
Universidad Veracruzana
Centro de Investigación en Inteligencia Artificial

A Metaheuristic Based on
the Center of Mass

T H E S I S

by

Jesús-Adolfo Mejı́a-de-Dios

supervised by
Dr. Efrén Mezura-Montes

Xalapa, Ver., México. August 2, 2018

Acknowledgments

First, I would like to thank my advisor, Dr. Efrén Mezura-Montes for supporting
and giving me the complete freedom in choosing what I wanted to work on.

The development of this work would not have been possible without the constant
love and support from my beloved Rocı́o S.G.

I would like to thank my family for the continuous support.

I want to say thank you to all my professors who helped me achieve this work.

i

ii

Abstract

This work presents a novel population-based metaheuristic inspired by some princi-
ples from physics and mechanics, which is called Evolutionary Centers Algorithm
(ECA). We utilize the center of mass definition for creating new directions to move
the worst elements in the population, based on their objective function values, to bet-
ter regions of the search space. First, we give some important definitions, properties
and results about global optimization. Next, a preliminary version of the algorithm
is exposed and an empirical study is given by using a recent competition benchmark.
After that, our proposal is improved with adaptive mechanisms and we present a
comparison against representative algorithms for global optimization. Finally, our
approach is applied in three engineering optimization problems from mechatronics
and computer vision with relevant results in terms of efficiency and accuracy.

iii

iv

Contents

Introduction 1

1 Optimization 5
1.1 Global Optimization Problems . 5

1.1.1 Constrained Optimization 10
1.1.2 Conditions for Local Minima 10
1.1.3 No Free Lunch Theorems 13

1.2 Metaheuristics . 16
1.2.1 Evolutionary Algorithms 17
1.2.2 Physics-Inspired Algorithms 19

2 Evolutionary Centers Algorithm 29
2.1 Introduction . 29
2.2 Evolutionary Centers Algorithm: Preliminary Version 30

2.2.1 Motivation . 31
2.2.2 Algorithm Description . 32
2.2.3 Experiments . 34
2.2.4 Results . 35
2.2.5 Conclusions of ECAp . 36

2.3 Evolutionary Centers Algorithm: Release Version 40
2.3.1 Variation Operator . 40
2.3.2 Binomial Crossover . 41
2.3.3 Self-adaptive crossover . 42

2.4 Empirical Study . 44
2.4.1 Discussion . 52

v

vi CONTENTS

2.4.2 Conclusion . 52

3 Optimal Synthesis of Mechanisms with ECA 53
3.1 Synthesis of Four-Bar Mechanisms 53

3.1.1 Kinematics of The Mechanism 54
3.1.2 Kinematics of the Coupler 56
3.1.3 Design Objective Function 56
3.1.4 Design Constraints . 56
3.1.5 Experiments Design . 57
3.1.6 Study Cases . 58
3.1.7 Results and Discussion . 60

3.2 Control of a Four-Bar Mechanism with Spring and Damping Forces 63
3.2.1 Dynamic Model . 63
3.2.2 Optimization Problem Definition 66
3.2.3 Experiments . 68
3.2.4 Results . 68

3.3 Conclusions . 70

4 Non-rigid Registration using ECA 71
4.1 Introduction . 71

4.1.1 Related Work . 72
4.2 ECA-PR . 73

4.2.1 Affine Transformations . 74
4.2.2 Low Degree Polynomial Transformations 75

4.3 Experiments . 76
4.4 Results and Discussion . 77
4.5 Conclusions . 78

5 Conclusion and Future Work 81
5.1 Conclusion . 81
5.2 Future Work . 82

Appendices 83

A CEC17 Benchmark 85

CONTENTS vii

B Tables 93

viii CONTENTS

List of Figures

1.1 Local minimum definition representation. 8
1.2 Easy problem and hard problem for global optimization. In (a), a

global algorithm will easily avoid x̂ and find x∗. In (b) a global
algorithm will only find x̂ since it is effectively unlikely to find x∗,
since there is nothing near x∗ to indicate the presence of a minimum. 9

1.3 Diagram of the process to define an optimization problem from real
system. 16

1.4 Physics-Inspired algorithms through time. 27

2.1 cm is center of mass, cg is geometric center of black points. Black
point radius is its mass. Note the bias given by the weighted sum. . . 32

2.2 Schematic diagram representing a generation of ECAp. Gray points
represent elements in U . 34

2.3 Convergence graphs at the run located in the median of 51 indepen-
dentruns. Log scale is used for visualization purposes. 37

2.4 Binomial crossover representations. 42
2.5 Convergence graph of ECA (solid line) and jSO (dotted line) forD =

10. 50
2.6 Convergence graph of ECA (solid line) and jSO (dotted line) D = 30. 51

3.1 Four-Bar mechanism diagram. 54
3.2 Distribution of the precision points. Three study cases are considered. 58
3.3 Mechanisms provided by ECA. From a mechanical point of view,

these designs are good, since the trajectory of M01 and M02 pass
over the precision points. 62

ix

x LIST OF FIGURES

3.4 Convergence at median. ECA provides fast convergence in the three
study cases. 63

3.5 Representation of a four-Bar mechanism with spring and damping
forces. Here, the i−th link is represented by its mass mi, inertia Ji,
length Li, center of mass length ri and center of mass angle φi. The
angle of the i−th link associated to the base reference (X, Y) is set
as θi; C and k are the the damping coefficient of the damper and
constant of the spring, respectively. 64

3.6 (A) Shows the angular crank velocity with time (seconds) in [0.05, 2]
with both approaches. (B) shows the behavior of the control signal
obtained by the optimum design variable vector and with the exper-
imental tuning. 69

3.7 Zoom of each respective graphic in Figure 3.6. The rise time of the
angular velocity of optimization approach is less than the experimen-
tal approach. 69

3.8 Convergence at median of 31 independent runs. Note the fast con-
vergence in this problem. 70

4.1 Left image shows how an affine transformation is performed. Right
image represents a quadratic polynomial p(x, y) = −0.62+0.87x−
0.85y − 0.80xy + 0.71x2 − 0.87y2. 75

4.2 Results using affine transformation. Each row has a point-set input,
output and convergence graph. Log error was computed for visu-
alization purposes. Note fast convergence of ECA-PR using affine
transform. 78

4.3 Results using quadratic transformation. Each row has a point-set in-
put, output and convergence graph. Log error was computed for vi-
sualization purposes. Note fast convergence of ECA-PR using quadratic
polynomials. 79

A.1 Graph of f1(x, y) and its respective level curves. 85
A.2 Graph of f2(x, y) and its respective level curves. 86
A.3 Graph of f3(x, y) and its respective level curves. 86
A.4 Graph of f4(x, y) and its respective level curves. 87
A.5 Graph of f5(x, y) and its respective level curves. 87

LIST OF FIGURES xi

A.6 Graph of f6(x, y) and its respective level curves. 88
A.7 Graph of f7(x, y) and its respective level curves. 89
A.8 Graph of f8(x, y) and its respective level curves. 89
A.9 Graph of f9(x, y) and its respective level curves. 90
A.10 Graph of f10(x, y) and its respective level curves. 90

xii LIST OF FIGURES

List of Tables

2.1 Representative functions from CEC 2017 benchmark (all the test
functions are detailed in the Appendix A). This set of functions are
shifted and rotated. The search range is [−100, 100]D. 35

2.2 ECAp results of 51 independent runs on CEC17 problems forD = 10. 38

2.3 Comparison of error results at mean between ECAp, jSO and SQP
in D = 10 CEC 2017 test problems. 39

2.4 Results of comparison for D = 10. 45

2.5 Results of comparison for D = 30. 45

2.6 Results of 31 independent runs of ECA on CEC17 problems forD =

10. 46

2.7 Results of 31 independent runs of ECA on CEC17 problems forD =

30. 47

2.8 Comparison of results between ECA, jSO, CMA-ES and CGSA in
D = 10 CEC 2017 test problems. 48

2.9 Comparison of results between ECA, jSO, CMA-ES and CGSA in
D = 30 CEC 2017 test problems. 49

3.1 Pairs of precision points for case study 3. 59

3.2 Parameters of Algorithm 3. First column is the number of study case.
Note the high number of constraints. 61

3.3 Each algorithm solved 31 times each problem, and their statistical
results are presented here. A result in boldface indicates the best
values found. 61

xiii

xiv LIST OF TABLES

3.4 A comparison between ECA, DE, JSO, CMA-ES and CGSA. “+”
means that ECA outperformed DE, JSO, CMA-ES and CGSA in the
problem in the corresponding row and “≈” means that no significant-
difference was observed between algorithms, all based on the 95%
confidence Wilcoxon Rank-Sum test. 62

3.5 Best feasible solutions found by ECA. 63
3.6 Results of 31 independent runs of ECA, CHDE, jSO, CMA-ES and

CGSA on the dynamic optimization problem (3.46) – (3.52). A re-
sult in boldface indicates the best values found for each correspon-
dent column. 68

4.1 Points y3, y4 and y5 correspond to x2, x3 and x4, respectively, and the
remaining points are outliers. µ is the binary correspondence matrix.
Extra outlier row and outlier column are considered to identify outliers. 74

4.2 Comparison of results between ECA-PR and a classical method. Note
that ECA always outperformed RANSAC. This result was obtained
running 31 times each algorithm and no variance was observed. A
result in boldface indicates the best value found. 77

B.1 Error values of 31 independent runs by jSO on CEC17 10D prob-
lems. 94

B.2 Error values of 31 independent runs by jSO on CEC17 30D prob-
lems. 95

B.3 Error values of 31 independent runs by CMA-ES on CEC17 10D

problems. 96
B.4 Error values of 31 independent runs by CMA-ES on CEC17 30D

problems. 97
B.5 Error values of 31 independent runs by CGSA on CEC17 10D prob-

lems. 98
B.6 Error values of 31 independent runs by CGSA on CEC17 30D prob-

lems. 99

Introduction

Nowadays, real-world problems in different areas (science, engineering, etc.) can be
solved by transforming them to an optimization problem. An optimization problem
can be defined by finding the set of all feasible solutions and a measure for evaluating
their quality. There are many optimization algorithms derived from intense research
activity. They are, however, still limited in their reach [90]. There exists several
numerical methods for solving real-parametric optimization problems, for example
Newton-like or quasi-Newton algorithms based on gradient information of objective
function. That type of algorithms can not be applied on non-continuous or non-
differentiable functions. Here, Metaheuristics take place, some of these algorithms
are based on a population and assumptions about objective function are not required.

The design of new metaheuristics is an important topic due to real-world prob-
lems can be complex to solve with exact methods and it is well known that no algo-
rithm can be universally more efficient than other algorithms. Thus, it is necessary
design new methods to successfully solve more problems. Nevertheless, some au-
thors do not agree novel metaheuristics, some of them insure that almost the novel
proposal are the same process but with a different name [77]; that is a valid opinion
but lacking in mathematical support, i.e., there are no results (theorems, preposi-
tions, etc.) where the affirmation “all (new) metaheuristics converges into a single
process with same dynamic of search” comes true. The dynamic of search is most
important procedure in metaheuristics, then it is important to detail it in formal terms
to complement the further empirical analysis in order to strengthen the proposal.

1

2 INTRODUCTION

Hypothesis
It is possible to propose a new physic-inspired algorithm for real-parametric opti-
mization problems such that it is simple (few parameters) but efficient (in terms of
the objective function evaluations) and scalable.

Objectives
The general objective is to design a new metaheuristic for real-parametric single
objective optimization with competitive results compared others in state-of-the-art
on representative test functions for optimization.

Specific Objectives

• Make a literature review in order to identify important properties about opti-
mization problems.

• Get inspired to design a new algorithm for solving optimization problems.

• Investigate a set of test functions from specialized literature.

• Implement a preliminary version of our proposal.

• Compare our approach with state-of-the-art algorithms.

• Implement a self-adaptive technique for the algorithm to improve results on
high-dimensional problems.

• Solve real-world problems using our proposal.

Motivation
Metaheuristics have provided successful results when solving complex bound-cons-
trained optimization problems [80]. However, most popular metaheuristics usually
are those which design keeps simple and their number of parameters is low so as to
facilitate the fine-tuning process when a particular problem is solved. We propose a

3

new algorithm for real-parameter single-objective optimization. This algorithm will
be simple (few parameters) but efficient and scalable. Our approach is based on the
concept of center of mass, called Evolutionary Centers Algorithm (ECA).

