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Abstract

Wrapper approaches in the feature selection problem require more computational time

than other methods. Given the nature of the process, each individual must create a

model with the classification algorithm used to be evaluated with the fitness function.

The dimensionality of the data is a crucial thing to be considered since it has a direct

impact on time consumption. The research proposal stated in this document is based

on using sampling methods in the feature selection process during the feature subset

search.

Three base proposals are used: fixed, incremental, and evolving sampling fractions.

Each is applied to the permutational-based Differential Evolution procedure for feature

selection. Memory is also implemented to avoid repeated evaluations and decrease

the resources required for the process. A Differential Evolution adaptation control

parameter mechanism is applied to the instance reduction proposals to reduce the

method’s dependence on parameter tuning. Additionally, the problem is taken to the

multi-objective approach using the proposed instance reduction schemes.

Experimentation is conducted to identify the top-performing proposals in the single-

objective and multi-objective approaches. The results show that applying the fixed and

incremental sampling fraction proposals with memory to avoid repeated evaluations suc-

cessfully maintains competitive performance and reduces the computational resources

required for the single-objective and multi-objective approaches.
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Chapter 1

Introduction

The machine learning algorithms for classification struggle with the increasing dimen-

sionality in the datasets found nowadays. Larger datasets do not necessarily imply

better data. The created model’s performance is affected by irrelevant features and

noisy instances in the dataset [42]. Given this, data preprocessing is an essential part

of the process.

One tool during the data preprocessing is the feature selection process. It consists of

selecting the most relevant feature subset for the learning process and model induction.

The presence of irrelevant and redundant features in the dataset makes the learning

process slower and decreases the model’s performance [32]. The method gives the

advantage of selecting the most relevant features and reducing data dimensionality, but

searching for the near-optimal subset can be computationally expensive.

Most classical feature selection methods suffer from stagnation in local optima.

This way, evolutionary computation presents itself as a global search metaheuristic tool

with higher efficiency in using resources [42]. Even with this, the associated cost is still

elevated, making it more difficult for evolutionary computation to be used in machine

learning processes. Therefore, it is relevant to reduce the processes’ computational cost

[46].

One of the most common feature selection processes is the wrapper approach, in

which the search is guided by the performance of a model of a classification algorithm

induced by each individual in the population. Since this has to be repeated several

1



2 CHAPTER 1. INTRODUCTION

times, the computational cost of the complete process increases. Additionally, with even

larger datasets, the process keeps augmenting its demand for computational resources.

Consequently, the proposal for this research project consists of reducing the di-

mensionality of the data during the search process to reduce the computational cost

associated with evaluating an individual. The goal of using sampling methods to re-

duce the number of instances in a dataset and the power of a metaheuristic such as

Differential Evolution is to maintain a competitive method performance while reducing

the resources that it uses. The base algorithm considered is the permutational-based

Differential Evolution algorithm for feature selection DE−FSPM proposed in [32] and

its extension to be a multi-objective procedure as proposed in [28].

1.1 Hypothesis

It is possible to reduce the computational cost associated with a wrapper scheme in

a feature selection process using sampling methods for reducing the dataset instances

during the search for the subset of features, maintaining a competitive method’s per-

formance.

1.2 Objectives

1.2.1 Main objective

The main goal of this research project is to evaluate the computational cost reduction

and the impact on the performance of the permutational-based Differential Evolution

algorithm for feature selection with the implementation of sampling methods for the

dataset instances during the search for the near-optimal subset of features.

1.2.2 Secondary objectives

In the process of the research proposal, the following specific objectives are considered:

• To propose and evaluate schemes of instance reduction using sampling methods.

• To implement the instance reduction schemes during the search process of the fea-

ture selection algorithm to reduce the number of instances used while calculating
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the fitness value of the population individuals.

• To evaluate the impact on the algorithm’s performance regarding computational

cost reduction and the selected feature subset size and classification performance

metrics.

• To use an adaptive control parameter algorithm in the feature selection problem

using the proposed instance reduction schemes.

• To assess the impact of using the instance reduction schemes under a multi-

objective approach.

1.3 Methodology

The research proposal is stated as reducing the computational cost of the permutational-

based Differential Evolution algorithm for feature selection proposed in [32]. In this way,

sampling methods are implemented during the search process to reduce the number of

instances taken into account in the individual’s fitness evaluation. Minimizing the

cardinality of the selected feature subset and maximizing the classification accuracy of

the classification algorithm modeled with the reduced dataset are the objective functions

in the multiobjective approach of this work.

The development of the research proposal in this document considers the following

steps.

1. To review the literature in state-of-the-art works on feature selection, Differential

Evolution, and computational cost reduction of wrapper approaches in the feature

selection problem.

2. To implement and modify the DE − FSPM with the following proposals:

(a) Given a fixed sampling fraction, apply sampling methods to reduce the num-

ber of instances from the dataset during the search process. In this case, the

entire search is conducted with a fraction of the dataset. Ultimately, the

best individual found is evaluated with the selected features and the com-

plete dataset instances.

(b) Similarly to the previous point, the process will start with a reduced number
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of instances given a sampling fraction. After that, the number of instances is

augmented as the number of generations increases until the last generations

use the complete dataset.

(c) Include a sampling fraction in the individual codification and evolve it during

the search process. In the end, it is expected to find the near-optimal feature

subset and the ideal sampling fraction for the dataset.

3. Implement additional mechanisms to reduce the computational cost of the proce-

dure. It is proposed to use memory to avoid repeated individual evaluations and

incorporate this proposal with points 2a and 2b of the methodology.

4. Using the SHADE [36] Adaptive Differential Evolution scheme to calculate the

algorithm’s parameters while the sampling proposals previously stated are used

to reduce the computational cost.

5. Implement the multi-objective approach based on the DE −FSPM extension for

feature selection from [28]. Apply proposals from points 2 and 3 of the method-

ology in the mentioned procedure.

6. To evaluate the performance of the single-objective and multi-objective approaches

with the proposals for computational cost reduction in classification accuracy, di-

mensionality reduction, and computational time.

1.4 Document structure

This chapter and the rest of the document are organized as follows:

• Chapter 1: This Chapter introduces the problem and the foundations of the

research proposal.

• Chapter 2: Some related works from feature selection methods and attempts

to diminish the computational cost of the process are presented. This work’s

contributions are stated in this chapter.

• Chapter 3: The feature selection problem is described, and some solution methods

are presented. This Chapter explains the multi-objective modeling of feature

selection and the basic concepts of multi-objective optimization.
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• Chapter 4: The Differential Algorithm is presented and described. This Chapter

includes a description of how the mutation procedure of the algorithm is adapted

to the problem of Feature Selection using a search space based on permutations.

The adaptive parameter control and the multi-objective version of differential

evolution are also presented.

• Chapter 5: This Chapter presents the details of the proposals of the fixed, incre-

mental, and evolving sampling fraction used to reduce the dimensionality of the

data in the search procedure. Additionally, it explores how memory can be used

to avoid repeated evaluations and save computational costs.

• Chapter 6: The experiments performed are described, and the results are pre-

sented.

• Chapter 7: This Chapter presents the conclusions of the proposal and states

possible future work areas to continue with the research.

• Appendix A: Preliminary experimentation is presented using the fixed sampling

fraction proposal.

• Appendix B: Preliminary experimentation is presented using the incremental sam-

pling fraction proposal.

• Appendix C: In this Appendix, the results of Experiment 4 are included with all

the related and calculated information.

• Appendix D: a comparison of the most successful proposed methods with an

exhaustive search method is conducted. The selected features of each method

and their respective performance are analyzed.





Chapter 2

Related work

With the state-of-the-art exploration, some relevant works presented that result of

interest for the research proposal are reviewed and commented on in the following

subsections. The first Section contains works that only focus on solving the feature

selection problem. The second Section discusses some research on instance selection

and computational cost reduction for the feature selection process. Finally, the proposal

contributions are stated in the final Section of this chapter.

2.1 Feature selection

In [42], the different evolutionary and swarm approaches for solving the feature selection

problem are classified by the number of objectives taken into account, the metaheuristic

used to guide the search, and the approach used to evaluate the feature subsets. As

reported in that paper, differential evolution was not one of the most popular evolution-

ary metaheuristics for feature selection. Other methods, such as Genetic algorithms or

Particle Swarm Optimization, are presented with more related works.

A comparison of various swarm intelligence search methods for feature selection

using filter and wrapper approaches is shown in [44]. The metric used for the filter

approach is correlation-based, while the wrapper uses a support vector machine algo-

rithm to guide the search. In general, the filter approaches selected a smaller subset of

features, and the wrapper approaches presented higher classification performance. The

different search algorithms tested showed slight differences among them.

7
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A many-objective approach for feature selection is presented in [34], where five

objectives are considered: classification accuracy, selected feature subset size, feature

relevance, feature redundancy, and feature interaction. It is reported that these five

objectives allowed the authors to generate a wider variety of solutions in the Pareto

front and improve the discrimination capabilities of the model.

The multiobjective model from [43] considers three objectives: the feature subset

size, the classification performance, and reliability. The third objective deals with

missing data in the dataset after using mean imputation. The algorithm used is the

non-dominated sorting genetic algorithm-III (NSGA-III).

The permutational-based differential evolution algorithm for feature selection (DE−
FSPM) presented in [32] uses a wrapper approach with the k-nearest-neighbors algo-

rithm guiding the search. This method showed good performance when compared

with classical methods such as Sequential Forward Selection and Sequential Backward

Elimination, as well as with other evolutionary approaches like Particle Swarm Opti-

mization. In this method, the codification of the individuals uses a vector with integer

indices representing the features in the dataset.

In [28], an extension of the DE − FSPM algorithm is proposed using a multi-

objective approach with the Feature Selection Generalized Differential Evolution 3 (FS-

GDE3) algorithm. The permutational mechanisms are maintained, and two objectives

are minimized: the classification error and the number of selected features. Some of

the proposed future work implies dealing with the high computational cost associated

with the procedure.

2.2 Instance selection and cost reduction

As shown in [29], instance selection methods attempt to reduce the training set in

creating the model of a classifier algorithm. The main goal is to maintain classification

accuracy using fewer instances. Various methods for the instance selection problem

are mentioned following wrapper and filter approaches similar to the feature selection

problem.

An analysis of evolutionary algorithms in feature and instance selection is seen in

[39]. The results show that applying both preprocessing methods slightly drops the
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model’s performance, but the training-associated computational cost is reduced. The

authors use the processes of feature and instance selection independently. It is reported

that better results are obtained if feature selection is made before the instance selection

process.

In [21], the three-objective search used in the paper got better results than the two-

objective approaches in instance selection. The procedure is used in filter and wrapper

processes. The three objectives used in the wrapper approach correspond to the number

of selected instances, and the other two are associated with the classification error of

the algorithm. One objective uses a p-fold cross-validation process in an attempt to

prevent overfitting.

A simultaneous feature and instance selection process using a genetic algorithm is

shown in [4]. The results show that the algorithm allowed the authors to successfully

reduce the number of features and instances, maintaining at least the performance of

the classification algorithm and improving it in some cases.

A variant of the feature selection problem called cost-sensitive feature selection is

used when a specific cost is associated with a dataset’s features. The goal is not to

reduce the computational cost of the process but instead to reduce the associated cost

of the selected features in the dataset. An example is in [19], where a cost evaluation

criteria is proposed using a fuzzy mutual estimator with differential evolution.

An approach for computational cost reduction using surrogate models in the feature

selection process is shown in [46]. In this process, auxiliary tasks called minions are

assigned with a fraction of the dataset, and each one tries to serve a specific objective

that will help guide the process’s primary task. The proposed multitask evolutionary

scheme can reduce up to 40% of the computational cost associated with the process.

Another approach for reducing the feature selection process’s computational cost

is using surrogate models, as seen in [20]. The authors’ proposal uses Particle Swarm

Optimization and a dynamic transfer function that approximates the fitness value of

an individual. Results show a considerable time reduction compared to other Particle

Swarm Optimization algorithms without the surrogate models.

In [38], a Variable Length Particle Swarm Optimization method is proposed to

overcome the obstacle of the computational cost in high-dimensional datasets. The
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procedure uses particles of shorter lengths to explore some regions of the search space.

A length-changing mechanism allows the PSO to move out of local optima and focus

on small and more prosperous areas. The approach can find smaller feature subsets

outperforming other fixed-length PSO methods in classification performance.

An interesting and highly related work to the research proposal of this document

is shown in [26]. The authors show that using random instance selection in a single-

objective feature selection approach can considerably reduce the training data for a

classifier algorithm with minimal impact on the accuracy performance. In this approach,

the number of selected instances is fixed to 100, 250, 500, 1000, 1500, and 2000. It

is proposed as future work the analysis of the impact of using a reduced number of

instances in the parameter calibration process of the algorithm.

The computational cost of repeated evaluations in the differential evolution algo-

rithm is analyzed in [22]. Even with a real-value representation, the authors identify

a 20% of repeated fitness function evaluations. A hash table is proposed to avoid re-

peated evaluations, and a restart mechanism is implemented considering the repeated

individuals in the population.

2.3 Research proposal contributions

Different approaches have been proposed to reduce the computational cost of the feature

selection procedure, such as surrogate models, variable length procedures, and instance

selection methods. Nonetheless, there are stated future work and open issues that are

considered in this proposal with the following contributions:

• The proposal of using random sampling selection from [26] is applied in this

document’s three different instance reduction schemes. The fixed, incremental,

and evolving sampling fraction represents novel mechanisms for implementing

random instance selection during the feature subset search.

• An adaptive parameter control mechanism is implemented in the differential evo-

lution procedure to deal with the parameter tuning when conducting the feature

subset search with the instance-reduced data.

• As suggested in [22], a memory mechanism is used to avoid repeated evaluations.
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• The processes of instance sampling are applied using the DE − FSPM algorithm

[32] as a basis with the permutational-based differential evolution procedure in the

single-objective approach and extended to the multi-objective approach proposed

in [28].





Chapter 3

Feature selection

Access to a larger storage capacity may lead to storing more and more features for

a dataset instance. The additional information kept is only sometimes helpful. It

increases the model generation computational cost and could decrease the algorithm’s

performance [6]. An irrelevant feature value for a dataset instance consists of not being

related to the instance’s class. With many irrelevant features, classifying an instance

can be misleading [23]. Given this, preprocessing the data gains relevancy in Machine

Learning (ML), where feature selection tries to select the attributes considered the most

important ones in the dataset.

