Programa de Estudio de Experiencia Educativa

I. Área académica

Área Académica Técnica

2. Programa Educativo

Química Industrial

3. Campus

Orizaba

4. Dependencia/Entidad

Facultad de Ciencias Químicas

5. Código	6. Nombre de la Experiencia	7. Área de formación	
	Educativa	Principal	Secundaria
	Sistemas de Aseguramiento de la Calidad	D	No aplica

8. Valores de la Experiencia Educativa

Créditos	Teoría	Práctica	Total horas	Equivalencia (s)
8	4	0	60	Sistema de aseguramiento de la calidad

9. Modalidad

10. Oportunidades de evaluación

Curso	ABGHJK=Todas
	.

II. Requisitos

Pre-requisitos	Co-requisitos
Ninguno	Ninguno

12. Características del proceso de enseñanza aprendizaje

Individual / Grupal	Máximo	Mínimo
Grupal	40	10

I3. Agrupación natural de la Experiencia Educativa

14. Proyecto integrador

Academia de Normatividad y otros cursos	No aplica
Academia de Normatividad y otros cursos	по арпса

15. Fecha

Elaboración	Modificación	A probación
Enero 2020		Junio 2020

16. Nombre de los académicos que participaron

Dr. Carlos Díaz Ramos, Dra. Rosa Isela Castro Salas; Dra. Karla Díaz Castellanos, M.C. Nancy Oviedo Barriga.

17. Perfil del docente

Licenciatura o Ingeniería Química, o Ingeniero Industrial o estudios a fin a la experiencia educativa, preferentemente con estudios de posgrados

18. Espacio	19. Relación disciplinaria	
Intrafacultad	Interdisciplinario	

20. Descripción

Esta EE se localiza en el AFID, cuenta con 4 horas teóricas y 8 créditos. Su propósito es introducir a los estudiantes al conocimiento de los fundamentos, filosofías y herramientas de los sistemas de aseguramiento de la calidad. Es indispensable que el estudiante desarrolle un proyecto de aplicación de los saberes adquiridos a una pequeña industria. Para su desarrollo se proponen las estrategias metodológicas de consulta de diferentes fuentes de información, resolución de ejercicios y análisis de casos de estudio mediante el uso de TIC y/o software especializado, así como el manejo de la plataforma EMINUS. Por lo tanto, el desempeño de la unidad de competencia se evidencia mediante exámenes, Tareas/Reportes de Investigación/ Ejercicios/Exposiciones y un proyecto final.

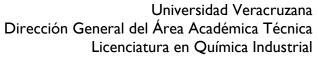
21. Justificación

La gran competitividad que hoy en día se da en los mercados mundiales, así como la globalización, traen consigo nuevos retos a resolver en las organizaciones de todo tipo, ya se trate de aquellos fabricantes de bienes, como las prestadoras de servicios, todas ellas de diferentes tamaños y estilos, no importando el país o continente donde se encuentren. La lucha por librar consiste en ofrecer a los clientes productos y servicios que contengan elevados niveles de calidad y que, a su vez, satisfagan totalmente sus

Universidad Veracruzana Dirección General del Área Académica Técnica Licenciatura en Química Industrial

expectativas y necesidades. Hoy en día, son más las empresas que no solamente cumplen con los requisitos de calidad del cliente, sino que van más allá ofreciendo rasgos distintivos en sus productos y servicios, superando de este modo a la competencia. Asimismo, esto ha alcanzado a las Instituciones de Educación Superior, creando la necesidad de formar profesionistas que participen en la toma de decisiones y la resolución de problemas aplicando los fundamentos, filosofías y herramientas de los Sistemas de Aseguramiento de la Calidad, con la finalidad de desarrollar alternativas para la solución de problemas de su realidad social a nivel regional, nacional e internacional. Por lo que, se hace patente la necesidad de que el egresado de la carrera de químico Industrial adquiera en su formación profesional conocimientos relativos a los sistemas de aseguramiento de la calidad.