To propose a successful metaheuristic for a given optimization problem, it is nec-
essary supply a balance between the exploration (diversification) and the exploitation
(intensification) in the search. The exploration process is focused on identifying re-
gions of the search space with better solutions. Exploitation process intensifies the
search in some promising areas by using the accumulated search experience. Differ-
ent metaheuristics are proposed in the specialized literature, and the main differences
among them is the different form they handle this balance [2, 13].

On the other hand, emerging algorithms, such as physics-based algorithms are
gaining interest when solving optimization problems [11]. However, when dealing
constrained search spaces they are not as preferred as other approaches.

Considerations must be made with regard to the search space, the types of ob-
jective functions, the properties of the design space, etc. In this dissertation, the
following assumptions are made:

• The objective function is no-negative (not a restrictive assumption).

• Search space is continuous (RD is considered).

• Only single-objective optimization is considered (at first).

Contents
The thesis consists of 5 chapters and two appendices. In the first Chapter 1, an in-
troduction to the problem and the theory is given. Chapter 2 presents a novel opti-
mization algorithm based on some principles from physic concepts called ECA. In
Chapter 3, our approach is used to solve engineering design problems; a comparison
against competitive metaheuristics is made. In Chapter 4, we describe the applica-
tion of ECA to an image processing problem called Point-set Registration Problem.
Finally, the conclusions and future work are given in Chapter 5. In Appendix A the

4 INTRODUCTION

CEC17 benchmark is described. The statistical results obtained by the experimenta-
tion are reported in Appendix B.

Publications and Presentations
Here, we list the publications and presentations in different academic events derived
from this work:

Publication
1. Jesús Adolfo-Mejı́a-De-Dios and Efrén Mezura-Montes, A New Evolution-

ary Optimization Method Based on Center of Mass, in Proceedings of the
International Conference on Recent Trends in Operations Research and Statis-
tics (RTORS), Springer proceedings (accepted), 2017.

Presentations
• Jesús Adolfo-Mejı́a-De-Dios and Efrén Mezura-Montes, Evolución Cooper-

ativa Metaheurı́stica para Problemas de Optimización (poster), Escuela
de Optimización, Simulación y Métodos Numéricos en Robótica. CIMAT,
Guanajuato 2017.

• Jesús Adolfo-Mejı́a-De-Dios and Efrén Mezura-Montes, Metaheurı́stica para
Optimización, VII Foro Nacional de Divulgación Cientı́fica Y Tecnológica,
FODICYT, Universidad Veracruzana 2017.

• Jesús Adolfo-Mejı́a-De-Dios and Efrén Mezura-Montes, Affine Image Reg-
istration Transformation Estimation Using Metaheuristic for Optimiza-
tion, Congreso Sur Sureste de Matemáticas, Casa Matemática Oaxaca, 2017.

• Jesús Adolfo-Mejı́a-De-Dios and Efrén Mezura-Montes Optimización Binivel
y sus Implicaciones, Coloquio de Matemáticas Aplicadas SUNEO, 2018.

Chapter 1

Optimization

Some theory of this chapter is based on [17, 71, 79, 90].

1.1 Global Optimization Problems
We start stating the global optimization problem definition.

Definition 1.1.1. Given a function f : X ⊂ Rn → R with X 6= ∅, for x∗ ∈ X the
value f ∗ := f(x∗) > −∞ is called a global minimum if and only if

∀x ∈ X, f(x∗) ≤ f(x).

Then, x∗ is a global minimum point, f is called objective function and the set X is
called the feasible region. The problem of determining a global minimum point is
called the global optimization problem.

Without loss of generality, we will concentrate on minimization problems, since
the identity for an upper bounded function:

max{f(x) | x ∈ X} = −min{−f(x) | x ∈ X}

holds.

If x∗ is global minimum of f over X , often we write f(x∗) = minx∈X f(x).
Equivalently, optimization problems can be represented as finding the set:

X∗ = arg min
x∈X

f(x) = {x∗ ∈ X : f(x∗) ≤ f(x) for all x ∈ X}, (1.1)

5

6 CHAPTER 1. OPTIMIZATION

where, X is a D-dimensional vector space of parameters, usually X ⊂ RD is the
domain for x representing constraints on allowable values for x. Equation 1.1 may
be read as: X∗ is the set of values (arguments) x = x∗ that minimize f(x) subject
to X∗.

The solution set X∗ in Equation 1.1 is non-empty, then it can be a unit set, a set
with countable or uncountable number of elements. Next examples illustrate these
type of solutions sets X∗.

Example 1.1.1. X∗ is a unit set (contains unique solution). Suppose that

f(x) =
D∑
i=1

x2
i , with x = (x1, . . . , xD) ∈ X ⊂ RD

The unique value that minimizes f is x = 0 = (0, . . . , 0). Thus, X∗ is a unit set,
i.e. X∗ = {0}.

Example 1.1.2. X∗ has countable number of points. Let f : R → R be a scalar
function, defined as f(x) = cos(x). If X = [−2π, 2π], then cos(x) = −1 at the
pointsX∗ = {−2π, 0, 2π}which is a countable set with a finite number of elements.
On the other hand, if X = R then X∗ = {2πn : n ∈ Z} a countable set with an
infinite number of elements.

Example 1.1.3. X∗ has uncountable number of points. Suppose, D ≥ 2 and

f(x) =

(
−1 +

D∑
i=1

x2
i

)2

and X = RD.

This objective function is minimized when
∑D

i=1 x
2
i = 1, which is a D-dimensional

sphere having radius 1. Hence, X∗ is an uncountable set.

An optimization problem is solved only when a global minimum is found. How-
ever, global minimum are, in general, difficult to find. Therefore, in practice, we often
have to find at least a local minimum. On the other hand, to formalize the notion of
a local minimum a distance measure is needed for an arbitrary vector space.

1.1. GLOBAL OPTIMIZATION PROBLEMS 7

Definition 1.1.2. Let V be a vector space. A metric (distance) on V is a mapping
d : V ×V → R+

0 , such that for all x,y, z ∈ V the following conditions are satisfied:

d(x,y) ≥ 0

d(x,y) = 0 if and only if x = y

d(x,y) = d(y,x)

d(x, z) ≤ d(x,y) + d(y, z),

where R+
0 = [0, ∞). Usually, is convenient use norm instead metrics in vector

spaces.

Definition 1.1.3. Let V a vector space on R. A mapping ‖ · ‖ : V → R+
0 is called

norm if for x,y ∈ V , α ∈ R:

‖x‖ = 0, iff x = 0

‖αx‖ = |α|‖x‖
‖x + y‖ ≤ ‖x‖+ ‖y‖.

It is well known than any normed space is also a metric space by setting

d(x,y) = ‖x− y‖.

The inversion of this implication does not hold. Usually, whenV = Rn is considered,
the Euclidean norm is presupposed, i.e., if x = (x1, x2, . . . , xn) ∈ Rn:

‖x‖ =

√√√√ n∑
i=1

x2
i .

After these definitions, the meaning of a local minimum is defined as:

Definition 1.1.4. (Local minimum) For x̂ ∈ X the value f̂ := f(x̂) is called a
local minimum if and only if exists ε > 0 such that for all x ∈ X

‖x̂− x‖ < ε implies f̂ ≤ f(x)

8 CHAPTER 1. OPTIMIZATION

Figure 1.1: Local minimum definition representation.

Note that any global minimum is also a local one. Figure 1.1 presents a repre-
sentation for definition of local minimum.

In practice, there exists a problem with Definition 1.1.4 because limited exactness
of floating-point representation of real numbers by computers. Therefore, the global
optimization problem can be considered as solved if a member of the level set

Lf∗+ε = {x ∈M |f(x) ≤ f(x∗) + ε}.

Unfortunately, [83] probed that global optimization problem with continuous ob-
jective function on a compact feasible region within a finite number of steps is un-
solvable. On this way, proposing new methods for global optimization problems is
necessary.

For a case where the problem dimension D = 1, Figure 1.2 illustrates two prob-
lems with distinct local and global minimum. This example illustrates that, in gen-
eral, obtaining a global solution requires knowledge about the possible existence of
such point.

Definition 1.1.5. (Unimodal and Multi-modal Functions) LetX ⊂ R a connected
set, i.e., it cannot be divided into two disjoint nonempty closed sets. An objective
function f on X is called unimodal if it has exactly one local minimum, otherwise
it is called multi-modal.

1.1. GLOBAL OPTIMIZATION PROBLEMS 9

(a) Easy Problem (b) Hard Problem

Figure 1.2: Easy problem and hard problem for global optimization. In (a), a global
algorithm will easily avoid x̂ and find x∗. In (b) a global algorithm will only find x̂

since it is effectively unlikely to find x∗, since there is nothing near x∗ to indicate
the presence of a minimum.

For example, the sphere model is a continuous convex unimodal function. We
present the mathematical formulation:

f(x) =
n∑
i=1

(xi − ci)2,

where x, c ∈ Rn with x = (x1, . . . , xn) and c = (c1, . . . , cn). Note that x∗ = c,
f ∗ = 0 for n ∈ N and x, c ∈ [a, b]n.

On the other hand, Ackley’s function is a continuous multi-modal non-convex
function obtained adding cosine waves to sphere function. General formulation is:

f(x) = αn+
n∑
i=1

[x2
i − α cos(2πxi)],

where α = 10. It has global optimum x∗ = 0 and f ∗ = 0.

10 CHAPTER 1. OPTIMIZATION

1.1.1 Constrained Optimization

Some real-world problems have constraints. This kind of problems are called Con-
strained Optimization Problems (COPs). Without loss of generality, a COP can be
defined as to:

Definition 1.1.6. (Constrained Optimization Problem) A general constrained op-
timization problem can be written as follows:
Minimize:

f(x), x ∈ S ⊆ RD (1.2)

subject to:

gi(x) ≤ 0, i =1, . . . , p (1.3)
hj(x) = 0, j =p+ 1, . . . ,m (1.4)

where S =
∏D

k=1[xk,min, xk,max] i.e. xk ∈ [xk,min, xk,max] for k = 1, 2, . . . , D. The
problem is subject to p inequality constraints and m − p equality constraints. If x
satisfies gi(x) ≤ 0, for i = 1, . . . , p and |hj(x)| ≤ ε, for j = p + 1, . . . ,m with
ε > 0 a small value; then x is regarded feasible.

Many unconstrained optimization algorithms can be transformed to an constrained
one, usually by using Deb’s rules or penalty method [24]. The reader is referred to
[21, 71].

Next section gives some important facts related to the existence of optimal values.

1.1.2 Conditions for Local Minima

This Section presents some conditions for guaranteeing local minima for uncon-
strained optimization [21].

Let f : Rn → R be a continuous and derivable function. The first-order derivate
of f , denoted Df is:

Df =

[
∂f

∂x1

,
∂f

∂x2

, . . . ,
∂f

∂xn
,

]
.

1.1. GLOBAL OPTIMIZATION PROBLEMS 11

The gradient∇f is defined as∇f = (Df)T . The second derivate (Hessian) of f , is
given by:

D2f(x) =

∂2f(x)

∂x2
1

· · · ∂2f

∂xn∂x1
...

∂2f(x)

∂x1∂xn
· · · ∂2f

∂x2
n

Given an optimization problem with constraints set X ∈ Rn, such that exists

x̂ ∈ X , the next definition gives a notion of feasible directions.

Definition 1.1.7. A non-zero vector v ∈ Rn is a feasible direction at x ∈ X if there
exists ηmax > 0 such that x + ηv ∈ X for all η ∈ [0, ηmax].

The directional derivate of f in the direction v is the real-valued function defined
as:

∂f

∂v
(x) = lim

η→0

f(x + ηv)− f(x)

η
.

To compute the directional derivate above, suppose that x and v are given. Then
f(x+ ηv) is function of η and

∂f

∂v
(x) =

d

dη
f(x + ηv)

∣∣∣∣
η=0

.

By using the chain rule:

∂f

∂v
(x) =

d

dη
f(x + ηv)

∣∣∣∣
η=0

= ∇f(x)Tv = v∇f(x)T .

Note 1.1.1. If v ∈ Rn such that ‖v‖ = 1, then v∇f(x)T is the rate of increase of f
at the point x in the direction v.