Feature selection is a popular method that discards unrelated and redundant fea-

tures in a dataset. Given this, the dimensionality of the data is reduced. Furthermore,

the ML model uses attributes identified as the most relevant features. Therefore, it

is expected to increase its classifying capabilities. This procedure is beneficial when

dealing with large-scale data [1].

3.1 The feature selection problem

As seen in [4], feature selection provides advantages such as data dimensionality reduc-

tion, fastening the learning process, simplifying the generated model, and increasing

the algorithm’s overall performance by removing irrelevant features. There are two

main approaches for feature preprocessing: feature selection and feature construction.

The first one tries to find a near-optimal subset of features from the original data that

13
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includes the most relevant and informative features to be extracted from the data and

discard the ones the procedure finds irrelevant or redundant. On the other hand, fea-

ture construction builds new features after the original ones. This document’s research

proposal focuses on finding a near-optimal subset of features from the original data

using feature selection.

The complexity of the feature selection procedure is given by the ample search

space generated by the different combinations of the features from the dataset. This

complexity grows exponentially as the dimensions of the dataset increase. The features

are not considered individually. In a dataset, there is a complex series of interactions

between features. In this way, one feature that could be discarded separately becomes

relevant when interacting with other features. The number of possible solutions in the

search space is given by 2n where n is the number of features [42]. Figure 3.1 shows

a basic scheme of the Feature Selection process. Given a dataset, a subset of features

is extracted. Then, the subset is evaluated. If the terminal condition is not fulfilled,

another subset is extracted from the data, and its goodness is assessed. Otherwise, the

final subset of features found is validated.

One way to classify the feature selection problem is according to the cardinality

of the feature subset as presented in [32]. The weak feature selection process needs

to define a subset size initially, and all the explored subsets only contain that number

of features. In this process, selecting the correct number of features for a dataset is

Figure 3.1: Simplified Scheme of the Feature Selection process
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challenging and could lead to poor performance. In opposition, strong feature subset

selection considers all possible subset lengths for the subset, giving the procedure more

adaptation capabilities. Still, it increases the complexity of the search space and the

search strategy used. The process followed by the proposal in this document corresponds

to the strong feature selection problem.

The approaches to solving the feature selection problem can be classified according

to how a subset of features’ goodness is evaluated. There are three main categories of

feature selection methods as shown in [14]:

• Filter: a metric, such as Divergence, Information Gain, Dependency, or Con-

sistency, is calculated to assess the quality of a subset. This search process is

independent of using an ML algorithm until the best possible subset is found and

evaluated with a classifier.

• Wrapper: This approach uses an ML algorithm to calculate the performance of

the subset of features. In this case, a model is trained and evaluated for each

subset generated in the search process. The metrics used for this approach are

accuracy-based. In the end, the near-optimal subset of features found is evaluated

to determine the final performance.

• Embeded: In this approach, the feature selection process is performed while

the classifier algorithm is modeled in its training phase. As a result, the trained

model considers the most relevant features of the dataset. An example of this

type of approach is shown in [25], where a decision tree method is used with its

capabilities of performing feature selection while creating the model.

Some works like [42] categorized the embedded methods as part of the wrapper

approach, given the interaction of the procedure with the ML algorithm. In [1], an

additional classification is included as a Hybrid approach where a filter method is used

to generate a solution or set of solutions given to a wrapper method to improve it.

Filter methods are usually less computationally expensive than wrappers, but wrap-

pers often result in better accuracy performance given their interaction with the ML

algorithm in the search process. Embedded approaches require search methods capable

of dealing with the nature of the approach. For example, in evolutionary computation,

only genetic programming (GP) and learning classifier systems (LCSs) are adequate

to perform embedded feature selection approaches [42]. Another difference stated in
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[14] is that filter approaches are robust against overfitting to the data, while wrapper

approaches are more likely to overfit. The research proposal in this document follows

a feature selection process under the wrapper approach.

One of the most popular classifier algorithms for wrapper approaches corresponds

to the k-nearest-neighbors (KNN) algorithm1, whose low computational cost is high-

lighted. Other classifier algorithms used are Logistic Regression, Random Forest, Naive

Bayes classifier, and Artificial Neural Networks [15].

A variant of the Feature Selection Problem is described in [1] as Online Feature

Selection (OFS). In the traditional version problem, the complete set of data features

with all the instances are known at the beginning of the process, and the method selects

the most important among them. In contrast, OFS considers cases where instances and

features change during the process and more information is available for the data. For

this document, unless stated, the reference to the feature selection problem is for the

traditional one.

Some challenges are still open for feature selection techniques. In [1], it is stated

that dimensionality, class imbalance, and scalability, among others, are still open areas

for improvement. The work in [14] enumerates a series of challenges for feature selection

in specific research areas in Machine Learning. One challenge for wrapper approaches

with metaheuristics methods is its associated high computational cost [42]. This way,

more efficient evaluation processes are expected.

3.2 Feature Selection methods

A classic method proposed in [40] corresponds to the Sequential Forward Selection

(SFS). Given a number d of features, it consists of selecting the one in the dataset with

the highest score after evaluation. Then, add a second feature that, together with the

first, has the highest score. This is repeated for adding more features until the subset of

features is of size d. This process requires evaluating every possible combination of one

feature and previously selected ones. Once a feature is included in the selected subset,

it is not changed.

1In the k-nearest-neighbors algorithm, a test instance is classified accordingly to the class to which
its neighbors in the training set belong. k is a parameter that determines how many neighbors are
considered, and these neighbors are the closest points to the instance given a distance measure [23].
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Another classical approach is the Sequential Backwards Selection (SBS) [27]. In

this method, all the dataset features are first considered and evaluated together. Then,

all the subsets of features that correspond to the elimination of one of the features in the

dataset are evaluated. The feature that has the less significant effect on the performance

of the subset is removed. Then new subsets of features with the elimination of another

feature are evaluated.

Both methods, SFS and SBS, follow a greedy search where a selected feature cannot

be discarded, and a discarded feature cannot be selected [42]. An alternative is shown

in [31], where the methods are complemented with a procedure that can discard a

previously selected feature during an SFS and select a previously discarded feature

in SBS. The methods are called Sequential Forward Floating Selection (SFFS) and

Sequential Backwards Floating Selection (SBFS), respectively.

As seen in [15], there has been a superiority of the metaheuristic-based approaches

in the feature selection problem in recent years. The most popular ones correspond to

Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Simulated Annealing

(SA), Genetic Programming (GP), Ant Colony Optimization (ACO), and Differential

Evolution (DE). Most of them belong to the Evolutionary Computation (EC) area.

Moreover, a variety of new metaheuristics have been more recently proposed. Exam-

ples of these metaheuristics are Cuckoo Search (CS), Grey Wolf Optimization (GWO),

Whale Optimization Algorithm (WOA), and Harris’ Hawk Optimization (HHO), among

others.

As population-based metaheuristics, the EC methods possess the advantage of eval-

uating a series of possible solutions (different subsets of features in the feature selection

problem) in a single iteration of the process. This allows the search procedure to ex-

plore different parts of the search space at the same time. Nonetheless, that advantage

has a high computational cost requirement as a downside [42].

3.3 Multi-objective feature selection

Feature selection consists of two main objectives: minimizing the cardinality of the

subset of selected features and maximizing the model’s performance when its accu-

racy is evaluated [42]. These objectives often conflict, giving space for multiobjective

optimization techniques such as Evolutionary Multi-objective Optimization [4]. This



18 CHAPTER 3. FEATURE SELECTION

section gives a brief introduction to the basic concepts of Multi-Objective Optimization.

After that, it is explored how it can be applied to the Feature Selection Problem.

3.3.1 Basics of Multi-objective Optimization

Optimizing real-world problems often deals with objectives in conflict. This is, when

one is improved, the other one worsens. In this type of problem, there is not only a

solution. The Pareto-optimal solutions are a set of solutions that show the trade-offs

between the objectives taken into account. Since more than one objective is considered,

a multidimensional space, called the objective space, is formed by the objective func-

tions. Each solution is mapped to the objective space evaluating it with the considered

objective functions [11].

Mathematically, a multi-objective problem is modeled as shown in [10]: with a

solution x that is part of a universe Ω (x ∈ Ω), the problem consists of minimizing

the vector F (x) = (f1(x), ..., fk(x)) that contains the k objective functions values for

x. x is a vector with n components x = (x1, ..., xn). Additionally, if the problem

presents constraints, they can be considered as the optimization is subject to gi(x) ≤ 0,

i = 1, ...,m and hj(x) = 0, j = 1, ..., p.

A concept used in this type of problem that helps to compare different solutions is

the Pareto dominance as explained in [11]. A solution x is said to dominate another

solution x′ (x ⪯ x′) if it satisfies the following two conditions: x is equal or better in all

objectives than x′ and x is strictly better than x′ for at least one objective. If x ⪯ x′,

it is said that x′ is dominated by x (x′ ⪰ x).

A Pareto Optimal consists of a solution x that is not dominated by any other

solution x′ in Ω. More than one Pareto optimal is expected to be found and reported

as a solution to the problem. The Pareto Optimal Set is the set formed by the Pareto

Optimals found. When this set is plotted in the objective space, the non-dominated

vectors are known as the Pareto Front [10].

As mentioned in [9], using metaheuristics for solving multi-objective problems has

gained popularity since they are flexible and easy to use. Among those metaheuristics,

evolutionary algorithms have become their most used strategy, creating the specific area

of Evolutionary Multiobjective Optimization. Different metrics are applied to assess

the performance of a multi-objective algorithm. Two Pareto-based measurements that
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can deal with problems where the ideal Pareto front is unknown are the spacing [33]

and the hypervolume [47] metrics.

Multiobjective problems are not limited to using only two objectives; they can

include more. Problems with more than three objective functions are known as many-

objective optimization problems. Handling restrictions for the different objectives is

necessary to deal with practical applications. Evolutionary Computation techniques

allow us to apply additional penalties to the fitness value proportionally to how much

the constraint is violated [18]. Nonetheless, the feature selection problem does not have

to deal with restrictions and penalties.

3.3.2 Formulation of Feature Selection as a Multi-objective

problem

As mentioned previously, the problem of feature selection consists of two main objec-

tives: to increase the performance of a classifier algorithm and to reduce the size of

the subset of selected features. As stated in [42], most evolutionary algorithms are

designed for continuous problems. However, feature selection has a discrete space given

by the dataset features. In the case of wrapper approaches, to see the problem as a

minimization one, it could be quickly transformed from an accuracy-based metric to

the error of classification.

As seen previously, in multi-objective problems, more than one solution is returned,

and each solution corresponds to a specific trade-off between the objectives. In the case

of feature selection, a multi-objective approach is expected to return different configu-

rations of selected features. This way, of the reported solutions, some will represent a

larger subset with better performance on accuracy. In comparison, others will give a

smaller subset but diminish the classifier’s performance.

A common way to model the feature selection problem under a multi-objective

wrapper approach is shown in [3] following Equation 3.1. Two objective functions are

considered: the error in classification accuracy that the model obtains (f1(x)) and the

number of selected features (f2(x)).

minimize F (x) = [f1(x), f2(x)] (3.1)
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The classification error of the model (f1(x)) is calculated with values obtained from

the confusion matrix where TP is True Positives, FP is False Positives, TN is True

Negatives, and FN is False Negatives. Equations 3.2 and 3.3 are two ways of calculating

the error rate. In Equation 3.2, the accuracy value of the model is subtracted from 1,

obtaining the measure of the error. In Equation 3.3, the error rate is directly calculated

from the values obtained from the confusion matrix. An ideal error measure value is

zero, meaning all instances were classified correctly. In contrast, the worst value for

error rate is one, meaning that all instances were given the wrong label.

Error = 1− Accuracy = 1− TP + TN

TP + FP + TN + FN
(3.2)

Error =
FP + FN

TP + FP + TN + FN
(3.3)

In the case of the number of features selected (f2(x)), the size of the selected subset

of features is divided by the total number of features available in the dataset as shown

in Equation 3.4. This metric will result in a value of one if all the features in the dataset

are selected and zero for an empty subset.

f2(x) =
#Features

Total#features
(3.4)

For other feature selection approaches different than wrappers, the error metric has

to be adjusted concerning the approach, given that a classifier algorithm is not used.

Some open challenges of multi-objective feature selection are the scalability of data,

the computational cost, and the search techniques used, among others. As mentioned

earlier, most multi-objective techniques are designed for continuous search spaces, and

feature selection is different than that. This way, search techniques better adapted to

the problem are expected [3].
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Differential evolution

The Differential Evolution (DE) algorithm was proposed by [35] as a population-based

global search strategy design for continuous spaces. The user-defined parameters that

guide the search are the crossover rate (CR), the scale factor F, the population size

(NP), and the maximum number of generations that will run the algorithm. The

process of evolution consists of generating a trial vector ui for every target vector xi in

the population and keeping the most suitable one for the next generation.

In the classic version of Differential Evolution called DE/rand/1/bin, to calculate

the trial vector ui, we first need to compute the noise vector vi accordingly to Equation

4.1 [30]. This part of the procedure is also known as mutation. The r0, r1, and r2 vectors

are individuals selected randomly from the population and different from each other and

xi. F is the scale factor previously mentioned as a parameter that scales the difference

of the vectors r1 and r2 before adding it to the r0 vector.

vi = r0 + F (r1 − r2) (4.1)

Once vi is calculated, the trial vector ui is computed using Equation 4.2. This pro-

cedure is the uniform crossover, and the bin name comes from the binomial distribution

of the components of the resulting vector [17]. randj is a random number between 0

and 1 generated for each vector component. Jrand is a position j randomly selected to

make sure that the trial vector takes at least one component from the noise vector vi.

21
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This process is conducted component by component in the vector, and the parameter

CR controls it.

ui,j =

vi,j if (randj ≤ CR) or (j = Jrand); j = 1, ..., |xi|

xi,j otherwise
(4.2)

To determine which vector will be included in the population for the next gener-

ation, a binary tournament face xi and ui, the one with the highest fitness value, is

selected. Given this, the DE selection mechanism presents elitism, and the best solution

is never lost.

DE is highlighted for its performance in different optimization problems and uses

only a few parameters (F and CR) to guide the search. Still, DE has some open

challenges, such as the codification and decoding strategy that can directly impact

search performance and the configuration of the parameters to maintain balance in the

exploration and exploitation capabilities of the algorithm [2]. Additionally, the No Free

Lunch Theorem [41] states that the algorithm’s performance could be really good for

some types of problems and not so good for others.

