Programa de estudio de experiencia educativa

I. Área Académica

Área Académica Técnica

2. Programa Educativo

Química Industrial

3. Campus

Córdoba – Orizaba

4. Dependencia/Entidad

Facultad de Ciencias Químicas

E Cádigo	6. Nombre de la Experiencia	7. Área de formación	
5. Código	Educativa	Principal	Secundaria
	Física	BID	

8. Valores de la experiencia educativa

Créditos	Teoría	Práctica	Total horas	Equivalencia (s)
10	1	2	90	Electricidad y
10	7	2	70	magnetismos

9. Modalidad

10. Oportunidades de evaluación

Curso -Laboratorio	ABGHJK=Todas
Curso Eudoratorio	

II. Requisitos

Pre-requisitos	Co-requisitos
Ninguno	Ninguno

12. Características del proceso de enseñanza aprendizaje

Individual / Grupal	Máximo	Mínimo
Grupal	40	10

Agrupación natural de la Experiencia Educativa

14. Proyecto Integrador

Academia de fisicomatemáticas e	N/A
ingeniería	IN/A

15. Fecha

Elaboración	Modificación	A probación
Enero 2020		Junio 2020

16. Nombre de los académicos que participaron

M.C. Nayeli Gutiérrez Casiano; M.C. Nancy Oviedo Barriga; M.C. María Guadalupe Cosme Reyes

17. Perfil del docente

Licenciatura o Ingeniería en Química o área afín a la Experiencia Educativa, con estudios de posgrado en el área afín; con experiencia disciplinar y pedagógica comprobable.

18. Espacio

19. Relación disciplinaria

Intrafacultad	Interdisciplinario
---------------	--------------------

20. Descripción

Esta experiencia educativa pertenece al AFID tiene 4 horas de teoría y 2 de laboratorio dando un total de seis horas y diez créditos. En ella se abordan temas relacionados con la electricidad, el magnetismo y la óptica ya que estos conceptos son fundamentales y le dará las herramientas necesarias para posteriormente intervenir en el área de las ciencias químicas.

Todo esto se realizará con un manejo exhaustivo de los fenómenos físicos mediante el razonamiento que permitirá el planteamiento y desarrollo de procedimientos algebraicos que le facilitarán la solución de los problemas planteados. La evidencia sobre el desempeño de esta experiencia estará dada por el resultado obtenido en exámenes parciales, desempeño en el laboratorio y participación en clases, exposición de diferentes temas a tratar y el cumplimiento de tareas encomendadas y traducciones. Esto se logrará con una actitud de alto grado de responsabilidad y de compromiso para con su disciplina, así como disposición hacia el trabajo colaborativo y autónomo.

21. Justificación

La física como disciplina resulta esencial para comprender las causas y efectos de los hechos naturales a través de las leyes fundamentales, principios y teorías. La

aplicación de los conocimientos que aporta la física resultan de vital importancia para la Química Industrial por ejemplo el electromagnetismo nos permite entender la interacción entre partículas cargadas, lo que implica una comprensión profunda entre los constituyentes fundamentales de la materia y las interacciones que permiten formar un enlace, así como el funcionamiento de dispositivos electrónicos que nos permiten medir diversas propiedades y la óptica ha resultado en innumerables aplicaciones que se traducen en un mejor servicio y utilidad que han mejorado nuestra condición de vida, el desarrollo industrial y una mejor capacidad para adaptarnos al medio ambiente

22. Unidad de competencia

El estudiante analiza las leyes fundamentales de la electricidad, magnetismo y óptica a partir de principios y teorías que le permiten identificar como se aplican a nivel industrial, en el marco nacional e internacional, por medio de la organización de la información, análisis y argumentación, en un ambiente de compromiso, apertura y tolerancia, para comprender los fenómenos del mundo que lo rodea y el impacto que tienen.

23. Articulación de los ejes

Las leyes fundamentales de la electricidad, el magnetismo y la óptica son analizadas a fin de determinar su importancia y aplicación en la Química Industral, a partir de la lectura de comprensión, organización de la información, deducción, comparación y análisis, dentro del aula propiciando un ambiente de respeto, tolerancia y equidad entre todo el grupo.