Now, we can state the following theorem, which is a necessary for giving condi-
tions to guarantee the existence of local minimum.

Theorem 1.1.1. Let X ⊂ Rn be a set and f a continuous and derivable function on
X . If x̂ ∈ X is a local minimum of f , then for any feasible direction v at x̂, we have

vT∇f(x̂) =
∂f

∂v
≥ 0.

12 CHAPTER 1. OPTIMIZATION

The proof of this result can be found in [71].

In other words, if x̂ is a local minimum, then the rate of increase of f at x̂ in
any feasible direction v ∈ X is nonnegative. The special case, when x̂ ∈ X − ∂X ,
where ∂X is the border of X . In this case, the next corollary establishes that any
direction is feasible.

Corollary 1.1.2. LetX ⊂ Rn and f : Rn → R a continuous and derivable function
on X , if x̂ is a local minimum of f over X and if x̂ is an interior point of X , then

∇f(x̂) = 0.

Proof. Suppose that f has a local minimum at x̂ which is an interior point of X .
Since x̂ is an interior point ofX , the set of feasible directions at x̂ is the whole ofRn.
Thus, for any v ∈ Rn, vT∇f(x̂) ≥ 0 and −vT∇f(x̂) ≥ 0. Hence, vT∇f(x̂) = 0

for all v ∈ Rn, which implies that ∇f(x̂) = 0.

Now, a second-order necessary condition can be derived for a local minimum in
the feasible set.

Theorem 1.1.3. Let X ⊂ Rn, f : Rn → R a with second derivate on X , x̂ a local
minimum of f over X , and v a feasible direction at x̂. If vT∇f(x̂) = 0, then:

vTD2f(x̂) ≥ 0,

where D2f is the Hessian of f .

An immediate consequence is given by the following Corollary.

Corollary 1.1.4. Let x̂ be an interior point of X ⊂ Rn. If x̂ is a local minimum of
f : X → R, then

∇f(x̂) = 0,

and D2f(x̂) is a positive semidefinite matrix (D2f(x̂) ≥ 0), i.e. for all v ∈ Rn,

vTD2f(x̂)v ≥ 0.

Proof. If x̂ is an interior point, then all directions are feasible. The result then follows
from Corollary 1.1.2 and Theorem 1.1.3.

1.1. GLOBAL OPTIMIZATION PROBLEMS 13

Next theorem give us sufficient conditions that imply that x̂ is a local minimum
and grantee the existence.

Theorem 1.1.5. Let f be a function with second derivate, defined on a region in
which x̂ is an interior point. Suppose that

1. ∇f(x̂) = 0.

2. D2f(x̂) = 0.

Then, x̂ is a strict local minimum of f .

In summary, a theoretical basis for the solution of nonlinear unconstrained prob-
lems was presented. Also, some conditions for optimality were given. However, in
real-world problems some assumptions cannot be archived and we need to propose
methods for general objective functions. This work focuses on problems where f is
sufficiently complex such that it is not possible to obtain the solution of Equation 1.1
by analytical methods.

The next section presents some theorems about algorithms for solving optimiza-
tion problems.

1.1.3 No Free Lunch Theorems
Here, some No Free Lunch (NFL) theorems are given which state that no algorithm
can be universally more efficient than other algorithms [89]. These theorems gives
an interesting interpretation of what it means for an algorithm to be very appropriate
to an optimization problem.

Optimization algorithms on digital computers are restricted on finite sets X and
Y which are some 32 or 64 bit representation of real numbers. An objective function
is defined as f : X → Y and the space of all possible objective functions

F = XY = {f : X → Y }.

Suppose |X| and |Y | are the size of X and Y , respectively. Note, F is of size |X||Y |
a finite but large number. Objective functions that depends explicitly on time are
considered in this part.

14 CHAPTER 1. OPTIMIZATION

Definition 1.1.8. (Sample) A sample is a time-ordered ofm distinct visited solutions
defined by the following:

dm = {(dx(i), dy(i) : i = 1, 2, . . . ,m},

where dx(i) ∈ X and dy(i) ∈ Y are ith successive element.

The space of all samples of size m is Dm ⊂ X × Y , that is, dm ∈ Dm. Now, we
can define an optimization algorithm in term of samples.

Definition 1.1.9. (Optimization Algorithm) An optimization algorithm A is an
injective function from visited samples to single new solution in X . Formally, for
m ∈ N

A : Dm → X

Popular examples of optimization algorithms are evolutionary algorithms, simu-
lated annealing or other called metaheuristics (See Section 1.2). On the other hand,
this definition only considers deterministic optimization algorithm. Since, all algo-
rithm implemented on a computer are deterministic [89]. Hence, the Definition 1.1.9
is not restrictive.

Now, the first NFL theorem in terms of probability is given. If f ∈ F , then the
distribution P (f) = P (f(x1), . . . , P (x|X|)).

Theorem 1.1.6. For any pair of algorithms A1 and A2:∑
f

P (dy|f,A1) =
∑
f

P (dy|f,A2).

A proof of this result can be found in [89]. This theorem establishes that an al-
gorithm obtain a good performance on a set of problems is necessarily offset by its
performance on the remaining optimization problems. Hence, all algorithms have
the same f -averaged performance on all optimization problems defined over F .

The best way to evaluate the performance of an algorithm in time-dependent ob-
jective functions is not trivial. Authors regard two ways based on manipulations of
the sample definition. In first way, the values of Y in dy(j) related to a particular
dx(j) is achieved by the objective function value that was obtained when dx(j) was

1.1. GLOBAL OPTIMIZATION PROBLEMS 15

sampled.

In contrast, for second way, a sample dy obtained by the Y values from the current
objective function for each x ∈ dx. That is, if dx = {dx(1), . . . , dx(m)}, then in the
first way:

dx = {f1(dx(1)), . . . , Tm−1(fm−1)(dx(m))}

and in scheme 2

Dy = {fm(dx(1)), . . . , fm(dx(m))}

where fm = Tm−1fm1 . is the final objective function value.

Theorem 1.1.7. For all dy, Dy, m > 1 algorithms A1 and A2, and initial objective
functions f1 ∑

T

P (dy : f1, T,A1) =
∑
T

P (dy : f1, T,A2)

and ∑
T

P (dy : f1, T,A1) =
∑
T

P (dy : f1, T,A2)

Thus, in particular, if an algorithm outperforms another for set of dynamic ob-
jective function F1, then the reciprocal must be true on the complement set of F1.

In summary, the NFL theorems state that if an optimization algorithm has a good
average performance for a kind of problems then it must be outperformed on average
by other algorithm over the remaining problems.

Moreover, there are several numerical methods for solving real-parametric opti-
mization problems, for example Newton-like or quasi-Newton algorithms based on
gradient information of objective function. That type of algorithms can not be ap-
plied on non-continuous or non-differentiable functions. Here, Metaheuristics take
place, some of these algorithms are based on populations and assumptions about ob-
jective function are not important.

16 CHAPTER 1. OPTIMIZATION

1.2 Metaheuristics

A metaheuristic is an algorithm created to solve approximately a different kind of
difficult optimization problems without having to adapt deeply to each problem. In
fact, the Greek prefix “meta”, present in the name, indicates that these algorithms are
“high-level” procedure or heuristic designed to generate a heuristic. Metaheuristics
generally are applied to problems for which there is no specific satisfactory algo-
rithm to solve them. They have been successfully used to solve complex problems in
science, engineering or industry; for example: in areas such finance to production,
management or economics [13].

Metaheuristics usually are inspired on nature, some principles from physics, bi-
ology or ethology. These algorithms can be stochastic and do not make strong as-
sumptions about the objective function [2, 9].

To propose a successful metaheuristic for a given optimization problem, it is nec-
essary supply a balance between the exploration (diversification) and the exploitation
(intensification). Exploration process is focused for identifying parts of the search
space with high quality solutions. Exploitation process intensifies the search in some
promising areas by using the accumulated search experience.

Real System

Computational

Model

Problem

Encoding

Search Space

Feasible

Space

Figure 1.3: Diagram of the process to define an optimization problem from real
system.

Distinct metaheuristics are proposed, and the main differences among them is
the particular way in which they handle this balance [2, 13]. Figure 1.3 illustrates

1.2. METAHEURISTICS 17

the sequence for solving real-world optimization problem through optimization al-
gorithms.

As mentioned, there are a wide variety of metaheuristics and a number of prop-
erties useful to classify them.

• Single-solution Based Metaheuristics This kind of algorithms are also called
trajectory methods. Unlike population-based metaheuristics, they start with a
single initial solution and move through the search space while describes a
trajectory. Some of them can be seen as intelligent extensions of local search
algorithms. Representative algorithms of this type are, simulated annealing
method [49], tabu search [36], greedy randomized adaptive search procedure
(GRASP) [29], variable neighborhood search [61], guided local search [85],
iterated local search [55], and their variants.

• Population-based Metaheuristic Population-based metaheuristics employ a
set of solutions (population) instead using a single solution. The most rep-
resentative population-based methods are related to Swarm Intelligence (SI),
Evolutionary Computation (EC) and emerging algorithms like those physics-
inspired. EC algorithms are inspired by biological evolution, where new pop-
ulation individuals generated by using recombination and mutation operators.
In SI, the idea is to emulate “intelligent” behavior with simple rules to gener-
ate new positions (solutions) for the agents. Physics-inspired algorithms adopt
the laws of physics; they are successful used to solve complex optimization
problems. For details, the reader is referred to [13].

Next Sections describe evolutionary algorithms and physics-inspired which are
important to describe our approach.

1.2.1 Evolutionary Algorithms

Definition 1.2.1. (General Evolutionary Algorithm) An evolutionary algorithm (EA)
is defined as an 8-tuple:

EA = (I,Φ, Ω, Ψ, s, l, µ, λ),

18 CHAPTER 1. OPTIMIZATION

where I = Ax × As is the space of individuals, and Ax, As denotes arbitrary sets.
Φ : I → R denotes a fitness function assigning real values to individuals.

Ω = {ωΘ1 , . . . , ωΘx|ωΘi
: Iλ → Iλ} ∪ {ωΘ0 : Iµ → Iλ}

is a set of probabilistic genetic operators ωΘi
, each one controlled by specific param-

eters summarized in the sets Ωi ⊂ R.

sθs : Iλ ∪ Iµ+λ → Iµ

denotes the selection operator, which may change the number of individuals from λ

or λ+ µ to µ, where µ, λ ∈ N.

An additional set Θs of parameters may be used by the selection operator. µ is the
number of parents individuals, while λ denotes the number of offspring individuals.
Finally l : Iµ → {true, false} is a determination criterion for the EA, and the
generation Ψ : Iµ → Iµ describes the complete process of transforming a population
P into a subsequent one by applying genetic operators and selection.

Ψ = s ◦ ωΘi1
◦ . . . ◦ ωΘij

◦ ωΘ0

Ψ(P) = sΘs(Q ∪ wΘi1
(. . . (ωΘij

(ωΘ0(P))) . . .)).

Here {i1, . . . , ij} ⊂ {1, . . . , z} and Q ∈ {∅, P}

Definition 1.2.2. Given an Evolutionary Algorithm with generation transition Ψ :

Iµ → Iµ and an initial population P (0) ∈ Iµ, the sequence P (0), P (1), P (2), . . . is
called a population sequence or evolution of P (0) if and only if for all t ≥ 0

P (t+ 1) = Ψ(P (t)).

Usually, population P (0) is initialized at random but there are works about ini-
tializing the population using a priori information [4, 70].

Definition 1.2.3. (Panmictic) A genetic operator ωΘ : Ip → Iq is called panmictic
iff exists ω′Θ : Ip → I such that

ωΘ(a1, . . . , ap) = (ω′Θ(a1, . . . , ap), . . . , ω
′
Θ(a1, . . . , ap))︸ ︷︷ ︸

q

1.2. METAHEURISTICS 19

There are also others genetic operators for crossing, i.e., asexual and sexual
crossover. Algorithm 1 gives the outline of an Evolutionary Algorithm.

This kind of algorithms are inspired by the Darwinian principles of nature’s ca-
pability to evolve living beings well adapted to their environment [13]. Evolutionary
algorithms are divided in the groups: genetic algorithms [60], evolution strategies
[58], evolutionary programming [16, 17], and genetic programming [5].

