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Chapter 9

DECISION TREES
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Abstract Decision Trees are considered to be one of the most popular approaches for rep-
resenting classifiers. Researchers from various disciplines such as statistics, ma-
chine learning, pattern recognition, and Data Mining have dealt with the issue of
growing a decision tree from available data. This paper presents an updated sur-
vey of current methods for constructing decision tree classifiers in a top-down
manner. The chapter suggests a unified algorithmic framework for presenting
these algorithms and describes various splitting criteria and pruning methodolo-
gies.

Keywords: Decision tree, Information Gain, Gini Index, Gain Ratio, Pruning, Minimum
Description Length, C4.5, CART, Oblivious Decision Trees

1. Decision Trees

A decision tree is a classifier expressed as a recursive partition of the in-
stance space. The decision tree consists of nodes that form arooted tree,
meaning it is adirected treewith a node called “root” that has no incoming
edges. All other nodes have exactly one incoming edge. A node with outgoing
edges is called aninternal or test node. All other nodes are called leaves (also
known as terminal or decision nodes). In a decision tree, each internal node
splits the instance space into two or more sub-spaces according to a certain
discrete function of the input attributes values. In the simplest and most fre-
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quent case, each test considers a single attribute, such that the instance space is
partitioned according to the attribute’s value. In the case of numeric attributes,
the condition refers to a range.

Each leaf is assigned to one class representing the most appropriate target
value. Alternatively, the leaf may hold a probability vector indicating the prob-
ability of the target attribute having a certain value. Instances are classified by
navigating them from the root of the tree down to a leaf, according to the
outcome of the tests along the path. Figure 9.1 describes a decision tree that
reasons whether or not a potential customer will respond to a direct mailing.
Internal nodes are represented as circles, whereas leaves are denoted as tri-
angles. Note that this decision tree incorporates both nominal and numeric at-
tributes. Given this classifier, the analyst can predict the response of a potential
customer (by sorting it down the tree), and understand the behavioral charac-
teristics of the entire potential customers population regarding direct mailing.
Each node is labeled with the attribute it tests, and its branches are labeled with
its corresponding values.

Age

Gender

Last R.Yes

No Yes

No Yes

Femalemale

NoNo

No

<=30
>30

Figure 9.1. Decision Tree Presenting Response to Direct Mailing.
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In case of numeric attributes, decision trees can be geometrically interpreted
as a collection of hyperplanes, each orthogonal to one of the axes. Naturally,
decision-makers prefer less complex decision trees, since they may be consid-
ered more comprehensible. Furthermore, according to Breimanet al. (1984)
the tree complexity has a crucial effect on its accuracy. The tree complexity
is explicitly controlled by the stopping criteria used and the pruning method
employed. Usually the tree complexity is measured by one of the following
metrics: the total number of nodes, total number of leaves, tree depth and
number of attributes used. Decision tree induction is closely related to rule
induction. Each path from the root of a decision tree to one of its leaves can be
transformed into a rule simply by conjoining the tests along the path to form
the antecedent part, and taking the leaf’s class prediction as the class value.
For example, one of the paths in Figure 9.1 can be transformed into the rule:
“If customer age is is less than or equal to or equal to 30, and the gender of
the customer is “Male” – then the customer will respond to the mail”. The
resulting rule set can then be simplified to improve its comprehensibility to a
human user, and possibly its accuracy (Quinlan, 1987).

2. Algorithmic Framework for Decision Trees

Decision tree inducers are algorithms that automatically construct a decision
tree from a given dataset. Typically the goal is to find the optimal decision tree
by minimizing the generalization error. However, other target functions can be
also defined, for instance, minimizing the number of nodes or minimizing the
average depth.

Induction of an optimal decision tree from a given data is considered to be
a hard task. It has been shown that finding a minimal decision tree consistent
with the training set is NP–hard (Hancocket al., 1996). Moreover, it has been
shown that constructing a minimal binary tree with respect to the expected
number of tests required for classifying an unseen instance is NP–complete
(Hyafil and Rivest, 1976). Even finding the minimal equivalent decision tree
for a given decision tree (Zantema and Bodlaender, 2000) or building the op-
timal decision tree from decision tables is known to be NP–hard (Naumov,
1991).

The above results indicate that using optimal decision tree algorithms is
feasible only in small problems. Consequently, heuristics methods are required
for solving the problem. Roughly speaking, these methods can be divided into
two groups: top–down and bottom–up with clear preference in the literature to
the first group.
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There are various top–down decision trees inducers such as ID3 (Quinlan,
1986), C4.5 (Quinlan, 1993), CART (Breimanet al., 1984). Some consist of
two conceptual phases: growing and pruning (C4.5 and CART). Other inducers
perform only the growing phase.

Figure 9.2 presents a typical algorithmic framework for top–down induc-
ing of a decision tree using growing and pruning. Note that these algorithms
are greedy by nature and construct the decision tree in a top–down, recursive
manner (also known as “divide and conquer“). In each iteration, the algorithm
considers the partition of the training set using the outcome of a discrete func-
tion of the input attributes. The selection of the most appropriate function is
made according to some splitting measures. After the selection of an appro-
priate split, each node further subdivides the training set into smaller subsets,
until no split gains sufficient splitting measure or a stopping criteria is satisfied.