24. Saberes

	Teóricos		Heurísticos	Axiológicos
Electr	ricidad	0	Análisis	Autonomía para la
0	Fuerza eléctrica	0	Relación	realización de las
0	Campo eléctrico	0	Comparación	actividades extraclase.
0	Potencial eléctrico	0	Clasificación	
0	Capacitancia	0	Conceptualización	Disposición para el
0	Corriente y	0	Transferencia	trabajo colaborativo.
	resistencia.	0	Metacognición	
0	Circuitos de	0	Resolución de	Honestidad en la
	corriente continua		problemas	realización de trabajos
Magne	tismo	0	Generalización	extraclase y en la
0	Magnetismo y	0	Investigación	entrega de los reportes
	campo magnético		•	de prácticas.
0	Fuerzas y momentos de torsión			Responsabilidad en la entrega de actividades

	en un campo	extraclase y en el
	magnético	cumplimiento de las
0	Inducción	normas de laboratorio.
	electromagnética	
0	Circuitos de	Objetividad en la
	corriente alterna.	entrega de reportes de
Óptica	ı	las prácticas de
0	Luz e iluminación	laboratorio.
0	Reflexión y espejos	
0	Refracción	
0	Lentes e	
	instrumentos ópticos	

25. Estrategias metodológicas

De aprendizaje	De enseñanza
Bitácoras	Preguntas detonadoras
Mapas mentales	Planteamiento de preguntas guía
Discusión de problemas	Explicación de procedimientos
Investigación documental	Recuperación de saberes previos
Informes	Dirección de practicas
Problemario	·
Ensayos	
Lectura de comprensión	
Análisis de información	

26. Apoyos educativos

Materiales didácticos	Recursos didácticos
Programa del curso	Proyector
Libros	Pizarrón
Manual de practicas	
Fotocopias	
Audiovisuales	

27. Evaluación del desempeño

Evidencia (s) de desempeño	Criterios de desempeño	Ámbito(s) de aplicación	Porcentaje
Informe de Investigación y tareas	Suficiencia y puntualidad	Centro de cómputo, Biblioteca	9 %
Actividades en aula	Limpieza y orden	Aula	9 %

Bitácora y manual	Claro, limpio y ordenado	Centro de cómputo, laboratorio	16 %
Desempeño en el laboratorio	Trabajar con seguridad, limpieza y cuidado	Laboratorio	16 %
Examen de Laboratorio	Realización de una practica	Laboratorio	8 %
Exámenes parciales	Resolución escrita de problemas	Aula	42%

28. Acreditación

Para acreditar esta experiencia educativa, el estudiante deberá cubrir el 80% de asistencia y haber presentado con idoneidad y pertinencia cada evidencia de desempeño, es decir, que en cada una de ellas haya obtenido cuando menos el 60%, además de cumplir el porcentaje de asistencia establecido en el estatuto de alumnos 2008.

La parte teórica corresponde al 60% y al laboratorio el 40%.

29. Fuentes de información

Básicas

Andrew Rex (2011) Fundamentos de Fisica. Pearson. (Biblioteca Virtual UV)

Boylestad, Robert L. Nashelsky, Louis. "Electrónica: Teoría de Circuitos, Electricidad y Magnetismo". PEARSON, Décima Edición 2009. (Biblioteca Virtual UV)

Douglas C. Giancoli. "Física para ciencas e ingeniería Volumen I" PEARSON Prentice Hall, Vol. I Cuarta Edición 2008. (Biblioteca Virtual UV)

Francisco Gascón L. et al "Electricidad y Magnetismo Ejercicios y Problemas Resueltos" PEARSON Prentice Hall, 2004. (Biblioteca Virtual UV)

José María de Juana. "Fisica General Volumen II" PEARSON EDUCACIÓN, 2004 (Biblioteca Virtual UV)

Paul E. Tippens. "Física Conceptos y Aplicaciones" Mc Graw Hill, séptima edición, 2011.

Raymond A. Serway y John W. Jewett. "Física para Ciencias e Ingeniería". CENGAGE Lerning. Vol. I novena edición 2014.

Sears F.W Y Zemansky. (2014). Física para enfoque por competencias. México: Pearson. (Biblioteca Virtual UV)

Complementarias

Alonso, Marcelo, Finn Eduard J, "Física". Addison Wesley Longman, México, 1998 Vol. 1, Vol. 2, Vol. 3

Arons, Arnold B. "Evolución de los conceptos de la Física". Trillas, México, 1970. Beltrán Virgilio: Braun Eliécer. "Principios de Física". Trillas, México 1972 Mc. Kelvey, John P. Grotch, Howard. "Física para Cienciase Ingeniería". Harla, México, 1970.

Purcell, Edgard M. "Electricidad y Magnetismo". Reverté, Barcelona.