22. Unidad de competencia


El estudiante desarrolla proyectos de aseguramiento de la calidad, aplicando las filosofías de calidad, herramientas estadísticas, análisis de riesgos y puntos críticos de control (HACCP) y normas correspondientes, mediante la comprensión de diferentes fuentes de información, recopilación, organización y análisis de datos en un ambiente de responsabilidad, respeto y apertura, con la finalidad de contribuir a la toma de decisiones en el químico industrial.

23. Articulación de los ejes

Los estudiantes reflexionan en un marco de orden y respeto mutuo, los principios, técnicas y modelos de los sistemas de aseguramiento de la calidad, para aplicarlos en el diseño, desarrollo e implementación de un proyecto aplicado a una pequeña organización, trabajando en equipo bajo una filosofía de mejora continua y, finalmente discuten, analizan y defienden sus trabajos en grupo.

24. Saberes

Teóricos	Heurísticos	Axiológicos
La Calidad	 Comprensión y 	Desarrollar un
Antecedentes	empleo de	análisis crítico en
Evolución de la calidad	información en	la búsqueda,
Concepto de calidad	diversas fuentes en español e inglés.	manejo e interpretación de
Filosofías de calidad	 Recopilación, 	la información.
Edward Deming	organización y	Aplica con
Joseph Juran	análisis de datos.	responsabilidad la
Armand Feigenbaum	 Análisis y resolución 	selección de
Philip B. Crosby	de actividades	herramientas y
Kaouru Ishikawa	prácticas dentro y	normas.
Jan Carlzon	fuera del aula.	Apertura a la
Shigeo Shingo	 Comunicación de 	colaboración en la
Genichi Taguchi	apropiadamente de	propuesta de

- Taiichi Ohno
- Shigeru Mizuno

Herramientas estadísticas de apoyo a la gestión

- Diagrama de pareto
- Diagrama de causa-efecto
- Histograma
- Estratificación
- Diagrama de dispersión
- Gráficos de control
- Diagrama de afinidad
- Diagrama de relaciones

Principios de la gestión de calidad.

- Normas ISO
- Definición
- Objetivos y beneficios
- Estructura de la norma

Análisis de riesgos y puntos críticos de control (HACCP)

- ¿Qué es el HACCP?
- Clasificación de peligros
- Principios fundamentales del sistema
- Funcionamiento del HACCP
- Directrices para la implementación del HACCP
- Planes de apoyo para la implementación del HACCP
- El HACCP y su relación con otras normas de calidad

NOM 164-SSA1

- Normas para la correcta aplicación de NOM 164-SSA1
- NOM-002-SCFI-2011, Productos preenvasados-Contenido neto, Tolerancias y métodos de verificación.
- NOM-052-SEMARNAT-2005, características,

forma oral y escrita sus conocimientos relacionados al químico industrial.

- Diagnóstico de la situación actual de un problema determinado en el ámbito químico mediante el aseguramiento de la calidad con el apoyo de las herramientas de gestión y normatividad.
- Desarrollo de un proyecto final para la aplicación de los conocimientos teóricos en casos reales.

soluciones en los casos de estudio.

1	
procedimiento de	
identificación, clasificación y	
listados de residuos	
peligrosos.	
NOM-001-SEMARNAT-	
1996, límites máximos	
permisibles de contaminantes	
•	
en las descargas de aguas	
residuales en aguas y bienes	
nacionales.	
 NOM-127-SSA1-1994, Salud 	
ambiental. Agua para uso y	
consumo humano.	
consumo mamano.	

25. Estrategias metodológicas

	De aprendizaje		De enseñanza
•	Búsqueda, selección y análisis de información en distintas fuentes.	•	Exposición frente a grupo con apoyo tecnológico.
•	Exposición con apoyo tecnológico variado.	•	Lectura comentada. Ejercicios para estudio independiente.
•	Lectura síntesis e interpretación. Organización en grupos.	•	Discusión dirigida. Asignación de tareas.
•	Estudio de casos. Mapas conceptuales de los modelos y		
•	metodologías. Análisis y comprensión de resultados.		