3. Univariate Splitting Criteria

3.1 Overview

In most of the cases, the discrete splitting functions are univariate. Uni-
variate means that an internal node is split according to the value of a single
attribute. Consequently, the inducer searches for the best attribute upon which
to split. There are various univariate criteria. These criteria can be character-
ized in different ways, such as:

According to the origin of the measure: information theory, dependence,
and distance.

According to the measure structure: impurity based criteria, normalized
impurity based criteria and Binary criteria.

The following section describes the most common criteria in the literature.

3.2 Impurity-based Criteria

Given a random variablex with k discrete values, distributed according to
P = (p1, p2, . . . , pk), an impurity measure is a functionφ:[0, 1]k → R that
satisfies the following conditions:

φ (P)≥0

φ (P) is minimum if∃i such that component pi = 1.

φ (P) is maximum if∀i, 1≤ i ≤ k, pi = 1/k.

φ (P) is symmetric with respect to components ofP .

φ (P) is smooth (differentiable everywhere) in its range.
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TreeGrowing (S,A,y)

Where:

S - Training Set

A - Input Feature Set

y - Target Feature

Create a new tree T with a single root node.

IF One of the Stopping Criteria is fulfilled THEN

Mark the root node in T as a leaf with the most

common value of y in S as a label.

ELSE

Find a discrete function f(A) of the input

attributes values such that splitting S

according to f(A)’s outcomes (v 1,...,v n) gains

the best splitting metric.

IF best splitting metric > treshold THEN

Label t with f(A)

FOR each outcome vi of f(A):

Set Subtree i= TreeGrowing ( σf(A)=vi
S,A,y).

Connect the root node of t T to Subtree i with

an edge that is labelled as v i

END FOR

ELSE

Mark the root node in T as a leaf with the most

common value of y in S as a label.

END IF

END IF

RETURN T

TreePruning (S,T,y)

Where:

S - Training Set

y - Target Feature

T - The tree to be pruned

DO

Select a node t in T such that pruning it

maximally improve some evaluation criteria

IF t 6=Ø THEN T=pruned(T,t)

UNTIL t=Ø

RETURN T

Figure 9.2. Top-Down Algorithmic Framework for Decision Trees Induction.
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Note that if the probability vector has a component of 1 (the variablex gets
only one value), then the variable is defined as pure. On the other hand, if all
components are equal, the level of impurity reaches maximum.

Given a training setS, the probability vector of the target attributey is
defined as:

Py(S) =


 |σy=c1S|

|S| , . . . ,

∣∣∣σy=c|dom(y)|S
∣∣∣

|S|




The goodness–of–split due to discrete attributeai is defined as reduction in
impurity of the target attribute after partitioningS according to the values
vi,j ∈ dom(ai):

∆Φ(ai, S) = φ(Py(S))−
|dom(ai)|∑

j=1

|σai=vi,j S|
|S| · φ(Py(σai=vi,jS))

3.3 Information Gain

Information gain is an impurity-based criterion that uses the entropy mea-
sure (origin from information theory) as the impurity measure (Quinlan, 1987).

InformationGain(ai, S) =

Entropy(y, S)− ∑
vi,j∈dom(ai)

|σai=vi,j S|
|S| · Entropy(y, σai=vi,jS)

where:

Entropy(y, S) =
∑

cj∈dom(y)

−
∣∣σy=cjS

∣∣
|S| · log2

∣∣σy=cjS
∣∣

|S|

3.4 Gini Index

Gini index is an impurity-based criterion that measures the divergences be-
tween the probability distributions of the target attribute’s values. The Gini in-
dex has been used in various works such as (Breimanet al., 1984) and (Gelfand
et al., 1991) and it is defined as:

Gini(y, S) = 1−
∑

cj∈dom(y)

(∣∣σy=cjS
∣∣

|S|

)2

Consequently the evaluation criterion for selecting the attributeai is defined
as:

GiniGain(ai, S) = Gini(y, S)−
∑

vi,j∈dom(ai)

∣∣σai=vi,jS
∣∣

|S| ·Gini(y, σai=vi,jS)
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3.5 Likelihood-Ratio Chi–Squared Statistics

The likelihood–ratio is defined as (Attneave, 1959)

G2(ai, S) = 2 · ln(2) · |S| · InformationGain(ai, S)

This ratio is useful for measuring the statistical significance of the information
gain criterion. The zero hypothesis (H0) is that the input attribute and the
target attribute are conditionally independent. If H0 holds, the test statistic is
distributed asχ2 with degrees of freedom equal to:(dom(ai)−1) · (dom(y)−
1).

3.6 DKM Criterion

The DKM criterion is an impurity-based splitting criterion designed for bi-
nary class attributes (Dietterichet al., 1996) and (Kearns and Mansour, 1999).
The impurity-based function is defined as:

DKM(y, S) = 2 ·
√( |σy=c1S|

|S|
)
·
( |σy=c2S|

|S|
)

It has been theoretically proved (Kearns and Mansour, 1999) that this cri-
terion requires smaller trees for obtaining a certain error than other impurity
based criteria (information gain and Gini index).

3.7 Normalized Impurity Based Criteria

The impurity-based criterion described above is biased towards attributes
with larger domain values. Namely, it prefers input attributes with many values
over attributes with less values (Quinlan, 1986). For instance, an input attribute
that represents the national security number will probably get the highest in-
formation gain. However, adding this attribute to a decision tree will result in
a poor generalized accuracy. For that reason, it is useful to “normalize” the
impurity based measures, as described in the following sections.