Other variants of the DE algorithm are shown in [2] with alternatives to the noise

vector vi calculation. These variants include using the individual with the highest fitness

value xbest or using more than three individuals of the population, including more than

one scaled difference. Down below, a list with some variants of the mutation strategy

of DE is presented.

• DE/rand/2

vi = r0 + F (r1 − r2) + F (r3 − r4) (4.3)

• DE/best/1

vi = xbest + F (r0 − r1) (4.4)

• DE/best/2

vi = xbest + F (r0 − r1) + F (r2 − r3) (4.5)
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• DE/current-to-best/1

vi = xi + F (xbest − xi) + F (r0 − r1) (4.6)

4.1 Permutational-based Differential Evolution

The Differential Evolution algorithm was initially formulated for continuous spaces,

but it has also been adapted to discrete and permutational spaces [30]. In [32] and

[5], a variation of the DE algorithm called Permutational-based Differential Evolution

for Feature Selection (PM − DEFS) is applied to the feature selection problem. The

representation of solutions consists of integer-value vectors. Each number in the vector

represents the feature in that position in the dataset. The individuals are valid per-

mutations of a vector containing all the dataset’s features plus the number zero. The

function of the number zero is to serve as a division between the selected and no selected

features since the values to the left of the zero are the indexes of the selected features.

Figure 4.1 shows how an individual is decoded, selecting a subset of the dataset features.

In this application, the operators used in differential evolution must be adapted

for the permutation search space. In [32], the mutation operator is the permutation

matrix representing the difference between two permutations as indicated in Equation

4.7. This approximation is made to substitute the difference between r1 and r2 in the

classical procedure.

r1 ← Pr2 (4.7)

The scale permutation matrix uses the scale factor F to vary the number of permu-

tations. Using the permutation matrix P, it is scaled accordingly to the Equation 4.8

used in [32]. The algorithm for PF calculation is defined in [30] as: for every row i in

the matrix, if P[i, i] = 0 and ri > F , find the row of the matrix where P[j, i] ̸= 0 and

swap rows i and j. ri is a random number from a uniform distribution with boundaries

0 and 1.

vi ← PF r0 (4.8)
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Figure 4.1: Codification and decoding of individuals in the DE − FSPM algorithm

The parameter F substantially affects the PF calculation. For a value of F =

1, all the rows in the matrix will be changed, resulting in the diagonal matrix. The

diagonal matrix will have no effect in the r0, which would be the vi vector, losing all

the information of the r1 and r2 vectors. If F = 0, P will have no changes. In this

manner, other values between 0 and 1 will perform only a fraction of the permutations

represented by P when vi is calculated [30].

The crossover procedure is the same as explained before for the original version of

DE using Equation 4.2. Nonetheless, given that some elements are selected from vi, and

others from xi, the resulting vector ui could no longer be a valid permutation having

repeated values. To deal with this problem, a repair mechanism is implemented in [32]:

repeated values on the vector ui are eliminated. The needed values to complete ui as

a valid permutation are taken from the vi vector and inserted on the end of the vector

ui. The pseudo-code of the DE − FSPM algorithm is presented in Algorithm 1.
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Algorithm 1 The DE − FSPM algorithm

Require: DE − FSPM (CR, F, NP, NG)
Input: The crossover rate (CR), the scale factor (F ), the population size (NP ), and
the number of generations (NG).
Output: The best individual in the current population (xbest).

X0 ← ∅
for each i ∈ {1, ..., NP} do

xi ← A permutation chosen at random from the solution space.
X0 ← X0 ∪ {xi}

end for
for each g ∈ {1, ..., NG} do

Xg ← ∅
for each i ∈ {1, ..., NP} do

xi ← Target vector from Xg−1

vi ← Mutated vector using Eqs. 4.7 and 4.8.
ui ← Trial vector constructed using Eq. 4.2 and the repair procedure.

Xg ← Xg ∪

{
{ui} if f(ui) is better than f(xi)

{ui} otherwise

end for
end for
Xbest ← The best individual in Xg

return Xbest
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4.2 Adaptive parameter control Differential Evolu-

tion

Parameter selection directly impacts the DE algorithm’s performance but is highly prob-

lem dependent. As seen in [16], there are two main techniques to set the parameter

values: parameter tuning and parameter control. In parameter tuning, well-performing

parameter values are determined before executing an evolutionary algorithm. In con-

trast, in parameter control, the initial values of the parameters are changed while the

search process is conducted. Three categories of parameter control are specified:

• Deterministic Parameter Control: A deterministic rule is applied without re-

ceiving feedback from the search. An example is a rule that changes the parameter

values accordingly to the number of generations already completed.

• Adaptive Parameter Control: The search process provides feedback, deter-

mining parameter values.

• Self-Adaptive Parameter Control: The parameter values are coded inside an

individual and evolve through mutation and recombination.

Different approaches for Adaptive Parameter Control have been proposed in the

literature. This research proposal considers using the Success History Parameter-

Adaptation for Differential Evolution (SHADE) proposed in [36] in the parameter con-

trol of the DE−FSPM algorithm. SHADE is based on the JADE parameter adaptation

method for DE proposed in [45]. In this approach, a new mutation strategy for DE

is proposed called DE/current-to-pbest/1 (see Equation 4.9). xpbest is an individual

selected randomly from the top (100 ∗ p)% of the population and p ∈ (0, 1].

vi = xi + Fi(xpbest − xi) + Fi(r0 − r1) (4.9)

The JADE procedure [45] includes an optional Archive A of inferior solutions. If A

is active, the r1 vector is chosen from the union of the individuals in the population and

the ones in A. Otherwise, r1 is selected randomly from the population. A starts being

empty, then target vectors in the population that lost the binary tournament with its

trial vector are added to A. When A exceeds the maximum size (proposed as NP),

randomly chosen solutions in A are eliminated to maintain the desired size.
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The Fi and CRi parameters are calculated at the beginning of each generation

accordingly to the values of successful sets of parameters from the previous generation.

The parameters Fi and CRi are successful when a trial is generated with them and beats

its associated target. In the SHADE method [36], the previously mentioned concepts

and mechanisms are kept. However, there are some changes concerning JADE [45].

The main change is the usage of a pair of memories of size H called MCR and MF that

stores the mean values of the successful parameters of previous generations. At the

beginning of the process, all values in MCR and MF are set to 0.5.

In each generation, a parameter CRi and Fi is calculated for each solution xi se-

lecting a random position ri from the memories MCR and MF and applying Equations

4.10 and 4.11, respectively. randni(µ, σ
2) and randci(µ, σ

2) are values obtained from a

normal and Cauchy distributions using µ as the mean and σ2 as the variance.

CRi = randni(MCR,ri , 0.1) (4.10)

Fi = randci(MF,ri , 0.1) (4.11)

The successful CRi and Fi parameters in a generation are stored in the variables SCR

and SF . After that, the values in the memory in the position k are updated following

Equations 4.12 and 4.13. In both cases, when there are no successful parameters, the

memories maintain the values previously in the position k. k has a value of 1 at the

beginning of the process. It is augmented by 1 unit every time a new element is updated

in the memory. When k > H, k is set to 1.

MCR,k,G+1 =

meanWA(SCR) if SCR ̸= ∅

MCR,k,G otherwise
(4.12)

MF,k,G+1 =

meanWL(SF ) if SF ̸= ∅

MF,k,G otherwise
(4.13)

In Equations 4.12 and 4.13, the update procedures use the weighted mean meanWA
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calculated with Equation 4.14, and the weighted Lehman mean (meanWL) using Equa-

tion 4.16. ∆fj in Equation 4.15 correspond to the improvement in the fitness function

of the trial individual that beat its target vector calculated as ∆fj = |f(uj,G− f(xj,G)|.

meanWA(SCR) =

|SCR|∑
j=1

wj · SCR,j (4.14)

wj =
∆fj∑|SCR|

j=1 ∆fj
(4.15)

meanWL(SF ) =

∑|SF |
j=1 wj · S2

F,j∑|SF |
j=1 wj · SF,j

(4.16)

An additional parameter calculated for every individual at the beginning of the

population is pi using Equation 4.17. pmin is determined with a random number from

2/NP to 0.2. pi consists of determining the number of individuals considered when

xpbest ranges from at least 2 individuals to the 20% of the population. The pseudo-code

from [36] of the complete SHADE procedure is shown in Algorithm 2.

pi = rand[pmin, 0.2] (4.17)

More recent versions of parameter adaptation for DE based on the SHADE pro-

cedure are L-SHADE [37], iL-SHADE [7], and jSO [8]. In L-SHADE, the SHADE

procedure is complemented with a Linear Population Size Reduction that changes the

NP parameter along the search process. In iL-SHADE and jSO, some changes are

implemented along with conditionals in updating the parameter values. As can be no-

ticed, the SHADE procedure and its variants need the setting of the H parameter. In

SHADE, H = 30 and H = 50 configurations present slightly better results, L-SHADE

and iL-SHADE set H = 6, and jSO uses H = 5.
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Algorithm 2 SHADE algorithm

G← 0 ▷ Initialization phase
Initialize population X0 ← (x1,0, ..., xNP,0) randomly
Set all values in MCR,MF to0.5
Archive A← ∅
Index Counter k ← 1
while Termination criteria are not met do ▷ Main Loop

MCR = ∅,MF = ∅
for i = 1 to NP do

ri ← Select from [1, H] randomly
CRi,g ← randni(MCR,ri , 0.1)
Fi,g ← randci(MF,ri , 0.1)
pi,g ← rand[pmin, 0.2]
Generate trial vector ui,G by current-to-pbest/1/bin

end for
for i = 1 to NP do

if f(ui,g) ≤ f(xi,g then
xi,g+1 ← ui,g

else
xi,g+1 ← xi,g

end if
if f(ui,g) < f(xi,g then

xi,g → A
CRi,g → SCR, Fi,g → SF

end if
end for
Whenever the size of the Archive exceeds |A|, randomly selected individuals
are deleted so that |A| ≤ NP
if SCR ̸= ∅ and SF ̸= ∅ then

Update MCR,k,MF,k based on SCR, SF

k ← k + 1
if k > H then

k ← 1
end if

end if
end while
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4.3 Multi-Objective Differential Evolution

An extension of the DE algorithm that can deal with multi-objective optimization

problems is the Generalized Differential Evolution 3 (GDE3) algorithm [24]. GDE3

handles problems with M objective functions and K constraints. In the case of M = 1

and k = 0, a single objective problem with no constraints, the GDE3 procedure is the

same as the basic version of DE.

GDE3 deals with constraints using a variant of the concept of dominance mentioned

in Section 3.3 called constraint-dominance (⪯c). A solution x1 constraint-dominates a

solution x2 (x1 ⪯c x2) if any of the conditions stated in [24] is true:

• x1 is feasible and x2 is infeasible.

• x1 and x2 are both infeasible and x1 dominates x2 in the constraint function space.

• x1 and x2 are feasible, and x1 dominates x2 in the space given by the objective

functions. This case corresponds to using the classical concept of dominance in

the objective space.

To deal with more than one objective, GDE3 changes its selection mechanism con-

cerning the basic version of DE. As seen in this section, DE uses a binary tournament

between target y trial, selecting the one with the better fitness function value. GDE3

implements some changes in the tournament defined by the following rules:

• If both trial and target are infeasible, the target is selected unless the trial dom-

inates the target in the constraint violation space. If that happens, the trial is

chosen.

• The feasible individual is selected when comparing a feasible vector with an in-

feasible one.

• For two feasible vectors, the target is selected if it dominates the trial. The trial

is selected if it dominates the target. If none of the vectors dominates the other,

then both are kept as part of the population for the next generation.

Given the third case, when both target and trial are selected, the population size can

be increased and exceed NP. To maintain the population of size NP, two mechanisms

from the NSGA-II algorithm [12] are used: the fast non-dominated sorting and the
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crowding distance.

The fast non-dominated sorting algorithm from [12] is shown in Algorithm 3. This

procedure finds the number of the Pareto front where each solution belongs. This means

that the first Pareto front contains the non-dominated solutions of all the individuals.

The second Pareto front contains the non-dominated individuals of the remaining so-

lutions and so on. The population for the next generation in the GDE3 algorithm

will contain the solutions from the first Pareto fronts until including one of the fronts

would imply that the NP parameter is exceeded. In that case, an additional selection

procedure is used.

When a Pareto front does not fit entirely in the population size, it is needed some

way of ranking the individuals in the front. This is why Crowding Distance is used as

proposed in [12]. The crowding distance value is calculated accordingly to the pseudo-

code in algorithm 4. All the distances are initiated as zero. Then the procedure operates

for every objective function ordering the population and assigning an infinite distance

to the first and the last individual to maintain the boundary values and not shrink

the front. The values for the remaining individuals are calculated in an accumulative

way accordingly to their neighbors. The individuals with less crowding distance are

discarded at the end of the procedure, maintaining only the solutions that complete the

desired population size NP.
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Algorithm 3 Fast Non-Dominated Sort

for each p ∈ P do
sp ← ∅
np ← 0
for each q ∈ P do

if p ≻ q then ▷ Check if p dominates q
Sp ← Sp ∪ q ▷ q is added to the solutions dominated by p

else if q ≻ p then ▷ Check if q dominates p
np ← np + 1 ▷ Increment the domination counter of p

end if
end for
if np = 0 then ▷ If no solution dominates p

prank ← 1 ▷ p is part of the first front
F1 ← F1 ∪ p

end if
end for
i← 1 ▷ Control the front number
while Fi ̸= ∅ do
Q ← ∅ ▷ Is going to contain members of the next front
for each p ∈ Fi do

for each q ∈ Sp do
nq ← nq − 1
if nq = 0 then ▷ q belongs to the next front
Qrank ← i+ 1
Q ← Q∪ q

end if
end for

end for
i← i+ 1
Fi ← Q

end while
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Algorithm 4 Crowding distance

l ← |I| ▷ Number of solutions in front I
for each i in I do
CDi ← 0 ▷ Initializing distances

end for
for each objective m do
I ← sort(I,m) ▷ Sorting according to objective m value
CD1 ←∞, CDl ←∞ ▷ First and last in the order get ∞
for i = 2 to (l − 1) do ▷ Calculation for other points

CDi ← CDi + (Ii+1,m − Ii−1,m)/(f
max
m − fmin

m )
end for

end for
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Proposal details

Chapter 3 shows that wrapper approaches for feature selection are usually computa-

tionally expensive. A population-based meta-heuristic adds to the cost, given the many

evaluations required where several models with different subsets of selected features

must be trained and evaluated. In this research proposal, three ways to use sampling

methods are presented to reduce the number of instances of the dataset used during

the search to evaluate an individual. The proposals are called the fixed fraction, the

incremental fraction, and the evolving fraction procedures and are implemented in the

DE − FSPM algorithm [32].