Algorithm 1 Outline of an Evolutionary Algorithm
1: procedure EA
2: Initialize P (0) := {a1(0), . . . ,aµ(0)} ∈ Iµ
3: Evaluate P (0) : {Φ(a1(0)), . . . ,Φ(aµ(0))}
4: t = 1

5: while l(P (t)) 6= true do
6: Recombine: P ′(t) = rΘr(P (t))

7: Mutate: P ′′(t) = mΘm(P ′(t))

8: Evaluate: P ′′(t) : {Φ(a′′1(t)), . . . ,Φ(a′′λ(t))}
9: Select: P (t+ 1) = sΘs(P

′′(t) ∪Q)

10: t = t+ 1

11: end while
12: end procedure

1.2.2 Physics-Inspired Algorithms
As mentioned, Physics-inspired algorithms can be used to solve complex optimiza-
tion problems. This kind of algorithms inherit properties from its respective phe-
nomena inspiration. Besides, the parameters considered can affect the convergence
and exploration-exploitation balance [11].

The main areas covered by these algorithms are quantum theory, the laws of mo-
tion, electrostatics, electromagnetism, Newton’s gravitational law.

Biswas et al. [11] have categorized those physics-inspired metaheuristics by their
metaphor. This classification is presented in next sections to provide a point of view

20 CHAPTER 1. OPTIMIZATION

and how we can start with our proposal. Also, a brief description of the most impor-
tant algorithms is given.

Newton’s gravitational law

Some algorithms are based on the theory of gravitational field and particle kinemat-
ics. That theory implies that heavier particles will have more force of attraction as
compared to smaller ones. Using this principle, the solution of an optimization prob-
lem is represented by the particle with the most force of attraction.

Some algorithms reported are:

• Central Force Optimization (CFO) [35].

• Gravitational Search Algorithm (GSA) [73].

• Immune Gravitation Inspired Optimization Algorithm (IGOA) [95].

• Gravitational Interaction Optimization (GIO) [34].

• Artificial physics optimization (APO) [92]

• Vector model of artificial physics optimization (VM-APO) [91]

• Binary gravitational search algorithm (BGSA) [72]

• Multiobjective gravitational search algorithm (MOGSA) [38]

• PSO gravitational search algorithm (PSOGSA) [42]

• Improved gravitational search algorithm (IGSA) [54]

• Chaotic Gravitational Search Algorithm (CGSA) [59]

• Water Cycle Algorithm (WCA) [14]

• Extended central force optimization (ECFO) [26]

1.2. METAHEURISTICS 21

CFO

This algorithms uses an analogous Newton’s gravitation law defined as follows:

F = G
m1m2

rp

where m1, m2 are the masses of particles, F and r are the force and the distance
between them, respectively. G represents the gravitational constant.

CFO updates its positions xi and velocity vi of particles using the following
formulation:

vi(t+ 1) = wvi(t) +
λF i

mi

xi(t+ 1) = xi + vi(t+ 1)

where w ∈ (0, 1) is a user-defined weight, λ ∈ [0, 1] uniformly at random and F
the total force which contains the bias for giving direction to find the best solutions.

GSA

It is inspired by law of motion and Newton’s law of universal gravitation. Also, the
gravitational constant G depends of the time and it provides a parameter to handle
convergence to the algorithm. Authors of GSA expressed G is defined as follows:

G(t) = G(t0)×
(
t0
t

)β
, β < 1.

In contrast with CFO, GSA computes the mass Mi(t) of any agent xi ∈ RD in
terms of objective function at time t,

Mi(t) =
mi(t)∑
jmj(t)

with mi(t) =
f(xi(t))− f(xworst(t))

f(xbest(t))− f(xworst(t))
,

where f is the objective function, xworst is the agent with the worst objective function
value at time t; f(xbest) the best objective function value found at time t.

22 CHAPTER 1. OPTIMIZATION

The acceleration ai(t) of any agent i at time t is given by:

ai(t) =
Fi
Mi

,

where Fi is the total force which contains the bias obtained from the objective func-
tion and the distance between xi and the remaining agents.

The next position is computed by the following expressions:

vi(t+ 1) = rvi(t) + ai(t),

xi(t+ 1) = xi(t) + vi(t+ 1).

where r ∈ [0, 1] is a random distributed variable and vi is the “velocity” which pro-
vides a new direction to move the agent into promising regions.

With the above formulation, agents can converge towards high-quality agents
with cumulative attraction. GSA can converge slowly and easily fall into local op-
timum solution. IGOA algorithm improves these issues of GSA using vaccination
and memory antibody replacement.

GIO

GIO and the algorithm called charged system search (CSS) are similar to GSA. GIO
is inspired from Newton’s gravitation law while CSS is based on electrostatic dy-
namics law which is analogous to Newton’s gravitation law. The reader is referred
to [11].

Quantum mechanics
Here, the main inspiration is given by quantum mechanics. Some reported algo-
rithms are:

• Quantum-inspired bacterial swarming optimization (QBSO) [19]

• Quantum-inspired genetic algorithm (QGA) [65]

• Quantum-inspired evolutionary algorithm (QEA) [37]

1.2. METAHEURISTICS 23

• Quantum-inspired immune clonal algorithm (QICA) [52]

• Quantum genetic optimization (QGO) [56]

• Quantum-behaved particle swarm optimization (QPSO) [81]

• Versatile quantum-inspired evolutionary algorithm (vQEA) [69]

• Binary Quantum-inspired evolutionary algorithm (BQEA) [37]

• Continuous quantum ant colony optimization (CQACO) [51]

• Reduced quantum genetic algorithm (RQGA) [76]

• Quantum Swarm Evolutionary Algorithm (QSE) [87]

• Improved quantum evolutionary algorithm (IQEA) [94]

Quantum-inspired Genetic Algorithm

QGA [65] uses the idea of parallel universe in a genetic algorithm [60] to simulate
quantum computing. Depending on this parallel universe interpretation, there is a
population contained in each universe. All populations are governed by the same
rules, but a population of a universe can be affected by other universe.

Quantum-inspired Evolutionary Algorithm

This algorithm is based on quantum bit and “superposition of states”. QEA [65] was
originally inspired by quantum computing and takes important concepts of quantum
mechanics. It has been widely applied [11].

Quantum Swarm Evolutionary Algorithm

QSE [87] takes the concepts from both PSO [48] and QEA [65]. Similar to PSO
algorithm, in QSE the swarms are described using Q-bits. The main difference with
QEA is that QSE uses a representation of Q-bit and changes the probabilistic param-
eters. α and β are replaced with angular parameters sin θ and cos θ, where θ is the

24 CHAPTER 1. OPTIMIZATION

quantum angle.

Here, x and c are current location vector and current best or the center, respec-
tively. L is called imagination parameter or creativity of particle. A new location
vector is generated as follows:

x(t) = c± L

2
log

(
1

R

)
,

where, R ∈ [0, 1] is a random distributed variable. The parameter L is computed
using the following formula:

L = 2α|c− x(t)|.

Here, α is the creative coefficient and acts as main ingredient for convergence towards
the optima.

Universe theory

Algorithms reported are:

• Big Bang-big Crunch algorithm (BB-BC) [28]

• Galaxy-based search algorithm (GbSA) [93]

• Unified big bang-chaotic big crunch algorithm (UBB-CBC) [28]

Big Bang-big Crunch

Big bang-big crunch (BB-BC) algorithm is based on the expansion phenomenon of
Big Bang and shrinking phenomenon of Big Crunch [28].

BB-BC algorithm implements two stages: The first one is called “Big Bang
phase” and “Big Crunch phase” is the second one. During the first stage, a new
set of solutions is generated my using the center of mass. During Big Crunch phase,
the center of mass simulates a gravitational attractor like a black hole. Here, the
population is shrunk to the unique center of mass generated using the current

1.2. METAHEURISTICS 25

population distribution.

BB-BC algorithm does not fulfill the balance exploration-exploitation, i.e this
algorithm can move the new solutions into a local optimum. For example, when a
candidate with the best objective function value converges to an optima at the very
beginning of the algorithm, then all remaining solutions follow that the best solution
and get trapped into local optima. This happens because BB-BC algorithm initial-
izes a not uniformly distributed population.

When Chaotic Big Crunch phase is performed, the next position of each solution
is updated using the following formula:

xi = xc ±
α(t)(xbest − xworst)

t

where αt+1 = cf(α(t)), 0 < α(t) < 1, here cf(x) is a chaotic function which
provides a stepsize to shrink or stretch the population from center of mass xc at time
t.

Electromagnetism

Electromagnetism-like Heuristic

EM algorithm is inspired by the superposition principle of electromagnetism [10],
which states that “the force exerted on a point via other points is inversely propor-
tional to the distance between the points and directly proportional to the product of
their charges”. Here, points in search space are considered as particles and are gov-
erned by that principle.

EM algorithm supplies a good balance between exploration and exploitation since
its mechanism are useful. Exploration and convergence of EM are controlled by a
stochastic parameter. Exploitation is controlled by a vector whose components de-
note the allowed feasible values i.e. limits the movements of particles into the search
space delimited by the upper and lower bounds.

26 CHAPTER 1. OPTIMIZATION

Glass demagnetization

Hysteretic Optimization

HO algorithm is based on the demagnetization process of a magnetic piece [67].
A magnetic piece is transformed to a very stable state (low-energy) called “ground
state”, when it is demagnetized by an oscillating magnetic field with some properties.
After demagnetization, the system is shakedup many times to obtain better results.
HO is inspired on these two phases of magnetic piece for getting a stable state by
repeating demagnetization followed by a number of shakeups.

The exploration is performed by the demagnetization process. The exploitation
process is performed when a number of shakeup operations are made.

Electrostatics

Charged System Search

CSS algorithm is inspired from Coulomb’s law, Gauss’s law and superposition prin-
ciple from electrostatics [47]. Here, a solution is a charged particle.

The CSS algorithm has good exploring and exploiting capabilities of the search
space. Exploitation of charged particle is guarantee by the resulting electric force of
any particle. The repulsiveness and attractiveness of resulting force of any charged
particle with the new concept of a parameter is very effective for exploitation. How-
ever, whether charged particle is going to explore or exploit the search space depends
on two parameters which handle the exploitation-exploration balance. CSS algo-
rithm can ensure convergence towards better solutions with its exploration process.

CSS provides a high exploration at the beginning of the optimization process,
thus the algorithm does not suffer from premature convergence. However, since good
solution attracts others, if the initial set of charged particles are not uniformly dis-
tributed over search space, then the algorithm can converge into a local optima.

1.2. METAHEURISTICS 27

Other Inspirations
• Ray Optimization (RO) [46]

• Optics inspired optimization (OIO) [45]

• Ions Motion Optimization (IMO) [41]

• Galactic Swarm Optimization (GSO) [63]

• Electromagnetic field optimization (EFO) [1]

Figure 1.4: Physics-Inspired algorithms through time.

In summary, this kind of algorithms have been successful used for solving real-
world problems. Although, they are not as popular as the algorithms inspired from
Darwin’s natural evolution; physics-inspired algorithms can show good performance.
Figure 1.4 shows the evolution of physics-inspired algorithms. In the following sec-
tion Evolutionary Centers Algorithm is presented within the general framework in-
troduced so far.

28 CHAPTER 1. OPTIMIZATION

Chapter 2

Evolutionary Centers Algorithm

2.1 Introduction

EAs have provided successful results when solving complex bound-constrained opti-
mization problems [80]. However, most popular EAs usually are those which design
keeps simple and their number of parameters is low so as to facilitate the fine-tuning
process when a particular problem is solved.

Motivated by the above mentioned, we propose a physics-inspired algorithm
based on the center of mass concept on a D-dimensional space for real-parameter
single-objective optimization. The general idea is to promote the creation of an ir-
regular body using K mass points in the current population, then the center of mass
is calculated to get a new direction for the next population.