3.8 Gain Ratio

The gain ratio “normalizes” the information gain as follows (Quinlan, 1993):

GainRatio(ai, S) =
InformationGain(ai, S)

Entropy(ai, S)

Note that this ratio is not defined when the denominator is zero. Also the ratio
may tend to favor attributes for which the denominator is very small. Conse-
quently, it is suggested in two stages. First the information gain is calculated
for all attributes. As a consequence, taking into consideration only attributes
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that have performed at least as good as the average information gain, the at-
tribute that has obtained the best ratio gain is selected. It has been shown that
the gain ratio tends to outperform simple information gain criteria, both from
the accuracy aspect, as well as from classifier complexity aspects (Quinlan,
1988).

3.9 Distance Measure

The distance measure, like the gain ratio, normalizes the impurity measure.
However, it suggests normalizing it in a different way (Lopez de Mantras,
1991):

∆Φ(ai, S)

− ∑
vi,j∈dom(ai)

∑
ck∈dom(y)

|σai=vi,j AND y=ck
S|

|S| · log2

|σai=vi,j AND y=ck
S|

|S|

3.10 Binary Criteria

The binary criteria are used for creating binary decision trees. These mea-
sures are based on division of the input attribute domain into two sub-domains.

Let β(ai, dom1(ai), dom2(ai), S) denote the binary criterion value for at-
tribute ai over sampleS whendom1(ai) anddom2(ai) are its correspond-
ing subdomains. The value obtained for the optimal division of the attribute
domain into two mutually exclusive and exhaustive sub-domains is used for
comparing attributes.

3.11 Twoing Criterion

The gini index may encounter problems when the domain of the target at-
tribute is relatively wide (Breimanet al., 1984). In this case it is possible to
employ binary criterion called twoing criterion. This criterion is defined as:

twoing(ai, dom1(ai), dom2(ai), S) =

0.25 · |σai∈dom1(ai)
S|

|S| · |σai∈dom2(ai)
S|

|S| ·(
∑

ci∈dom(y)

∣∣∣∣
|σai∈dom1(ai) AND y=ci

S|
|σai∈dom1(ai)

S| − |σai∈dom2(ai) AND y=ci
S|

|σai∈dom2(ai)
S|

∣∣∣∣
)2

When the target attribute is binary, the gini and twoing criteria are equivalent.
For multi–class problems, the twoing criteria prefer attributes with evenly di-
vided splits.



Decision Trees 173

3.12 Orthogonal (ORT) Criterion

The ORT criterion was presented by Fayyad and Irani (1992). This binary
criterion is defined as:

ORT (ai, dom1(ai), dom2(ai), S) = 1− cosθ(Py,1, Py,2)

whereθ(Py,1, Py,2) is the angle between two vectorsPy,1 andPy,2. These vec-
tors represent the probability distribution of the target attribute in the partitions
σai∈dom1(ai)S andσai∈dom2(ai)S respectively.

It has been shown that this criterion performs better than the information
gain and the Gini index for specific problem constellations.

3.13 Kolmogorov–Smirnov Criterion

A binary criterion that uses Kolmogorov–Smirnov distance has been pro-
posed in Friedman (1977) and Rounds (1980). Assuming a binary target at-
tribute, namelydom(y) = {c1, c2}, the criterion is defined as:

KS(ai, dom1(ai), dom2(ai), S) =
∣∣∣∣∣

∣∣σai∈dom1(ai) AND y=c1S
∣∣

|σy=c1S|
−

∣∣σai∈dom1(ai) AND y=c2S
∣∣

|σy=c2S|

∣∣∣∣∣
This measure was extended in (Utgoff and Clouse, 1996) to handle target

attributes with multiple classes and missing data values. Their results indicate
that the suggested method outperforms the gain ratio criteria.

3.14 AUC–Splitting Criteria

The idea of using the AUC metric as a splitting criterion was recently pro-
posed in (Ferriet al., 2002). The attribute that obtains the maximal area under
the convex hull of the ROC curve is selected. It has been shown that the AUC–
based splitting criterion outperforms other splitting criteria both with respect
to classification accuracy and area under the ROC curve. It is important to
note that unlike impurity criteria, this criterion does not perform a compari-
son between the impurity of the parent node with the weighted impurity of the
children after splitting.

3.15 Other Univariate Splitting Criteria

Additional univariate splitting criteria can be found in the literature, such
as permutation statistics (Li and Dubes, 1986), mean posterior improvements
(Taylor and Silverman, 1993) and hypergeometric distribution measures (Mar-
tin, 1997).
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3.16 Comparison of Univariate Splitting Criteria

Comparative studies of the splitting criteria described above, and others,
have been conducted by several researchers during the last thirty years, such
as (Baker and Jain, 1976; BenBassat, 1978; Mingers, 1989; Fayyad and Irani,
1992; Buntine and Niblett, 1992; Loh and Shih, 1997; Loh and Shih, 1999;
Lim et al., 2000). Most of these comparisons are based on empirical results,
although there are some theoretical conclusions.

Many of the researchers point out that in most of the cases, the choice of
splitting criteria will not make much difference on the tree performance. Each
criterion is superior in some cases and inferior in others, as the “No–Free–
Lunch” theorem suggests.