Additionally, as seen in [22], computational resources are wasted in the DE algo-

rithm when an individual already evaluated appears again and must be re-evaluated.

A simple proposal to avoid this is to use a hash table containing previously evaluated

individuals and their resulting objective values. This procedure can be implemented

along the fixed and incremental fraction proposals, as shown later in this Chapter.

The main goal of this research proposal is the reduced the computational time of the

feature selection procedure. Given this, the methods of selecting the dataset instances

are non-complex since we want to avoid adding additional cost to the overall process.

That is why just random and stratified sampling methods are used.

The rest of this Chapter is divided into five sections. The first four describe the

DE − FSPM original procedure, and the changes applied when a sampling method is

used. The final section describes the possibility of implementing the hash table as a

35
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memory used to avoid repeated evaluations along with the sampling proposals.

5.1 DE − FSPMearch procedure

In the original DE−FSPM algorithm, the search for the near-optimal subset of features

occurs as shown in Figure 5.1. First, the dataset is preprocessed. Missing values are

imputed for the most frequent value in the case of a categorical value and for the mean

in the case of a numerical feature. Nominal values are converted to categorical values.

Finally, a min-max normalization is applied for every feature in the data.

Figure 5.1: Original procedure in the DE − FSPM algorithm

After that, the process starts calculating the best k value for the k-nearest-neighbors

classification algorithm. In this way, different values of k from 1 to 20 with a step of two

are tried in the algorithm and applied to the data. The k-value corresponds to the high-

est classification accuracy in a 10-fold cross-validation for the KNN algorithm. Then,

the dataset is evaluated with the best k-value in a stratified 10-fold cross-validation

process to obtain the model’s performance before the feature selection process. The

green rectangle in Figure 5.1 encloses the steps of the process where feature selection

occurs. As can be noticed, all the dataset instances are used along the search process.
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5.2 Fixed sampling fraction

The first proposal for using a sampling method to reduce the number of instances used

in the search process is to fix a sampling fraction at the beginning. A reduced dataset

is extracted and used in the search process using the sampling fraction, as shown in

Figure 5.2. The orange rectangle indicates the parts of the process where the dataset

with fewer instances is used.

Figure 5.2: Using a fixed sampling fraction in the DE − FSPM algorithm

Throughout the search process, the instances of the dataset do not change. When

the best subset of features is reported, a new evaluation takes place using the complete

dataset and stratified-10-fold cross-validation, just as the original process. With the

result obtained, it is possible to compare the performance of the classifier algorithm

with and without feature selection. For this proposal, there is only one extra parameter

for the algorithm: the sampling fraction.

5.3 Incremental sampling fraction

In a different approach, the second proposal uses an increasing number of instances

as the number of generations of the DE − FSPM algorithm increases. This way, the
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search process will initiate with an initial fraction determined by the user, just like the

fixed sampling fraction proposal. After some generations have passed, the number of

instances is increased by a fraction of the total instances. At the end of the procedure,

during the last generations, the dataset used in the search will contain all the instances.

Figure 5.3 shows the schematic process of the proposal. The green and orange rectangles

indicate the parts of the process where feature selection takes place and the parts of

the process that use the reduced number of instances.

Figure 5.3: Using an incremental sampling fraction in the DE − FSPM algorithm

For this proposal, besides defining the initial sampling fraction in a similar way to

the fixed sampling fraction feature selection, it has to be determined the number of steps

or divisions of the process when more instances should be included. For example, in a

process with 100 generations, if the initial fraction is 0.2 and the generations are divided

into five blocks, generations 1 to 20 use 20 % of the dataset instances. In generations

21 to 40, the fraction of the dataset instances used will be 0.4. In generations 41 to

60, 0.6, and so on. Until the block from generation 81 to generation 100 uses all the

dataset instances.

Using the incremental fraction proposal, promising areas of the search space are

expected to be found using a less costly evaluation in the first blocks of the process
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using the reduced dataset. Nonetheless, since the dataset changes in every block of the

process, a process of reevaluation of the individuals in the population takes place when

more instances are added to the process. That extra computational cost is expected to

be mitigated by resource savings at the beginning of the search process.

Given the processes of reevaluating the individuals in the population, the conver-

gence graph for this proposal is expected to have a particular behavior. The fitness

value of the best individual will grow in every block of the process. However, when

more instances are added to the process and reevaluation takes place, the fitness value

of the best individual could be diminished.

5.4 Evolving sampling fraction

In the evolving sampling fraction proposal, the sampling fraction is coded inside the

individual and evolves along the search process. This proposal’s overall scheme is similar

to the original procedure, as seen in Figure 5.4. The difference occurs during the search

process, where the individuals are decoded as a subset of features of the dataset and a

fraction of the data instances. The process of decoding an individual is shown in Figure

5.5.

The process of mutating and crossing the individual in the search is not changed for

the permutational part of the individual. The procedure of the DE−FSPM algorithm

is followed using the permutation matrix from Equation 4.7 and the scale permutation

matrix from Equation 4.8. The real value part of the individual representing the sam-

pling fraction is mutated and crossed separately. The classical operators from the DE

algorithm shown in Equations 4.1 and 4.2 are used. A repair mechanism is proposed

for the sampling fraction in the individual to maintain it between 0.1 and one. If the

value exceeds one of these limits, a new value is calculated as twice the exceeded limit

value minus the out-of-limits value.

With this proposal, the DE algorithm is expected to find the near-optimal subset

of features for the dataset and a well-performing sampling fraction. In this manner, the

user does not have to determine the value for the sampling fraction as it occurs in the

fixed and incremental fraction proposals. Nonetheless, since there is no external control

of the sampling fraction, the procedure could use high sampling fraction values (close

to 1) and use almost all the dataset instances in the process diminishing the savings
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Figure 5.4: Using an evolving sampling fraction in the DE − FSPM algorithm

in computational time. Another possibility is that the procedure finds small sampling

fraction values (close to 0) and gets a problem with severely overfitting the subset of

selected features to the reduced data.

5.5 Avoiding duplicate evaluations

As mentioned in [22], the appearance of duplicated individuals in the differential evolu-

tion process is typical and expected when the algorithm converges. The problem with

duplicated individuals is that they have already been evaluated, and they are evaluated

every time they appear. To deal with this, simple strategies such as using a memory

that contains the individual and its fitness value can avoid the usage of more resources

for repeated evaluations.

In this way, when an individual is going to be evaluated, the procedure first looks

in the memory if the individual has been previously evaluated. If so, the fitness value

stored in the memory is returned, and a new evaluation is avoided. If the individual is

not in the memory, it is evaluated and added to the memory as a new entry. In the case
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Figure 5.5: Process of decoding an individual in the evolving sampling fraction proposal

of the feature selection problem, different individuals can represent the same subset of

the dataset features after being decoded. Consequently, many duplicated individuals

are expected to be found during the search process as the algorithm converges.

The proposed use of memory to avoid duplicated evaluations in the DE − FSPM

algorithm is shown in Figure 5.6. First, an individual is decoded, obtaining the selected

dataset features sorted indices. Given that this is the first time that the subset of

features appears, the individual is evaluated using the accuracy performance from the

k-nearest-neighbors algorithm. The feature subset and its corresponding fitness value

are stored in memory. After that, when the same feature subset appears in another

individual decoding, the fitness value is extracted from the memory instead of being

evaluated with the classifier algorithm.

The memory strategy described above is proposed to be applied to the fixed and
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Figure 5.6: Avoiding duplicated individuals evaluation using memory

incremental fraction sampling fraction proposals. The evolving fraction procedure dif-

fers because its decoding requires sampling the dataset to a specific sample fraction.

In the incremental sampling fraction procedure, the memory is reset every time new

instances are added, and the process of reevaluating the population is started. For the

use of the fixed sampling fraction proposal with the memory, it is proposed to divide

the procedure into blocks, similar to the incremental fraction proposal. In this process,

the memory is reset when the process goes into a different block. Resetting the memory

is used to limit its growth.
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Experimentation and results

A summary of the proposals for using sampling fraction methods during the search

for a near-optimal feature subset is presented in Figure 6.1. These proposals and

using memory to avoid duplicated evaluations were initially stated to work with the

DE−FSPM algorithm. Still, the proposals are extended for experimentation to be used

under an adaptive parameter adaptation scheme as SHADE and the feature selection

problem in a multi-objective algorithm as GDE3.

The proposals configuration with DE − FSPM algorithm are the following:

• Fixed sampling fraction proposal (Fixed).

• Incremental sampling fraction proposal (Incremental).

• Evolving sampling fraction proposal (Evolving).

• Fixed sampling fraction proposal with the memory to avoid duplicated evaluations

(Fix DA).

• Incremental sampling fraction proposal with the memory to avoid duplicated eval-

uations (Inc DA).

The proposals tried with the SHADE approach [36] are the same as the ones for

the original procedure but using the parameter adaptation procedure:

• SHADE Fixed sampling fraction proposal (SHADE fix).

43
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Figure 6.1: Summary of the proposals for using sampling methods during the feature
selection search process

• SHADE Incremental sampling fraction proposal (SHADE inc).

• SHADE Evolving sampling fraction proposal (SHADE evo).

• SHADE Fixed sampling fraction proposal with the memory to avoid duplicated

evaluations (SHA fix DA).

• SHADE Incremental sampling fraction proposal with the memory to avoid dupli-

cated evaluations (SHA inc DA).

Finally, for the multiobjective approach to feature selection with the GDE3 algo-

rithm [24], the proposals are:

• GDE3 fixed sampling fraction proposal with the memory to avoid duplicated

evaluations (GDE3 fixed).

• GDE3 Incremental sampling fraction proposal with the memory to avoid dupli-

cated evaluations (GDE3 incre).
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The considered datasets for experimentation are shown in Table 6.1. 18 datasets

from the UCI machine learning repository with different numbers of features, instances,

and classes are included in the experimentation for the research proposal of this docu-

ment.

Table 6.1: Description of the selected datasets for experimentation.
Dataset Inst Feat Classes Dataset Inst Feat Classes
Arrhythmia 452 279 16 M-libras 360 90 15
Audiology 226 69 24 Musk-1 476 168 2
Australian 690 14 2 Parkinsons 195 22 2
Cylinder-b 540 39 2 Sonar 208 60 2
Crx 690 15 2 Soybean 683 35 19
Dermatology 366 34 6 Spectf 267 44 2
German-c 1000 20 2 Vehicle 846 18 4
H-valley 1212 100 2 Vote 435 16 2
ionosphere 351 34 2 wdbc 569 30 2

Preliminary experimentation includes comparing the fixed fraction proposal’s ran-

dom and stratified sampling methods. The results are shown in Appendix A, and it

is seen that there was no apparent difference in the performance of the method when

using one or another. Still, random sampling presented a more extensive time reduc-

tion than the procedure with stratified sampling. Varying the initial sampling fraction,

it is seen that with smaller sampling fractions, the time reduction is more prominent,

but the drop in performance is higher. Therefore, it is essential to determine an initial

sampling fraction value that handles both things in a middle point.

Appendix B shows the initial experiments with the incremental fraction procedure.

Similarly to the fixed sampling fraction proposal results, the initial sampling fraction

value directly affects the algorithm’s performance and the time reduction achieved.

After the preliminary experiments, it is seen that an initial sampling fraction value of

0.6 is a promising option for future experimentation. The number of blocks dividing

the procedure was set to ten.

Four main experiments were proposed to compare the different schemes of using

the sampling procedures in the feature subset search. First, the proposals with and

without parameter adaptation control use a set of representative datasets1in the single-

objective approach. Given this, the most promising proposals can be selected and

further explored. Then, the effects of changing the memory size in the parameter adap-
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tation proposals are explored. After that, the multi-objective approach is used along

the instances sampling proposals to evaluate its effectiveness in this type of optimiza-

tion. Finally, an experiment is conducted using the proposals with the complete set of

datasets shown in Table 6.1. More details of the experiments are described below.

• Experiment 1: Using the representative set of datasets, the five configurations

mentioned for the DE−FSPM algorithm and the five of the SHADE approach are

tested and compared. 10 runs for each configuration and the original procedure

are computed.

• Experiment 2: The most interesting SHADE configuration tested is used to

compare the memory size H value. Values of 6, 10, and 20 are tested to see if

there is improvement in the results. The representative set of datasets is used.

Ten runs of each configuration are performed.

• Experiment 3: The two highest performance configurations for the DE−FSPM

algorithm in experiment 1 are selected and tested when applied to the GDE3

permutational algorithm for feature selection. The representative set of datasets

is used to assess the performance changes of using a reduced number of instances

during the search. Ten runs of each configuration are performed.

• Experiment 4: The final experiments take the highest performance configura-

tions from experiments 1, 2, and 3, and they are applied to the remaining 13

datasets described in Table 6.1. Ten runs of each configuration are performed.

In the experimentation, the early stopping mechanism of theDE−FSPM algorithm

applied when the best solution has not changed in 100 generations is omitted. The

results of each experiment are shown in the following sections. An additional experiment

was conducted to compare the DE − FSPM algorithm using the instance reduction

schemes with conducting an exhaustive search. The results of that experiment are

shown in Appendix D.

1Given the number of proposals to be tested, a representative set of datasets is selected, including
ionosphere, sonar, SPECTF, vehicle, and hill valley. The datasets were selected given their character-
istics regarding the number of features and instances.
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6.1 Experiment 1: comparing single-objective pro-

posals

In this first experiment, ten instance reduction proposals are tested against the original

DE − FSPM algorithm as shown in Figure 6.2.

Figure 6.2: Experiment 1 proposed configuration

The parameters used for the sampling methods proposals in the base procedure are

the same as the ones proposed in [32]. The parameters of the initial sampling fraction

and the number of blocks are used in the fixed and incremental fraction proposals,

respectively. The parameter values are the following:

• Population size (NP) = 5×#features bounded to at least 200 and at most 450.