There are different algorithms based on biological or physical metaphors with
different characteristics. Some of them use the current population distribution to
generate new solutions, i.e., swarm intelligence algorithms such as particle swarm
optimization (PSO) [48], and the artificial bee colony (ABC) [44]. There are also al-
gorithms inspired by physical phenomena such as Newton’s Law of Universal Gravi-
tation (CFO) [11, 35]. The relationship among those algorithms is their mathematical
formulation for generating solutions through an iterative process:

xi+1 = xi + vi+1 (2.1)

29

30 CHAPTER 2. EVOLUTIONARY CENTERS ALGORITHM

where each algorithm updates vi+1 as follows:

• PSO:

vi+1 = ωvi + c1r1,i(xpbest,i − xi) + c2r2,i(xgbest,i − xi),

where ω is a inertia weight used for balancing the global search and local
search, xpbest,i and xgbest,i are the best position reached by solution i so far
and the best solution in the population, respectively; c1 and c2 are two positive
constants, r1,i, r2,i are random numbers with uniform distribution in the range
[0, 1].

• ABC:
vi+1 = φi(xi − xr),

where xi is the current solution, xr is a randomly chosen solution, φi is a
randomly produced number with uniform distribution in the interval [−1, 1].

• CFO:
vi+1 = ωvi + λF i/mi,

where vi is the current solution, λ is a uniformly distributed random number in
[0, 1], ω ∈ (0, 1) is user-defined weight, mi, Fi are mass and force functions,
respectively, both defined by the authors.

In the three previous cases, the v value depends of the population distribution at cur-
rent generation i.

The following Section 2.2 describes a preliminary version of our algorithm and
how it relates to what has been described above. Also, presents results of the pre-
liminary version.

2.2 Evolutionary Centers Algorithm: Preliminary Ver-
sion

In this section, a preliminary version of Evolutionary Centers Algorithm (ECAp) is
detailed. Also, experiments are presented.

2.2. EVOLUTIONARY CENTERS ALGORITHM: PRELIMINARY VERSION 31

2.2.1 Motivation
The center of mass is a geometric property of any object. Intuitively, it is the weighted
location of an object. We can fully describe the movement of any object through
space in terms of the rotation of the object about its center of mass if it is free to
rotate and the translation of the center of mass of the object from one place to an-
other. This is the motivation for using the center of mass concept, we translate the
population to places where the mass of the entire population is maximum.

We present ECAp details. First, we introduce the center of mass in physics terms
[50, 75].

Definition 2.2.1. The center of mass is the unique point c at the center of a distri-
bution of mass U = {u1, u2, . . . ,uK} in a space that has the property that the
weighted sum of position vectors relative to this point is zero. That is:

K∑
i=1

m(ui)(ui − c) = 0, implies c =
1

M

K∑
i=1

m(ui)ui, (2.2)

wherem(ui) is the mass of ui andM is the sum of the masses of vectors in U . Here,
m is a non-negative function.

Note 2.2.1. Similar as in Statistics, the center of mass is the mean location of a
distribution of mass in space.

The concept of center of mass is, by far, not new. It was introduced by the ancient
Greek physicist, mathematician, and engineer Archimedes of Syracuse. Archimedes
worked with some assumptions about gravity in a uniform field, so as to get the math-
ematical properties of what we now call the center of mass [50].

For this work, the following proposition is required for ensuring stability and
keep ECAp solutions into the convex space.

Proposition 2.2.1. If c is the center of mass of a system of particles U , then for all
u ∈ U :

d(c, u) ≤ diam(U).

Here, diam(U) := sup{d(u, v) | u, v ∈ U}.

32 CHAPTER 2. EVOLUTIONARY CENTERS ALGORITHM

In others words, the center of mass of U is never out of the minimum convex set that
contains U . We are assuming Euclidean distance and U ⊂ RD [86].

In this work, the objective function of the optimization problem represents the
mass of each solution in the population, i.e., we set f = m. Without loss of gener-
ality, we assume that we want to maximize the non-negative function f .

2.2.2 Algorithm Description

Figure 2.1: cm is center of mass, cg is geometric center of black points. Black point
radius is its mass. Note the bias given by the weighted sum.

For each solution xi in the population P = {x1,x2, . . . ,xN} of N solutions,
we select a subset U ⊂ P with K solutions; then, from U we obtain the center of
mass c. After that, based on a randomly chosen solution ur ∈ U , and the already
generated center of mass c, we generate a direction to locate a new solution hi. We
suggest using the following strategy:

hi = xi + ηi(ci − ur), (2.3)

where
ci =

1

W

∑
u∈U

f(u) · u, W =
∑
u∈U

f(u). (2.4)

Note 2.2.2. If f is constant, then the center of mass of U is the geometric center of
U . That is, assume that f(x) = α for every x ∈ RD, with α a positive constant. The

2.2. EVOLUTIONARY CENTERS ALGORITHM: PRELIMINARY VERSION 33

center of mass is:
ci =

1

Kα

∑
u∈U

α · u =
1

K

∑
u∈U

u. (2.5)

Thus, for a constant mass function, we have the center of mass converging to the
geometric center. In real world problems, functions can be flat in some regions, then
this algorithm may find some difficulties when dealing with such issue.

Note 2.2.3. The bias is given by Equation (2.4) because for a solution with the highest
mass, the position of the center of mass is nearest to its position, see Figure 2.1.

Algorithm 2 ECAp pseudocode (ECA: preliminary version)
1: procedure ECAp(K = 7, ηmax = 2)
2: N ← 2K ∗D
3: Generate and evaluate start population P with N elements
4: while the end criterion is not achieved do
5: A = ∅
6: for each x in P do
7: Generate U ⊂ P such that card(U) = K

8: Calculate c using U with (2.4)
9: η ← rand(0, ηmax)

10: h← x + η ∗ (c− u) where u ∈ U random
11: if f(x) < f(h) then
12: Append h in A
13: end if
14: end for
15: P ← best elements in P ∪ A
16: end while
17: Report best solution in P
18: end procedure

Note that ECAp has only two parameters: the number of neighbors K and the
stepsize ηmax. For large K values, ECAp could converge faster, we suggest K = 7

and ηmax = 2, values obtained experimentally. Figure 2.2 shows a representation of
ECAp solution update.

34 CHAPTER 2. EVOLUTIONARY CENTERS ALGORITHM

Figure 2.2: Schematic diagram representing a generation of ECAp. Gray points
represent elements in U .

2.2.3 Experiments

Algorithm 2 details the procedure for the implementation of ECAp. Such algorithm
was coded in C language using a PC with quad-core 2.4 GHz CPU and 8 GB of RAM
and it was tested in thirty functions of the CEC 2017 competition on real-parameter
single-objective optimization [3].

The algorithm developed in this this section was tested by solving the CEC17
benchmark. For this experimentation, D = 10 was considered. Here, the optimal
values for the test functions are known (see Appendix A where test functions are
shown). There is also a maximum number of evaluations equal to 10, 000D. The
parameters in all experiments were: K = 7, ηi is a uniform random number between
in (0, ηmax] with ηmax = 2. The size of the population was N = 2K ∗ D. Those
values were obtained experimentally such that provided good performance in a pre-
liminary empirical study.

ECAp was compared with jSO [15] (an efficient solution for the CEC17 bench-
mark) and SQP [12, 66] (representative algorithm for nonlinear optimization).

2.2. EVOLUTIONARY CENTERS ALGORITHM: PRELIMINARY VERSION 35

Table 2.1: Representative functions from CEC 2017 benchmark (all the test functions
are detailed in the Appendix A). This set of functions are shifted and rotated. The
search range is [−100, 100]D.
Function Formula

Bent Cigar Function f1(x) = x1 + 106

D∑
i=2

x2
i

Sum of Different Power
Function

f2(x) =
D∑
i=1

|xi|i+1

Zakharov Function f3(x) =
D∑
i=1

x2
i +

(
D∑
i=1

0.5xi

)2

+

(
D∑
i=1

0.5xi

)4

Rosenbrock’s Function f5(x) = 10D +
D∑
i=1

(x2
i − 10 cos(2πxi))

Rastrigin Function f5(x) = 10D +
D∑
i=1

(x2
i − 10 cos(2πxi))

High Conditioned Elliptic
Function

f11(x) =
D∑
i=1

(106)

i− 1

D − 1x2
i

Discus Function f12(x) = 106x2
1 +

D∑
i=2

x2
i

Griewank’s Function f15(x) =
D∑
i=1

x2
i

4000
−

D∏
i=1

cos

(
xi√
i

)
+ 1

2.2.4 Results

The statistical results obtained by ECAp are reported in Table 2.2. Wilcoxon rank-
sum test (α = 0.05) was computed [25]. In Table 2.3 “+” means that ECAp outper-
formed jSO/SQP in the function in the corresponding row, “-” means that jSO/SQP
outperformed ECAp, and “≈” means that no significant-difference was observed be-
tween algorithms. Note that SQP algorithm was outperformed by ECAp in 29 of 30
functions.

36 CHAPTER 2. EVOLUTIONARY CENTERS ALGORITHM

It is worth noting that ECAp obtained results close the optimum while report-
ing low standard deviation values. Therefore, ECAp behavior can be considered as
robust and suitable to deal with different type of search spaces. Furthermore, we
compared ECAp against a nonlinear optimization algorithm (SQP) [12, 66], and the
most competitive algorithm in the CEC 2017 competition on real-parameter single-
objective optimization (jSO), which is an adaptive algorithm based on differential
evolution. From Table 2.3, we can see that, ECAp, based on the 95%-confidence
Wilcoxon Rank-Sum test, was able to outperform jSO in five test functions, it reached
similar results in seven test problems, and finally ECAp was outperformed by jSO in
eighteen functions.

ECAp was then competitive in twelve test problems. Moreover, ECAp is more
simple to implement than jSO and requires less mechanisms to operate. Note that
ECAp outperformed SQP most of the time.

Figure 2.3 shows ECAp convergence graphs. Those plots show that ECAp is able
to converge fast in most cases, which can be suitable for computationally-expensive
real-world optimization problems.

2.2.5 Conclusions of ECAp
A new meta-heuristic optimization algorithm, denoted as Evolutionary Centers Al-
gorithm (preliminary version), inspired by the center of mass of a system of particles
was proposed. The results showed the capability of ECAp to consistently reach the
vicinity of the global optima in different types of search spaces. ECAp also provided
a competitive, but still not better, performance against the winner of the CEC 2017
competition on real-parameter single-objective optimization. ECAp is a simple al-
gorithm which requires the fine-tuning of just two parameters, besides the population
size.

Next section presents some improvements of ECAp. Also a release version is
given.

2.2. EVOLUTIONARY CENTERS ALGORITHM: PRELIMINARY VERSION 37

Iteration

Lo
g
 e

rr
o
r

f1

Iteration

Lo
g
 e

rr
o
r

f2

Iteration

Lo
g
 e

rr
o
r

f3

Iteration

Lo
g
 e

rr
o
r

f4

Iteration

Lo
g
 e

rr
o
r

f5

Iteration

Lo
g
 e

rr
o
r

f6

Iteration

Lo
g
 e

rr
o
r

f7

Iteration

Lo
g
 e

rr
o
r

f8

Iteration

Lo
g
 e

rr
o
r

f9

Iteration

Lo
g
 e

rr
o
r

f10

Iteration

Lo
g
 e

rr
o
r

f11

Iteration

Lo
g
 e

rr
o
r

f12

Iteration

Lo
g
 e

rr
o
r

f13

Iteration

Lo
g
 e

rr
o
r

f14

Iteration

Lo
g
 e

rr
o
r

f15

Iteration

Lo
g
 e

rr
o
r

f16

Iteration

Lo
g
 e

rr
o
r

f17

Iteration

Lo
g
 e

rr
o
r

f18

Iteration

Lo
g
 e

rr
o
r

f19

Iteration

Lo
g
 e

rr
o
r

f20

Iteration

Lo
g
 e

rr
o
r

f21

Iteration

Lo
g
 e

rr
o
r

f22

Iteration

Lo
g
 e

rr
o
r

f23

Iteration

Lo
g
 e

rr
o
r

f24

Iteration
Lo

g
 e

rr
o
r

f25

Iteration

Lo
g
 e

rr
o
r

f26

Iteration

Lo
g
 e

rr
o
r

f27

Iteration

Lo
g
 e

rr
o
r

f28

Iteration

Lo
g
 e

rr
o
r

f29

Iteration

Lo
g
 e

rr
o
r

f30

Figure 2.3: Convergence graphs at the run located in the median of 51 independen-
truns. Log scale is used for visualization purposes.