4. Multivariate Splitting Criteria

In multivariate splitting criteria, several attributes may participate in a single
node split test. Obviously, finding the best multivariate criteria is more com-
plicated than finding the best univariate split. Furthermore, although this type
of criteria may dramatically improve the tree’s performance, these criteria are
much less popular than the univariate criteria.

Most of the multivariate splitting criteria are based on the linear combination
of the input attributes. Finding the best linear combination can be performed
using a greedy search (Breimanet al., 1984; Murthy, 1998), linear program-
ming (Duda and Hart, 1973; Bennett and Mangasarian, 1994), linear discrim-
inant analysis (Duda and Hart, 1973; Friedman, 1977; Sklansky and Wassel,
1981; Lin and Fu, 1983; Loh and Vanichsetakul, 1988; John, 1996) and others
(Utgoff, 1989a; Lubinsky, 1993; Sethi and Yoo, 1994).

5. Stopping Criteria

The growing phase continues until a stopping criterion is triggered. The
following conditions are common stopping rules:

1. All instances in the training set belong to a single value ofy.

2. The maximum tree depth has been reached.

3. The number of cases in the terminal node is less than the minimum num-
ber of cases for parent nodes.

4. If the node were split, the number of cases in one or more child nodes
would be less than the minimum number of cases for child nodes.

5. The best splitting criteria is not greater than a certain threshold.
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6. Pruning Methods

6.1 Overview

Employing tightly stopping criteria tends to create small and under–fitted
decision trees. On the other hand, using loosely stopping criteria tends to gen-
erate large decision trees that are over–fitted to the training set. Pruning meth-
ods originally suggested in (Breimanet al., 1984) were developed for solving
this dilemma. According to this methodology, a loosely stopping criterion is
used, letting the decision tree to overfit the training set. Then the over-fitted
tree is cut back into a smaller tree by removing sub–branches that are not con-
tributing to the generalization accuracy. It has been shown in various studies
that employing pruning methods can improve the generalization performance
of a decision tree, especially in noisy domains.

Another key motivation of pruning is “trading accuracy for simplicity” as
presented in (Bratko and Bohanec, 1994). When the goal is to produce a suffi-
ciently accurate compact concept description, pruning is highly useful. Within
this process, the initial decision tree is seen as a completely accurate one. Thus
the accuracy of a pruned decision tree indicates how close it is to the initial
tree.

There are various techniques for pruning decision trees. Most of them per-
form top-down or bottom-up traversal of the nodes. A node is pruned if this
operation improves a certain criteria. The following subsections describe the
most popular techniques.

6.2 Cost–Complexity Pruning

Cost-complexity pruning (also known as weakest link pruning or error-
complexity pruning) proceeds in two stages (Breimanet al., 1984). In the first
stage, a sequence of trees T0, T1, . . . , Tk is built on the training data where T0

is the original tree before pruning and Tk is the root tree.
In the second stage, one of these trees is chosen as the pruned tree, based on

its generalization error estimation.
The tree Ti+1 is obtained by replacing one or more of the sub–trees in the

predecessor tree Ti with suitable leaves. The sub–trees that are pruned are
those that obtain the lowest increase in apparent error rate per pruned leaf:

α =
ε(pruned(T, t), S)− ε(T, S)

|leaves(T )| − |leaves(pruned(T, t))|
whereε(T, S) indicates the error rate of the treeT over the sampleS and
|leaves(T)| denotes the number of leaves inT . pruned(T,t)denotes the tree
obtained by replacing the nodet in T with a suitable leaf.

In the second phase the generalization error of each pruned tree T0, T1, . . . ,
Tk is estimated. The best pruned tree is then selected. If the given dataset is
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large enough, the authors suggest breaking it into a training set and a prun-
ing set. The trees are constructed using the training set and evaluated on the
pruning set. On the other hand, if the given dataset is not large enough, they
propose to use cross–validation methodology, despite the computational com-
plexity implications.

6.3 Reduced Error Pruning

A simple procedure for pruning decision trees, known as reduced error prun-
ing, has been suggested by Quinlan (1987). While traversing over the internal
nodes from the bottom to the top, the procedure checks for each internal node,
whether replacing it with the most frequent class does not reduce the tree’s
accuracy. In this case, the node is pruned. The procedure continues until any
further pruning would decrease the accuracy.

In order to estimate the accuracy, Quinlan (1987) proposes to use a pruning
set. It can be shown that this procedure ends with the smallest accurate sub–
tree with respect to a given pruning set.

6.4 Minimum Error Pruning (MEP)

The minimum error pruning has been proposed in (Olaru and Wehenkel,
2003). It performs bottom–up traversal of the internal nodes. In each node it
compares the l-probability error rate estimation with and without pruning.

The l-probability error rate estimation is a correction to the simple probabil-
ity estimation using frequencies. IfSt denotes the instances that have reached
a leaft, then the expected error rate in this leaf is:

ε′(t) = 1− max
ci∈dom(y)

|σy=ciSt|+ l · papr(y = ci)
|St|+ l

wherepapr(y = ci) is thea–priori probability ofy getting the valueci, and
l denotes the weight given to thea–priori probability.

The error rate of an internal node is the weighted average of the error rate of
its branches. The weight is determined according to the proportion of instances
along each branch. The calculation is performed recursively up to the leaves.