• Scale factor (F) = 0.1514

• Crossover Rate (CR) = 0.8552

• Maximum number of generations = 200

• Initial Sampling fraction = 0.6



48 CHAPTER 6. EXPERIMENTATION AND RESULTS

• Number of blocks = 10

The population size was divided in half for the SHADE-based proposals, and the

maximum number of generations was duplicated. This is to maintain a similar number

of evaluations while the procedure has more generations to find good parameters for F

and CR. The SHADE parameter values are the following:

• Population size (NP) = round(2.5×#features) bounded to at least 100 and at

most 225.

• Maximum number of generations = 400

• Initial Sampling fraction = 0.6

• Number of blocks = 10

• Memory size H = 6 as used in [37] and [7].

For the experiment, the accuracy performance of the procedure is analyzed in com-

parison with the original procedure. Table 6.2 shows the percentage that the proposed

procedures drop the accuracy performance of the best feature subset found in each case.

It is seen that the proposal with the fixed sample fraction (fixed) has poor performance,

but when the memory is used in it (fixed DA), it becomes the highest-performance pro-

posal.

Table 6.2: Experiment 1: impact on the accuracy performance using the instance
reduction schemes.
Method/Dataset Ionosphere Sonar SPECTF Vehicle Hill valley Average Rank
Fixed 3.30% 6.36% 2.55% 2.66% 4.04% 3.78% 7
Incremental 1.50% 1.24% 1.75% 0.87% 0.58% 1.19% 3
Evolving 5.15% 3.53% 7.64% 0.22% -0.02% 3.30% 6
SHADE fix 2.80% 5.01% 4.26% 3.04% 4.11% 3.84% 8
SHADE inc 0.17% 2.56% 0.81% 1.10% 3.53% 1.63% 4
SHADE evo 7.23% 8.93% 7.03% 2.70% 1.94% 5.56% 10
Fixed DA 0.15% 0.31% -0.35% 0.29% 0.05% 0.09% 1
Incre DA 1.17% 0.77% 1.20% 1.21% 0.72% 1.01% 2
SHA fix DA 3.73% 5.49% 3.46% 2.74% 4.33% 3.95% 9
SHA inc DA 0.81% 2.30% 1.47% 0.74% 3.71% 1.81% 5

In the original DE−FSPM procedure, all instances are used in all the evaluations.

In the proposals, some instances are omitted, as well as some evaluations. The number
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of instances used by each proposal is measured. The percentage of instances the pro-

cedure avoids using in the evaluation is shown in Table 6.3 using the DE − FSPM as

the point of comparison. The results show that the fixed fraction procedure with the

memory for duplicated evaluations performs on the top of the proposals.

Table 6.3: Experiment 1: Percentage of instances avoid in evaluation using the instance
reduction schemes
Method/Dataset Ionosphere Sonar SPECTF Vehicle Hill valley Average Rank
Fixed 39.89% 39.90% 40.07% 39.95% 40.02% 39.97% 6
Incremental 16.51% 16.62% 16.46% 16.45% 16.43% 16.49% 10
Evolving 15.01% 9.87% 86.06% 10.92% 2.46% 24.87% 7
SHADE fix 40.04% 40.25% 40.49% 40.10% 40.17% 40.21% 4
SHADE inc 18.50% 18.87% 18.81% 18.44% 18.42% 18.61% 9
SHADE evo 52.84% 32.17% 80.96% 25.75% 8.48% 40.04% 5
Fixed DA 79.00% 40.53% 80.51% 75.43% 45.79% 64.25% 1
Incre DA 80.81% 17.92% 78.60% 79.93% 46.12% 60.67% 2
SHA fix DA 50.42% 50.44% 57.71% 57.20% 41.33% 51.42% 3
SHA inc DA 23.54% 21.58% 23.10% 36.55% 19.12% 24.78% 8

Time reduction is shown in table 6.4. Measuring time has its associated problems,

given that it is hard to guarantee that the computer is under precisely the same condi-

tions in each run of the algorithms. One of the main reasons for this is the running of

internal processes and additional use by other programs. The experiments were run in

virtual environments in Google Colab and a local environment using a computer with

an Intel Core i5-8250U CPU and 12 GB of RAM. A negative value represents that

instead of time reduction, the time of the procedure increased. In the case of time mea-

surement, the incremental fraction proposal with the memory for avoiding duplicated

evaluations (Incre DA) is the top-performing one.

6.2 Experiment 2: varying memory sizeH in SHADE

For experiment 2, the most interesting proposal with the SHADE procedure is chosen

to vary the memory size H. Two proposals were initially considered, the incremental

sampling fraction with and without the memory for duplicated evaluations (SHADE inc

and SHA inc DA). Despite having lower performance, the SHADE incremental fraction

proposal with the memory for avoiding repeated evaluations (SHA inc DA) was selected

because it has a more significant number of avoided instances. The values of H chosen

were 10 and 20, besides the value of 6 used in the first experiment. Tables 6.5 and 6.6
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Table 6.4: Time reduction in Experiment 1
Method/Dataset Ionosphere Sonar SPECTF Vehicle Hill valley Average Rank
Fixed 13.44% 7.95% 9.68% 11.94% 15.31% 11.66% 4
Incremental 6.25% -1.36% 6.54% 2.54% 0.39% 2.87% 7
Evolving -7.00% 2.63% 4.27% 30.97% 12.87% 8.75% 6
SHADE fix 6.76% 11.24% 0.74% 33.25% 0.75% 10.55% 5
SHADE inc 12.16% -1.52% -8.70% -18.44% -8.39% -4.98% 10
SHADE evo -0.22% 3.63% 4.37% 2.09% -3.96% 1.18% 8
Fixed DA 58.26% -1.23% 67.96% 65.29% -4.34% 37.19% 2
Incre DA 69.09% 23.61% 70.88% 78.92% 28.51% 54.20% 1
SHA fix DA 8.59% 29.76% 31.00% 50.29% 10.20% 25.97% 3
SHA inc DA -17.66% 8.58% -1.10% 17.17% -9.26% -0.46% 9

show the results obtained in accuracy performance drop and percentage of instances

avoided, respectively. The datasets used correspond to the representative set of datasets

used in Experiment 1.

Table 6.5: Experiment 2: impact of changing the parameter H in SHADE on the
accuracy performance.
Method/Dataset Ionosphere Sonar SPECTF Vehicle Hill valley Average
h = 6 0.81% 2.30% 1.47% 0.74% 3.71% 1.81%
h = 10 -0.01% 3.61% 1.20% 1.27% 3.11% 1.84%
h = 20 0.90% 2.78% 0.73% 1.78% 2.49% 1.74%

Table 6.6: Experiment 2: impact of changing the parameter H on the number of
instances used by the procedure.
Method/Dataset Ionosphere Sonar SPECTF Vehicle Hill valley Average
h = 6 23.54% 21.58% 23.10% 36.55% 19.12% 24.78%
h = 10 24.31% 21.53% 23.02% 35.65% 19.07% 24.72%
h = 20 23.20% 21.37% 23.14% 35.49% 19.05% 24.45%

The differences found for the different values of H are minimal in both measure-

ments. Given this, the value of 6 used in literature for the SHADE variants is kept for

experiment 4.

6.3 Experiment 3: multi-objective proposals

The GDE3 method for permutational-based feature selection proposed in [28] is used

and implemented with the fixed (GDE3 fixed) and incremental (GDE3 incre) fraction
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proposals with the memory to avoid duplicated evaluations. The parameters used are

the following:

• Population size (NP) = 5×#features bounded to at least 200 and at most 450.

• Scale factor (F) = 0.8305 obtained from [28]

• Crossover Rate (CR) = 0.7049 obtained from [28]

• Maximum number of generations = 200

• Initial Sampling fraction = 0.6

• Number of blocks = 10

The accumulated Pareto front is obtained for 10 runs of each proposal, and the

best solution in accuracy (bacc), number of features (bfea), and knee solution are re-

ported. Table 6.7 shows the accuracy performance drop of the selected solutions for

the proposals GDE3 fixed and incremental GDE3 incre.

Table 6.7: Experiment 3: changes in accuracy performance using the selected solutions
in the multi-objective approach.

Dataset Method Eval bacc Eval bfea Eval knee
Ionosphere GDE3 fixed 2.16% 1.44% 1.63%

GDE3 incre 1.85% -3.68% 4.87%
Sonar GDE3 fixed 6.65% 0.42% 3.41%

GDE3 incre 3.91% 3.42% -1.68%
SPECTF GDE3 fixed 5.31% 2.30% 3.60%

GDE3 incre 3.53% 3.66% 3.20%
Vehicle GDE3 fixed -3.47% 6.82% 1.25%

GDE3 incre -6.60% 4.01% -0.35%
Hill valley GDE3 fixed 2.75% -16.97% 1.07%

GDE3 incre 2.40% 3.41% 0.96%
Average GDE3 fixed 2.68% -1.20% 2.19%

GDE3 Incre 1.02% 2.16% 1.40%

Table 6.8 shows the percentage of change in the performance of the multi-objective

procedure when the instance reduction schemes are used. The metrics in this table are:

the number of evaluations, time, avoided instances, hypervolume (HV), and spacing.

The selected proposal is the GDE3 incremental procedure with the memory for avoiding

repeated evaluations (GDE3 incre).
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Table 6.8: Experiment 3: changes in the performance of the multi-objective algorithm
with the instance reduction schemes.

Dataset Method Evals Time Instances HV Spacing
Ionosphere GDE3 fixed 83.33% 82.29% 89.98% -0.46% 80.48%

GDE3 incre 86.33% 83.51% 86.33% 1.89% 77.03%
Sonar GDE3 fixed 76.69% 74.89% 85.99% -0.43% 98.64%

GDE3 incre 79.90% 74.92% 79.90% 2.88% 96.46%
SPECTF GDE3 fixed 88.84% 86.93% 93.31% -4.01% -1284.49%

GDE3 incre 88.47% 85.07% 88.47% 3.20% -404.23%
Vehicle GDE3 fixed 85.15% 88.91% 91.09% -0.70% 88.81%

GDE3 incre 86.38% 88.32% 86.38% 1.72% 95.62%
Hill valley GDE3 fixed 74.25% 77.75% 84.55% 6.27% 65.71%

GDE3 incre 74.10% 82.34% 74.10% 1.52% 96.10%
Average GDE3 fixed 81.65% 82.15% 88.99% 0.13% -190.17%

GDE3 Incre 83.04% 82.83% 83.04% 2.24% -7.81%

6.4 Experiment 4: Using the best-performing pro-

posals

All 18 selected datasets are used and compared under the best-performing proposals

found in the previous experiments. For the single-objective approach, three proposals

are considered the fixed sampling fraction (fixed DA), the incremental sampling fraction

(Incre DA), and the SHADE incremental sampling fraction (SHA inc DA), all of them

with the memory for avoiding repeated evaluations. For the multi-objective approach,

the proposal used is the GDE3 incremental proposal with the memory for avoiding

duplicated evaluations (GDE3 incre).

The results are shown in the following subsections, first in comparing the single-

objective approaches, then for the multi-objective approach, and finally, a comparison

between the single-objective and multi-objective approaches. More details of the results

can be found in Appendix C.

6.4.1 Single-objective

For the single-objective comparison, Table 6.9 shows the impact on the accuracy per-

formance of the method when the instance reduction scheme is used. In the Table, it

is seen that the fixed DA proposal has the lowest drop in performance in comparison

with the original procedure. Furthermore, it has the lowest standard deviation of the

three methods. The second best performing method is the incre DA.
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Table 6.9: Experiment 4: Accuracy performance impact of the instance reducing meth-
ods

Dataset/Method Fixed DA Incre DA SHA inc DA
Arrhtythmia -0.18% 0.50% 4.68%
Audiology 1.75% 1.11% 2.68%
australian -0.10% 0.13% 0.40%
cylinder-b 1.20% 2.15% 1.71%
CRX 0.46% 0.68% 0.60%
Dermatology 0.14% -0.09% 0.31%
German-c 0.75% 1.43% 2.39%
Hill valley 0.05% 0.72% 3.71%
Ionosphere 0.15% 1.17% 0.81%
m-libras 0.03% 0.09% 1.56%
Musk 1 0.49% 0.27% 3.17%
parkinsons 0.43% 0.88% 0.26%
Sonar 0.31% 0.77% 2.30%
Soybean -0.12% -0.22% 0.19%
SPECTF -0.35% 1.20% 1.47%
Vehicle 0.29% 1.21% 0.74%
vote 0.38% 0.26% 0.12%
wdbc -0.18% 0.18% 0.04%
Mean 0.31% 0.69% 1.51%
Std dev 0.52% 0.61% 1.38%

Statistical tests were conducted to compare the algorithms’ accuracy performance

as suggested in [13]. First, a Friedman test is computed for the original method with

the other three methods where the instance reduction schemes are used. A p-value

of 2.8985e-06 indicates significant differences in at least two of the medians in the

comparison. Then a Nemenyi posthoc test was performed to identify which groups

present significant differences. As shown in Table 6.10, the Fixed DA proposal is the

only method that does not imply a significant difference in performance from the original

method.

Table 6.10: Experiment 4: Nemenyi test applied to the accuracy performance of the
original and the instance reduction methods

Original Fixed DA Incre DA SHA inc DA
Original 1.000000 0.335366 0.001041 0.001000
Fixed DA 0.335366 1.000000 0.164615 0.006846
Incre DA 0.001041 0.164615 1.000000 0.632975

SHA inc DA 0.001000 0.006846 0.632975 1.000000
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Table 6.11 presents the percentage of instances avoided during the evaluation of

individuals in the selected methods. Similarly to the impact in accuracy, the best-

performing proposals are the fixed DA and the incre DA. The SHA inc DA proposal

falls behind by a considerable percentage but presents a lower standard deviation. It is

seen in the Table that the fixed DA represented a more significant reduction for exactly

9 datasets and the incre DA for the remaining 9 datasets.

