ity of cash flows and consumption at the same date. It was also shown to

306 A HISTORY OF THE THEORY OF INVESTMENTS

ccc_rubinstein_pt02_99-308.qxd  1/12/06  1:41 PM  Page 306



hold under joint lognormality in discrete time in Breeden-Litzenberger
(1978). Here it is shown to hold in continuous time for all securities pro-
vided their returns follow a continuous-state process. This means that in
empirical application of this consumption-based CAPM (CCAPM), it is
not necessary to identify or measure the potential multitude of factors that
could arise in a Merton-type generalization of the single-factor CAPM ex-
pressed in terms of the return of the market portfolio. However, it then be-
comes necessary to measure aggregate consumption, in practice a very
difficult task. Moreover, if there are reasons—other than a stochastically
changing investment opportunity set—why the indirect utility of wealth
function is state-dependent, there will be no getting around having to mea-
sure extra beta terms.
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1980 Hayne Ellis Leland, “Who Should Buy Portfolio Insurance?” Jour-
nal of Finance 35, No. 2 (May 1980), pp. 581–594.

2000 John C. Cox and Hayne Ellis Leland, “On Dynamic Investment
Strategies,” Journal of Economic Dynamics and Control 24, Nos. 11–12
(October 2000), pp. 1859–1880.

MARKET PORTFOLIO, DYNAMIC STRATEGIES, 
PATH DEPENDENCE

L eland (1980) shows how to recover qualitative features of the utility
function of an investor from the distribution of his future wealth that he

optimally chooses over states, given the way securities are priced in equilib-
rium. In particular, he answers the question why some investors prefer
wealth payoffs over states that are convex functions of the return of the
market portfolio, while others prefer concave payoffs. Which will be cho-
sen depends on how the rate an investor’s risk aversion changes as his
wealth changes relative to the rate of change for the market as a whole.

In most other work, optimal self-financing dynamic strategies are de-
rived from prespecified risk preferences. In Cox-Leland (2000), the inverse
problem is solved: Given a proposed dynamic strategy, how can we tell if it
will be self-financing, has path-independent outcomes, and is consistent
with expected utility maximization of future wealth? The paper concen-
trates on a situation involving a choice between a single risky security (the
market portfolio) following geometric Brownian motion, and cash with an
exogenously specified constant riskless return. A key result is that path-
independent dynamic strategies are a necessary condition for expected util-
ity maximization.

1980 Sanford J. Grossman and Joseph E. Stiglitz, “On the Impossibility
of Informationally Efficient Markets,” American Economic Review 70,
No. 3 (June 1980), pp. 393–408.
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1981 Douglas W. Diamond and R.E. Verrecchia, “Information Aggrega-
tion in a Noisy Rational Expectations Economy,” Journal of Financial
Economics 9, No. 3 (September 1981), pp. 221–235.

2001 Mark Rubinstein, “Rational Markets: Yes or No? The Affirmative
Case,” Financial Analysts Journal 57, No. 3 (May-June 2001), pp. 15–29.

MARKET EFFICIENCY, RATIONAL EXPECTATIONS,
AGGREGATION OF INFORMATION, 
PARTIALLY VS. FULLY REVEALING 

RATIONAL EXPECTATIONS EQUILIBRIA, 
INFORMED VS. UNINFORMED TRADERS, 

OVERCONFIDENCE, HYPEREFFICIENT MARKETS

G rossman-Stiglitz (1980) tries to reconcile the paradox of circularity at
once evident from a literal interpretation of Grossman (1976): If all in-

formation is fully revealed in prices, investors have no incentive to gather
the information in the first place, so no information would be contained in
prices, but then investors would have an incentive to gather it and so
forth. Hence, considering the incentives to gather information, an equilib-
rium does not exist—therefore, the title of the paper. To correct this diffi-
culty, the following model is proposed: Two securities exist, one riskless
and the other risky. The return of the risky security consists of the sum of
two terms, the first (θ) observable by paying cost (c), and the second (ε)
unobservable with mean zero and zero correlation with the observable
term. There are two types of agents: fraction λ informed traders who have
paid c and observe the first term, and fraction 1 – λ uninformed traders
who observe neither term. Otherwise, the traders are identical (same en-
dowments, preferences, and prior beliefs before observing the first term).
Although the uninformed traders cannot observe θ, they nonetheless can
observe the current price P. As in Grossman (1976), these traders are as-
sumed to have rational expectations in the sense that they draw out as
much information as they can about θ from P in forming their own expec-
tations. If x denotes the supply of the risky security, then the equilibrium
price can be interpreted as the function Pλ(θ, x). All traders are assumed to
know they are identical except that there are percentage λ informed
traders. All traders therefore know the equilibrium pricing function Pλ(θ,
x). Therefore, if all traders know aggregate supply x, they can determine θ
simply by observing the price P. Hence we would have a fully revealing
rational expectations equilibrium. But this creates precisely the aforemen-
tioned paradox of circularity.
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To break the circle, Grossman and Stiglitz assume that the unin-
formed traders also cannot observe x. Thus they are prevented from infer-
ring θ from P since they cannot sort out the separate effects of θ and x.
Thus, the equilibrium is only partially revealing. The full equilibrium pro-
posed allows traders to choose whether to become informed. As more
traders become informed, the benefits of being informed decline until it
does not pay additional traders to pay c to become informed as well. To
obtain closed-form results, all traders are assumed to have exponential
utility functions, and θ and ε are assumed to be jointly normally distrib-
uted random variables.

Among the conclusions is the idea that markets will be thinner, and in-
deed may not exist, when either very few or very many traders are informed
(that is, λ is near 0 or 1). Another idea is that while differences in beliefs
would initially seem to foster markets, to the extent the information of in-
formed investors is revealed by prices, the creation of markets eliminates
the very cause that gives rise to them, and may, in the end, cause those
markets to disappear. The net result is that markets cannot be fully efficient
in the sense of reflecting all available information, but markets can be effi-
cient in the deeper sense of reflecting sufficient information so as to leave
zero profit, at the margin, from gathering additional information.

As we have seen, Grossman (1976) developed a fully revealing rational
expectations equilibrium where the diverse information of many agents is
aggregated into prices. Grossman-Stiglitz (1980), on the other hand, devel-
oped a partially revealing rational expectations equilibrium where noise is
created by each trader’s uncertainty about aggregate endowment, but did
not at the same time model the aggregation of diverse information. Dia-
mond-Verrecchia (1981) do both: They model how the aggregation of the
diverse information of many agents and the noise created by uncertainty
about aggregate endowment leads to a partially revealing (that is, “noisy”)
rational expectations equilibrium. In their model, each agent (with identi-
cal prior beliefs) observes an independent signal about what will be the re-
alized return of the risky security as well as an independent signal about
aggregate endowment (namely, his own endowment). Their model is iden-
tical to Grossman (1976) when agents face no uncertainty about aggregate
endowment.

Contending that agents suffer from a type of overconfidence, Rubin-
stein (2001) carries Grossman and Stiglitz one step further. He argues that
overconfidence prompts agents to overspend on gathering information be-
yond the cost-effective point, so that prices actually end up, in a sense, re-
flecting too much information and are therefore “hyper-rational.” This
means that any new investor will find the cards stacked against him in the
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sense that he will not be able to earn a fair return on further investment in
information. Empirical evidence that this is so is found in the poor perfor-
mance of professionally and actively managed equity mutual funds that
may fail to earn back their expenses.

1980 Robert C. Merton, “On Estimating the Expected Return of the
Market: An Exploratory Investigation,” Journal of Financial Economics 8,
No. 4 (December 1980), pp. 323–361.

EXPECTED RETURNS, RANDOM WALK, 
MARKET PORTFOLIO, EQUITY RISK PREMIUM, 

SAMPLE VS. POPULATION STATISTICS, 
JUMP OR POISSON PROCESS

M erton (1980) is perhaps the first paper to show careful thought about
how to measure the equity risk premium. Merton points out that esti-

mating the anticipated future mean from an observed historical time series
of equity returns is much more difficult than estimating its variance. Unfor-
tunately, one of the most basic of financial decisions—how much of your
money to allocate among equities and other securities—is heavily depen-
dent on your opinion about the size of the equity risk premium.

To illustrate the problem, assume the logarithm of returns is indepen-
dent and identically distributed (i.i.d.). Suppose we examine a sample of n
observations drawn over observation period t years where h ≡ t/n is the
sampling interval. It is easy to prove that the annualized sample mean (µ)
is an unbiased predictor of the population mean (µ) and that the variance
of the sample mean equals σ2/t where σ is the annualized population stan-
dard deviation. Note that given t, the variance of the sample mean does
not depend on the frequency of the observations (n or h). On the other
hand, the annualized sample variance σ2 (where the sum of the squared
differences between sampled return and its sample mean has been divided
by n – 1) is also an unbiased predictor of σ2, and the variance of the sam-
ple variance is 2σ4/(n – 1). Unlike the sample variance, not only is the sam-
ple mean not improved by sampling more frequently but, in practice for
portfolios of stocks, the variance of the sample mean also remains dis-
turbingly large even after many years of observations. Moreover, if the
i.i.d. assumption is dropped, then estimation problems for the mean can
become even more difficult. The problem of estimating expected mean re-
turns for individual stocks and even diversified portfolios of stocks is
surely one of the most challenging, vexing, and important problems in fi-
nancial economics.
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In [Merton (1976/May)] “The Impact of Option Pricing of Specifica-
tion in the Underlying Stock Price Returns,” Journal of Finance 31, No. 2
(May 1976), pp. 333–350, Merton adds an important caveat to this. He
notes that if the security return, instead of following geometric Brownian
motion in the continuous-time limit, as earlier, follows a mixed Brownian
motion Poisson jump process, which he had used to value options in [Mer-
ton (1976/January–March)] “Option Pricing When Underlying Stock Re-
turns Are Discontinuous,” Journal of Financial Economics 3, No. 1
(January–March 1976), pp. 125–144, reprinted in Robert C. Merton,
Continuous-Time Finance, Chapter 9 (Malden, MA: Blackwell, 1990), pp.
309–329, then the variance of the sample variance approaches a positive
lower bound as h (holding t fixed) goes to zero. If the jump portion of the
process is significant enough, estimating the sample variance can be near
the same order of difficulty as estimating the sample mean. The addition of
jumps adds the further complication that one could easily interpret the re-
alized returns as having been drawn from a nonstationary, purely continu-
ous distribution, when in fact they are drawn from a stationary
distribution with a jump component. These caveats should be intuitively
easy to understand.
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Proof of Unbiasedness of the Sample Mean 
in the Random Walk Model

To illustrate how these results are derived, we begin with the random
walk model:

for serially independent observations k = 1, 2, . . . , n where E(εk) = 0
and Var(εk) = 1.

The sample mean is defined as µh ≡ Σk(log rk)/n. Substituting for log rk

and taking expectations of both sides:

so that E(µ) = µ, and hence µ is unbiased. (Note: Serial independence is
not needed for this particular result.)
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These observations motivate Merton’s search for a better way to
forecast the equity risk premium (which he takes to be the difference be-
tween the monthly expected return inclusive of dividends of the New
York Stock Exchange (NYSE) stock index minus the corresponding
monthly holding period return on a U.S. Treasury bill with the shortest
maturity exceeding 29 days). He assumes the equity market portfolio re-
turn follows geometric Brownian motion over a given observation pe-
riod. Although he allows his measure of volatility to change from month
to month, he assumes for the purpose of his “exploratory study” that it
is sufficiently constant within the month to be exactly measured by the
sample volatility from daily returns within the month. He examines
three alternative constraints that can be placed on estimates of the risk
premium. The first is that the risk premium be positive and proportional
to the equity return variance: (µ – r)/σ2 = a1, where a1 > 0; this is the con-
clusion reached from representative investor constant relative risk aver-
sion (CRRA) market equilibrium models. Merton (1973/September) and
Rubinstein (1973/October) have shown that a1 can be interpreted as the
sum over a measure of all investors’ individual risk aversions. His sec-
ond model, which has no simple theoretical motivation, is that the risk
premium be positive and proportional to the equity return standard de-
viation: (µ – r)/σ = a2, where a2 > 0. The third is merely that the risk pre-
mium be positive and constant: µ – r = a3, where a3 > 0; Merton calls this
last the “state-of-the-art model.” These different models will produce
different predictions if, as Merton believes, the variance changes from
month to month. Indeed, the prior work of Rosenberg (1972) strongly
indicates this is true.

Methodologically, Merton incorporates the prior restriction that risk
premiums be positive (true for all three alternatives) by assuming a prior
distribution for aj (j = 1, 2, 3) that is uniform over the positive real line.
He then uses Bayes’ theorem1 to estimate the posterior distribution of
the aj based on historically observed returns. He examines various sub-
periods spanning a minimum of 1 year to a maximum of 52 years from
1926 to 1978, over each of which he assumes the aj are constant, but
varying across subperiods. He shows, as one might expect, that the non-
negativity restriction is particularly significant when the historical period
used to determine the posterior distribution contains large negative re-
turn observations.

He reaches three main conclusions. All three measures of aj are signifi-
cantly affected by imposing the constraint that these estimates be positive,
even when the unconstrained estimate would have been positive. He there-
fore advises that careful estimates of the risk premium should build in a
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nonnegativity restriction. Second, the three constrained measures of aj can
easily imply quite different predictions of the equity risk premium. And
third, regression estimates should divide realized returns by the variance
corresponding to the month in which the returns are measured to correct
for nonconstant variance (that is, heteroscedasticity).