38 CHAPTER 2. EVOLUTIONARY CENTERS ALGORITHM

f Best Worst Median Mean Std.

f1 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

f2 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

f3 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

f4 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

f5 9.94967E–01 1.54772E+01 7.95967E+00 7.93134E+00 3.77745E+00

f6 4.74662E–07 1.87951E–03 1.87537E–05 7.68970E–05 2.64095E–04

f7 1.11988E+01 2.87323E+01 1.82470E+01 1.79819E+01 4.13487E+00

f8 0.00000E+00 1.39919E+01 3.97988E+00 5.20411E+00 3.44675E+00

f9 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

f10 2.48759E+01 1.08470E+03 7.38475E+02 7.15419E+02 1.72816E+02

f11 0.00000E+00 6.57982E+00 9.94986E–01 1.40699E+00 1.58245E+00

f12 0.00000E+00 2.55756E+02 1.14822E+02 7.23057E+01 6.74642E+01

f13 0.00000E+00 1.36689E+01 2.44396E+00 3.57464E+00 3.36532E+00

f14 0.00000E+00 9.86504E+00 9.94959E–01 1.62895E+00 2.14527E+00

f15 4.70850E–03 3.29460E+00 1.13397E+00 1.03424E+00 7.22193E–01

f16 3.90059E–01 2.42227E+01 2.14109E+00 3.42342E+00 3.81635E+00

f17 6.04248E+00 4.77547E+01 3.68447E+01 3.65033E+01 6.29621E+00

f18 1.91438E–02 2.54001E+00 4.26493E–01 5.91709E–01 5.31956E–01

f19 3.15884E–02 1.56140E+00 2.90525E–01 5.22549E–01 4.57284E–01

f20 1.30976E+00 4.53821E+01 2.69242E+01 2.45399E+01 9.82172E+00

f21 1.00000E+02 2.04138E+02 1.00000E+02 1.02042E+02 1.44386E+01

f22 0.00000E+00 1.01678E+02 1.15631E+01 4.87450E+01 4.90438E+01

f23 3.43302E–08 3.20754E+02 3.09754E+02 3.03630E+02 4.32143E+01

f24 1.98982E–07 3.31138E+02 1.00000E+02 1.11616E+02 5.65212E+01

f25 3.97743E+02 4.43546E+02 3.98009E+02 3.99730E+02 8.83947E+00

f26 3.00000E+02 3.00000E+02 3.00000E+02 3.00000E+02 0.00000E+00

f27 3.88861E+02 3.97791E+02 3.93436E+02 3.92839E+02 1.83721E+00

f28 3.00000E+02 3.00000E+02 3.00000E+02 3.00000E+02 0.00000E+00

f29 2.31919E+02 2.87909E+02 2.57749E+02 2.57882E+02 9.95923E+00

f30 3.94649E+02 4.08051E+02 3.95237E+02 3.98513E+02 5.55498E+00

Table 2.2: ECAp results of 51 independent runs on CEC17 problems for D = 10.

2.2. EVOLUTIONARY CENTERS ALGORITHM: PRELIMINARY VERSION 39

f ECAp jSO SQP

f1 0.00000E+00 ≈ 0.00000E+00 3.220300E−04 +

f2 0.00000E+00 ≈ 0.00000E+00 6.065700E+20 +

f3 0.00000E+00 ≈ 0.00000E+00 0.000000E+00 ≈

f4 0.00000E+00 ≈ 0.00000E+00 6.253000E−01 +

f5 7.93134E+00 – 1.67777E+00 2.685479E+02 +

f6 7.68970E–05 – 0.00000E+00 9.300540E+01 +

f7 1.79819E+01 – 1.20817E+01 5.279684E+02 +

f8 5.20411E+00 – 1.91188E+00 1.641353E+02 +

f9 0.00000E+00 ≈ 0.00000E+00 4.765000E+03 +

f10 7.15419E+02 – 3.83851E+01 1.582000E+03 +

f11 1.40699E+00 – 0.00000E+00 8.694410E+01 +

f12 7.23057E+01 – 3.55067E–01 5.889026E+02 +

f13 3.57464E+00 ≈ 2.68638E+00 2.617198E+02 +

f14 1.62895E+00 – 1.36563E–01 1.054084E+02 +

f15 1.03424E+00 – 3.00324E–01 9.494020E+01 +

f16 3.42342E+00 – 5.49544E–01 6.348346E+02 +

f17 3.65033E+01 – 5.25569E–01 8.089248E+02 +

f18 5.91709E–01 – 2.17729E–01 1.050214E+02 +

f19 5.22549E–01 – 7.72037E–03 8.497336E+02 +

f20 2.45399E+01 – 3.36657E–01 5.496386E+02 +

f21 1.02042E+02 + 1.42465E+02 3.480549E+02 +

f22 4.87450E+01 + 1.00000E+02 1.470100E+03 +

f23 3.03630E+02 – 3.01261E+02 6.704390E+02 +

f24 1.11616E+02 + 2.96919E+02 4.196612E+02 +

f25 3.99730E+02 + 4.12195E+02 4.360669E+02 +

f26 3.00000E+02 ≈ 3.00000E+02 1.591800E+03 +

f27 3.92839E+02 – 3.89468E+02 4.350638E+02 +

f28 3.00000E+02 + 3.40596E+02 4.037759E+02 +

f29 2.57882E+02 – 2.34365E+02 2.005400E+03 +

f30 3.98513E+02 – 3.94521E+02 3.957100E+08 +

Mean 116.9022 99.03207 2.021900E+19

Table 2.3: Comparison of error results at mean between ECAp, jSO and SQP in
D = 10 CEC 2017 test problems.

40 CHAPTER 2. EVOLUTIONARY CENTERS ALGORITHM

2.3 Evolutionary Centers Algorithm: Release Version
As mentioned in the previous Section, ECAp is based on the center of mass defini-
tion, which is adopted for creating new directions and generate a bias in the popula-
tion, and such bias is based on the objective function values of the solutions in the
population.

For ECAp, the objective function value of a given solution represents its mass,
then each solution in the population has a mass value associated, i.e., we set f(x) =

m(x) for all RD. Without loss of generality, it is assumed the maximization of a
non-negative function f . This approach (ECA) uses this name since the population
changes over time and therefore each center of mass will evolve over time. As de-
scribed, ECAp is improved. Thus, next sections detail some improvements for ECAp.

2.3.1 Variation Operator

For each solution xi in the population P = {x1, x2, . . . , xN} of N solutions, we
generate Ui ⊂ P with K different solutions such that

N⋃
i=1

Ui = P.

Next, from Ui the center of mass ci is computed by using the Equation 2.2. After
that, the worst element uworst in Ui is selected according to the following rule:

uworst ∈ arg min{f(u) : u ∈ Ui}.

Now, we are able to generate a direction to locate a new solution yi using the already
generated center of mass ci, xi and uworst.

yi = xi + ηi(ci − uworst).

It is necessary to improve the exploration process to avoid premature conver-
gence. A binomial crossover is considered (see Section 2.3.2). As mentioned in
Section 2.2, ECA provides a fast convergence. Thus we can take advantage of it

2.3. EVOLUTIONARY CENTERS ALGORITHM: RELEASE VERSION 41

to exploit the vicinity near the best solution found using the last objective function
evaluations. That is, generating a new solution with Equation 2.6:

yi =

{
xi + ηi(ci − uworst) if Pevals < Pexploit

xi + ηi(xbest − ci) otherwise
(2.6)

where, Pevals is the evaluation ratio (current number of function evaluation / max.
number of function evaluations), Pexploit is the last percentage of evaluations used for
an exploitation process and xbest is the best element ever found. Finally, if hi is better
than xi, then the worst element in P is replaced by h.

2.3.2 Binomial Crossover
Let us start the discussion by defining the binomial crossover.

Definition 2.3.1. (Binomial Crossover) The binomial crossover is defined forx, y ∈
RD as follows:

h =

{
xj r < Pbin

yj otherwise
(2.7)

where Pbin ∈ [0, 1] and r is a real random number uniform in the range [0, 1] and
j = 1, . . . , D.

To improve ECAp using this concept, suppose yi is generated using Equation
2.6, the new solution can be hi with coordinates:

hi,j =

{
yi,j if rand() < Pbin

ubest,j otherwise
(2.8)

for j = 1, 2, . . . , D.

Why binomial crossover? Suppose ECA is solving an optimization problem
without binomial crossover for optimizing a function f : RD → R and the entire
population is contained in a plain V ⊂ RD such that 0 ∈ V . This plain V is a vector
subspace of RD, i.e. any linear combination of vectors is in V when vectors are in
V .

42 CHAPTER 2. EVOLUTIONARY CENTERS ALGORITHM

Figure 2.4: Binomial crossover representations.

Now, let T : V 3 → V be a linear transformation defined as

T (x, c, u) = x + η(c− u) where x, c, u ∈ V.

Assume, xbest = x∗ such that xbest is not in V . Here, ECA can not reach xbest

because ECA only generate solution in V (see Figure 2.4). Although, ECA without
crossover can not generate solutions outside V , using binomial crossover with a low
probability allows ECA to scape from a planar configuration.

The next section describes a self-adaptive crossover, since binomial crossover
can be useful but it is necessary to establish a suitable value for Pbin.

2.3.3 Self-adaptive crossover
This section presents a self-adaptive strategy to handle the binomial crossover for
ECA.

Definition 2.3.2. (Generalized Binomial Crossover) The generalized binomial crossover
is defined for x, y ∈ RD as follows: for j = 1, 2, . . . , D, a new solutions h (gener-
ated via generalized binomial crossover) has coordinates:

hj =

{
xj r < P j

bin

yj otherwise
(2.9)

2.3. EVOLUTIONARY CENTERS ALGORITHM: RELEASE VERSION 43

where each P j
bin ∈ [0, 1] and r is a real random number uniform distributed in the

range [0, 1].

Note that, in generalized binomial crossover the vector variables can change with
different probability. That can be profitable when some vector variables are indepen-
dent each other.

The self-adaptation of parameter P j
bin is based on its previous value. Let us de-

scribe this mechanism when ECA is performed.

1. Initialize population P .

2. Initialize P j
bin ∈ [0, 1] uniformly at random, for j = 1, . . . , D.

3. For each xi ∈ P , generate yi using Equation 2.6.

4. Compute hi using xi, yi and Equation 2.9.

5. Calculate the frequency for all coordinate j where the generalized binomial
crossover was applied (r < P j

bin) and hi is not better that xi.

6. Estimate the empirical probabilities P j
e relative the frequency

7. For j = 1, . . . , D, update P j
bin using the Equation 2.10.

P j
bin =

{
P j

bin P j
e < 0.3

z otherwise
, with z ∼ N(µ, σ2). (2.10)

where µ = P best
bin , σ = 0.3 and P best

bin = minj P
j
e . Algorithm 2 describes ECA.

Optionally, a linear reduction of the population (deleting the worst elements) can
be applied. The initial population size isN(0) = 2K∗D and the final population size
N(T) = 2∗K (for successfully generating the center of mass). Thus, the population
size over time is:

N(t) = 2KD − (2KD − 2K)t

T
(2.11)

= 2K

(
D − (D − 1)t

T

)
,

44 CHAPTER 2. EVOLUTIONARY CENTERS ALGORITHM

where t = 0, 1, 2, . . . , T and T is the maximum number of iterations.

Algorithm 3 is the general pseudocode of ECA.

Algorithm 3 ECA pseudocode
1: procedure ECA(K = 7, ηmax = 2, Pexploit = 0.95)
2: N ← 2K ∗D
3: Generate and evaluate initial population P with N elements
4: Initialize P 1

bin, . . . , P
D
bin

5: while the end criterion is not achieved do
6: for each x in P do
7: Generate a subset U ⊂ P such that card(U) = K

8: Calculate c using U with (2.4)
9: η ← rand(0, ηmax)

10: Calculate h using Eq. (2.8)
11: if f(x) < f(h) then
12: Replace worst element in P with h

13: end if
14: end for
15: Update all P j

bin.
16: Resize P if necessary.
17: end while
18: Report best solution in P
19: end procedure

2.4 Empirical Study

Algorithm 3 was coded in Julia language using a PC with quad-core 2.4 GHz CPU
and 8 GB of RAM. We tested ECA on the CEC 2017 benchmark [3]. The dimen-
sions considered in this experimentations are D = 10, 30. The optimal values are
known for all test functions. The maximum number of objective function evaluations
is 10, 000D.