26. Apoyos educativos

Materiales didácticos	Recursos didácticos
 Diapositivas. 	 Computadora y bocinas.
• Libros.	 Video proyector.
 Medios audiovisuales (vídeos, 	 Pintarrón y marcadores.
etc.)	 Charlas de personas dedicadas al
 Resolución de casos prácticos. 	aseguramiento de la calidad.
Artículos.	 Conexión a internet.
	 Plataforma EMINUS.

27. Evaluación del desempeño

Evidencia (s) de desempeño	Criterios de desempeño	Ámbito(s) de aplicación	Porcentaje
Exámenes	Claridad Presentación	Aula	50

Universidad Veracruzana Dirección General del Área Académica Técnica Licenciatura en Química Industrial

	Limpieza Resultado correcto		
Tareas/Reportes de Investigación/ Ejercicios/Exposiciones	Entregados en tiempo y forma Claridad Suficiencia Pertinencia	Centro de cómputo, aula, casa, biblioteca	30
Proyecto final	Colaboración grupal Creatividad Entregados en tiempo y forma Claridad Suficiencia Pertinencia Logro de objetivos	Centro de cómputo, aula, casa, biblioteca	20

28. Acreditación

Para acreditar esta experiencia educativa, el estudiante deberá cubrir el 80% de asistencia y haber presentado con idoneidad y pertinencia cada evidencia de desempeño, es decir, que en cada una de ellas haya obtenido cuando menos el 60%.

29. Fuentes de información

Básicas

- Cantú Delgado, J. H. (2011). Desarrollo de una cultura de calidad. Mc Graw Hill Educación.
- Deming, W. E. (1989). Calidad, productividad y competitividad: la salida de la crisis.
 Díaz Santos, S. A.
- Evans, J. R. y Lindsay, W.M. (2015). Administración y control de la calidad. Novena edición. Cengage Learning Editores
- Hayes, P. R. (s.f.). Microbiología e Higiene de los Alimentos. Zaragoza, España: Acribia.
- Inocuidad de alimentos y Norma HACCP. (Marzo de 2019). Obtenido de Inocuidad de alimentos y Norma HACCP http://www.panalimentos.org/comunidad/educacion1.asp?id=65
- Martínez Tamariz, J. R. (1997). Manual de implantación de un proceso de mejoramiento de la calidad. Panorama, México.
- Montgomery, D. C. (2019). Introduction to Statistical Quality Control. Wiley.
- Montgomery, D. C. (2012). Design and Analysis of Experiments. John Wiley.

Universidad Veracruzana Dirección General del Área Académica Técnica Licenciatura en Química Industrial

 Pasos de la HACCP (formatos). (Marzo de 2019). Obtenido de Pasos de la HACCP (Formhttp://www.haccp-nrm.org/Documents/BlankHACCPForms--Spanish.pdf

Libro electrónico

Gillet-Goinard, F., & Seno, B. L. (s.f.). La caja de herramientas: Control de calidad. México: Patria.

Complementarias

- Doyle, M. P. (s.f.). Foodborne Bacterial Pathogens. New York.
- Etienne, G. (s.f.). Principles of Cleaning and Sanitation in the Food and Beverage Industry. USA: iUniverse.
- Gould, W. A. (s.f.). Food Plant Sanitation . USA: CTI Publications.
- Herschodester, S. M. (s.f.). Quality control in the food industry. Press.
- Mortimore, S., & Wallance. (s.f.). HACCP. USA: Christos Cassianos.
- Norma HACCP. (2013). Obtenido de http://www.panalimentos.org/comunidad/educacion1.asp?id=65
- Voehl, F., Jackson, P., & Asthon, D. (s.f.). Frant Voehl/ISO 9000 Guía de instrumentación para pequeñas y medianas empresas. Mc Graw Hill.

Biblioteca Virtual

Aldana de Vega , L., Álvarez Builes, M., Bernal Torres, C., Díaz Becerra, M., Galindo Uribe, O., Gonzále Soler, C., & Villegas Cortés, A. (2011). *Administración por calidad*. Colombia: Universidad de La Sabana.