Table 6.11: Experiment 4: instances avoided by using the instance reduction schemes
Dataset/Method Fixed DA Incre DA SHA inc DA
Arrhtythmia 44.53% 39.73% 18.68%
Audiology 40.65% 17.19% 23.32%
australian 90.48% 92.79% 53.62%
cylinder-b 84.85% 84.18% 25.48%
CRX 79.85% 86.74% 46.60%
Dermatology 44.94% 26.87% 29.90%
German-c 65.56% 71.28% 39.45%
Hill valley 45.79% 46.12% 19.12%
Ionosphere 79.00% 80.81% 23.54%
m-libras 40.50% 17.35% 21.34%
Musk 1 40.00% 16.61% 19.11%
parkinsons 56.04% 63.86% 34.56%
Sonar 40.53% 17.92% 21.58%
Soybean 44.30% 25.99% 26.76%
SPECTF 80.51% 78.60% 23.10%
Vehicle 75.43% 79.93% 36.55%
vote 94.04% 96.05% 60.32%
wdbc 45.85% 51.89% 31.10%
Mean 60.71% 55.22% 30.78%
Std dev 20.01% 29.52% 12.30%

In Table 6.12, the time reduction of the methods is presented. As it was said dur-

ing Experiment 1, measuring time is complicated, given the variations in processing

that occur in the computer. The results show that in this measure, the top-performing

proposal is the incre DA. Interestingly, unlike the accuracy and instance-avoiding per-

formance, the fixed DA proposal is not the best and presents the highest standard

deviation. The lowest performing proposal is the SHA inc DA representing an average

time saving of only 5.07 %.



6.4. EXPERIMENT 4: USING THE BEST-PERFORMING PROPOSALS 55

Table 6.12: Experiment 4: Time reduction represented by using the instance reduction
schemes

Dataset/Method Fixed DA Incre DA SHA inc DA
Arrhtythmia -17.10% 4.77% -36.90%
Audiology 6.50% 19.17% 11.05%
australian 83.39% 90.68% 40.31%
cylinder-b 66.23% 74.53% -9.10%
CRX 37.19% 54.20% -0.46%
Dermatology 1.96% 12.94% -7.16%
German-c 40.09% 68.11% 22.28%
Hill valley -4.34% 28.51% -9.26%
Ionosphere 58.26% 69.09% -17.66%
m-libras 37.76% 39.80% 5.82%
Musk 1 -3.69% 3.49% -12.88%
parkinsons 93.90% 54.21% 14.62%
Sonar -1.23% 23.61% 8.58%
Soybean 5.90% 19.04% 12.24%
SPECTF 67.96% 70.88% -1.10%
Vehicle 65.29% 78.92% 17.17%
vote 88.92% 93.77% 47.59%
wdbc 6.77% 47.67% 6.08%
Mean 35.21% 47.41% 5.07%
Std dev 36.70% 29.52% 20.16%

6.4.2 Multi-objective

In the multi-objective comparison, only the GDE3 incre proposal is used. Table 6.13

compares the GDE3 method without the sampling proposals and the method using the

aforementioned instance reduction scheme. It is seen that the accuracy performance of

the method is only slightly impacted. Nevertheless, the number of evaluations, time,

and instances are reduced considerably. The hypervolume metric does not present a

significant change in its value. The spacing metric presents small values given that the

objective space in this problem is discrete in one function. That is why the percentages

shown in the Table for this metric vary from small to high values.

A Wilcoxon sign-rank test is conducted using the best solutions’ accuracy values

from the GDE3 method and the GDE3 incre proposals. With a p-value of 0.8650 there

is no significant difference in the values from the methods.
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Table 6.13: Experiment 4: Impact of the instance reducing scheme in the multi-
objective approach.
Dataset Eval bacc Eval bfea Eval knee #Evals Time Instances HV Spacing
Arrhtythmia -2.20% 0.36% -3.11% 72.48% 55.06% 72.48% -1.05% 98.01%
Audiology 1.20% 26.67% -8.33% 72.68% 71.56% 72.68% 4.01% 74.27%
australian 0.17% 0.00% 0.00% 93.72% 91.62% 93.72% 0.33% -545.58%
cylinder-b -0.22% -1.46% 1.55% 88.02% 85.39% 88.02% 2.15% 0.00%
CRX -1.52% 0.00% 0.00% 92.65% 90.41% 92.65% 0.66% -689.12%
Dermatology -0.88% -28.28% -2.76% 67.03% 64.94% 67.03% 0.46% 78.58%
German-c 0.92% 0.42% -6.10% 87.13% 87.00% 87.13% 1.44% 99.48%
Hill valley 2.40% 3.41% 0.96% 74.10% 82.34% 74.10% 1.52% 96.10%
Ionosphere 1.85% -3.68% 4.87% 86.33% 83.51% 86.33% 1.89% 77.03%
m-libras 0.63% -2.04% -3.58% 59.59% 56.69% 59.59% 1.21% 88.13%
Musk 1 0.00% -8.69% -0.76% 46.60% 47.83% 46.60% 2.07% 98.88%
parkinsons -0.53% -2.62% 1.73% 84.04% 80.05% 84.04% 1.39% 98.28%
Sonar 3.91% 3.42% -1.68% 79.90% 74.92% 79.90% 2.88% 96.46%
Soybean 0.00% -15.90% 2.10% 73.76% 74.36% 73.76% 1.36% 94.10%
SPECTF 3.53% 3.66% 3.20% 88.47% 85.07% 88.47% 3.20% -404.23%
Vehicle -6.60% 4.01% -0.35% 86.38% 88.32% 86.38% 1.72% 95.62%
vote -1.94% -0.01% 0.00% 95.06% 92.15% 95.06% 0.76% 100.00%
wdbc -0.01% -0.39% -0.19% 81.60% 79.75% 81.60% 0.38% 41.73%
Mean 0.04% -1.17% -0.69% 79.42% 77.28% 79.42% 1.47% -22.35%
Std dev 2.30% 10.26% 3.13% 12.34% 12.92% 12.34% 1.14% 240.32%

6.4.3 Single-objective vs multi-objective

A final comparison is performed between the single-objective and the multi-objective

procedures. The best solutions found in the original DE − FSPM procedure and the

fixed DA proposal are included, along with the best solution in the accuracy objective

from the accumulated front in the GDE3 algorithm and the GDE3 incremental pro-

posal. As seen in table 6.14, the single-objective approaches present superior results

in the accuracy of the best solution. Nonetheless, it is essential to mention that the

multiobjective approach finds various solutions instead of just one. The set of solutions

found can be given to the user, and then decide which subset of features will be used.

6.5 Discussion

Four main experiments were conducted in this research proposal, with some preliminary

and additional experimentation. From the initial ten proposals for the single-objective

approach, it is seen that the memory to avoid repeated evaluations has a meaningful

impact on the method accuracy performance besides reducing time and usage of in-

stances. The fixed proposal is one of the worst in accuracy, but in conjunction with
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Table 6.14: Experiment 4: Comparison between the single-objective and multi-objective
approaches.

Dataset/method Original best Fixed DA best Bacc GDE3 Bacc GDE3 inc
Arrhtythmia 76.333 77.894 70.560 72.111
Audiology 87.000 86.500 83.500 82.500
australian 87.391 87.536 87.536 87.391
cylinder-b 85.926 85.556 84.630 84.815
CRX 87.826 87.536 85.942 87.246
Dermatology 98.911 98.911 97.252 98.108
German-c 78.500 78.500 76.000 75.300
Hill valley 72.443 72.934 68.729 67.076
Ionosphere 96.000 95.167 93.167 91.444
m-libras 89.722 90.556 88.333 87.778
Musk 1 95.780 95.177 90.137 90.142
parkinsons 99.474 99.474 98.974 99.500
Sonar 96.167 96.143 87.048 83.643
Soybean 95.460 95.458 93.996 93.992
SPECTF 85.413 86.125 84.288 81.311
Vehicle 75.174 75.766 64.775 69.048
vote 96.786 97.014 94.493 96.327
wdbc 98.067 97.895 97.713 97.719

the memory, it goes to the top of the performance. The good results are visualized in

Figure 6.3, where the plot compares the accuracy of the original method and the fixed

DA proposal. It is seen that the impact on the performance is minimal.

The case for the incremental proposal is different. Without memory, the method

has a competitive performance in accuracy but not in time and usage of instances.

However, its accuracy is improved using memory. Furthermore, it becomes the method

with the most significant time reduction. For the fixed and incremental proposals, using

memory to avoid repeated evaluations brought more than one benefit.

The evolving sampling fraction has a problem with the procedure when the sampling

fraction is evolved to values close to one or zero. Suppose the sampling fraction for

most individuals converges to a value close to one. In that case, the number of avoided

instances is reduced considerably, and its time reduction benefits are lost. Nonetheless,

if the value is close to one, the accuracy performance is expected to be similar to the

original process.



58 CHAPTER 6. EXPERIMENTATION AND RESULTS

Figure 6.3: Comparison of the results obtained with the DE − FSPM algorithm and
the fixed sampling fraction proposal with memory to avoid repeated evaluations.

Conversely, if the sampling fraction converges to a value close to zero, the procedure

seems to overfit the subset of selected features to the few instances considered. When

the final evaluation using all the instances is conducted, the selected subset of features

does not generalize well. Given that the sampling fraction is coded as a real number

in the individuals, the evolving proposal is not used along with the memory to avoid

repeated evaluations. Finding a repeated individual selecting the same features and

having the same sampling fraction is expected to be more challenging. However, it

could be tried in future work.

The SHADE proposals were expected to perform better due to their ability to adapt

the parameters to guide the search. Nevertheless, it was not the case. Additionally,

the extra computation required and the additional diversity the archive gave required

additional resources. More recent versions of parameter adaptation control for DE have

been published; the proposals may find better results using one of them. Another aspect

to be considered is the number of generations defined for the algorithm.

It is an interesting possibility that with a more extensive process, the SHADE pro-

cedure could adapt better parameters for the problem. Nonetheless, a more extended

search process will require more evaluations, which goes against the objective of reduc-
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ing the computational cost of the feature selection method. Further experimentation

could also show if there is some type of incompatibility within this mechanism for adap-

tive control of the parameters and the permutational representation of individuals used

in this research proposal.

The multi-objective approach for feature selection does not have the same per-

formance in accuracy as the single-objective procedure. This was somehow expected,

given that the multi-objective methods give more importance to an additional objective

during the search. It is seen that the number of evaluations is considerably reduced

compared with the single-objective approach. This means the procedure finds more

repeated individuals, and some mechanism to improve diversity could be helpful.





Chapter 7

Conclusions and future work

7.1 Conclusions

• A variety of proposals were implemented in the single-objective approach for the

feature selection problem using a fixed, incremental, and evolving sampling frac-

tion. Additionally, memory is used to avoid repeated evaluations. Each proposal

presented some advantages and disadvantages, but using memory represented a

variety of benefits for the proposals.

• The proposals that avoid repeated evaluations of the process using memory sig-

nificantly impact time reduction and the usage of instances. The memory helped

the method avoid overfitting in the fixed sampling fraction proposal, increasing

its overall performance.

• SHADE-based proposals did not find significantly better results despite their abil-

ity to adapt the search parameters. The set of parameters tuned for the original

DE − FSPM algorithm tuned in [32] give better results for the single-objective

procedure.

• The initial sampling fraction parameter used in some proposals considerably im-

pacts the method’s performance. It is seen that when the process attempts to

obtain the most considerable time reduction using a small initial sampling frac-

tion, it has the most significant drop in performance.
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• In the multi-objective approach, time and instance use reduction was the most

significant with the proposals that avoid repeated evaluations. A reason for this to

be considered in future experiments is that the search process finds more repeated

individuals.

• As seen in the results, computational time reduction for the feature selection

process can be achieved using sampling methods to reduce the dimensionality of

the dataset during the search process without lowering the method performance.

The statistical tests find no significant differences in the results for the fixed and

incremental fraction proposals with the memory for avoiding repeated evaluations

in the single-objective and multi-objective approaches, respectively. This suggests

that this research proposal hypothesis is accepted.

7.2 Future work

• Do further experimentation with the proposals’ initial sampling fraction and the

number of blocks. Especially the number of blocks that divide the search process

and reset the memory.

• Further experiments with datasets that include a more significant amount of in-

stances and features would bring valuable insights into the algorithm behavior.

• Try a different configuration of adaptive parameter control that improves the

method search capabilities. An example of this is the use of one of the SHADE

variations, such as the ones proposed in [37] and [7]

• Implement and experiment with a parameter adaptation algorithm for the permutational-

based multi-objective proposal for the feature selection problem.

• Experiment using the proposed instance-reducing mechanisms in different single-

objective and multi-objective feature selection methods. This experimentation

would extend the proposals to different individuals’ representations and meta-

heuristics.

• Use a more elaborated method to reduce the dataset. Random sampling is used

in this proposal as an initial point, but the procedures could be extended to more

sophisticated methods and serve as a comparison point.
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Initial tests: fixed sampling fraction

The DE−FSPM algorithm is applied with the fixed sampling fraction using 15 datasets

and 0.5 as the sampling fraction. First, three runs of the original procedure are com-

puted as a reference, and the mean is reported with the label no sampling. Then the

stratified and random sampling methods are applied following the scheme of the fixed

fraction proposal, with three runs each. Results are shown in Table A.1. Table columns

contain the accuracy in the dataset without feature selection, the value obtained during

the search with the reduced dataset, the final evaluation score of the best individual with

all the instances, the time required for the three runs in each case, and the percentage

of time reduction.

The previous experimentation used a single fraction for all cases. For this experi-

ment, only three datasets are selected. First, three runs of the original procedure are

executed again to take it as a reference. After that, the fixed fraction process for fea-

ture selection is conducted using fractions from 0.1 to 0.9 with three runs each for both

stratified and random sampling. The selected datasets are ionosphere, SPECTF, and

sonar. The results are shown in Figures A.1, A.2, and A.3.