2.4. EMPIRICAL STUDY 45

The parameters in ECA with the best performance in a preliminary empirical
study were K = 7, ηmax = 2 and Pexploit = 0.95. The statistical results are detailed
in Tables 2.6 and 2.7 for each dimension. In those tables, error values |f(x) − f ∗|
are presented. The error values between the best objective function values found in
each run out of 31 independent runs. The best, median, mean, worst, and standard
deviation of the error values are given in each respective column in the tables.

After that, we compare the performance of ECA against three recent represen-
tative algorithms: jSO (evolutionary algorithm), CMA-ES (evolution strategy) and
CGSA (physics-inspired algorithm). Summarized results of the statistical test are in
Tables 2.4 and 2.5 for D = 10 and D = 30, respectively. 95%-confidence Wilcoxon
Rank-Sum test was used.

jSO CMA-ES CGSA
“+” 8 25 27
“≈” 11 5 1
“−” 11 0 2

Table 2.4: Results of comparison for D = 10.

jSO CMA-ES CGSA
“+” 17 29 28
“≈” 3 1 1
“−” 10 0 1

Table 2.5: Results of comparison for D = 30.

46 CHAPTER 2. EVOLUTIONARY CENTERS ALGORITHM

fn Best Median Mean Worst std

1 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

2 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

3 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

4 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

5 1.9899e+00 3.9798e+00 4.5255e+00 9.9496e+00 2.1159e+00

6 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

7 1.0729e+01 1.3257e+01 1.4060e+01 2.0938e+01 2.6503e+00

8 0.0000e+00 2.9849e+00 3.7873e+00 1.0945e+01 2.2457e+00

9 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

10 3.1227e-01 1.3368e+02 1.7893e+02 7.0640e+02 1.8006e+02

11 0.0000e+00 0.0000e+00 1.6048e-01 9.9496e-01 3.7199e-01

12 0.0000e+00 1.1381e+01 5.9787e+01 1.3486e+02 6.1880e+01

13 0.0000e+00 4.8371e+00 3.6322e+00 1.0705e+01 2.7258e+00

14 0.0000e+00 9.9496e-01 1.0529e+00 3.9798e+00 1.0521e+00

15 3.9249e-05 4.2573e-01 3.1989e+01 9.7743e+02 1.7547e+02

16 1.9432e-02 2.4585e-01 3.6355e-01 1.1034e+00 2.5660e-01

17 1.2174e-01 1.9518e+00 8.2085e+00 3.4509e+01 1.1037e+01

18 1.7212e-06 3.8349e-01 4.2395e-01 1.4341e+00 3.5770e-01

19 0.0000e+00 1.9729e-02 7.3706e-02 1.0341e+00 1.8309e-01

20 0.0000e+00 6.2435e-01 4.6841e+00 1.0797e+02 1.9402e+01

21 1.0000e+02 1.0000e+02 1.4780e+02 2.0984e+02 5.3562e+01

22 1.6350e+01 1.0000e+02 9.7378e+01 1.0064e+02 1.5039e+01

23 3.0000e+02 3.0585e+02 3.0549e+02 3.1300e+02 3.4501e+00

24 0.0000e+00 3.3334e+02 3.0839e+02 3.4176e+02 8.1875e+01

25 3.9774e+02 3.9958e+02 4.1873e+02 4.4585e+02 2.3100e+01

26 3.0000e+02 3.0000e+02 3.0000e+02 3.0000e+02 0.0000e+00

27 3.8692e+02 3.9382e+02 3.9314e+02 3.9815e+02 2.4019e+00

28 3.0000e+02 3.0000e+02 3.2927e+02 6.1182e+02 9.0998e+01

29 2.3127e+02 2.3790e+02 2.3973e+02 2.5269e+02 5.8143e+00

30 3.9450e+02 3.9475e+02 2.6762e+04 8.1758e+05 1.4677e+05

Table 2.6: Results of 31 independent runs of ECA on CEC17 problems for D = 10.

2.4. EMPIRICAL STUDY 47

fn Best Median Mean Worst std

1 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

2 0.0000e+00 0.0000e+00 7.4324e-06 2.2130e-04 3.9719e-05

3 5.9014e-04 2.8640e-01 4.6026e+00 3.4171e+01 8.4360e+00

4 1.1017e-03 4.0578e+00 3.0135e+01 6.7897e+01 3.0162e+01

5 8.9546e+00 2.2884e+01 2.3815e+01 4.2783e+01 6.9833e+00

6 0.0000e+00 0.0000e+00 3.2192e-06 5.8124e-05 1.0734e-05

7 3.8549e+01 4.8880e+01 4.8074e+01 6.5107e+01 5.6393e+00

8 8.9546e+00 1.9899e+01 2.0445e+01 3.5818e+01 6.0294e+00

9 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

10 1.4760e+03 2.7036e+03 2.6634e+03 3.8467e+03 6.6384e+02

11 2.9849e+00 9.9496e+00 1.1469e+01 6.7939e+01 1.1195e+01

12 5.1373e+02 4.5552e+03 4.7011e+03 9.3850e+03 2.3913e+03

13 1.9619e+01 4.9515e+01 2.1511e+02 2.8108e+03 5.3228e+02

14 5.1385e+00 2.9391e+01 2.6437e+01 4.2577e+01 9.5370e+00

15 1.3379e+00 6.2463e+00 6.7772e+00 1.5993e+01 3.6803e+00

16 1.3627e+01 2.4183e+02 2.3558e+02 5.0178e+02 1.3612e+02

17 1.1459e+01 3.8681e+01 3.9928e+01 7.2637e+01 1.4051e+01

18 2.3018e+01 2.9299e+01 3.1869e+01 6.0968e+01 8.5271e+00

19 3.3277e+00 7.2680e+00 7.4862e+00 1.1759e+01 2.2081e+00

20 4.1907e+00 3.6551e+01 4.7707e+01 1.8685e+02 4.1628e+01

21 2.0793e+02 2.2214e+02 2.2103e+02 2.4113e+02 7.0141e+00

22 1.0000e+02 1.0000e+02 1.0000e+02 1.0000e+02 1.5498e-13

23 3.5356e+02 3.6843e+02 3.6905e+02 3.9151e+02 9.1451e+00

24 4.2665e+02 4.3813e+02 4.4120e+02 4.5736e+02 8.5273e+00

25 3.8670e+02 3.8690e+02 3.8690e+02 3.8714e+02 1.0768e-01

26 9.6620e+02 1.1359e+03 1.1387e+03 1.3212e+03 8.5575e+01

27 4.9484e+02 5.0613e+02 5.0600e+02 5.1677e+02 5.0949e+00

28 3.0000e+02 3.0000e+02 3.1666e+02 4.0329e+02 3.8616e+01

29 4.1191e+02 4.4819e+02 4.4993e+02 5.1759e+02 2.1281e+01

30 2.0491e+03 2.2882e+03 2.4074e+03 3.7279e+03 4.0395e+02

Table 2.7: Results of 31 independent runs of ECA on CEC17 problems for D = 30.

48 CHAPTER 2. EVOLUTIONARY CENTERS ALGORITHM

fn ECA jSO CMA-ES CGSA

1 0.0000e+00 0.0000e+00 ≈ 2.4348e+08 ≈ 1.3181e+07 +

2 0.0000e+00 0.0000e+00 ≈ 1.0527e+02 ≈ 1.9381e-05 +

3 0.0000e+00 0.0000e+00 ≈ 0.0000e+00 ≈ 1.1253e-06 +

4 0.0000e+00 2.7712e-01 + 0.0000e+00 ≈ 5.7446e+01 +

5 4.5255e+00 8.8980e+00 + 2.3393e+01 + 2.6222e+01 +

6 0.0000e+00 0.0000e+00 ≈ 6.1227e+00 + 5.1515e-01 +

7 1.4060e+01 2.0989e+01 + 2.1957e+01 + 1.6590e+01 +

8 3.7873e+00 8.9524e+00 + 1.1394e+01 + 1.5791e+01 +

9 0.0000e+00 0.0000e+00 ≈ 6.8353e+00 + 1.2937e-07 +

10 1.7893e+02 6.6419e+02 + 1.1114e+03 + 1.3222e+03 +

11 1.6048e-01 9.8559e-05 ≈ 5.5887e+01 + 3.5320e+01 +

12 5.9787e+01 2.4972e-01 − 2.0442e+06 + 7.4507e+03 +

13 3.6322e+00 4.6841e-01 − 3.5502e+02 + 7.4119e+03 +

14 1.0529e+00 6.4191e-02 − 1.2461e+02 + 3.6500e+03 +

15 3.1989e+01 1.7697e-01 − 1.1296e+02 + 2.5960e+03 +

16 3.6355e-01 7.2302e-01 + 2.3617e+02 + 4.5268e+02 +

17 8.2085e+00 1.1581e+01 + 6.9682e+01 + 1.6157e+02 +

18 4.2395e-01 2.6222e-01 − 2.1084e+05 + 1.9343e+05 +

19 7.3706e-02 1.0853e-02 − 9.5611e+02 + 3.7784e+03 +

20 4.6841e+00 2.9050e-01 − 1.2307e+02 + 2.2855e+02 +

21 1.4780e+02 1.1406e+02 − 1.7544e+02 + 2.2379e+02 +

22 9.7378e+01 1.0000e+02 ≈ 1.0031e+02 + 1.1825e+02 +

23 3.0549e+02 3.0044e+02 − 3.7762e+02 + 4.0944e+02 +

24 3.0839e+02 1.6125e+02 − 3.1685e+02 ≈ 2.3491e+02 ≈

25 4.1873e+02 3.9929e+02 − 4.3569e+02 + 4.3724e+02 +

26 3.0000e+02 3.0000e+02 ≈ 3.4781e+02 + 2.3549e+02 −

27 3.9314e+02 3.9382e+02 ≈ 4.2220e+02 + 4.9873e+02 +

28 3.2927e+02 3.0000e+02 ≈ 5.4430e+02 + 6.3503e+02 +

29 2.3973e+02 2.4557e+02 + 3.6578e+02 + 4.0740e+02 +

30 2.6762e+04 3.9671e+02 ≈ 7.1739e+05 + 6.4058e+03 −

Table 2.8: Comparison of results between ECA, jSO, CMA-ES and CGSA inD = 10

CEC 2017 test problems.

2.4. EMPIRICAL STUDY 49

fn ECA jSO CMA-ES CGSA

1 0.0000e+00 0.0000e+00 ≈ 4.7213e+09 ≈ 2.4301e+03 +

2 7.4324e-06 0.0000e+00 − 1.7176e+39 + 2.3449e+42 +

3 4.6026e+00 0.0000e+00 − 3.7971e+03 + 1.5727e-04 −

4 3.0135e+01 5.8509e+01 + 3.8031e+03 + 4.0259e+02 +

5 2.3815e+01 1.1035e+02 + 2.2655e+02 + 1.5178e+02 +

6 3.2192e-06 0.0000e+00 − 5.5748e+01 + 1.3647e+01 +

7 4.8074e+01 1.5046e+02 + 9.0464e+01 + 5.5260e+01 +

8 2.0445e+01 1.1282e+02 + 1.1130e+02 + 1.0948e+02 +

9 0.0000e+00 0.0000e+00 ≈ 1.8762e+03 + 3.4286e-06 +

10 2.6634e+03 5.9442e+03 + 4.9945e+03 + 3.2854e+03 +

11 1.1469e+01 1.7845e+01 + 2.6729e+03 + 1.6805e+02 +

12 4.7011e+03 4.6925e+02 − 2.6107e+09 + 1.7286e+07 +

13 2.1511e+02 4.6606e+01 ≈ 7.9236e+08 + 1.4608e+04 +

14 2.6437e+01 4.2698e+01 + 1.8592e+05 + 2.7151e+03 +

15 6.7772e+00 1.3490e+01 + 4.6134e+06 + 1.4326e+03 +

16 2.3558e+02 7.7689e+02 + 2.1963e+03 + 1.7109e+03 +

17 3.9928e+01 1.4474e+02 + 8.6677e+02 + 9.9596e+02 +

18 3.1869e+01 2.4420e+01 − 3.9128e+06 + 3.8069e+04 +

19 7.4862e+00 1.5831e+01 + 9.6085e+06 + 3.4305e+03 +

20 4.7707e+01 1.4568e+02 + 5.6785e+02 + 9.4309e+02 +

21 2.2103e+02 3.0305e+02 + 5.3913e+02 + 3.2436e+02 +

22 1.0000e+02 1.0000e+02 − 6.5648e+02 + 8.2481e+02 +

23 3.6905e+02 4.3656e+02 + 8.9144e+02 + 8.2813e+02 +

24 4.4120e+02 4.9628e+02 + 9.4080e+02 + 6.3770e+02 +

25 3.8690e+02 3.8672e+02 − 7.5352e+02 + 3.8961e+02 +

26 1.1387e+03 1.4247e+03 + 5.9769e+03 + 1.0957e+03 ≈

27 5.0600e+02 4.8565e+02 − 1.0240e+03 + 8.1208e+02 +

28 3.1666e+02 3.0000e+02 − 1.3230e+03 + 3.2042e+02 +

29 4.4993e+02 6.2118e+02 + 1.5870e+03 + 1.2617e+03 +

30 2.4074e+03 2.0486e+03 − 1.2426e+08 + 7.1514e+03 +

Table 2.9: Comparison of results between ECA, jSO, CMA-ES and CGSA inD = 30

CEC 2017 test problems.