1981 Robert C. Merton, “On Market Timing and Investment Perfor-
mance I: An Equilibrium Theory of Value for Market Forecasts,” Journal
of Business 54, No. 3 (July 1981), pp. 363–406.

INVESTMENT PERFORMANCE, 
MARKET TIMING, LUCK VS. SKILL

M erton (1981) finds a way to test for market timing skill without mak-
ing assumptions about how the market adjusts returns for risk, as in

the Jensen (1968) alpha tests using the capital asset pricing model (CAPM).
Merton’s results are independent of assumptions concerning the probabil-
ity distribution of investment returns and the preferences and wealth of in-
vestors. However, they are restricted to the situation where a market timer
forecasts whether stocks will outperform bonds and invests accordingly,
but does not try to forecast by how much.

First, consider perfect market timing forecasting. Suppose you can in-
vest in a mutual fund that can infallibly predict whether the stock market
will do better than the riskless bonds over one year. Say 1 dollar is your
current investment and rM is the value it reaches at the horizon if it is in-
vested in the market and r is the value it reaches if invested in riskless
bonds. The fund cannot borrow or sell short. If it thinks rM > r, the fund in-
vests everything in the market; if it thinks rM ≤ r, it invests everything in
bonds. Merton shows that the current value of being able to invest with
this fund is 1 plus P, the present value of a purchased put on the market
with strike price equal to r, expiring in one year.
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To see this, the payoff of the fund is max(r, rM) = rM + max(0, r – rM), and
the present value of this payoff is then 1 + P, the present value of a put
with strike r. Under the Black-Scholes (1973) option pricing model, it is
easy to see that P = [2N(1/2σ) – 1], where N(•) is the standard normal dis-
tribution function and σ is the annualized volatility of the logarithm of
the stock portfolio return.
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More realistically, assume that the forecast is imperfect such that:

p1 = conditional probability the forecast is correct given that the real-
ization is rM ≤ r.

1 – p1 = conditional probability the forecast is incorrect given that the
realization is rM ≤ r.

p2 = conditional probability the forecast is correct given that the real-
ization is rM > r.

1 – p2 = conditional probability the forecast is incorrect given that the
realization is rM > r.

Clearly, if p1 = p2 = 1 (in which case, p1 + p2 = 2), then the fund has perfect
forecasting skill; Merton also shows that if p1 + p2 = 1, the fund has no
forecasting skill. Assume that p1 + p2 ≥ 1 (that is, the fund does not have
negative forecasting skill). Again, suppose the fund invests completely in
bonds if it forecasts that rM ≤ r and completely in the market if it forecasts
that r > rM, and suppose you are indifferent to any risk that is uncorrelated
with rM. Merton shows that then the present value of the 1 dollar invest-
ment with the imperfectly forecasting fund is 1 + P(p1 + p2 – 1). P(p1 + p2 – 1)
is the present value of the forecast (or the highest fee the fund could charge
for its services). With perfect forecasting skill, P(p1 + p2 – 1) = P; and with
imperfect forecasting skill, P(p1 + p2 – 1) < P.
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Proof of Merton’s Result on Market Timing

To see this, compare the returns from the fund’s imperfect forecast to the
returns of the following portfolio:

Fraction p2 invested in the market.

Fraction λ ≡ P(p1 + p2 – 1) invested in puts on the market with strike
price r.

Fraction (1 – p2 – λ) invested in bonds.

The return of this portfolio is then:

p r
r r

P
p rM

M
2 2

0
1+ − + − −λ λmax( , )
( )
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Proof of Merton’s Result on Market Timing (Continued)

This portfolio return has four types of outcomes:

1. rM ≤ r and the forecast is correct: r – λr – (1 – p1)(r – rM).
2. rM ≤ r and the forecast is incorrect: rM – λr + p1(r – rM).
3. rM > r and the forecast is correct: rM – λr – (1 – p2)(rM – r).
4. rM > r and the forecast is incorrect: r – λr + p2(rM – r).

Each of the outcomes has been expressed as the sum of three terms: first,
r or rM, the return that would have been earned utilizing the forecast; sec-
ond, a constant amount, – λr; and third, a random amount depending on
the size of rM – r. Now if the forecast is perfect, then p1 = p2 = 1, and we
have only outcomes 1 and 3. In outcome 1, while the fund would have
had return r, the portfolio has return r – λr; in outcome 2, while the fund
would have had return rM, the portfolio has return rM – λr. Therefore, the
forecast always has an excess return of λr, and the present value of this
equals λr/r = λ = P, a conclusion we have already reached more directly.

With an imperfect forecast, p1 < 1, p2 < 1, or both, so that the return
from utilizing the forecast would yield λr plus a positive or negative ran-
dom amount more than the portfolio. However, if we can show that the
random component has zero expected value and its risk is uncorrelated
with the market, then we can ignore it and conclude that the present
value of the forecast is λr/r = λ = P(p1 + p2 – 1).

Observe that the expected return of the random component condi-
tional on rM ≤ r is:

p2[– (1 – p1)(r – rM)] + (1 – p1)[p1(r – rM)] = 0

and the expected return of the random component conditional on rM > r
is:

p2[– (1 – p2)(rM – r)] + (1 – p2)[p2(rM – r)] = 0

Not only does this imply that the unconditional expected return of the
random component is zero, but it also implies that the return of the ran-
dom component is uncorrelated with the market. Thus, we can ignore
the influence of the random component in valuing the forecast. That
leaves P(p1 + p2 – 1) as the present value of the forecast.
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Merton’s main conclusion is that p1 + p2 > 1 is a necessary and suffi-
cient condition for successful market timing. Note that the fact that the
unconditional probability p > 1/2 of having a successful forecast does not
indicate forecasting skill. For example, consider a manager who always
forecasts that rM > r. If 75 percent of the time rM > r, then, like a stopped
clock, such an investor will have p = 3/4, even though the investor surely
has no forecasting skill. Moreover, by Merton’s criteria, for such an in-
vestor, since p1 = 0 and p2 = 1, then p1 + p2 = 1. Or suppose, more gener-
ally, that the investor forecasts the market based on flipping a potentially
biased coin. Say it lands tails with probability q, and if it lands tails (or
heads), the investor predicts rM ≤ r (or rM > r). Then p1 = q and p2 = 1 – q,
so that p1 + p2 = 1, again indicating no forecasting skill. Suppose p(1) is
the unconditional probability of a successful forecast by manager 1 and
p(2) is the unconditional probability of 1 by manager 2. It also follows
from this that just because p(1) > p(2), that does not by itself imply that
the market forecasts of manager 1 are more valuable than the forecasts of
manager 2. In short, Merton concludes: “It is not so much how often the
market timer is correct, but when he is correct that determines the value
of his forecasts” (p. 388).

In a sequel paper, Roy D. Henriksson and Robert C. Merton, in
[Henriksson-Merton (1981)] “On Market Timing and Investment Perfor-
mance II: Statistical Procedures for Evaluating Forecasting Skills,” Journal
of Business 54, No. 4 (October 1981), pp. 513–533, go on to implement
Merton’s performance measure empirically. First, they assume that the
manager’s forecasts are observable. In that case, implementation is simply
a matter of counting the number of times the manager timed the market
successfully in down markets (say n1 times out of a total of N1), and the
number of times he was successful in up markets (say n2 times out of a to-
tal of N2). n1/N1 is then an estimate of p1, and n2/N2 is an estimate of p2.
However, in many real-life situations, the manager’s forecasts cannot be
observed, and performance must be inferred using only the time series of
fund returns. In that case, Henriksson and Merton are forced to use a para-
metric test. Their test adds an extra term to the market model regression
(Markowitz 1959 and Sharpe 1963), which instead of being the market re-
turn squared, as in Treynor-Mazuy (1966), is the payoff of a put on the
market with strike price r. They also show that their technique is exempt
from the argument made by Michael C. Jensen, in [Jensen (1972)] “Opti-
mal Utilization of Market Forecasts and the Evaluation of Investment Per-
formance,” in Mathematical Methods of Investment and Finance, edited
by Giorgio P. Szego and Karl Shell (Amsterdam: North Holland, 1972),
that using returns alone, performance from market timing and security se-
lection skills cannot be separated.
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1984 Richard Roll, “Orange Juice and the Weather,” American Eco-
nomic Review 74, No. 5 (December 1984), pp. 861–880.

1986 Kenneth R. French (March 10, 1954–) and Richard Roll, “Stock
Return Variances: The Arrival of Information and the Reaction of Traders,”
Journal of Financial Economics 17, No. 1 (September 1986), pp. 5–26.

1988 Richard Roll, “R2,” Journal of Finance 43, No. 3 (July 1988), pp.
541–566, Presidential Address to the American Finance Association.

1989 William G. Schwert, “Why Does Stock Market Volatility Change over
Time?” Journal of Finance 45, No. 5 (December 1989), pp. 1115–1153.

2001 John J. Binder and Matthias J. Merges, “Stock Market Volatility
and Economic Factors,” Review of Quantitative Finance and Accounting
17, No. 1 (July 2001), pp. 5–26.

EFFICIENT MARKETS, 
WEEKEND VS. TRADING DAY VARIANCE, 

EXCESS VOLATILITY

A key issue in the controversy over rational markets is whether the
volatility of stock returns can be explained by rational economic fac-

tors. In one of the earliest articles, Robert R. Officier, in [Officier (1973)]
“The Variability of the Market Factor of the New York Stock Exchange,”
Journal of Business 46, No. 3 (July 1973), pp. 434–453, uses monthly re-
turns over nonoverlapping 12-month periods from 1919 to 1968, and
finds that regressing the realized volatility of stock returns against the con-
temporaneous volatility of industrial production has an R2 of .261.

Roll (1984) argues that variation in the prices of orange juice futures
should largely be determined by the weather, yet he finds that, although the
weather affects these prices, its effect is much less than expected. Roll
(1988) expands this type of analysis in his Presidential Address to the
American Finance Association, published as “R2”—a clever pun on his ini-
tials. Here he examines how much the price movements of stocks can be
explained by aggregate economic variables, the returns on other stocks in
the same industry, and publicly announced firm-specific news. He finds an
R2 of only .35 for monthly returns and .2 for daily returns, suggesting that
much of the price movement may be irrational.

Fama (1965) was one of the first to note the low volatility of stock re-
turns over the weekend. Refining this observation, French-Roll (1986)
show that stock volatility is much higher per hour (13 to 100 times) when

The Modern Period: Post-1980 321

ccc_rubinstein_pt03_309-348.qxd  1/12/06  1:42 PM  Page 321



exchanges are open than when they are closed. For example, three-day
weekend variance is only slightly higher than single trading day variance.
This would seem to contradict rational markets since it is hard to see why
significantly more fundamental information becomes available when mar-
kets are open than when they are closed. In fact, Niederhoffer (1971) has
provided evidence that world events are more likely to occur over the
weekend (Saturday and Sunday) than on any trading day (see his table 3, p.
200). However, information about fundamentals (cash flows) is not the
only determinant of changing prices. Information about the demands of in-
vestors also affects prices. In a partially revealing rational expectations
equilibrium (not contemplated in this paper), this information may be con-
veyed by the past and evolving history of prices and trading volume. This
history may gradually reveal to each agent more about the private informa-
tion, preferences, and endowments of other agents. In response, as each
agent begins to modify his demands, prices may change much more than
can be justified by any new fundamental information that becomes avail-
able. Obviously, only when markets are open can information be conveyed
in this way. David P. Brown and Robert H. Jennings, in [Brown-Jennings
(1989)] “On Technical Analysis,” Review of Financial Studies 2, No. 4
(1989), pp. 527–551, make some progress toward formalizing a rational
expectations equilibrium in which investors learn from both current and
past prices.

Schwert (1989) uses daily returns over monthly periods on the Dow
Jones Composite Portfolio from 1885 to 1927 and the S&P Composite In-
dex from 1928 to 1987, and finds that regressing this market volatility
against volatility of the growth rate in industrial production, the volatility
of producer price inflation, financial leverage, and past volatility produces
an R2 of .57. However, most of this comes from past volatility, which is not
necessarily a by-product of market rationality. Excluding this variable re-
duces his R2 to only .208. In addition, he fails completely to explain the
sustained significant increase in volatility during the Great Depression.

Binder-Merges (2001), using daily S&P Composite Index data from
1929 to 1989, regresses realized monthly volatility against the concurrent
volatility of the general price level, the level of the riskless interest rate,
the spread between Baa and Aaa corporate bonds (a proxy for the equity
risk premium), and the ratio of expected corporate profits to expected
corporate revenues (to capture the simultaneous effects of financial and
operating leverage). A simple model shows that these are all rational fac-
tors that should determine market volatility. In particular, the last of the
four variables can potentially explain the countercyclical behavior of
market volatility (high in recessions, low in prosperity). They find that
these variables are all statistically significant and have an R2 of .512, and
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that their fourth variable keeps the regression on target even during the
Great Depression (however, their regression fails to explain the October
1987 crash).