The figures contain two bar plots for each dataset. The one above is for the classi-

fication performance obtained, and the second is for the percentage of time reduction

using a specific sampling fraction. In the plots, the arrow’s color in the figure shows the

method that got a higher performance for each sampling fraction tested. In the case

of classification performance, the results obtained when using no sampling are included
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Table A.1: Comparing the effect of using random sampling and stratified sampling.
Name wo FS IS and Searching with FS #Features Time (s) % reduction

Audiology
76.50 No Sampling 87.33 85.50 25.67 9648.75 -
76.83 Stratified 85.96 74.67 18.33 7264.68 24.71
76.83 Random 84.67 74.83 27.00 5312.64 44.94

Australian
86.81 No Sampling 88.50 86.67 6.67 6196.84 -
86.23 Stratified 87.93 86.09 6.00 3671.79 40.75
85.80 Random 90.43 86.52 7.00 4014.45 35.22

Cylinder-b
75.62 No Sampling 87.22 84.51 3.00 4928.43 -
76.60 Stratified 84.81 79.26 11.67 4222.53 14.32
75.00 Random 83.83 78.77 12.67 4949.11 -0.42

Crx
86.38 No Sampling 89.13 87.63 7.33 5298.96 -
86.52 Stratified 90.08 86.52 6.67 4558.17 13.98
86.52 Random 90.82 85.70 7.33 4108.53 22.47

Dermatology
97.01 No Sampling 99.27 98.63 20.33 5812.39 -
96.99 Stratified 99.46 97.09 16.33 3148.77 45.83
97.09 Random 99.28 96.99 19.33 3145.93 45.88

German-c
76.00 No Sampling 78.37 76.87 11.67 9073.43 -
75.60 Stratified 80.40 74.13 9.33 6140.53 32.32
75.67 Random 80.40 75.17 8.67 5596.85 38.32

ionosphere
86.52 No Sampling 96.11 94.87 7.00 5229.14 -
87.17 Stratified 97.52 92.40 4.67 3877.23 25.85
87.18 Random 97.18 92.03 5.67 3794.50 27.44

M-libras
85.83 No Sampling 90.19 88.24 33.00 13381.43 -
85.83 Stratified 84.63 86.94 23.33 13222.64 1.19
86.94 Random 84.63 86.20 28.67 13044.09 2.52

Parkinsons
96.41 No Sampling 100.00 100.00 7.33 2193.79 -
96.04 Stratified 100.00 98.30 10.33 2010.01 8.38
96.57 Random 100.00 99.50 7.33 1808.50 17.56

Sonar
87.37 No Sampling 95.05 92.44 21.67 4481.93 -
86.71 Stratified 96.83 84.47 18.00 3221.33 28.13
87.53 Random 97.76 85.39 16.33 3697.68 17.50

Soybean
91.99 No Sampling 95.99 94.93 19.33 5741.14 -
91.71 Stratified 96.01 91.66 15.33 4300.96 25.09
91.65 Random 96.00 93.90 17.33 3752.98 34.63

Spectf
78.54 No Sampling 88.16 84.29 6.00 4652.75 -
78.78 Stratified 89.08 78.92 8.67 3753.22 19.33
78.64 Random 92.03 82.40 9.00 3732.66 19.78

Vehicle
70.76 No Sampling 77.14 74.15 9.00 6554.56 -
70.77 Stratified 77.78 72.06 8.00 5494.93 16.17
70.88 Random 76.69 72.30 8.33 5086.49 22.40

Vote
93.65 No Sampling 97.55 96.26 5.67 4908.07 -
94.18 Stratified 97.41 94.85 6.00 3528.32 28.11
93.78 Random 97.11 95.64 3.67 3660.42 25.42

wdbc
97.30 No Sampling 98.18 97.66 17.00 5149.78
97.31 Stratified 98.95 96.72 13.67 3230.37 37.27
97.25 Random 98.83 96.37 10.00 3302.47 35.87

for reference.

The results in Figure A.1 for the ionosphere dataset show a majority of orange

arrows indicating that the random sampling got better results in more cases than the
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stratified sampling. One expected tendency is that with the highest sampling fraction,

the performance and the measure of the accuracy will be better, but the time reduction

will be at its lowest.

In Figure A.2, the results’ behavior is slightly different. In the classification per-

formance, the stratified sampling got a higher performance in one more case than

the random sampling. However, analyzing the time reduction percentage, the random

method was faster in all cases and got a higher time reduction. The distribution of the

classes in the tested databases should be considered for future analysis. It would be

interesting to see datasets where the classes are highly unbalanced.

Figure A.1: Results of varying the fixed sampling fraction in the ionosphere dataset
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In Figure A.3, where the experimentation results with the sonar dataset are shown,

the random sampling got a higher classification performance than the stratified sam-

pling. Nonetheless, the method is slightly better, and the differences are minor. For

the time reduction, it is possible to see a different behavior than the other datasets:

the smaller sampling fractions did not get the highest time reduction.

Figure A.2: Results of varying the fixed sampling fraction in the SPECTF dataset
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Figure A.3: Results of varying the fixed sampling fraction in the sonar dataset





Appendix B

Initial tests: Incremental Sampling

fraction

A difference in this process is that since the database changes when more instances are

aggregated, the population should be reevaluated. Reevaluation is an extra step with an

associated cost. Given this, the convergence graph of these executions is not expected

to have smooth and continuous growth. Instead, it is likely that when instances are

added, the fitness value of the best individual and, in general, the mean fitness value

of the population drop some percentage. However, then it recovers and even surpasses

the previous values. This behavior is shown in Figure B.1.

In a similar way to the previous experimentation, to test the performance of the

method of incremental instances for feature selection, three databases are selected:

ionosphere, SPECTF, and sonar. The initial fraction parameter varies from 0.1 to 0.9

using ten divisions in the number of generations process. The results are shown in

Tables B.1, B.2, and B.3. The columns of the tables are the following:

• In Sam Frac: Initial sampling fraction used.

• wo FS: Evaluation of the dataset without Feature Selection.

• #F selected: Number of selected features.

• wFS search: Evaluation during the search of the best individual in the last gen-

eration with Feature Selection.
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Figure B.1: Example of a convergence graph in the incremental number of instances
process for feature selection.

• wFS Eval: Final evaluation of the solution found with Feature Selection and all

the instances.

• Time: Time that was taken during the process.

• % reduction: Percentage of time reduced when using the incremental procedure

during the search.

As mentioned before, the changes in the composition of the dataset during different

periods of the search come with an extra cost. In this case, as seen in the Table B.1,

the ionosphere dataset obtains very competitive results when an initial fraction from

0.4 and above is used. Nonetheless, from those experiments, the result came with an

associated time reduction in only two cases.

In the case of the SPECTF dataset, some competitive results are obtained with

an initial fraction of 0.6 with a time reduction of 8.84%. As shown in Table B.2, the

only initial fraction that required more time than the original procedure was the 0.9

fraction, the highest tested.

Finally, as seen in Table B.3, the sonar dataset got some outstanding results, out-
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Table B.1: Varying initial fraction in the incremental Feature Selection in the Iono-
sphere dataset.

In Sam Frac wo FS #F selected wFS search wFS Eval Time % reduction
No sampling 86.79 6.67 96.39 94.49 4159.58
0.1 86.71 3.00 90.41 87.36 3355.70 19.33
0.2 86.13 7.67 94.11 92.03 3535.35 15.01
0.3 87.37 5.00 94.98 92.87 3638.14 12.54
0.4 86.61 7.00 95.83 93.74 3725.98 10.42
0.5 87.08 6.33 95.73 94.87 3973.82 4.47
0.6 86.99 7.00 95.36 94.21 4223.64 -1.54
0.7 86.99 6.00 95.54 93.82 4258.17 -2.37
0.8 86.04 6.33 95.73 94.20 4549.54 -9.38
0.9 86.72 6.33 96.40 94.87 4628.72 -11.28

Table B.2: Varying initial fraction in the incremental Feature Selection in the SPECTF
dataset.

In Sam Frac wo FS #F selected wFS search wFS Eval Time % reduction
No sampling 77.53 7.33 87.91 84.67 4766.57
0.1 79.54 4.67 86.52 82.67 3721.41 21.93
0.2 77.38 4.67 87.01 83.05 3742.12 21.49
0.3 77.04 6.67 85.90 82.05 4037.99 15.29
0.4 77.26 6.33 86.38 83.62 4301.12 9.76
0.5 77.69 5.33 86.15 82.39 4370.91 8.30
0.6 76.69 6.33 87.39 84.43 4344.98 8.84
0.7 77.62 4.00 85.91 82.17 4242.71 10.99
0.8 76.42 3.00 86.13 83.41 4501.43 5.56
0.9 77.67 3.33 86.89 83.69 5004.77 -5.00

performing the method that does not use sampling in the initial fractions of 0.6, 0.7, and

0.8. Additionally, the fractions 0.1, 0.3, 0.5, and 0.9 got close to the method without

sampling. The procedure required less time than the original method in all cases.

Table B.3: Varying initial fraction in the incremental Feature Selection in the Sonar
dataset.

In Sam Frac wo FS #F selected wFS search wFS Eval Time % reduction
No sampling 86.40 21.67 95.67 92.66 6660.00
0.1 86.40 19.67 94.41 92.66 5446.58 18.22
0.2 87.10 17.67 94.08 91.65 5388.53 19.09
0.3 86.20 18.67 94.22 92.02 5499.71 17.42
0.4 86.40 13.00 94.55 90.88 5426.14 18.53
0.5 85.76 16.00 94.08 92.32 5571.17 16.35
0.6 86.97 19.00 94.56 92.93 5678.66 14.73
0.7 87.37 18.00 94.41 92.95 5953.88 10.60
0.8 86.71 23.00 94.89 93.25 6321.15 5.09
0.9 86.75 21.67 95.19 92.31 6546.04 1.71





Appendix C

Results from Experiment 4

This Appendix shows the final results of each method in Experiment 4. First, the

methods from the single-objective approach and then the multi-objective approach.

C.1 Single-objective

The single-objective methods considered are:

• The original DE − FSPM procedure (Table C.1).

• Fixed DA: The fixed sampling fraction with the memory to avoid repeated eval-

uations (Table C.2).

• Incre DA: The incremental sampling fraction with the memory to avoid repeated

evaluations (Table C.3).

• SHA inc DA: The SHADE incremental sampling fraction with the memory to

avoid repeated evaluations (Table C.4).

The tables contain the average from ten runs of the procedure. The results are

reported using the columns:

• Best k nn: best value found of k for the nearest neighbor classification algorithm.

A 10-fold cross-validation process is used.

• wo FS: Evaluation of the dataset without Feature Selection. A stratified 10-fold

73



74 APPENDIX C. RESULTS FROM EXPERIMENT 4

cross-validation process is used.

• #Fselected: Number of selected features.

• wFS search: Evaluation during the search process for the last generation’s best

individual with Feature Selection. A stratified 5-fold cross-validation process is

used.

• wFS woIS Eval: Final evaluation of the solution found with feature selection and

without instance selection. A stratified 10-fold cross-validation process is used.

• Time: Amount of time that was taken during the process.

• # Evals: Number of evaluations required during the search process.

• Instances: Number of instances used during the evaluations in the search process.

Table C.1: Results of the DE − FSPM procedure in Experiment 4.
Dataset Best k nn woFS #Fselected wFS search wFS woIS Eval #Evals Time Instances
Arrhtythmia 4.6 58.935 11.9 76.997 75.712 90450.0 6379.35 40883400.0
Audiology 1.0 76.900 26.3 87.400 85.950 71355.0 4695.31 14271000.0
australian 18.2 86.174 6.8 88.304 86.812 40200.0 1448.77 27738000.0
cylinder-b 1.0 74.685 3.6 87.352 84.556 40200.0 1980.15 21708000.0
CRX 10.6 86.087 9.4 88.855 87.522 40200.0 2035.05 27738000.0
Dermatology 5.0 96.970 19.2 99.183 98.443 40200.0 1827.60 14713200.0
German-c 9.4 74.990 10.2 78.960 77.430 40200.0 2902.20 40200000.0
Hill valley 1.0 64.803 9.6 72.508 71.510 90450.0 7062.38 109625400.0
Ionosphere 1.2 86.640 6.3 96.355 94.640 40200.0 1581.06 14110200.0
m-libras 1.0 85.861 24.4 90.472 88.944 90450.0 5762.20 32562000.0
Musk 1 1.0 85.747 34.8 95.293 94.291 90450.0 6708.84 43054200.0
parkinsons 1.0 96.024 10.1 100.000 98.826 40200.0 1567.62 7839000.0
Sonar 1.0 86.757 23.4 95.387 94.002 61305.0 2902.87 12751440.0
Soybean 1.0 91.732 18.1 95.698 94.658 40200.0 2348.92 27456600.0
SPECTF 14.8 78.547 4.2 87.535 83.672 45225.0 1983.83 12075075.0
Vehicle 4.8 70.229 10.1 77.023 74.313 40200.0 4346.58 34009200.0
vote 7.0 93.329 5.3 97.379 96.506 40200.0 1094.46 17487000.0
wdbc 8.8 96.890 16.9 98.298 97.522 40200.0 2445.40 22873800.0
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Table C.2: Results of the fixed sampling fraction with memory to avoid duplicated
evaluations procedure in Experiment 4.
Dataset Best k nn woFS #Fselected wFS search wFS woIS Eval #Evals Time Instances
Arrhtythmia 3.6 58.900 12.8 77.172 75.846 83676.0 7470.37 22676196.0
Audiology 1.0 76.450 23.5 87.500 84.450 70579.9 4390.28 8469588.0
australian 18.2 86.203 6.9 87.957 86.899 6377.8 240.65 2640409.2
cylinder-b 1.8 74.352 6.1 85.019 83.537 10148.6 668.67 3288146.4
CRX 12.2 86.072 10.1 88.391 87.116 13498.6 703.82 5588420.4
Dermatology 3.2 96.989 24.0 99.264 98.303 36826.1 1791.87 8101742.0
German-c 11.8 75.110 11.5 78.100 76.850 23075.1 1738.73 13845060.0
Hill valley 1.0 64.858 9.4 72.312 71.475 81749.9 7368.80 59432177.3
Ionosphere 1.0 86.925 6.9 95.473 94.498 14042.9 659.87 2963051.9
m-libras 1.0 86.278 21.8 90.389 88.917 89701.7 3586.57 19375567.2
Musk 1 1.0 85.097 38.3 95.106 93.828 90323.1 6956.56 25832406.6
parkinsons 1.0 95.913 11.0 100.000 98.405 29450.8 1128.61 3445743.6
Sonar 1.2 86.429 21.3 95.439 93.712 60670.9 2938.53 7583862.5
Soybean 1.0 91.553 15.4 96.106 94.771 37300.1 2210.35 15293041.0
SPECTF 14.6 77.863 6.3 86.514 83.967 14705.3 635.66 2352848.0
Vehicle 7.0 70.294 9.7 76.137 74.099 16447.8 1508.88 8355482.4
vote 8.8 93.293 5.1 96.874 96.140 3990.2 121.26 1041442.2
wdbc 8.8 97.186 17.9 98.315 97.698 36321.2 2279.76 12385529.2