If an internal node is pruned, then it becomes a leaf and its error rate is
calculated directly using the last equation. Consequently, we can compare the
error rate before and after pruning a certain internal node. If pruning this node
does not increase the error rate, the pruning should be accepted.

6.5 Pessimistic Pruning

Pessimistic pruning avoids the need of pruning set or cross validation and
uses the pessimistic statistical correlation test instead (Quinlan, 1993).
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The basic idea is that the error ratio estimated using the training set is not
reliable enough. Instead, a more realistic measure, known as the continuity
correction for binomial distribution, should be used:

ε′(T, S) = ε(T, S) +
|leaves(T )|

2 · |S|
However, this correction still produces an optimistic error rate. Conse-

quently, one should consider pruning an internal nodet if its error rate is within
one standard error from a reference tree, namely (Quinlan, 1993):

ε′(pruned(T, t), S) ≤ ε′(T, S) +

√
ε′(T, S) · (1− ε′(T, S))

|S|
The last condition is based on statistical confidence interval for proportions.
Usually the last condition is used such thatT refers to a sub–tree whose root
is the internal nodet andS denotes the portion of the training set that refers to
the nodet.

The pessimistic pruning procedure performs top–down traversing over the
internal nodes. If an internal node is pruned, then all its descendants are re-
moved from the pruning process, resulting in a relatively fast pruning.

6.6 Error–based Pruning (EBP)

Error–based pruning is an evolution of pessimistic pruning. It is imple-
mented in the well–known C4.5 algorithm.

As in pessimistic pruning, the error rate is estimated using the upper bound
of the statistical confidence interval for proportions.

εUB(T, S) = ε(T, S) + Zα ·
√

ε(T, S) · (1− ε(T, S))
|S|

whereε(T, S) denotes the misclassification rate of the treeT on the training
setS. Z is the inverse of the standard normal cumulative distribution andα is
the desired significance level.

Let subtree(T,t)denote the subtree rooted by the nodet. Let maxchild(T,t)
denote the most frequent child node oft (namely most of the instances inS
reach this particular child) and letSt denote all instances inS that reach the
nodet.

The procedure performs bottom–up traversal over all nodes and compares
the following values:

1. εUB(subtree(T, t), St)

2. εUB(pruned(subtree(T, t), t), St)
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3. εUB(subtree(T, maxchild(T, t)), Smaxchild(T,t))

According to the lowest value the procedure either leaves the tree as is, prune
the nodet, or replaces the nodet with the subtree rooted bymaxchild(T,t).

6.7 Optimal Pruning

The issue of finding optimal pruning has been studied in (Bratko and Bo-
hanec, 1994) and (Almuallim, 1996). The first research introduced an al-
gorithm which guarantees optimality, known as OPT. This algorithm finds
the optimal pruning based on dynamic programming, with the complexity of
Θ(|leveas(T )|2), where T is the initial decision tree. The second research in-
troduced an improvement of OPT called OPT–2, which also performs optimal
pruning using dynamic programming. However, the time and space complexi-
ties of OPT–2 are bothΘ(|leveas(T ∗)| · |internal(T )|), whereT ∗ is the target
(pruned) decision tree andT is the initial decision tree.

Since the pruned tree is habitually much smaller than the initial tree and
the number of internal nodes is smaller than the number of leaves, OPT–2 is
usually more efficient than OPT in terms of computational complexity.

6.8 Minimum Description Length (MDL) Pruning

The minimum description length can be used for evaluating the generalized
accuracy of a node (Rissanen, 1989; Quinlan and Rivest, 1989; Mehtaet al.,
1995). This method measures the size of a decision tree by means of the num-
ber of bits required to encode the tree. The MDL method prefers decision
trees that can be encoded with fewer bits. The cost of a split at a leaft can be
estimated as (Mehtaet al., 1995):

Cost(t) =
∑

ci∈dom(y)

|σy=ciSt| · ln |St|
|σy=ciSt| + |dom(y)|−1

2 ln |St|
2 +

ln π
|dom(y)|

2

Γ(
|dom(y)|

2
)

whereSt denotes the instances that have reached nodet. The splitting cost
of an internal node is calculated based on the cost aggregation of its children.

6.9 Other Pruning Methods

There are other pruning methods reported in the literature, such as the MML
(Minimum Message Length) pruning method (Wallace and Patrick, 1993) and
Critical Value Pruning (Mingers, 1989).
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6.10 Comparison of Pruning Methods

Several studies aim to compare the performance of different pruning tech-
niques (Quinlan, 1987; Mingers, 1989; Espositoet al., 1997). The results
indicate that some methods (such as cost–complexity pruning, reduced error
pruning) tend to over–pruning, i.e. creating smaller but less accurate decision
trees. Other methods (like error-based pruning, pessimistic error pruning and
minimum error pruning) bias toward under–pruning. Most of the comparisons
concluded that the “no free lunch” theorem applies in this case also, namely
there is no pruning method that in any case outperforms other pruning methods.

7. Other Issues

7.1 Weighting Instances

Some decision trees inducers may give different treatments to different in-
stances. This is performed by weighting the contribution of each instance in
the analysis according to a provided weight (between 0 and 1).

7.2 Misclassification costs

Several decision trees inducers can be provided with numeric penalties for
classifying an item into one class when it really belongs in another.