1985 Rajnish Mehra and Edward C. Prescott (December 26, 1940–), “The
Equity Premium: A Puzzle,” Journal of Monetary Economics 15, No. 1
(March 1985), pp. 145–161.

1990 George M. Constantinides, “Habit Formation: A Resolution of the
Equity Premium Puzzle,” Journal of Political Economy 98, No. 3 (June
1990), pp. 519–543.

EQUITY RISK PREMIUM PUZZLE, CRRA INTERTEMPORAL CAPM,
TIME-ADDITIVE VOLATILITY, HABIT FORMATION, 
VOLATILITY, EXCESS VOLATILITY, RISK AVERSION

M ehra-Prescott (1985) draw attention to an unfortunate prediction of
the standard finance model based on constant relative risk-averse util-

ity functions: For the empirically observed risk premium of the market
portfolio to be as high as it is relative to empirically observed volatility of
aggregate consumption, the risk aversion required of the representative in-
vestor would need to be unreasonably high. The paper also argues that a
variety of generalizations of this basic model will not correct this problem,
which the authors therefore term “a puzzle.” Rubinstein (1976/Autumn)
anticipated this result by showing in almost the same economy that the re-
turn of the market portfolio and the growth of aggregate consumption are
perfectly positively correlated, differing only by a positive multiplicative
constant, and therefore have the same logarithmic volatility.

Together with Robert J. Shiller, in [Shiller (1981)] “Do Stock Prices
Move Too Much to Be Justified by Subsequent Changes in Dividends?,”
American Economic Review 71, No. 3 (June 1981), pp. 421–436, this pa-
per marks a watershed in the financial theory of investments. From this
point, the empirical predictions of the standard finance model (its implica-
tions, for example, for the size of risk premiums, the variability of the re-
turn of the market portfolio, and the level of interest rates) were taken
more seriously. The bar had been raised. Those working in the field began
to look for ways to adjust the standard model so that all its predictions
were good approximations of reality. The search for a solution to the puz-
zle has spurred many attempts to extend the standard finance model in a
number of different directions; and there have been many premature an-
nouncements of victory. As attempts to solve the puzzle are seemingly
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frustrated as new related puzzles appear, as more elaborate versions of the
model with less degrees of freedom are proposed, and as more anomalous
empirical evidence is unearthed, some react by searching for a new para-
digm. The new paradigm, if it succeeds, will almost surely make a break
from the insistence of the standard model on agent rationality. But 15
years later, even as the twentieth century drew to a close, whether the
standard model could be saved or a new paradigm would be necessary
was still very much in doubt.

Constantinides (1990) attempts to solve Mehra and Prescott’s risk pre-
mium puzzle. He drops their assumption of noncomplementarity of prefer-
ences for consumption over time (that is, additive utility). To inject habit
formation, Constantinides postulates an additive utility function of con-
sumption over time where the utility of consumption at each date takes the
form (Ct – Xt)

γ and Xt equals an exponentially weighted average of past
consumption C0, C1, C2, . . . , Ct–1. Xt can be regarded as the subsistence
level of consumption at date t, below which the consumer/investor will
take no chance of falling. This subsistence level builds in habit formation
because it is an increasing function of past levels of consumption. This
leads to a smoothing of consumption since the normal increase in the util-
ity of consumption from greater utility is at least partially offset by a re-
duction in the utility of future consumption from raising the bar of the
subsistence level. In turn, this leads to reduced variability of the growth
rate of aggregate consumption relative to the variability of the return of the
market portfolio, suggesting a potential rational explanation of the equity
risk premium puzzle. Suresh M. Sundaresan, in [Sundaresan (1989)] “In-
tertemporally Dependent Preferences and Volatility of Consumption and
Wealth,” Review of Financial Studies 2, No. 1 (1989), pp. 73–89, derives
very similar results.

In 2004, Prescott won the Nobel Prize in Economic Science for the
study of how economic policy drives global business cycles.

1987 Douglas W. Diamond and Robert E. Verrecchia, “Constraints on
Short-Selling and Asset Price Adjustment to Private Information,” Journal
of Financial Economics 18, No. 2 (June 1987), pp. 277–311.

2003 Harrison Hong and Jeremy C. Stein, “Differences of Opinion,
Short-Sales Constraints, and Market Crashes,” Review of Financial Studies
16, No. 2 (Summer 2003), pp. 487–525.

SHORT SALES, HETEROGENEOUS BELIEFS, 
STOCK MARKET CRASHES, AGGREGATION OF INFORMATION,
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RATIONAL EXPECTATIONS, SKEWNESS, 
PUT-CALL PARITY RELATION, BUBBLES

A n important objection to the Williams-Miller theory, as mentioned in a
footnote by Figlewski (1981), p. 465, is that it contradicts rational ex-

pectations. This idea is thoroughly developed by Diamond-Verrecchia
(1987) in possibly the most interesting paper written on the Williams
(1938) and Miller (1977) hypothesis since 1977. If investors know that di-
vergence of opinion with asymmetric short-selling restrictions tends to
leave only the most optimistic investors trading in the market, then those
investors should temper their optimism, implicitly trying to incorporate in
current prices the information held by the more pessimistic investors who
fail to trade because of short-sale restrictions. For example, it is hard to be-
lieve that investors will persistently overprice IPOs and never learn from
their experience. So in the Diamond-Verrecchia model, stocks are not on
average overpriced. The authors distinguish carefully between two types of
short-selling constraints: (1) “short-prohibition” constraints, such as an in-
stitutional ban against short selling, which do not discriminate between
optimistic or pessimistic investors, and (2) “short-restriction” constraints,
such as a below-market rebate rate, which do discriminate. Only the latter
type of short-selling constraint can create the asymmetric pricing response
that is their chief innovative conclusion, to which I shall now turn.

Suppose, for some reason, perhaps not fully rational, some traders are
optimistic and others pessimistic about individual stock returns. As in
Williams-Miller, because of short-restriction constraints, the views of the
pessimists are not clearly reflected in prices. However, because of rational
expectations, all investors take into account the extent the bad news
known by the pessimists is not reflected in prices, and correspondingly bid
down prices to reflect an expectation of the unknown pessimistic informa-
tion. So unlike the hypothesis of Williams-Miller, prices on average are not
too high (or too low). However, and this is key, only the expected and not
the actually known negative information is reflected in prices. During peri-
ods when the optimists subsequently receive bad news and prices fall, the
rational traders would now expect some of those who were formerly pes-
simistic to enter as buyers and cushion the fall. However, occasionally
there are periods when the negative information that was originally not re-
flected in prices is surprisingly bad. At these times, prices will fall much
more than anticipated before the pessimists are ready to step in and buy—
hence a stock market crash. Note that this effect is asymmetric since on the
upside there is no hidden positive information not embedded in prices. So
the Diamond-Verrecchia model contains the novel prediction that observed
stock returns should be skewed to the left; that is, around the mean, large
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downward changes should be more frequent than correspondingly large
upward changes.

The Diamond-Verrecchia model also provides a good example of a
more general issue that surely must characterize realistic financial markets:
With dispersed fundamental information but some constraint on trade,
market prices, contrary to Hayek (1945), will not reflect pooled investor
wisdom; rather, over time trading itself will gradually reveal this dispersed
fundamental information and only then will it find itself completely em-
bedded in prices. In the meantime, prices can change rationally even in the
absence of news concerning fundamentals. This view offers a rational way
to explain the evidence of French-Roll (1986) that stock volatility is much
higher when exchanges are open than when they are closed. David Romer,
in [Romer (1993)] “Rational Asset-Price Movements without News,”
American Economic Review 83, No. 5 (December 1993), pp. 1112–1230,
presents alternative ways that do not rely on constrained short sales by
which rationally set prices can move in the absence of fundamental news.
These ideas suggest that much of the excessive volatility that behavioralists
hold out as evidence of marketwide irrationality is actually required in a
rational market where investors use price trends, volume, and other techni-
cal information such as short interest to learn about dispersed fundamental
information that is not yet embedded in current prices.

Of course, while rational expectations are often held out as an as-
sumption that good finance models must not contradict, many intelligent
observers believe that as a practical matter, rational expectations often fail
to explain real-world behavior and should not be taken too seriously. If, as
Figlewski (1981) supports, the percentage short interest is a good proxy for
belief dispersion, then a clear test of the Williams-Miller theory versus the
Diamond-Verrecchia rational expectations modification would be to exam-
ine whether announcements of significant increases in short interest fore-
cast lower future returns (Williams-Miller) or whether prices immediately
adjust downward synchronous with the announcement (Diamond-Verrec-
chia). In Diamond-Verrecchia, since investors cannot distinguish ordinary
sells from short sales just by observing the order flow, news of increased
short interest, since it effectively reveals the pessimistic information, when
it becomes available should immediately lead to a downward revision in
stock prices. In addition, days of relatively little trading volume may be an-
other indicator of greater dispersion of beliefs than usual and therefore
may play an informational role similar to that of announced increased
short interest in depressing prices.

A.J. Senchack Jr. and Laura T. Starks, in [Senchack-Starks (1993)]
“Short-Sale Restrictions and Market Reaction to Short-Interest Announce-
ments,” Journal of Financial and Quantitative Analysis 28, No. 2 (June
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1993), pp. 177–194, test just such an implication of the Diamond-Verrecchia
model: Since would-be short sellers are assumed to have pessimistic infor-
mation generally not accurately reflected in prices (that is, only an unbi-
ased guess about this information is embedded in prices), news of increases
in short sales should reduce the previous relative optimism of the holders
of these securities, and the prices of the securities should fall. Moreover,
the significant cost that short sellers can face suggests that to go short one
must typically have very negative information. As I have argued, this is not
a prediction of the Williams-Miller hypothesis since in that context in-
vestors do not learn from the trading of other investors. The obvious test is
to examine whether changes in recently announced short interest are nega-
tively correlated with contemporaneous returns. Senchack and Starks not
only confirm this implication empirically, they also show that the correla-
tion is much less pronounced for stocks with exchange-traded options,
which permit indirect short selling, again confirming another implication
of the Diamond-Verrecchia model.

A very similar model to Diamond-Verrecchia is contained in the more
recent article, Hong-Stein (2003). Hong and Stein argue that this model is
capable of explaining three virtually defining features of crashes:

1. The post–World War II empirical fact that of the 10 largest moves in
stock prices, nine have been down (the one increase was two days after
the October 19, 1987, crash).

2. That most of these moves have not seemed to be accompanied by suffi-
ciently significant public news to justify the price movement (this has
been particularly remarked about the largest of these crashes, in 1987).

3. That correlation across stocks, both domestically and internationally,
seems to increase sharply and suddenly during a crash.

It is easy to see why the first two features are consistent with their short-
selling model, as they are with Diamond-Verrecchia. In turn, the third is
explained if declines in some stocks reveal the presence of unexpectedly
negative systematic (or marketwide) information heretofore hidden by
short-sale constraints. Related to the first feature are the empirical observa-
tions, both from time series and from option-implied probability distribu-
tions, that stock index returns are negatively skewed, and that this negative
skewness attenuates at longer time horizons. Both these observations
would also be predicted from the Hong-Stein model.

Their model also predicts that abnormally high trading volume should
accompany large negative stock market moves more than large positive
stock market moves. This association between negative return skewness
and trading volume is tested and confirmed in [Chen-Hong-Stein (2001)]
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Joseph Chen, Harrison Hong, and Jeremy C. Stein, “Forecasting Crashes:
Trading Volume, Past Returns, and Conditional Skewness in Stock Prices,”
Journal of Financial Economics 61, No. 3 (September 2001), pp. 345–381.
This result is also supported in the domain of option-implied stock distrib-
utions by Patrick Dennis and Stewart Mayhew, in [Dennis-Mayhew
(2002)] “Risk-Neutral Skewness: Evidence from Stock Options,” Journal
of Financial and Quantitative Analysis 37, No. 3 (September 2002), pp.
471–493, who conclude that periods of larger than usual implied negative
skewness in stock returns also tend to be periods with abnormally high
market volatility. As Hong and Stein point out, other types of crash expla-
nations fail to explain either the asymmetry, that is, why large post–World
War II jumps in the United States seem to occur primarily on the downside
(behavioral theories), or why crashes tend to occur without apparent sig-
nificant public news (volatility feedback theories). Only the short-selling
explanation coupled with investor heterogeneity seems to deal with all
three of the defining features of crashes that they identify. However, to il-
lustrate that the world is never so simple as one would like, the observation
remains unexplained that skewness of returns, both time-series and option-
implied, is negative for stock index returns while being positive or at least
much less negative for individual component stocks. At the conclusion of
their paper, Hong and Stein write:

This article can be seen as part of a recent resurgence of theoretical
and empirical interest in the general topic of how short-sale con-
straints shape stock prices. . . . This work is also beginning to sug-
gest that short-sale constraints may play a bigger role than one
might have guessed based on just the direct transactions costs as-
sociated with shorting. . . . There remains much to be done, both
in terms of developing a fuller understanding of why so many in-
vestors behave as if they were facing prohibitive shorting costs,
and of exploring the consequences of such behavior for stock
prices. (p. 516)2

Perhaps the greatest puzzle surrounding the relationship between short sell-
ing and stock prices, as Hong and Stein suggest, is one of demand: Why is
so little stock is shorted? During 1976–1993, for example, more than 80
percent of all NYSE stocks had short interest of less than 0.5 percent of
their outstanding shares. Figlewski (1981) reports that even the top decile
from a universe of over 400 S&P 500 companies from 1973 to 1979 had an
average short-interest percentage of less than 1 percent. However, it appears
from Ofek-Richardson (2003) that short interest has dramatically increased
in recent years. For their sample of about 4,200 U.S. stocks in February
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2000, the average percentage of short interest to shares outstanding was
about 2 percent. (Ofek and Richardson emphasize that Internet stocks had
a significantly higher short-interest percentage closer to 3 percent. The high-
est 5 percent of Internet stocks had a short-interest percentage of about
10.5 percent, with only about a 0.5 percent annualized rebate rate when the
rebate rate to the short seller for a normal stock was over 5.0 percent.) How
can this bias be explained? Even with symmetric short-selling conditions,
there are many reasons to expect significantly less short than long interest:

� Since a long position must preexist equal to the number of outstanding
shares and a short sale must give rise to an additional exactly offsetting
long position, the number of shorted shares must necessarily be less
than shares held long.