Table C.3: Results of the incremental sampling fraction with memory to avoid dupli-
cated evaluations procedure in Experiment 4.
Dataset Best k nn woFS #Fselected wFS search wFS woIS Eval #Evals Time Instances
Arrhtythmia 5.0 58.918 9.9 76.247 75.334 71161.3 6075.07 24640145.1
Audiology 1.0 76.550 21.0 86.750 85.000 73769.5 3795.17 11817836.1
australian 17.0 85.681 5.2 86.652 86.696 4284.5 135.03 1998753.3
cylinder-b 1.8 74.537 3.8 81.981 82.741 9319.9 504.29 3433983.6
CRX 12.2 86.362 8.6 87.362 86.928 7460.4 331.34 3676758.2
Dermatology 4.0 96.911 13.7 98.966 98.529 36987.9 1591.18 10760366.1
German-c 12.2 75.270 7.6 76.900 76.320 15870.2 925.55 11543944.9
Hill valley 1.0 64.597 7.5 71.031 70.998 64457.3 5049.16 59063794.0
Ionosphere 1.2 86.810 5.7 93.309 93.535 11228.4 488.76 2707904.7
m-libras 1.0 85.944 17.8 90.417 88.861 93406.1 3468.85 26912247.2
Musk 1 1.0 85.420 34.4 94.832 94.032 94332.7 6474.71 35901145.9
parkinsons 1.0 96.163 8.6 99.487 97.961 19363.5 717.84 2832749.3
Sonar 1.0 86.836 19.9 94.678 93.281 63029.7 2217.55 10466961.2
Soybean 1.0 91.448 15.8 95.739 94.863 37436.7 1901.78 20320042.7
SPECTF 13.6 77.303 5.6 82.550 82.668 13970.5 577.75 2584166.9
Vehicle 4.8 70.364 9.8 74.385 73.415 11364.0 916.32 6826543.4
vote 6.0 93.454 4.0 96.230 96.251 2472.7 68.24 691102.1
wdbc 10.0 97.100 11.1 97.875 97.347 25412.8 1279.65 11004588.0
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Table C.4: Results of the SHADE incremental sampling fraction with memory to avoid
duplicated evaluations procedure in Experiment 4.
Dataset Best k nn woFS #Fselected wFS search wFS woIS Eval #Evals Time Instances
Arrhtythmia 5.2 59.023 15.8 72.526 72.169 91974.9 8733.64 33246802.1
Audiology 1.0 76.900 34.3 84.800 83.650 68329.3 4176.55 10943560.1
australian 18.0 85.913 8.9 87.681 86.464 23242.2 864.79 12866157.8
cylinder-b 1.6 74.833 7.0 83.944 83.111 37464.0 2160.32 16177548.0
CRX 10.2 86.319 9.7 88.043 87.000 26841.9 1340.04 14811713.1
Dermatology 3.6 96.907 23.2 98.772 98.143 35263.2 1958.49 10314473.5
German-c 11.0 75.430 14.5 77.040 75.580 30575.8 2255.71 24339110.5
Hill valley 1.0 65.068 20.2 69.604 68.855 91442.5 7716.53 88664822.3
Ionosphere 1.0 87.125 6.7 94.645 93.871 38536.3 1860.25 10787964.2
m-libras 1.0 85.861 42.7 88.972 87.556 88970.3 5426.78 25612956.0
Musk 1 1.0 85.226 53.8 91.578 91.298 91516.8 7573.21 34826542.0
parkinsons 1.0 96.092 12.1 99.333 98.574 32901.9 1338.36 5130101.4
Sonar 1.0 86.800 24.6 92.654 91.838 60198.8 2653.75 9999588.3
Soybean 1.0 91.743 17.5 95.241 94.480 36756.7 2061.43 20110117.3
SPECTF 14.8 77.987 10.5 84.952 82.446 43440.6 2005.70 9285872.3
Vehicle 6.4 69.776 10.8 75.155 73.761 31920.7 3600.48 21579628.0
vote 8.0 93.563 4.8 96.736 96.390 20267.7 573.57 6939545.2
wdbc 8.4 97.013 21.5 98.068 97.486 34671.9 2296.64 15761046.9
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C.2 Multi-objective

The multi-objective methods considered are:

• GDE3 procedure (Table C.5).

• GDE3 incre: The GDE3 incremental sampling fraction with the memory to avoid

repeated evaluations (Table C.6).

The table contains the values obtained from the accumulated Pareto Front after

ten procedure runs. The results are reported using the columns:

• #Fsel bacc: Number of selected features from the best solution in the accuracy

objective.

• Eval bacc: Evaluation of the best solution in the accuracy objective. A stratified

10-fold cross-validation process is used.

• #Fsel bfea: Number of selected features from the best solution in the number of

features objective.

• Eval bacc: Evaluation of the best solution in the number of features objective. A

stratified 10-fold cross-validation process is used.

• #Fsel knee: Number of selected features from the solution in the knee point of

the Pareto front.

• Eval bacc: Evaluation of the solution in the knee point of the Pareto front. A

stratified 10-fold cross-validation process is used.

• # Evals: Number of evaluations required during the search process.

• Time: Amount of time that was taken during the process.

• Instances: Number of instances used during the evaluations in the search process.

• HV: hypervolume metric result.

• Spacing: spacing metric result.
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Table C.5: Results of the GDE3 procedure in Experiment 4.
Dataset #Fsel bacc Eval bacc #Fsel bfea Eval bfea #Fsel knee Eval knee #Evals Time Instances HV Spacing
Arrhtythmia 6 70.560 1 60.396 6 70.145 904500 55304.60 408834000 0.7200 0.00042
Audiology 38 83.500 1 37.500 10 72.000 713550 39211.37 142710000 0.8020 0.00134
australian 5 87.536 1 85.507 1 85.507 402000 13071.64 277380000 0.8131 0.00001
cylinder-b 2 84.630 1 75.926 2 83.889 402000 20141.28 217080000 0.8426 0.00000
CRX 5 85.942 1 85.507 1 85.507 402000 17919.14 277380000 0.8230 0.00001
Dermatology 23 97.252 1 38.544 4 87.740 402000 16851.95 147132000 0.9237 0.00242
German-c 19 76.000 1 70.900 2 68.900 402000 28819.87 402000000 0.7345 0.01279
Hill valley 7 68.729 1 55.858 7 69.308 904500 76439.35 1096254000 0.7004 0.00044
Ionosphere 8 93.167 1 78.056 2 88.325 402000 18321.41 141102000 0.9147 0.00084
m-libras 19 88.333 1 27.222 7 85.278 904500 45819.50 325620000 0.8725 0.00177
Musk 1 23 90.137 1 58.369 10 86.746 904500 61872.14 430542000 0.9177 0.00057
parkinsons 12 98.974 1 80.447 2 92.842 402000 15356.53 78390000 0.9422 0.00593
Sonar 43 87.048 1 68.190 4 85.095 613050 26213.50 127514400 0.9043 0.00851
Soybean 25 93.996 1 30.467 6 91.068 402000 25596.32 274566000 0.8804 0.00287
SPECTF 3 84.288 1 80.527 3 83.134 452250 19809.66 120750750 0.8406 0.00004
Vehicle 13 64.775 1 50.599 2 65.015 402000 43173.63 340092000 0.6896 0.00247
vote 5 94.493 1 95.634 1 95.634 402000 10313.68 174870000 0.9091 0.00000
wdbc 29 97.713 1 90.320 2 95.611 402000 19625.51 228738000 0.9460 0.00051

Table C.6: Results of the GDE3 incremental sampling fraction with memory to avoid
duplicated evaluations procedure in Experiment 4.
Dataset #Fsel bacc Eval bacc #Fsel bfea Eval bfea #Fsel knee Eval knee #Evals Time Instances HV Spacing
Arrhtythmia 10 72.111 1 60.179 10 72.329 248922 24854.03 112512744 0.7275 0.00001
Audiology 51 82.500 1 27.500 16 78.000 194971 11150.32 38994200 0.7699 0.00034
australian 8 87.391 1 85.507 1 85.507 25234 1095.26 17411460 0.8105 0.00006
cylinder-b 2 84.815 1 77.037 2 82.593 48159 2942.15 26005860 0.8245 0.00000
CRX 10 87.246 1 85.507 1 85.507 29539 1717.62 20381910 0.8176 0.00009
Dermatology 18 98.108 1 49.444 4 90.158 132554 5907.49 48514764 0.9195 0.00052
German-c 7 75.300 1 70.600 2 73.100 51731 3746.51 51731000 0.7240 0.00007
Hill valley 13 67.076 1 53.955 7 68.641 234298 13501.79 283969176 0.6898 0.00002
Ionosphere 10 91.444 1 80.929 2 84.024 54957 3021.51 19289907 0.8974 0.00019
m-libras 36 87.778 1 27.778 11 88.333 365519 19845.03 131586840 0.8619 0.00021
Musk 1 38 90.142 1 63.440 9 87.402 482995 32275.78 229905620 0.8987 0.00001
parkinsons 14 99.500 1 82.553 2 91.237 64160 3064.17 12511200 0.9291 0.00010
Sonar 47 83.643 1 65.857 5 86.524 123250 6574.17 25636000 0.8783 0.00030
Soybean 22 93.992 1 35.311 6 89.152 105474 6562.73 72038742 0.8684 0.00017
SPECTF 12 81.311 1 77.578 3 80.470 52126 2957.35 13917642 0.8137 0.00020
Vehicle 11 69.048 1 48.571 2 65.245 54751 5042.47 46319346 0.6778 0.00011
vote 3 96.327 1 95.640 1 95.634 19848 809.41 8633880 0.9022 0.00000
wdbc 28 97.719 1 90.670 2 95.789 73955 3973.52 42080395 0.9424 0.00030



Appendix D

Exhaustive search comparison

An exhaustive search was implemented to compare its results with those obtained by

the differential evolution procedure used in this document’s research proposal. The

four datasets with the smallest amount of features were selected. The chosen datasets

for experimentation are CRX (15 features), australian (14 features), vote (16 features),

and vehicle (18 features).

First, Figure D.1 compares the features selected by the exhaustive search method

and the proposals using the DE−FSPM algorithm with the fixed and incremental sam-

pling fraction proposals and the memory to avoid repeated evaluations. The presented

heat maps represent the features selected by the exhaustive search and the frequency of

selecting the respective feature by the other methods. Since the DE search procedure

is stochastic, a different subset of features could be selected in each run.

It is seen that, in some particular cases, the frequency of selection for some features

coincides with the exhaustive search selection. These clear examples are feature eight in

the CRX dataset, features seven and eight in the australian dataset, and feature three

in the vote dataset. The same happens in some of the discarded features as feature

fifteen in the CRX dataset, features zero, one, and twelve in the vote dataset, and

features fourteen and fifteen in the vehicle dataset.

Nonetheless, the procedure presents more variations in selecting other features,

choosing them sometimes, and discarding them in others. Given this, it is necessary to

make a numerical comparison of the performance of the methods. Table D.1 shows the
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Figure D.1: Heat-maps representing the features selected by exhaustive search and
the proposed fixed and incremental sampling fraction methods with memory to avoid
repeated evaluations.
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results of the methods with the following measures:

• #Fselected: Number of selected features.

• wFS search: Evaluation during the search process for the last generation’s best

individual with Feature Selection. A stratified 5-fold cross-validation process is

used.

• wFS woIS Eval: Final evaluation of the solution found with feature selection and

without instance selection. A stratified 10-fold cross-validation process is used.

• # Evals: Number of evaluations required during the search process.

• Time: Amount of time that was taken during the process.

• Instances: Number of instances used during the evaluations in the search process.

Table D.1: Results of using an exhaustive search for feature selection and the fixed and
incremental sampling methods with memory to avoid repeated evaluations.
Dataset Method #Fselected wFS search wFS woIS Eval #Evals Time Instances
CRX Exhaustive 7.0 88.116 87.681 32768.0 1655.04 22609920.0

Fixed DA 10.1 88.391 87.116 13498.6 703.82 5588420.4
Incre DA 8.6 87.362 86.928 7460.4 331.34 3676758.2

Australian Exhaustive 6.0 87.971 87.391 16384.0 618.96 11304960.0
Fixed DA 6.9 87.957 86.899 6377.8 240.65 2640409.2
Incre DA 5.2 86.652 86.696 4284.5 135.03 1998753.3

Vote Exhaustive 4.0 96.552 95.618 65536.0 1897.24 28508160.0
Fixed DA 5.1 96.874 96.140 3990.2 121.26 1041442.2
Incre DA 4.0 96.230 96.251 2472.7 68.24 691102.1

Vehicle Exhaustive 12.0 76.592 76.129 262144.0 15371.73 221773824.0
Fixed DA 9.7 76.137 74.099 16447.8 1508.88 8355482.4
Incre DA 9.8 74.385 73.415 11364.0 916.32 6826543.4

To make an easier comparison, Table D.2 shows the results regarding the percentage

drop obtained in the metrics taking the exhaustive search procedure as the basis. It is

seen that the number of selected features is primarily augmented; only in the vehicle

dataset is reduced. The evaluation values for the selected subset of features are close

in three of four datasets. In the vehicle dataset, it is noticed a significant drop in

performance.

On the other hand, the number of evaluations, time, and instances is reduced

considerably in all cases using the metaheuristic for guiding the search. With this, the

main objective of using DE as an optimization algorithm is accomplished, providing
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Table D.2: Results of using an exhaustive search for feature selection and the fixed and
incremental sampling methods with memory to avoid repeated evaluations.
Dataset Method #Fselected wFS search wFS woIS Eval #Evals Time Instances
CRX Fixed DA -44.29% -0.31% 0.64% 58.81% 57.47% 75.28%

Incre DA -22.86% 0.86% 0.86% 77.23% 79.98% 83.74%
Australian Fixed DA -15.00% 0.02% 0.56% 61.07% 61.12% 76.64%

Incre DA 13.33% 1.50% 0.80% 73.85% 78.18% 82.32%
Vote Fixed DA -27.50% -0.33% -0.55% 93.91% 93.61% 96.35%

Incre DA 0.00% 0.33% -0.66% 96.23% 96.40% 97.58%
Vehicle Fixed DA 19.17% 0.59% 2.67% 93.73% 90.18% 96.23%

Incre DA 18.33% 2.88% 3.56% 95.66% 94.04% 96.92%

good results at a fraction of the cost of an exhaustive procedure. While the exhaustive

search requires 2n evaluations where n is the number of features of the dataset, DE uses

a considerably smaller number of evaluations. If the difference is evident even with

the datasets with the smallest number of features, the savings should be even more

significant in larger datasets.
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