7.3 Handling Missing Values

Missing values are a common experience in real-world data sets. This sit-
uation can complicate both induction (a training set where some of its values
are missing) as well as classification (a new instance that miss certain values).

This problem has been addressed by several researchers (Friedman, 1977;
Breimanet al., 1984; Quinlan, 1989). One can handle missing values in the
training set in the following way: letσai=?S indicate the subset of instances
in S whoseai values are missing. When calculating the splitting criteria using
attributeai, simply ignore all instances their values in attributeai are unknown,
that is, instead of using the splitting criteria∆Φ(ai, S) it uses∆Φ(ai, S −
σai=?S).

On the other hand, in case of missing values, the splitting criteria should be
reduced proportionally as nothing has been learned from these instances (Quin-
lan, 1989). In other words, instead of using the splitting criteria∆Φ(ai, S), it
uses the following correction:

|S − σai=?S|
|S| ∆Φ(ai, S − σai=?S).

In a case where the criterion value is normalized (as in the case of gain ratio),
the denominator should be calculated as if the missing values represent an
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additional value in the attribute domain. For instance, the Gain Ratio with
missing values should be calculated as follows:

GainRatio(ai, S) =
|S−σai=?S|

|S| InformationGain(ai,S−σai=?S)

− |σai=?S|
|S| log(

|σai=?S|
|S| )− ∑

vi,j∈dom(ai)

|σai=vi,j S|
|S| log(

|σai=vi,j S|
|S| )

Once a node is split, it is required to addσai=?S to each one of the outgoing
edges with the following corresponding weight:

∣∣σai=vi,jS
∣∣/|S − σai=?S|

The same idea is used for classifying a new instance with missing attribute
values. When an instance encounters a node where its splitting criteria can be
evaluated due to a missing value, it is passed through to all outgoing edges. The
predicted class will be the class with the highest probability in the weighted
union of all the leaf nodes at which this instance ends up.

Another approach known assurrogate splitswas presented by Breimanet al.
(1984) and is implemented in the CART algorithm. The idea is to find for
each split in the tree a surrogate split which uses a different input attribute and
which most resembles the original split. If the value of the input attribute used
in the original split is missing, then it is possible to use the surrogate split. The
resemblance between two binary splits over sampleS is formally defined as:

res(ai, dom1(ai), dom2(ai), aj , dom1(aj), dom2(aj), S) =∣∣∣σai∈dom1(ai) AND aj∈dom1(aj) S
∣∣∣

|S| +

∣∣∣σai∈dom2(ai) AND aj∈dom2(aj) S
∣∣∣

|S|

When the first split refers to attributeai and it splitsdom(ai) into dom1(ai)
anddom2(ai). The alternative split refers to attributeaj and splits its domain
to dom1(aj) anddom2(aj).

The missing value can be estimated based on other instances (Loh and Shih,
1997). On the learning phase, if the value of a nominal attributeai in tupleq
is missing, then it is estimated by its mode over all instances having the same
target attribute value. Formally,

estimate(ai, yq, S) = argmax
vi,j∈dom(ai)

∣∣σai=vi,j AND y=yq S
∣∣

whereyq denotes the value of the target attribute in the tupleq. If the missing
attributeai is numeric, then instead of using mode ofai it is more appropriate
to use its mean.
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8. Decision Trees Inducers

8.1 ID3

The ID3 algorithm is considered as a very simple decision tree algorithm
(Quinlan, 1986). ID3 uses information gain as splitting criteria. The growing
stops when all instances belong to a single value of target feature or when
best information gain is not greater than zero. ID3 does not apply any pruning
procedures nor does it handle numeric attributes or missing values.

8.2 C4.5

C4.5 is an evolution of ID3, presented by the same author (Quinlan, 1993).
It uses gain ratio as splitting criteria. The splitting ceases when the number
of instances to be split is below a certain threshold. Error–based pruning is
performed after the growing phase. C4.5 can handle numeric attributes. It can
induce from a training set that incorporates missing values by using corrected
gain ratio criteria as presented above.

8.3 CART

CART stands for Classification and Regression Trees (Breimanet al., 1984).
It is characterized by the fact that it constructs binary trees, namely each in-
ternal node has exactly two outgoing edges. The splits are selected using the
twoing criteria and the obtained tree is pruned by cost–complexity Pruning.
When provided, CART can consider misclassification costs in the tree induc-
tion. It also enables users to provide prior probability distribution.

An important feature of CART is its ability to generate regression trees.
Regression trees are trees where their leaves predict a real number and not a
class. In case of regression, CART looks for splits that minimize the prediction
squared error (the least–squared deviation). The prediction in each leaf is based
on the weighted mean for node.

8.4 CHAID

Starting from the early seventies, researchers in applied statistics devel-
oped procedures for generating decision trees, such as: AID (Sonquistet al.,
1971), MAID (Gillo, 1972), THAID (Morgan and Messenger, 1973) and
CHAID (Kass, 1980). CHAID (Chisquare–Automatic–Interaction–Detection)
was originally designed to handle nominal attributes only. For each input at-
tributeai, CHAID finds the pair of values inVi that is least significantly differ-
ent with respect to the target attribute. The significant difference is measured
by thep value obtained from a statistical test. The statistical test used depends
on the type of target attribute. If the target attribute is continuous, anF test is
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used. If it is nominal, then a Pearson chi–squared test is used. If it is ordinal,
then a likelihood–ratio test is used.