� In a market with identical investors, since they would all hold the same
marketwide index fund, there would be no desire to short. Even in the
standard finance equilibrium model, the CAPM, no investor sells any
stock short.

� Starting from that default, an investor with somewhat relatively pes-
simistic beliefs can assert these by taking less of a long position with-
out needing to go so far as to short.

� For many securities, short selling can be accomplished by trading in
their derivatives (selling futures, selling calls, or buying puts). Using
back-of-the-scratch-pad estimates in October 2003, while the short-
interest percentage (that is, percentage of shorts to outstanding shares)
is typically about 2 percent for stocks with listed options, the aggre-
gate amount of open interest including exchange-traded delta-adjusted
calls and puts on stock indexes and individual stocks, as well as stock
index futures, adds about another 4 percent to the typical direct short
interest, bringing it to about 6 percent (if the implicit short positions of
open derivative positions are included).

Detailed published estimates of the extent of the loss of the interest on the
proceeds of short sales is now finally available in a recent article by Charles
M. Jones and Owen A. Lamont, in [Jones-Lamont (2002)] “Short-Sale Con-
straints and Stock Returns,” Journal of Financial Economics 66, Nos. 2–3
(November/December 2002), pp. 207–239. The estimates cover 1926–1933,
when there was briefly a centralized market on the NYSE for borrowing
stocks. These authors then use these estimates to test the Miller prediction
(and I think implicitly Williams as well) that stocks with high barriers to short
sales should be overpriced and experience lower subsequent returns. They
find that the overpricing of stocks that are expensive to short is sufficiently
large to produce profits to short sellers even after subtracting these costs.
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Supplementing Jones and Lamont, Gene D’Avolio, in [D’Avolio
(2002)] “The Market for Borrowing Stock,” Journal of Financial Econom-
ics 66, Nos. 2–3 (November/December 2002), pp. 271–306, also docu-
ments the costs of short selling using 18 months during 2000–2001 of
transactions obtained from a large stock-lending intermediary. He again
confirms the Williams-Miller hypothesis for a number of proxies for large
differences of opinion—high share turnover, large dispersion of analysts’
forecasts, high visibility among unsophisticated investors, high P/E ratios,
and low cash flows relative to stock price (these latter two create increased
uncertainty and room for differences of opinion). D’Avolio also reports
that forced premature covering of short positions affects about 2 percent of
lent stocks each month across his sample. But the costs of shorting, inclu-
sive of lost interest and potential forced covering, just don’t seem signifi-
cant enough to explain the low incidence of short sales (even if the implicit
short sales via derivatives are included), particularly for large S&P 500
companies for which these costs are quite low.

A related supply puzzle is why more investors don’t take advantage of
opportunities to lend their stock. In [Almazon-Brown-Carlson-Chapman
(2004)] “Why Constrain Your Mutual Fund Manager?”, Journal of Finan-
cial Economics 73, No. 2 (August 2004), pp. 289–321, Andres Almazon,
Keith C. Brown, Murray Carlson, and David A. Chapman report that 70
percent of institutional managers are precluded from short selling by con-
tract, and of those that remain only 10 percent actually short sell. Despite
this, on occasion the payment for security lending becomes so high that it
would seem that no one holding the stock long should not be lending it. For
example, the recent spin-off of Palm by 3Com implied significant returns to
stock lending. At the beginning of March 2000, 3Com spun off 5 percent of
a wholly owned subsidiary, Palm, Inc., stating (and there was virtually no
doubt this would happen) that it would distribute the remaining 95 percent
of Palm shares on July 27. At that time, for each 3Com share, a shareholder
would receive 1.483 shares of Palm. This suggests that 3Com’s shares should
be worth at least 1.483 times the price of Palm’s shares. To take a typical
day, on April 18, the following prices were being quoted by Charles Schwab:

3Com $393/8 Palm $301/2

Under these circumstances, an arbitrage opportunity would seem to exist:
For each share of 3Com that you buy, short 1.483 shares of Palm:

Cash flow on April 18: –$39.375 + 1.483($30.50) = $5.85 (received)

Cash flow on July 27: 0 (since cover short with distribution of Palm)
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However, Palm was very expensive to short. Indeed, instead of receiving in-
terest on the proceeds of the short sale, the short seller received no interest
and actually had to pay a fee on top. As it turned out, the fee demanded by
lenders of Palm (about $5.85) was exactly enough to make the arbitrage
opportunity disappear.

As an alternative, one could have tried to short indirectly using exchange-
traded Palm options. From the put-call parity relation (Stoll 1969),

–S0 = P0 – C0 + Kr–t

That is, a short position in a stock with current price S0 and with no pay-
outs (Palm did not pay dividends) can be replicated by buying a European
put with current price P0 and selling a European call with current price C0
on the stock, both with the same strike price K and time to expiration t (r
being the return on a riskless zero-coupon bond maturing after time t). On
April 18, estimating r = 1.06 and using this equation to imply the stock
value from option prices:

Option t K C0 P0 Implied S0

Aug 25 .33425 25 7.125 5.375 26.27
Aug 30 .33425 30 4.675 8.35 25.85
Aug 35 .33425 35 3.125 3.125 25.70

Therefore, the average implied stock value is ($26.27 + $25.85 + $25.70)/3
= $25.94. Short selling stock at this price indirectly through the options
market unfortunately leads to a current cash flow from this arbitrage of:

–.39.38 + 1.483($25.94) = –$0.91 (loss)

So that wouldn’t work, either. The options market had clearly caught on to
the arbitrage and had aligned the prices of each put-call pair such that each
implied about the same stock price for Palm, sufficiently low to eliminate
the arbitrage. But the key puzzle remains: There must always be more
shares held long than shorted. So there must be some who held Palm who
did not lend it out. So one wonders why anyone who held Palm long did
not try to lend his stock out and pick up a free $5.85 per share!

Further reflection shows that in the presence of security lending costs,
the equilibrium price of a security (measured before considering these
costs) could be indeterminate. To repeat the example given by Darrell
Duffie, Nicolae Gârleanu, and Lasse Heje Pedersen, in [Duffie-Gârleanu-
Pederson (2002)] “Securities Lending, Shorting and Pricing,” Journal of Fi-
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nancial Economics 66, Nos. 2–3 (November/December 2002), pp.
307–339, suppose optimists believe the value of a stock is $100 while pes-
simists believe its value is $90. If short selling were not possible, the opti-
mists would determine the market price, which would then be $100. But
suppose instead there were a market for lending the stock to the pessimists
for short selling, and suppose the optimistic lenders had all the market
power. In that case, since the pessimists would pay at most $10 ($100 –
$90) to borrow the stock, the lending fee would be $10. But then optimists
would be willing to pay $110 for the stock since they would now get $100
stock value plus the $10 lending fee. So the stock price would rise to $110.
Now the pessimistic short sellers would be willing to borrow the stock for
at most a $20 fee ($110 – $90), so the price could then rise to $120, and so
on. This upward spiral would cease if eventually all the outstanding stock
not yet lent out somehow ended up in the hands of investors who for some
reason refused to lend their stock. Ironically, as the authors point out, the
price of the stock with possible short selling can actually end up higher
than if short selling were prohibited, and even higher than the value placed
on it by the most optimistic investor in the market!

Rational market theorists might hope that in this lies the key to ex-
plaining the Internet bubble. In fact, as documented by Eli Ofek and
Matthew Richardson, in [Ofek-Richardson (2003)] “DotCom Mania: The
Rise and Fall of Internet Stock Prices,” Journal of Finance 58, No. 3 (June
2003), pp. 1113–1137, the rebate rates for shorting Internet bubble stocks
averaged 1 percent to 1.5 percent per annum less than for non-Internet
stocks. Moreover, other signs of constrained short selling for Internet
stocks included higher short interest and frequent put-call parity viola-
tions. Also, supporting the hypothesis of high belief dispersion is evidence
the authors present that retail investors, in contrast to institutions, played a
greater role than usual as buyers of Internet stocks. Unfortunately for ra-
tional market advocates, although providing some support for the
Williams-Miller hypothesis, the magnitudes of these effects do not come
close to explaining the rise phase of the bubble. Where were all the short
sellers who, even with somewhat higher costs, should have stepped in with
so much that was apparently to gain?

However, the authors also emphasize that something quite similar to
temporarily very strong shorting restrictions may explain the collapse. An
extraordinarily large amount of insider IPO-related stock that was locked
up during the rising phase of the bubble (early 1998 to February 2000) be-
came unlocked just as the bubble was collapsing (March 2000 to Decem-
ber 2000). This meant that for the first time relatively well-informed
shareholders whose relative pessimism may have been hidden during the
rise now entered the market, and their selling may have at least precipi-
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tated the collapse, which then subsequently became fed by the previously
optimistic investors who now began to factor the implied beliefs of the new
traders into their calculations.

1994 Mark Rubinstein, “Implied Binomial Trees,” Journal of Finance
49, No. 3 (July 1994), pp. 771–818, Presidential Address to the American
Finance Association.

DERIVATIVES, OPTIONS, OPTION PRICING, 
BINOMIAL OPTION PRICING MODEL, IMPLIED BINOMIAL TREES,

RECOMBINING BINOMIAL TREES, WORKING BACKWARDS,
STATE-PRICES, STOCHASTIC VOLATILITY

The binomial option pricing model of Cox-Ross-Rubinstein (1979) and
Rendleman-Bartter (1979) assumes that the up and down returns of the

underlying risky security are the same at every node in the binomial tree
describing the evolution of the price of the security. This leads to a recom-
bining tree and a binomial distribution of prices at the end of the tree that
is shown to converge to a lognormal distribution as the time between suc-
cessive nodes goes to zero. Unfortunately, many securities do not have
prices that are adequately approximated by risk-neutral lognormality. In-
deed, exchange-traded European options on popular stock market indexes
have prices that cannot be rationalized by the Black-Scholes formula. To
deal with this problem, Rubinstein (1994) allows the binomial returns to
be different at all nodes in the tree, but he still retains the feature of the
standard binomial model that, at the end of the tree, at a given node, the
risk-neutral probability of all paths leading to that node is the same. He
shows that, with this generalization, it is possible to value options with ar-
bitrary expiration-daterisk-neutral distributions of their underlying asset
price and yet be consistent with a recombining tree in which the backwards
recursive procedure conveniently unravels the current value of the option.

A second part of the paper develops an algorithm for recovering the
expiration-date risk-neutral distribution from the pre-expiration-date mar-
ket prices of several standard European options trading on the same under-
lying asset with the same maturity (they differ only in strike prices).
Breeden-Litzenberger (1978) had already shown how this could be done
from an infinite number of options with a continuum of strike prices from
zero to infinity. By using a quadratic programming approximation tech-
nique, Rubinstein adapts this inference to practical situations where only a
finite number of options are available.

Taken together, the paper shows how to recover from options not just
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the state-price distribution corresponding to a given future date, but also
the entire stochastic process of state-prices over time that gives rise to that
terminal distribution. Compared to Black-Scholes (1973), Cox-Ross-Ru-
binstein (1979), and Rendleman-Bartter (1979), who assume a constant lo-
cal volatility, this generalization permits the volatility of the underlying
asset to be a function of the concurrent underlying asset price and time.
Even with this generalization, the recovered stochastic process is still lim-
ited to the class of recombining time-dependent Markov processes.

1995 James A. Ohlson, “Earnings, Book Values, and Dividends in Equity
Valuation,” Contemporary Accounting Research 11, No. 2 (Spring 1995),
pp. 661–687.

DIVIDENDS, EARNINGS, DIVIDEND DISCOUNT MODEL, 
CLEAN-SURPLUS RELATION, 

ABNORMAL EARNINGS DISCOUNT MODEL, 
INVESTMENT OPPORTUNITIES APPROACH, 

ECONOMIC VALUE ADDED (EVA)

S ecurity analysts and academic accountants have long sought a conve-
nient way to use the information commonly found in accounting state-

ments to determine the value of stocks. With this objective, it is difficult to
be grateful for the advice from Williams (1938) that one should simply dis-
count the value of future dividends over the remaining life of a firm. As
Ohlson (1995) puts it:

[T]he paper highlights the key role of accounting data when one
tries to come to grips with an apparent paradox in neoclassical se-
curity valuation: the present value of expected dividends deter-
mines a firm’s value, yet the prediction of the dividend sequence is
basically irrelevant if the underlying dividend policy is irrelevant.
(Who wants to predict next year’s expected dividends when all
dividend policies yield the same market value?)3

One way to accomplish this is to make future dividends a function of cur-
rent dividends, as in the Williams (1938) perpetual dividend growth
model, but this is not satisfactory since the sequence of future dividends
can be changed without altering the current stock value. One is tempted to
discount future earnings, but this suffers from double counting. Ohlson
tries to find a way around this. For simplicity, he assumes risk neutrality
and starts with the dividend discount model: P0 = ΣtE[Dt]/r

t, where the sum
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is taken from 1 to ∞, and the dividends Dt can be thought of as dividends
net of capital contributions. He uses what accountants call the “clean-
surplus relation” to substitute other accounting variables for dividends: Yt

= Yt–1 + Xt – Dt, which says that book value at date t equals book value at
date t – 1 plus date t earnings minus date t dividends. Substituting for Dt in
the present value formula:

where the summation is taken from 1 to ∞ and r* ≡ r – 1. The expression
in parentheses may be interpreted as “abnormal earnings” since it is earn-
ings over and above a fair return on book value. The formulation, to this
point, can be found in [Preinreich (1938)] Gabriel A.D. Preinreich, “An-
nual Survey of Economic Theory: The Theory of Depreciation,” Econo-
metrica 6, No. 3 (July 1938), pp. 219–241 (see particularly p. 240), and
appeared even earlier and perhaps originally in Appeals and Review Mem-
orandum 34, United States Treasury Department (1920).

Note that this formulation is quite close to the stream of earnings ap-
proach of Miller-Modigliani (1961):

where the first summation is taken from 1 to ∞, the second summation is
taken from 1 to t, and It is investment at date t, except that it is written in
terms of the time series of book values rather than of investment. Ohlson’s
formulation is also similar to the investment opportunities approach of
Miller-Modigliani (1961):

where the summation is taken from 1 to ∞, X0 is earnings at date 0, and ρt

is the annualized rate of return on the investment undertaken at date t. It is
easy to see that X0/r* = Y0 + Y0(ρ0 – r*)/r* where ρ0 is the rate of return
earned on date 0 book value.

Ohlson then assumes either that (1) abnormal earnings themselves are
independent of dividends, or more fundamentally that (2) It and ρt (invest-
ment policy) are independent of dividends, or that (3) changes that divi-
dends cause in investment are value-neutral. For example, the return on
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investment financed by paying less dividends can earn only return r*. In
any of these cases, of course, P0 will then be independent of dividend pol-
icy. That this should be true under (1) is obvious, and that this should be
true under (2) follows from the analysis of Miller-Modigliani (1961), and
(3) follows from Brennan (1971) and Rubinstein (1976/September). Any of
these assumptions would follow from the more fundamental notion that a
stock-price-maximizing firm should not let dividend policy dictate its in-
vestment policy.

To finish the task of making the current stock price depend only on
concurrent accounting information, Ohlson then assumes that (1) abnor-
mal earnings are a linear function of the most recent past abnormal earn-
ings, information other than abnormal earnings, and noise; and (2) that
this other information is itself a linear function of its previous level and
noise. This specification is quite arbitrary and its efficacy clearly depends
on empirical verification. This approach of linking future information de-
termining present value to current information can be viewed as a more so-
phisticated version of the Williams (1938) perpetual dividend growth
model, which assumes that future dividends are a simple function of cur-
rent dividends.

In the light of earlier work, I conclude then that Ohlson’s paper
makes very little contribution to theory. Nonetheless, his paper has made
an important contribution to subsequent empirical research by reorient-
ing the way accounting data is used to explain stock prices. Previously,
this line of research either used accounting data with no constraint im-
posed by the dividend discount model to explain prices, or if this con-
straint were imposed and earnings were forecast, dividends were assumed
to be some simple (perhaps linear) function of earnings. Ohlson’s ap-
proach, within the constraint of the dividend discount model, does not
bother with forecasting dividends even indirectly, but instead forecasts
abnormal earnings or its determinants. Victor I. Bernard, in [Bernard (1995)]
“The Feltham-Ohlson Framework: Implications for Empiricists,” Con-
temporary Accounting Research 11, No. 2 (Spring 1995), pp. 733–747,
shows empirically that the cross-sectional variation in stock prices is far
better explained by forecasts of abnormal earnings than direct forecasts of
dividends.

Gerald A. Feltham and James A. Ohlson, in [Feltham-Ohlson (1995)]
“Valuation and Clean Surplus Accounting for Operating and Financial
Assets,” Contemporary Accounting Research 11, No. 2 (Spring 1995),
pp. 689–731, illustrate the theoretical advantages of the framework es-
tablished by Ohlson. They apply clean-surplus accounting separately to
financial assets and operating assets, assuming that market and book
value for the former are equal. Not surprisingly, this leads to a present
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value relation in terms of book value and abnormal operating income
that is similar to Ohlson’s present value relation in terms of book value
and abnormal earnings. One of the most interesting features of account-
ing earnings is its tendency (by design) to be biased, so that book value
tends to be less than market value for most stocks. Feltham and Ohlson
define conservative accounting mathematically as the property that the
difference between market price and book value at date t is expected at
fixed date t0 < t to be positive as t → ∞. To tie future earnings to current
earnings and book value, they adopt a linear time-series model with noise
determining future operating earnings and operating assets and show
how the time-series coefficients depend on whether accounting is unbi-
ased or conservative.

Closely related to abnormal earnings is the concept of “residual in-
come”: net operating income after taxes minus the product of the overall
cost of capital (debt plus equity) times the amount of capital (that is, assets
net of depreciation and amortization invested in operations). Abnormal
earnings and residual income are equivalent in the absence of debt financ-
ing. Stern Stewart & Company has successfully popularized an annual
residual income measure trademarked EVA (economic value added), which
considers a number of accounting modifications to net operating income
such as amortizing research and development (R&D) and marketing ex-
penditures, recording operating leases as an asset and offsetting liability,
and converting last in, first out (LIFO) to first in, first out (FIFO) inventory
accounting, and uses the CAPM to measure the overall cost of capital.
Stern Stewart argues that these adjustments turn residual income into a
number that measures the annual performance of management. Joel M.
Stern, in [Stern (1999)] “Stern Stewart Roundtable on EVA in Europe,”
Journal of Applied Corporate Finance 11, No. 4 (Winter 1999), pp.
98–121, says:

So, even as finance professors were teaching their students that
discounted cash flow and NPV were the primary determinants of
value, EPS concerns continued to rule the day inside corporations.
Why did companies reject NPV? The problem with NPV is that it
is a multi-period, “stock” measure of value that does not lend it-
self to a single-period performance evaluation. EVA solved this
problem by in effect decomposing NPV into annual—or even
monthly—“installments” of value added. Over a sufficiently long
period of time EVA and NPV give identical answers in evaluating
performance. But because EVA is a “flow” rather than a “stock”
measure, it can be used as the basis for a period-by-period perfor-
mance evaluation and incentive system. (p. 102)4
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1995 Jonathan B. Berk (April 22, 1962–), “A Critique of Size-Related
Anomalies,” Review of Financial Studies 8, No. 2 (Summer 1995), pp.
275–286.

SIZE EFFECT, PRICED VS. NONPRICED FACTORS

The size anomaly had been regarded by many researchers as one of the
most prominent contradictions of the current asset pricing paradigm in

finance; see, for example, Eugene F. Fama and Kenneth R. French, in
[Fama-French (1992)] “The Cross-Section of Expected Stock Returns,”
Journal of Finance 47, No. 2 (June 1992), pp. 427–465. The size anomaly
is the finding that firm size (measured by market value) is inversely related
to stock market returns. This size effect also extends to other size-related
variables including the price-earnings ratio, the dividend yield, the debt-
equity ratio, and the ratio of book value of equity to market value of equity.
Many researchers simply concluded that somehow size must be a proxy for
risk. Unfortunately, it has been difficult to come up with a theoretical justi-
fication for such a relationship between size and risk.

Berk (1995) provides a very clever explanation for why the size effect
is really not an anomaly. Moreover, his explanation for the size anomaly
does not rely on any particular relationship between firm size and risk. To
understand it, consider two firms with the same expected future cash flows.
If one of those firms is more risky than the other, then its current market
value will be lower. This immediately implies that a firm with a lower mar-
ket value will have a higher expected future return, consistent with the al-
leged size anomaly. As Berk shows, this result also implies that a firm’s
market value will add explanatory power to any asset pricing model that
does not fully explain expected return. The beauty of this result is its sim-
plicity and intuitive appeal.

Berk supports his theory with empirical tests in [Berk (1999)] “A View
of the Current Status of the Size Anomaly,” in Security Market Imperfec-
tions and World Wide Equity Markets, edited by Donald Keim and
William Ziemba (Cambridge: Cambridge University Press, 1999). In one
set of tests, Berk examines whether measures of size other than market
value are related to a firm’s average return. Under the conventional expla-
nation of the size effect, there should be a relationship; under Berk’s, there
should not. The four measures of size that are used are book value of eq-
uity, sales, number of employees, and acquisition cost of property, plant,
and equipment. Using tests similar to those employed to document the size
effect, Berk finds no relationship between any of these measures and aver-
age returns, consistent with his theory.
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1996 Jiang Wang, “The Term Structure of Interest Rates in a Pure Ex-
change Economy with Heterogeneous Investors,” Journal of Financial
Economics 41, No. 1 (May 1996), pp. 75–110.

AVERAGE OR REPRESENTATIVE MAN, 
AGGREGATION, CAUTIOUSNESS, 

CONSTANT RELATIVE RISK AVERSION (CRRA)

Until 1996, closed-form aggregation results in a competitive pure-exchange
economy appeared to limit the heterogeneity of investors to utility func-

tions of identical “cautiousness,” as in Rubinstein (1974). For example,
Bernard Dumas, in [Dumas (1989)] “Two-Person Dynamic Equilibrium in
the Capital Market,” Review of Financial Studies 2, No. 2 (Summer 1989),
pp. 157–188, considers an economy of two investors, one with logarithmic
utility and the other with power utility. In this case, the allocation of
wealth across investors now affects equilibrium prices. Although Dumas
succeeds in deriving some comparative statics results, he is not able to de-
rive closed-form solutions.

Thought to be impossible, Wang (1996) nonetheless derives closed-
form equilibrium results in an economy under uncertainty where investors
individually have CRRA utility functions but of different powers. For ex-
ample, he considers an economy with just two consumer/investors, one
with logarithmic utility and one with square-root utility. And he shows
that for certain other specific combinations of powers, closed-form results
are possible. He then asks how the results are qualitatively different from
an economy with a CRRA representative agent.

1997 Mark M. Carhart, “On Persistence in Mutual Fund Performance,”
Journal of Finance 52, No. 1 (March 1997), pp. 57–82.

1997 Kent Daniel, Mark Grinblatt, Sheridan Titman, and Russ 
Wermers, “Measuring Mutual Fund Performance with Characteristic-
Based Benchmarks,” Journal of Finance 52, No. 3 (July 1997), pp.
1035–1058.

2000 Russ Wermers, “Mutual Fund Performance: An Empirical 
Decomposition into Stock-Picking, Talent, Style, Transactions Costs,
and Expenses,” Journal of Finance 55, No. 4 (August 2000), pp.
1655–1695.
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MUTUAL FUND PERFORMANCE, PERSISTENCE, 
THREE- VS. FOUR-FACTOR MODEL, ALPHA, 

MOMENTUM, LUCK VS. SKILL

Using a four-factor Fama-French (1992)-style model (where a one-year
momentum factor has been added to the three Fama-French factors—

the excess return of a value-weighted market index and the return on
value-weighted, zero-investment, factor-mimicking portfolios for size and
book-to-market equity), Carhart (1997) calculates a Jensen (1968)-style al-
pha for a sample of 1,892 diversified equity mutual funds over the period
1962–1993, free of survivorship bias since the sample contains all known
funds over the period. The four-factor model does a much better job than
the single-factor CAPM or the three-factor Fama-French model in match-
ing the returns of managed portfolios. He finds that, after correcting for
the four factors and persistent differences in trading costs and management
fees, there is very little evidence of persistent skill in stock selection, and
any remaining small persistence disappears after one year. He also argues
that although funds do show higher returns from following momentum-
based strategies, most of these returns seem to be by chance since the funds
automatically find themselves with larger positions in the previous year’s
winning stocks. He also claims that mutual funds do not earn back their
expenses in the form of higher returns; in fact, for every 1.5 basis points of
additional management expense, the fund recoups only 1 basis point of re-
turn, and increases in turnover also reduce net returns.