For each selected pair, CHAID checks if thep value obtained is greater than
a certain merge threshold. If the answer is positive, it merges the values and
searches for an additional potential pair to be merged. The process is repeated
until no significant pairs are found.

The best input attribute to be used for splitting the current node is then se-
lected, such that each child node is made of a group of homogeneous values of
the selected attribute. Note that no split is performed if the adjustedp value of
the best input attribute is not less than a certain split threshold. This procedure
also stops when one of the following conditions is fulfilled:

1. Maximum tree depth is reached.

2. Minimum number of cases in node for being a parent is reached, so it
can not be split any further.

3. Minimum number of cases in node for being a child node is reached.

CHAID handles missing values by treating them all as a single valid category.
CHAID does not perform pruning.

8.5 QUEST

The QUEST (Quick, Unbiased, Efficient, Statistical Tree) algorithm sup-
ports univariate and linear combination splits (Loh and Shih, 1997). For each
split, the association between each input attribute and the target attribute is
computed using the ANOVA F–test or Levene’s test (for ordinal and contin-
uous attributes) or Pearson’s chi–square (for nominal attributes). If the target
attribute is multinomial, two–means clustering is used to create two super–
classes. The attribute that obtains the highest association with the target at-
tribute is selected for splitting. Quadratic Discriminant Analysis (QDA) is
applied to find the optimal splitting point for the input attribute. QUEST has
negligible bias and it yields binary decision trees. Ten–fold cross–validation is
used to prune the trees.

8.6 Reference to Other Algorithms

Table 9.1 describes other decision trees algorithms available in the litera-
ture. Obviously there are many other algorithms which are not included in this
table. Nevertheless, most of these algorithms are a variation of the algorithmic
framework presented above. A profound comparison of the above algorithms
and many others has been conducted in (Limet al., 2000).
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Table 9.1. Additional Decision Tree Inducers.

Algorithm Description Reference

CAL5 Designed specifically for numerical–
valued attributes

Muller and Wysotzki (1994)

FACT An earlier version of QUEST. Uses sta-
tistical tests to select an attribute for
splitting each node and then uses dis-
criminant analysis to find the split point.

Loh and Vanichsetakul (1988)

LMDT Constructs a decision tree based on mul-
tivariate tests are linear combinations of
the attributes.

Brodley and Utgoff (1995)

T1 A one–level decision tree that classi-
fies instances using only one attribute.
Missing values are treated as a “spe-
cial value”. Support both continuous an
nominal attributes.

Holte (1993)

PUBLIC Integrates the growing and pruning by
using MDL cost in order to reduce the
computational complexity.

Rastogi and Shim (2000)

MARS A multiple regression function is ap-
proximated using linear splines and their
tensor products.

Friedman (1991)

9. Advantages and Disadvantages of Decision Trees

Several advantages of the decision tree as a classification tool have been
pointed out in the literature:

1. Decision trees are self–explanatory and when compacted they are also
easy to follow. In other words if the decision tree has a reasonable num-
ber of leaves, it can be grasped by non–professional users. Furthermore
decision trees can be converted to a set of rules. Thus, this representation
is considered as comprehensible.

2. Decision trees can handle both nominal and numeric input attributes.

3. Decision tree representation is rich enough to represent any discrete–
value classifier.

4. Decision trees are capable of handling datasets that may have errors.

5. Decision trees are capable of handling datasets that may have missing
values.
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Figure 9.3. Illustration of Decision Tree with Replication.

6. Decision trees are considered to be a nonparametric method. This means
that decision trees have no assumptions about the space distribution and
the classifier structure.

On the other hand, decision trees have such disadvantages as:

1. Most of the algorithms (like ID3 and C4.5) require that the target at-
tribute will have only discrete values.

2. As decision trees use the “divide and conquer” method, they tend to per-
form well if a few highly relevant attributes exist, but less so if many
complex interactions are present. One of the reasons for this is that other
classifiers can compactly describe a classifier that would be very chal-
lenging to represent using a decision tree. A simple illustration of this
phenomenon is the replication problem of decision trees (Pagallo and
Huassler, 1990). Since most decision trees divide the instance space into
mutually exclusive regions to represent a concept, in some cases the tree
should contain several duplications of the same sub-tree in order to rep-
resent the classifier. For instance if the concept follows the following
binary function:y = (A1 ∩ A2) ∪ (A3 ∩ A4) then the minimal univari-
ate decision tree that represents this function is illustrated in Figure 9.3.
Note that the tree contains two copies of the same subt-ree.

3. The greedy characteristic of decision trees leads to another disadvantage
that should be pointed out. This is its over–sensitivity to the training set,
to irrelevant attributes and to noise (Quinlan, 1993).
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10. Decision Tree Extensions

In the following sub-sections, we discuss some of the most popular exten-
sions to the classical decision tree induction paradigm.

10.1 Oblivious Decision Trees

Oblivious decision trees are decision trees for which all nodes at the same
level test the same feature. Despite its restriction, oblivious decision trees are
found to be effective for feature selection. Almuallim and Dietterich (1994) as
well as Schlimmer (1993) have proposed forward feature selection procedure
by constructing oblivious decision trees. Langley and Sage (1994) suggested
backward selection using the same means. It has been shown that oblivious
decision trees can be converted to a decision table (Kohavi and Sommerfield,
1998). Recently Lastet al. (2002) have suggested a new algorithm for con-
structing oblivious decision trees, called IFN (Information Fuzzy Network)
that is based on information theory.