When a professional portfolio manager proposes an investment strategy
based on fundamental analysis of equities, the presumption is that he or she
expects the strategy to outperform simpler, purely mechanical, strategies
based on stock characteristics like book-to-market, size, and momentum. As
companies like Vanguard have demonstrated, simple mechanical portfolio
strategies can be implemented at substantially lower cost than the more sub-
jective strategies used by most mutual funds. Therefore, if the active mutual
funds fail to beat the mechanical strategies, they may be wasting resources.5

With this justification, Daniel-Grinblatt-Titman-Wermers (1997) tries
to improve preexisting methods for mechanically replicating the perfor-
mance of individual mutual funds. Previous work such as Jensen (1968)
and Martin J. Gruber, in [Gruber (1996)] “Another Puzzle: The Growth in
Actively Managed Mutual Funds,” Journal of Finance 51, No. 3 (July
1996), pp. 783–810, Presidential Address to the American Finance Associ-
ation, determined the effect of market, size, and growth factors by regress-
ing the fund’s portfolio return against these factors. Instead, using data on
fund holdings, Daniel, Grinblatt, Titman, and Wermers first match stock
returns to three factors—market value of equity, book-to-market ratio, and
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the prior years’ returns—and then aggregate up to portfolios by weighting
the stock exposures by the value weights in the fund. This approach has
several advantages: (1) it provides a better match between fund returns and
mechanical strategies, leaving less unexplained fund returns, and (2) it al-
lows decomposition of total fund returns into fund returns from “average
style,” “characteristic selectivity,” and “characteristic timing,” which to-
gether sum to the total fund return. Specifically, using all New York Stock
Exchange, American Stock Exchange, and Nasdaq stocks, at the beginning
of each quarter these are grouped into three quintiles based on size, book-
to-market ratio, and momentum. This 5 by 5 by 5 sorting produces 125
value-weighted portfolios. Each quarter, each stock is then matched to the
single passive portfolios with same values for all three factors. The “char-
acteristic selectivity” return is then the difference between the realized re-
turn over the quarter for the stock and its matching portfolio. A fund’s
return over a longer period is then simply the compound return, so mea-
sured, over constituent quarters.

Their results on “characteristic selectivity” are similar to Carhart’s al-
pha, but they attribute to it somewhat higher fund returns and have greater
statistical significance. They confirm Carhart’s conclusion that a fund’s per-
sistence is almost completely explained by its average exposure to the three
factors, and report that there is no evidence of returns from timing charac-
teristics. They also show that most of the superior stock selectivity is con-
centrated in the first five years of their 20-year (1975–1994) sample period.

The historical performance of equity mutual funds is perhaps the most
significant empirical evidence bearing on the hypothesis that prices in de-
veloped financial markets are determined rationally. Unlike most other em-
pirical evidence bearing on this issue, mutual fund performance is based on
actual, not paper, profits. It bypasses the issue of whether various anom-
alous strategies can actually be implemented; whatever strategies the mu-
tual funds followed were, of course, implemented. Provided care is taken
to correct for survivorship bias, there is little danger of data mining or
other empirical problems. We can argue as long as we like about whether a
legitimate successful strategy should have been discovered in a rational
market, given the costs of research and the technology then existing, and
we will not know. But we can look at the results of 60 years of investing by
thousands of smart and highly compensated individuals who spent most of
their waking hours studying markets. If these individuals could not beat
the market, then at least we can say it is very difficult to do so. Several per-
formance issues have been examined:

1. Can the average mutual fund outperform standard widely diversified
market indexes such as the S&P 500?
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2. Even if the answer to question 1 is no, is there statistically significant
evidence that any small group of mutual funds has outperformed the
market averages by skill?

3. Is there any evidence of mutual fund performance persistence?
4. To the extent mutual funds experience different net performance than

an index fund (such as the Vanguard S&P 500 Index Fund), how much
of this performance can be attributed to: (1) stock selection, (2) market
timing, (3) differences in investment style, (4) differences in trading
costs and turnover, (5) differences in management fees, (6) differences
in the percentage of assets held in cash?

From the point of view of an investor deciding between investing in a
passively or actively managed fund, the answers to all the questions are im-
portant. For example, suppose the average active fund underperforms the
market average (question 1). Even if some mutual funds outperform the
market by skill (question 2), if the funds do not exhibit performance persis-
tence (question 3), it may be impossible to identify the superior-performing
funds in advance. Therefore, passive investment would be preferred. Or,
even if an active mutual fund underperforms the market, it may do so with
less risk (question 4) and still be the preferred investment. Evidence that
suggests investors are divided on this issue is the fact in the year 2000 the
two largest equity mutual funds were an actively managed fund, Fidelity
Magellan, and a passively managed fund, Vanguard S&P 500 Index Fund.

Using a new database, Wermers (2000) is able to provide an answer to
questions 1 and 4. He examines the entire universe of U.S. equity mutual
funds from 1975 to 1994, a total of 1,788 distinct funds. His database
contains both funds that survived the entire 20 years and those that disap-
peared due to liquidation or merger, and hence is free of the survivorship
bias that has bedeviled many earlier studies. He limits his analysis only to
funds holding diversified portfolios of U.S. equities (self-styled as “aggres-
sive growth,” “growth,” “growth and income,” or “balanced”), excluding
international funds, bond funds, commodity funds, real estate funds, and
other sector funds.

Wermers measures performance as if the entire mutual fund industry
held a single portfolio, that is, a value-weighted average of the returns of
the constituent funds. He measures these value-weighted returns quarterly
and then compounds these quarterly returns to measure performance over
longer intervals. He adjusts for three style factors: size, book-to-market ra-
tio, and prior-year stock return (to capture momentum) using the stock-
by-stock matching method taken from Daniel, Grinblatt, Titman, and
Wermers (1997).
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He attributes the average performance per year of these mutual
funds to:

Center for Research in Securities Prices (CRSP) 15.60%
value-weighted return

Holding benchmark style portfolios that outperform + 0.60
the market

Holding stocks that outperform benchmark style portfolios + 0.71
Nonstock holdings –0.70
Management expenses –0.79
Trading costs –0.80

Average net return 14.60%

The S&P 500 return over the same period was 15.4 percent—very close to
the CRSP value-weighted return. Over almost the same period, the Van-
guard S&P 500 Index Fund had management expenses of 0.28 percent and
trading costs of 0.07 percent. So if we assume near-perfect tracking—a rea-
sonable inference from Vanguard’s reported annual results—Vanguard’s
average net return would have been 15.05 percent, giving it about a half a
percent advantage over active management.

Wermers also finds that due to nonstock holdings, mutual funds
tend to underperform market averages much more in high-return years
than low-return years. He also finds that high-turnover funds tend to 
do better than low-turnover funds, which supports the value of active
management.

Wermers’ measured performance of active mutual funds is probably
overstated for six reasons:

1. Some nonstock holdings may be a necessary by-product of efficient ac-
tive investment.

2. It is likely that over the subsequent five-year period, 1995–1999, active
funds performed even more poorly than usual relative to passive funds.

3. Breaking down the results into four sequential five-year periods, it ap-
pears that much of the superior performance of active funds occurred
in the first five years, 1975–1979, when there were far fewer and much
smaller funds; this, taken together with reason 2, means that during
the more recent 20-year period 1979–1999, it is likely that passive
funds significantly outperformed active funds.

4. The benchmark style portfolio may not fully correct for the risk of
omitted factors such as liquidity.
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5. For taxable investors, passive funds with their lower average turnover
and perforce their tendency to realize less capital gains may have a sig-
nificant tax advantage increment to their performance.

6. Load fees are not considered.

1999 Jonathan B. Berk, Richard C. Green, and Vasant Naik, “Optimal
Investment, Growth Options, and Security Returns,” Journal of Finance
54, No 5 (October 1999), pp. 1553–1607.

REAL OPTIONS, CAPITAL BUDGETING, 
TIME-VARYING EXPECTED RETURNS

The idea that firm growth opportunities can be interpreted as options may
first have been mentioned in passing in Fisher (1930) and then first for-

mally considered in [Myers-Turnbull (1977)] Stewart C. Myers and Stuart
M. Turnbull, “Capital Budgeting and the Capital Asset Pricing Model:
Good News and Bad News,” Journal of Finance 32, No. 2 (May 1977),
pp. 321–333 (see particularly p. 332). Berk-Green-Naik (1999) develop a
dynamic model of the firm in which the firm’s option to invest in growth
opportunities is explicitly modeled. Heretofore, the endogenous asset com-
position of a firm’s balance sheet had been ignored in asset pricing theory,
and yet one might have expected this to be a rich mine of theory for time-
varying expected returns. This is all the more significant because the solu-
tion to several recent empirical puzzles has either been credited to investor
behavioral biases or to time-varying expected returns. At the same time,
the case for time-varying expected returns has been weakened by failure to
provide sound theoretical reasons to justify the particular forms of varia-
tion required to explain the empirical puzzles.

This paper is one of the first to model time-varying expected returns
from the ground up, so to speak, by distinguishing between assets in place
and the value of options representing growth opportunities; see also Ru-
binstein (1983). This is possibly the most important cross-sectional and
time-series feature of corporate assets for the purpose of explaining time-
varying expected returns. The paper shows that the optimal exercise of the
growth opportunities causes the firm’s asset base and systematic risk to
change in predictable ways. The paper then uses simulation to show that
these dynamics can simultaneously explain a number of observed empirical
findings, such as (1) the performance of contrarian investment strategies
over short horizons, (2) the performance of momentum strategies over
long horizons, (3) the inverse relation between interest rates and the mar-
ket risk premium, and (4) the time-series and cross-sectional relationships
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among book value, market value, and asset returns. This paper should give
behavioralists pause before abandoning the more traditional rationalist ap-
proach to finance; it provides an excellent illustration that the rationalist
approach may only appear to fail because it is applied too naively.

2001 Alan Kraus and Jacob Sagi, “Aggregation of State Dependent Pref-
erences When Markets Are Incomplete,” unpublished working paper, Haas
School of Business, University of California, Berkeley (2001).

PREFERENCE UNCERTAINTY, LEARNING, 
COMPLETE MARKETS, AGGREGATION

K raus-Sagi (2001) investigates a promising and highly interesting gener-
alization of standard multiperiod equilibrium models commonly used

in finance. The authors generalize existing models by allowing consumers
to be uncertain of their future preferences, a sort of failure to completely
know themselves. Nonetheless, they are assumed to have probability as-
sessments of possible future preferences that get increasingly refined as the
future approaches. This lack of self-knowledge is captured by assuming
that preferences depend on consumption (as usual) but also on an unspeci-
fied state-variable. In order to characterize the equilibrium, they cleverly
assume that aspects of future states that affect prices can be hedged in a
complete market, but they allow for aspects of future states that do not
affect prices but still affect consumer utility to be uninsurable (and there-
fore to that extent the market is incomplete).

Quite generally, the additional state-variable could reflect (1) other ex-
ogenous aspects of the states that affect utility such as consumer health or
the weather, (2) the future prices of commodities on which dollar consump-
tion is to be spent, (3) the value of incompletely marketable assets such as
human capital, (4) the results of as yet unperformed calculations, or, more
simply, (5) an incomplete self-knowledge. However, it does not seem that
this state-variable in the authors’ model could depend on either the way in
which the stochastic process of future investment opportunities evolves or
the choices of other economic agents, as in keeping up with the Joneses.

Despite the very high level of generality of the model, a number of
strong and somewhat surprising conclusions are reached. First, although
market incompleteness (of their special type) does not affect the market
price of risk (that is, the aggregate Sharpe ratio), it does affect the riskless
return, and via that, the present value of future aggregate consumption (ag-
gregate wealth), and by that route the equity risk premium. Second, even
though the aggregate rate of time preference is stochastic, this uncertainty
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has no effect on the risk premium. Third, the volatility of aggregate relative
risk aversion has a much greater influence on the equity risk premium than
the level of aggregate relative risk aversion. Fourth, at least in an interest-
ing special case, the greater the uncertainty surrounding the unspecified
state-variable, the lower the equity risk premium. This result is unfortunate
in the sense that one might have hoped that the generalizations in the paper
would have helped explain the large size of the risk premium; but in fact,
the paper makes the equity risk premium puzzle even more puzzling!

2003 Dilip Abreu and Markus K. Brunnermeier, “Bubbles and Crashes,”
Econometrica 71, No. 1 (January 2003), pp. 173–204.

2005 Markus K. Brunnermeier and Jonathan Parker, “Optimal Expecta-
tions,” American Economic Review 95, No. 4 (September 2005), pp.
1092–1118.

BUBBLES, STOCK MARKET CRASHES, 
INFORMED VS. UNINFORMED TRADERS, 

SEPARATION OF PROBABILITIES AND PREFERENCES, FELICITY

The model in Abreu-Brunnermeier (2003) works like this: A “prebubble”
starts at time t0; at this point the market price begins to exceed the fully

informed price. This can happen because many investors in the market are
noise traders, perhaps trading foolishly on momentum; it really doesn’t
matter. At the same time there is a group, say, of informed traders. Because
it takes time for information to diffuse in the market or time to analyze the
information, these traders only gradually become informed that a bubble is
in progress. In particular, imagine that there are 21 informed traders and
assume that on each of the next 21 days exactly one new trader becomes
informed that a finite-lived bubble is in progress. Each of these traders
knows that there are exactly 21 traders who will eventually become in-
formed. Suppose each trader has exactly one unit of capital and suppose it
takes a total of 15 traders to break the bubble and each trader knows this.
Also suppose that when a trader becomes informed, he does not know how
many other traders are already informed (this is key).

The real bubble occurs when the informed traders in aggregate have
enough capital to break the bubble—that is, 15 days after the prebubble
started. Abreu and Brunnermeier claim that in general the bubble will not
be broken at t0 + 15 but more generally after that. This is the key claim of
the paper, and I am not sure I understand it. Before getting to that, let me
say that at this point I like the setup; it seems to mirror key features of real-
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world bubbles, and after t0 + 15 we are in what I would regard as essen-
tially a rational model where, before this paper, we would have expected
the bubble to burst immediately. The generally accepted wisdom is as soon
as there is enough arbitrage capital held by a sufficient number of traders
to eliminate the arbitrage, it should be eliminated. But the authors say no,
this will not generally happen.

Let us say that 14 traders have been informed a bubble is in progress.
This will happen by day 14 from the beginning of the prebubble. Even if
they all sold in aggregate they could not break the bubble. Now on day 15
the 15th trader is informed. He is the one who will end up breaking the
bubble, but he doesn’t know that. But knowing that there are 21 traders
who will be eventually informed, he thinks that probably only 10 traders
have already been informed, so his guess is that the bubble cannot yet be
broken. But, of course, he is worried that since the bubble is in progress al-
ready it may break if he waits. So he has to trade off the expected loss ver-
sus the expected gain in waiting. One can well imagine that if the bubble
price is going up fast enough at an accelerating rate, he may decide it is bet-
ter to wait (in particular, his best guess is that it will be another 4 or 5 days
before 15 traders are informed there is a bubble).

Brunnermeier-Parker (2005) take on what has long been a very inter-
esting psychological (or behavioral, if you prefer) issue: a particular way
many people let their probabilities be influenced by their preferences.
When evaluating what they should do, they increase the probabilities of
outcomes they prefer and decrease the probabilities of outcomes they don’t
like, and then act on the rational decision that emerges. An example is the
belief in the afterlife that underlies most Western religions. First, people
make the mistake of overestimating the probability there is some type of
conscious existence after death; then they sign up for the tenets of some re-
ligion in order to maximize the utility of that existence when they get there.
The net result is that during their life, they feel much better about every-
thing they do believing that they will be ending up in some version of
heaven. Even the most unbearable impoverished existence becomes bear-
able. But they have a trade-off. If that was all there was to it, they might
have to live in a monastery and forgo earthly pleasures. The actual realized
utility of that choice is sufficiently negative that they compromise by tast-
ing but limiting their indulgence in the vices, to get the best of both worlds,
so to speak.

Brunnermeier and Parker try to create a mathematical model of this type
of departure from standard rationality and then examine its consequences
for several issues primarily in finance. In a simple example of their more gen-
eral model, in place of the standard expected utility of ending wealth
E[U(W)], they instead assume investors maximize “expected felicity,” which
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is E{E*[U(W)] + U(W)}. Here the first expectation is taken over the objective
or true probabilities, and the embedded expectation is taken over the “opti-
mal probabilities,” which are actually those probabilities that maximize ex-
pected felicity, so they are endogenous to the problem. Not too surprisingly,
the authors show that this investor tends to take more risk than the purely
rational investor since he acts as if he believes expected returns are higher for
the risky asset (he may even be seen gambling, heaven forbid!). In a multiple
security context, we would expect the investor to be willing to hold portfo-
lios that are much less diversified than a purely rational investor. In another
example of a two-person exchange equilibrium, the authors assume that the
two investors differ only in endowments. Because they maximize expected
felicity, each wants to believe that his endowment is more valuable than the
other’s (in terms of state-securities, each would believe that the states where
his endowment is concentrated are more likely to occur than those where it
is not). What is particularly nice is that these heterogeneous beliefs that
emerge in equilibrium are derived endogenously. Each investor wants to be-
lieve whatever will make him happiest. Gambling occurs here because of a
disagreement about probabilities.

The authors suggest that this type of behavior could explain home
bias. In a model of intertemporal savings and consumption, not surpris-
ingly consumers would tend to consume more and save less than fully ra-
tional agents (agents are both overconfident in the sense that they
underestimate risk, and unrealistically optimistic in the sense that they
overestimate expected return). Every period consumers are inclined to be
surprised that the consumption they end up choosing tends to be lower
than they had previously expected. Forms of insurance are not as popular
as they should be. It is even possible that introducing options to insure in-
come, where before they did not exist, can actually reduce expected felicity.
Agents in their models may also prefer to delay the resolution of uncer-
tainty if they can. To be sure, there is no learning in these models, but the
authors contend that continual overconfidence and optimism match many
empirical observations.
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Notes

PREFACE

1. Too recently discovered to be included in this history is a 1940 paper of the Ital-
ian mathematician Bruno de Finetti, predating Markowitz and Roy by 12 years,
which formulates mean-variance portfolio theory, including a justification for
measuring risk by portfolio variance, the equation relating the covariances of se-
curity returns to the portfolio variance of return, mean-variance efficient sets,
and a critical line algorithm to numerically solve the portfolio selection problem.
Although de Finetti’s paper formulates the general quadratic programming prob-
lem including short-sale constraints for the general case, only an algorithm for
solving it in the special case of uncorrelated returns is fully worked out. Written
in Italian, the paper has remained unknown among financial economists until it
was just recently brought to my attention and translated into English.

The Ancient Period: Pre-1950

1. A recently updated translation of the Archimedes palimpsest that contains his
Method ends with a single page apparently beginning another work, which
seems to concern combinatorics.

2. Pascal and Fermat go on to examine an important generalization that arises
only when there are more than two players. Suppose player A needs 1 point to
win and players B and C each need 2 points to win. Then the game requires a
maximum of three more awarded points to determine the outcome. One such
sequence is (abb). In this sequence, although both A and B would end up with
the same number of points, the first player wins since he is the first player to ac-
cumulate the required number of points. This simple example illustrates the
importance of what would much later be called “path dependence,” a charac-
teristic, for example, of an American option where different permutations of
the same combination of serially realized returns of an underlying asset can
lead to a different payoff to the buyer of the option.

3. As an aside that I cannot resist, it took more than 300 years before it was
shown that Huygens might have a problem with this setup. Ivo Schneider, in
“Christiaan Huygens’ Non-probabilistic Approach to the Calculus of Games of
Chance,” De Zeventiende Eeuw 12, No. 1 (1996), pp. 171–185, first shows
that this table describes the payoffs required by Huygens’ assumptions. Each
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player is seen to have an equal chance of receiving each of the three payoffs,
A, B, or C, and the stakes are always all paid out to the players. But suppose
we also naturally assume that when a player wins the stakes, after the side
payments, he also wins in the sense that he has a greater payoff than the
other two players. Then, there must be an inconsistency. To see this, if P1
wins in this sense, then clearly A > B, C. But then when P2 wins the stakes,
after side payments he ends up with only C < A. Did Huygens, one of the
most careful and mathematically sophisticated minds of his time, make an
error? In spirit, perhaps, but technically no, since he does not explicitly state
that A > B, C.

4. Savage (1954), pp. 94-95, apparently incorrectly, attributes the finding con-
cerning bounded utility to Cramer’s letter. A detailed analysis of the cause of
Savage’s error can be found in [Bassett (1987)] Gilbert W. Bassett Jr., “The St.
Petersburg Paradox and Bounded Utility,” History of Political Economy 19,
No. 4 (1987), pp. 517–523. I learned of this from the economic historian,
Joseph Persky, who asked the author to send me a copy of his paper.

5. Proceedings of the Berkeley Symposium on Mathematical Statistics and Proba-
bility by Kenneth Joseph Arrow/Jerzy Neyman. Copyright 1951 by the Univer-
sity of California Press. Reproduced with permission of University of California
Press in the format Trade Book via Copyright Clearance Center.

6. Abraham de Moivre’s [de Moivre (1738)] The Doctrine of Chances was first
published in 1718. The second edition published in 1738 contains de Moivre’s
most important result, which he published separately in 1733 in seven pages as
Approximatio ad Summam Terminorum Binomii (a + b)n in Seriem Expansi,
the normal approximation to the binomial. An expanded third edition was
published posthumously in 1756, reprinted (New York: Chelsea Publishing
Company, 1967); a portion was originally published in Latin in 52 pages as
“De Mensura Sortis” (“On the Measurement of Lots”), Philosophical Trans-
actions of the Royal Society 27 (1710–1712), pp. 213–264.

De Moivre’s contribution to mathematics has been substantial, including
results in finite differences, the theory of infinite series, and a theorem from
trigonometry that bears his name. His work on life annuities has assured him
an honored place in the development of actuarial science and the theory of in-
vestments more generally. But clearly his most significant contribution is the
earliest version of the central limit theorem, the normal approximation to the
binomial. Here we see an example of Stephen Stigler’s law that laws and for-
mulas are never named after their original discover: The normal distribution is
sometimes referred to as “Gaussian,” after the great mathematician Carl
Friedrich Gauss, who was born 23 years after de Moivre’s death. The Approx-
imatio was only discovered recently by Karl Pearson, which he describes in
[Pearson (1924)] “Historical Note on the Origin of the Normal Curve of Er-
rors,” Biometrika 16, Nos. 3/4 (December 1924), pp. 402–404. The Approxi-
matio contains the first known occurrence of the normal distribution, which
was then widely distributed in English in 1738 as part of the second edition of
de Moivre’s Doctrine of Chances. The Approximatio also contains the first
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known statement of what is also incorrectly called Stirling’s formula for ap-
proximating factorials: n! ≈ 2.5074(√

–
n)e–nnn. Stirling’s amendment to this was

to replace 2.5074 with the exact expression √—2π.
7. Jules Regnault in [Regnault (1863)] Calcul des chances et philosophie de la

Bourse (Mallet-Bachelier et Castel, Paris, 1863) anticipated this result several
decades earlier, deducing it from, of all things, the empirical observation of
stock price movements.

8. Source: Paul Anthony Samuelson, PBS television program “NOVA 2074: The
Trillion Dollar Bet,” broadcast February 8, 2000. www.pbs.org/wgbh/nova/
stockmarket. For program purchase: http://shop.wgbh.org/webapp/wcs/stores/
servlet/ProductDisplay?productId=11030&storeId=11051&catalogId=
10051&langId=-1.

9. Source: Irving Fisher, The Theory of Interest: As Determined by Impatience to
Spend Income and Opportunity to Invest It (New York: Macmillan, 1930);
reprinted (New York: Augustus M. Kelley, 1955), p. 315.

10. Ibid., p. 313.
11. Ibid., p. 341.
12. Source: Joan Violet Robinson, “What Is Perfect Competition?” Quarterly

Journal of Economics 49, No. 1 (November 1934), pp. 104–120 (p. 119).
13. Source: Fisher, Theory of Interest, pp. 194–199.
14. Ibid., p. 316.
15. Reprinted by permission of Blackwell Publishing.
16. Excerpt from The Intelligent Investor: The Classic Text on Value Investing by

Benjamin Graham. The Original 1949 Edition, featuring a new Foreword
from John C. Bogle. Copyright 1949 by Benjamin Graham; Foreword copy-
right © 2004 by John C. Bogle. Reprinted by permission of HarperCollins
Publishers, Inc.

17. Ibid.
18. Source: Warren E. Buffett, “The Superinvestors of Graham-and-Doddsville,”

Hermes, Columbia School of Business (Fall 1984), pp. 4–15. Copyright 1984.
Reprinted with permission.

19. Buffett, though generally refreshingly conversant with modern financial the-
ory, seems to have misunderstood this theory at this point. The modern theory,
because of the implications of diversification, implies that prices are set at the
margin by all investors (or, in special cases, by the average investor), not as
Buffett puts it by the single least rational investor.

20. Source: Buffett, “The Superinvestors of Graham-and-Doddsville,” pp. 4–15.
21. Since this is a history, it is perhaps appropriate to mention that the word bank-

ruptcy takes its origin from the Italian banco, a bench set up by moneylenders
in Venice during the Renaissance. When a moneylender was discovered cheat-
ing, he would be forcefully closed down and publicly disgraced by having his
bench broken—hence the suffix ruptus.

22. Source: John Maynard Keynes, The General Theory of Employment, Interest
and Money (Palgrave Macmillan, 1936), pp. 153–155. Reproduced with per-
mission of Palgrave Macmillan.
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23. Source: John Maynard Keynes, “The General Theory of Employment,” Quar-
terly Journal of Economics 51, No. 2 (February 1937), pp. 209–223.

24. Strangely, although Gordon and Shapiro are clearly aware of Williams’ book,
they do not credit him with this formula in their article. To the contrary, they
write:

In his Theory of Investment Value, a classic on the subject, J.B.
Williams tackled this problem of growth. However, the models he de-
veloped were arbitrary and complicated so that the problem of
growth remained among the phenomena dealt with qualitatively. It is
our belief that the following proposal for a definition of the rate of
profit that takes cognizance of prospective growth has merit. Source:
Myron J. Gordon and Eli Shapiro, “Capital Equipment Analysis: The
Required Rate of Profit,” Management Science 3, No. 1 (October
1956), pp. 102–110 (p. 105).

They then go on to derive the same simple growth formula as Williams—
equation (7), p. 105.

25. Reprinted by permission of Fraser Publishing, www.fraserpublishing.com. All
rights reserved.

26. Ibid.
27. Source: Friedrich August von Hayek, “The Use of Knowledge in Society,”

American Economic Review 35, No. 4 (September 1945), pp. 519–530 (pp.
526–527).

28. Adam Smith (June 5, 1723–July 17, 1790), An Inquiry into the Nature and
Causes of the Wealth of Nations, Great Books of the Western World: Smith
(Franklin Center, PA: Franklin Library, 1978).