Figure 9.4 illustrates a typical oblivious decision tree with four input fea-
tures: glucose level (G), age (A), hypertension (H) and pregnant (P) and the
Boolean target feature representing whether that patient suffers from diabetes.
Each layer is uniquely associated with an input feature by representing the
interaction of that feature and the input features of the previous layers. The
number that appears in the terminal nodes indicates the number of instances
that fit this path. For example, regarding patients whose glucose level is less
than 107 and their age is greater than 50, 10 of them are positively diagnosed
with diabetes while 2 of them are not diagnosed with diabetes.

The principal difference between the oblivious decision tree and a regular
decision tree structure is the constant ordering of input attributes at every ter-
minal node of the oblivious decision tree, the property which is necessary for
minimizing the overall subset of input attributes (resulting in dimensionality
reduction). The arcs that connect the terminal nodes and the nodes of the tar-
get layer are labelled with the number of records that fit this path.

An oblivious decision tree is usually built by a greedy algorithm, which tries
to maximize the mutual information measure in every layer. The recursive
search for explaining attributes is terminated when there is no attribute that
explains the target with statistical significance.

10.2 Fuzzy Decision Trees

In classical decision trees, an instance can be associated with only one
branch of the tree. Fuzzy decision trees (FDT) may simultaneously assign
more than one branch to the same instance with gradual certainty.
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Figure 9.4. Illustration of Oblivious Decision Tree.

FDTs preserve the symbolic structure of the tree and its comprehensibility.
Nevertheless, FDT can represent concepts with graduated characteristics by
producing real-valued outputs with gradual shifts

Janikow (1998) presented a complete framework for building a fuzzy tree in-
cluding several inference procedures based on conflict resolution in rule-based
systems and efficient approximate reasoning methods.

Olaru and Wehenkel (2003) presented a new fuzzy decision trees called soft
decision trees (SDT). This approach combines tree-growing and pruning, to
determine the structure of the soft decision tree, with refitting and backfit-
ting, to improve its generalization capabilities. They empirically showed that
soft decision trees are significantly more accurate than standard decision trees.
Moreover, a global model variance study shows a much lower variance for soft
decision trees than for standard trees as a direct cause of the improved accu-
racy.

Peng (2004) has used FDT to improve the performance of the classical in-
ductive learning approach in manufacturing processes. Peng (2004) proposed
to use soft discretization of continuous-valued attributes. It has been shown
that FDT can deal with the noise or uncertainties existing in the data collected
in industrial systems.

10.3 Decision Trees Inducers for Large Datasets

With the recent growth in the amount of data collected by information sys-
tems, there is a need for decision trees that can handle large datasets. Catlett
(1991) has examined two methods for efficiently growing decision trees from a
large database by reducing the computation complexity required for induction.
However, the Catlett method requires that all data will be loaded into the main
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memory before induction. That is to say, the largest dataset that can be induced
is bounded by the memory size. Fifield (1992) suggests parallel implementa-
tion of the ID3 Algorithm. However, like Catlett, it assumes that all dataset
can fit in the main memory. Chan and Stolfo (1997) suggest partitioning the
datasets into several disjointed datasets, so that each dataset is loaded sepa-
rately into the memory and used to induce a decision tree. The decision trees
are then combined to create a single classifier. However, the experimental re-
sults indicate that partition may reduce the classification performance, meaning
that the classification accuracy of the combined decision trees is not as good as
the accuracy of a single decision tree induced from the entire dataset.

The SLIQ algorithm (Mehtaet al., 1996) does not require loading the entire
dataset into the main memory, instead it uses a secondary memory (disk). In
other words, a certain instance is not necessarily resident in the main mem-
ory all the time. SLIQ creates a single decision tree from the entire dataset.
However, this method also has an upper limit for the largest dataset that can
be processed, because it uses a data structure that scales with the dataset size
and this data structure must be resident in main memory all the time. The
SPRINT algorithm uses a similar approach (Shaferet al., 1996). This algo-
rithm induces decision trees relatively quickly and removes all of the memory
restrictions from decision tree induction. SPRINT scales any impurity based
split criteria for large datasets. Gehrkeet al (2000) introduced RainForest; a
unifying framework for decision tree classifiers that are capable of scaling any
specific algorithms from the literature (including C4.5, CART and CHAID). In
addition to its generality, RainForest improves SPRINT by a factor of three. In
contrast to SPRINT, however, RainForest requires a certain minimum amount
of main memory, proportional to the set of distinct values in a column of the
input relation. However, this requirement is considered modest and reasonable.

Other decision tree inducers for large datasets can be found in the literature
(Alsabtiet al., 1998; Freitas and Lavington, 1998; Gehrkeet al., 1999).

10.4 Incremental Induction

Most of the decision trees inducers require rebuilding the tree from scratch
for reflecting new data that has become available. Several researches have
addressed the issue of updating decision trees incrementally. Utgoff (1989b,
1997) presents several methods for updating decision trees incrementally. An
extension to the CART algorithm that is capable of inducing incrementally is
described in (Crawfordet al., 2002).
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