29. Source: von Hayek, “The Use of Knowledge in Society,” p. 527.
30. More precisely, Markowitz assumed two of the three departures from stan-

dard utility theory made by prospect theory: (1) utility normalized relative to
current wealth and (2) a steeply convex segment to the left of the origin. In ad-
dition, Kahneman and Tversky also (3) weaken the assumption that the prob-
ability weights on utility sum to one.
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nal of the Royal Statistical Society: Series A (General) 116, No. 1 (1953), pp.
11–34.

32. Source: Holbrook Working, “The Investigation of Economic Expectations,”
American Economic Review 39, No. 3 (May 1949), pp. 150–166.

The Classical Period: 1950–1980

1. Most sources, including Bartlett’s Familiar Quotations, 17th edition, 2002, at-
tribute this advice to Mark Twain (November 30, 1835–April 21, 1910) since

352 NOTES

ccc_rubinstein_note_349-358.qxd  1/12/06  1:56 PM  Page 352



he provides it without attribution in his book, The Tragedy of Pudd’nhead
Wilson (1894), at the start of Chapter 15:

Behold, the fool saith, “Put not all thine eggs in the one basket”—
which is but a matter of saying, “Scatter your money and your 
attention;” but the wise man saith, “Put all your eggs in one basket
and—WATCH THAT BASKET.”

A few years earlier Twain had heard Andrew Carnegie advise this as a re-
sult of Carnegie’s own experience in industry, and was so taken with it that he
included it in his book. Carnegie’s advice seems to be a response to Sancho
Panza in Miguel de Cervantes (1547–1616), Don Quixote (1605), Part I, Book
III, Chapter 9:

’Tis the part of a wise man to keep himself today for tomorrow, and
not venture all his eggs in one basket.

2. Reprinted by permission of Blackwell Publishing.
3. Ibid.
4. Copyright 1999, CFA Institute. Reproduced from The Financial Analysts Jour-

nal with permission from the CFA Institute. All rights reserved.
5. Kendall, “Analysis of Economic Time-Series.”
6. It is often claimed that this last point appears in Friedman’s article, but I must

confess that I can’t find it.
7. Reprinted by permission of Blackwell Publishing.
8. Source: Franco Modigliani and Merton Howard Miller, “The Cost of Capital,

Corporation Finance and the Theory of Investment,” American Economic Re-
view 48, No. 3 (June 1958), pp. 261–297 (p. 271).

9. Source: Walter A. Morton, “The Structure of the Capital Market and the Price
of Money,” American Economic Review 44, No. 2 (May 1954), pp. 440–454
(p. 442).

10. Source: Franco Modigliani and Merton Howard Miller, “The Cost of Capital,
Corporation Finance and the Theory of Investment,” American Economic Re-
view 48, No. 3 (June 1958), pp. 261–297 (p. 271).

11. Reprinted by permission of Fraser Publishing, www.fraserpublishing.com. All
rights reserved.

12. Source: Holbrook Working, “A Theory of Anticipatory Prices,” American
Economic Review 48, No. 2 (May 1958), pp. 188–199 (p. 196).

13. Reprinted by permission of Blackwell Publishing.
14. Proceedings of the Berkeley Symposium on Mathematical Statistics and Proba-

bility by Leo Breiman. Copyright 1961 by the University of California Press.
Reproduced with permission of University of California Press in the format
Trade Book via Copyright Clearance Center.

15. Source: Hans-Werner Sinn, “Weber’s Law and the Biological Evolution of Risk
Preferences: The Selective Dominance of the Logarithmic Utility Function,”
CESifo Working Paper No. 770 (September 2002), pp. 3–4.
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16. Translating this example into our earlier notation, set W(s) = 1 2 3 4 5 6, pA(s)
= 0 .5 0 0 0 .5 and pB(s) = .5 0 .5 0 0 0 for states s = 1, 2, . . . , 6, respectively.

17. Reprinted by permission of Blackwell Publishing.
18. Amazingly, it has just recently come to light that about 10 years earlier Bruno

de Finetti in “Sulla preferibilità,” Giornale degli Economisti e Annali di
Economia 11 (1952), pp. 685–789, developed the notion of absolute risk aver-
sion in a paper written in Italian that I do not believe has ever been translated
into English. According to Claudio Albanese, who has been able to read the
paper, de Finetti defines absolute risk aversion, observes that it uniquely de-
fines the utility function, and uses it to examine risk premiums in the context
of small bets. As an example, he looks at the case of constant absolute risk
aversion, which corresponds to exponential utility.

19. Reprinted by permission of Blackwell Publishing.
20. Ibid.
21. Source: Eugene F. Fama, “The Behavior of Stock-Market Prices,” Journal of

Business 38, No. 1 (January 1965), pp. 34–105 (p. 87). Reprinted by permis-
sion of the University of Chicago Press.

22. Source: Warren H. Hausman, “A Note on ‘The Value Line Contest: A Test of
the Predictability of Stock-Price Changes’,” Journal of Business 42, No. 3 (July
1969), pp. 317–330. Reprinted by permission of the University of Chicago
Press.

23. Source: Barr Rosenberg, “The Behavior of Random Variables with Nonsta-
tionary Variance and the Distribution of Security Prices,” (unpublished but
frequently cited working paper), Graduate School of Business, University of
California at Berkeley (December 1972), pp. 39–40.

24. Reprinted by permission of Blackwell Publishing.
25. Source: Mark Rubinstein, “Securities Market Efficiency in an Arrow-Debreu

Economy,” American Economic Review 65, No. 5 (December 1975), pp.
812–824.

26. Source: Mark Rubinstein, “The Fundamental Theorem of Parameter-Preference
Security Valuation,” Journal of Financial and Quantitative Analysis 8, No. 1
(January 1973), pp. 61–69.

27. Source: Jack L. Treynor and Fischer Sheffey Black, “How to Use Security
Analysis to Improve Portfolio Selection,” Journal of Business 46, No. 1 (Janu-
ary 1973), pp. 66–86. Reprinted by permission of the University of Chicago
Press.

28. Reprinted with permission of Blackwell Publishing.
29. Arrow’s actual example was somewhat different. He supposed instead that the

economy consists of agents who consume C different commodities. With S
states, S × C is the total number of state-contingent commodities needed to com-
plete the market. These state-contingent commodities pay off one unit of a spe-
cific commodity in a given state. To conserve on the number of markets, Arrow
introduces S securities that pay off state-contingent dollars, one for each state,
which can then be used to purchase a basket of commodities in the correspond-
ing state. Instead of directly buying state-contingent commodities, agents first
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buy state-securities with dollar payoffs. The true state is revealed, and only then
do markets for the individual commodities open up. This market organization
reduces the number of markets to S + C. If S, C > 2, then (S + C) < (S × C), and
the number of markets is reduced in the second way of organizing the market.

30. For example, in the Problem of Points (Pascal-Fermat 1654), to determine the
current fair division of stakes, one must know the future probabilities of par-
ticipants winning rounds; for this simple game, these are all assumed to be 1/2.
In this case, this probability is objective in the sense that it is given in the terms
of the game. However, when Pascal’s backwards solution approach is applied
in situations such as those discussed in this paper where probabilities are sub-
jective, assuming this type of foreknowledge is problematic.

31. The well-known binomial option pricing model makes this point crystal clear.
The annualized volatility (σ) determines the up (u) and down (d) moves of the
underlying stock price; one formula for this is u = d–1 = eσ√(t/n) where t is the op-
tion’s time to expiration and n is the number of binomial steps. Cox-Ross-
Rubinstein (1979) show that the state-prices are πu = (r – d)/[r(u – d)] and πd =
(u – r)/[r(u – d)] where r = 1/(πu + πd) is the riskless return over a binomial in-
terval. Therefore, specifying the annualized σ and annualized riskless return
determines u, d, and r, which in turn determines the state prices πu and πd. Like
Black-Scholes, this model makes the highly simplifying assumption that future
state-prices for claims to dollars in one period are always the same.

32. The realization that the equilibrium stochastic process (over time) of security
returns depends on the preferences of investors and should not be exogenously
specified may have appeared first in Osborne (1959) where he justifies his as-
sumption of multiplicative Brownian motion by the Weber-Fechner hypothesis
of psychophysics: Equal ratios of physical stimulus correspond to equal inter-
vals of subjective sensation.

33. Source: Mark Rubinstein, “An Aggregation Theorem for Securities Markets,”
Journal of Financial Economics 1, pp. 225–244. Copyright 1974. Reprinted
with permission from Elsevier Science.

34. To state this condition more carefully, what is allowed is geometric Brownian
motion but with a subjective mean that could be arbitrarily random, even de-
pendent on external state variables, as long as it does not lead to jumps in
the asset price. But the log volatility (or diffusion coefficient) of the process
must be constant. However, in terms of the risk-neutral probabilities, the
geometric Brownian motion must have a nonstochastic mean equal to the
riskless return.

35. Source: Stephen A. Ross, “Return, Risk, and Arbitrage,” in Risk and Return in
Finance (edited by Irving Friend and James Bicksler, Ballinger 1977), pp.
189–218.

36. The name “fundamental theorem” seems to have originally appeared in [Dybvig-
Ross (1996)] Phillip H. Dybvig and Stephen A. Ross, “Arbitrage,” in The New
Palgrave: A Dictionary of Economics, Volume 1, edited by John Eatwell, Mur-
ray Milgate, and Peter Newman (reprinted London: Macmillan Press, 1996),
pp. 100–106.
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As Arrow (1953) shows, unless the number of different securities equals
the number of states, these state-prices will not be unique—a result sometimes
referred to as “the second fundamental theorem of financial economics.”

The formulation of the fundamental theorem explicitly allows for uncer-
tainty: In the future only one of many now possible “states” will occur. Under
certainty, with the focus on cash flows from securities over time, the corre-
sponding theorem would be:

A term structure of interest rates exists if and only if there is no 
arbitrage.

To say that “a term structure of interest rates exists” is shorthand for:

� The current price of any bond equals the present value of its cash flows
calculated by using the same term structure of interest rates for every
bond.

� All forward interest rates (implied in the term structure) are positive.

37. Source: Ross, “Return, Risk, and Arbitrage.”
38. We can easily show that this same result holds for any portfolio as well. Sup-

pose the proportions of each security j held in a portfolio are represented 
by xj; then the return rP of the portfolio is rP = Σjxjrj. We have for any security j:

E(rj) = r + Cov(rj, –Y)

Multiply through by xj and sum over all securities j:

E(Σjxjrj) = r + Cov(Σjxjrj, –Y)

which implies that:

E(rP) = r + Cov(rP, –Y)

39. One of the innovations of Black and Scholes, compared to say Arrow (1953),
was to rule out arbitrage only among a small subset of all available securities
and investigate just the relations among the prices of securities in this subset.
Therefore, it would be perfectly consistent with Black and Scholes if arbitrage
profits could be earned from positions involving two different stocks, as long
as they could not be earned from positions containing only a given stock, its
options, and cash. So Black-Scholes provides a theory pertaining to “island
universes” within the cosmos.

40. To be complete, as Cox-Ross-Rubinstein (1979) point out, we need an eighth
assumption to rule out the possibility of a binomial jump process, wherein at
each node the stock moves up (or down) by a small amount with high risk-
neutral probability or moves down (or up) a large fixed amount with low risk-
neutral probability, and where these probabilities become increasingly extreme
as the time interval between moves goes to zero. Finally, we should add that
Black and Scholes ask what happens to the value of an option in this nonjump
setting when the time interval between moves goes to zero.
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41. The formulation at this point even allows the riskless return to be different at
each node, provided that given one is at a node, the riskless return is known,
and, à la Drèze (1970), that the pattern of these contingent riskless returns is
known in advance.

42. If we stop here and do not make the last assumption, we will have arrived at
the option pricing model described by Rubinstein (1994) in his paper “Implied
Binomial Trees.”

43. Reprinted by permission of Fraser Publishing, www.fraserpublishing.com. All
rights reserved.

44. Source: Mark Rubinstein, “Corporate Financial Policy in Segmented Securities
Markets,” Journal of Financial and Quantitative Analysis 8, No. 4 (December
1973), pp. 749–761.

45. Source: Michael C. Jensen, “Some Anomalous Evidence Regarding Market Ef-
ficiency,” Journal of Financial Economics 6, pp. 95–101. Copyright 1978.
Reprinted with permission from Elsevier Science.

The Modern Period: Post-1980

1. Thomas Bayes (circa 1701–April 7, 1761), in [Bayes (1763)] “An Essay To-
wards Solving a Problem in the Doctrine of Chances,” Philosophical Transac-
tions of the Royal Society 53 (1763), pp. 370–418; reprinted along with a
transmittal letter by Richard Price, who located the paper among the docu-
ments left after Bayes’ death in 1761 in Studies in the History of Statistics and
Probability, Volume 1, edited by Egon S. Pearson and Maurice G. Kendall
(London: Griffin, 1970), pp. 131–153.

2. Reprinted by permission of Blackwell Publishing.
3. Source: James A. Ohlson, “Earnings, Book Values, and Dividends in Equity

Valuation,” Contemporary Accounting Research 11, No. 2 (Spring 1995), pp.
661–687.

4. Reprinted by permission of Blackwell Publishing.
5. Ibid.
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