50 CHAPTER 2. EVOLUTIONARY CENTERS ALGORITHM

Iteration

Lo
g
 e

rr
o
r

f1

Iteration

Lo
g
 e

rr
o
r

f2

Iteration

Lo
g
 e

rr
o
r

f3

Iteration

Lo
g
 e

rr
o
r

f4

Iteration

Lo
g
 e

rr
o
r

f5

Iteration

Lo
g
 e

rr
o
r

f6

Iteration

Lo
g
 e

rr
o
r

f7

Iteration

Lo
g
 e

rr
o
r

f8

Iteration

Lo
g
 e

rr
o
r

f9

Iteration

Lo
g
 e

rr
o
r

f10

Iteration

Lo
g
 e

rr
o
r

f11

Iteration

Lo
g
 e

rr
o
r

f12

Iteration

Lo
g
 e

rr
o
r

f13

Iteration

Lo
g
 e

rr
o
r

f14

Iteration

Lo
g
 e

rr
o
r

f15

Iteration

Lo
g
 e

rr
o
r

f16

Iteration

Lo
g
 e

rr
o
r

f17

Iteration

Lo
g
 e

rr
o
r

f18

Iteration

Lo
g
 e

rr
o
r

f19

Iteration
Lo

g
 e

rr
o
r

f20

Iteration

Lo
g
 e

rr
o
r

f21

Iteration

Lo
g
 e

rr
o
r

f22

Iteration

Lo
g
 e

rr
o
r

f23

Iteration

Lo
g
 e

rr
o
r

f24

Iteration

Lo
g
 e

rr
o
r

f25

Iteration

Lo
g
 e

rr
o
r

f26

Iteration

Lo
g
 e

rr
o
r

f27

Iteration

Lo
g
 e

rr
o
r

f28

Iteration

Lo
g
 e

rr
o
r

f29

Iteration

Lo
g
 e

rr
o
r

f30

Figure 2.5: Convergence graph of ECA (solid line) and jSO (dotted line) forD = 10.

2.4. EMPIRICAL STUDY 51

Iteration

Lo
g
 e

rr
o
r

f1

Iteration

Lo
g
 e

rr
o
r

f2

Iteration

Lo
g
 e

rr
o
r

f3

Iteration

Lo
g
 e

rr
o
r

f4

Iteration

Lo
g
 e

rr
o
r

f5

Iteration

Lo
g
 e

rr
o
r

f6

Iteration

Lo
g
 e

rr
o
r

f7

Iteration

Lo
g
 e

rr
o
r

f8

Iteration

Lo
g
 e

rr
o
r

f9

Iteration

Lo
g
 e

rr
o
r

f10

Iteration

Lo
g
 e

rr
o
r

f11

Iteration

Lo
g
 e

rr
o
r

f12

Iteration

Lo
g
 e

rr
o
r

f13

Iteration
Lo

g
 e

rr
o
r

f14

Iteration

Lo
g
 e

rr
o
r

f15

Iteration

Lo
g
 e

rr
o
r

f16

Iteration

Lo
g
 e

rr
o
r

f17

Iteration

Lo
g
 e

rr
o
r

f18

Iteration

Lo
g
 e

rr
o
r

f19

Iteration
Lo

g
 e

rr
o
r

f20

Iteration

Lo
g
 e

rr
o
r

f21

Iteration

Lo
g
 e

rr
o
r

f22

Iteration

Lo
g
 e

rr
o
r

f23

Iteration

Lo
g
 e

rr
o
r

f24

Iteration

Lo
g
 e

rr
o
r

f25

Iteration

Lo
g
 e

rr
o
r

f26

Iteration

Lo
g
 e

rr
o
r

f27

Iteration

Lo
g
 e

rr
o
r

f28

Iteration

Lo
g
 e

rr
o
r

f29

Iteration

Lo
g
 e

rr
o
r

f30

Figure 2.6: Convergence graph of ECA (solid line) and jSO (dotted line) D = 30.

52 CHAPTER 2. EVOLUTIONARY CENTERS ALGORITHM

2.4.1 Discussion
According to the results of Tables 2.8 and 2.9, ECA is able to provide very com-
petitive results. For D = 10, our approach outperforms all others in f4, f5, f7, f8,
f10, f16, f17 and f29. For D = 30, ECA outperforms all others 17 test functions. It
may be noted that the unimodal functions f1, . . . , f3 are suitable for benchmarking
exploitation when D = 10, 30. Therefore, these results show good performance of
ECA in terms of exploration and exploitation the optimum value. This is due to the
proposed exploration and exploitation operators previously discussed.

Moreover, ECA is able to provide very competitive results most of the time, since
our approach outperforms CMA-ES and GSA. Moreover, ECA shows very compet-
itive results compared to jSO and outperforms it occasionally when D = 10 and
jSO was outperformed most of time when D = 30. These results verify the per-
formance of ECA in solving various benchmark functions compared to well-known
metaheuristics.

Figures 2.5 and 2.6 show ECA and jSO convergence graphs. Those plots show
that ECA is able to converge fast in most cases, which can be suitable for computationally-
expensive real-world optimization problems.

2.4.2 Conclusion
This Chapter detailed a novel physics-inspired metaheuristic based on center of mass.
Thirty test functions of a recent benchmark were employed in order to analyze the
performance of the proposed algorithm in terms of precision, objective function eval-
uations and convergence.

Moreover, the results showed that ECA was able to provide highly competitive
results compared to representative metaheuristics such as jSO, CMA-ES and CGSA.
First, the results on the unimodal functions showed a good balance exploration-
exploitation of the ECA algorithm, since the exploration ability of ECA was con-
firmed by the results.

Chapter 3

Optimal Synthesis of Mechanisms
with ECA

Metaheuristics have been successfully used for solving real-word problems [33].
This kind of algorithms are highly competitive against Mathematical Programming
when problems are highly non-linear and/or non-differentiable functions, large num-
ber of variables, among others [40]. Most recent and important Metaheuristics can
be divided in three groups: Swarm Programming, Evolutionary Algorithms (EAs)
and Physics-inspired Algorithms [11, 33, 43, 79].

In this Chapter, numerical constrained optimization problems (COP) are consid-
ered as defined in Definition 1.1.6.

Section 3.1 explains the general synthesis of a four-bar mechanism and three
representative study cases on this topic. Section 3.2 presents the coupled dynamics
of the four-bar mechanism with DC motor. Finally, the conclusions are given in
Section 3.3.

3.1 Synthesis of Four-Bar Mechanisms
This section is based on the work of Hernández-Ocaña et al [39]. Four-bar mech-
anisms are formed by a references bar, input bar (crank), a coupler and a out bar
(rocker). The simplicity of four-bar mechanisms (FBM) is convenient for a large

53

54 CHAPTER 3. OPTIMAL SYNTHESIS OF MECHANISMS WITH ECA

Figure 3.1: Four-Bar mechanism diagram.

number of industrial applications [64, 57, 84]. In fact, the kinematics of this kind of
planar mechanisms has been extensively studied. A good idea it is transform from
planar coordinates to polar coordinates, i.e.

rk = rk(cos(θk) + i sin(θk)) for k = 1, 2, 3, 4. (3.1)

3.1.1 Kinematics of The Mechanism

To analyze the mechanism position, the closed loop equation can be established as
follows:

r1 + r4 = r2 + r3. (3.2)

3.1. SYNTHESIS OF FOUR-BAR MECHANISMS 55

From Equations (3.1) and (3.2) we obtain the following system:{
r1 cos θ1 + r4 cos θ4 = r2 cos θ2 + r3 cos θ3

r1 sin θ1 + r4 sin θ4 = r2 sin θ2 + r3 sin θ3

implies (3.3)

Expressing the equation system (3.3) in terms of r4{
r4 cos θ4 = r2 cos θ2 + r3 cos θ3 − r1 cos θ1

r4 sin θ4 = r2 sin θ2 + r3 sin θ3 − r1 sin θ1

(3.4)

a cos θ3 + b sin θ3 + c = 0, (3.5)

where

a = 2r3(r2 cos θ2 − r1 cos θ1),

b = 2r3(r2 sin θ2 − r1 sin θ1),

c = r2
1 + r2

2 + r2
3 − r2

4 − 2r1r2 cos(θ1 − θ2).

Then, the angle θ3 can be calculated as a function with parameters a, b, c and θ3, and
cos θ3 in terms of tan(θ3/2):

sin θ3 =
2 tan(θ3/2)

1 + tan2(θ3/2)
(3.6)

sin θ3 =
− tan2(θ3/2)

1 + tan2(θ3/2)
(3.7)

A second-order lineal equation is obtained by substitution on

[c− a] tan2(θ3/2) + 2b tan(θ3/2) + a+ c = 0 (3.8)

From the solution of (3.8), the angular position θ3 is given by:

θ3 = 2 arctan

[
−B ±

√
b2 − 4ac

c− a

]
. (3.9)

Analogously, we can get θ4.

56 CHAPTER 3. OPTIMAL SYNTHESIS OF MECHANISMS WITH ECA

3.1.2 Kinematics of the Coupler

Since the point of interest in the coupler is C(Cxr, Cyr), to determine its position in
the reference system OXrYr it has to be established that

Cxr = r2 cos θ2 + rcx cos θ3 − rcy sin θ3, (3.10)
Cyr = r2 sin θ2 + rcx sin θ3 − rcy cos θ3, (3.11)

In the global coordinate system, this point is expressed as:[
Cx
Cy

]
=

[
cos θ0 − sin θ0

sin θ0 − cos θ0

] [
Cxr
Cyr

]
+

[
x0

y0

]
. (3.12)

Equations (3.9) and (3.12) and the expressions from the kinematics of the mechanism
are sufficient to calculate the position of C along the trajectory.

3.1.3 Design Objective Function

In order to find the best mechanism such that the trajectory corresponds ton precision
points, we quantify the error using quadratic error. Let M = {Ci

d ∈ R2 | i =

1, 2 . . . , n} be a set of precision points. Then, given the parameters of a mechanism,
each point of the coupler can be expressed as a function of the input bar position

Ci = [Cx(θ
i
2), Cy(θ

i
2)]T

Now, it is desired to minimize the error between each precision point Ci
d and the

calculated point Ci, respectively. Thus, the error is calculated using the expression:

error =
n∑
i=1

[
(Ci

xd − Ci
x)

2 + (Ci
yd − Ci

y)
2
]
.

3.1.4 Design Constraints

It is important to add some constraints to guarantee the movement criteria and re-
strict the size and shape of the mechanism. Here is where the Grashof’s Law takes
place:

3.1. SYNTHESIS OF FOUR-BAR MECHANISMS 57

Grashof’s Law establishes that for a planar four-bar linkage, the sum of the short-
est and the largest bars cannot be larger than the sum of the remaining bars, if a con-
tinual relative rotation between two elements is desired [64].

Hence, applying the Grashof’s Law to our problem, we obtain

r1 + r2 ≤ r3 + r4.

Now, we need a Crank-rocker mechanism. Thus, for ensure the solution method, the
following constraints were established:

r2 < r3, r3 < r4, and r4 < r1.

On the other hand, the angle sequence θ1
2, . . . , θ

n
2 , must satisfy θ1

2 < θ2
2 < · · · <

θn2 , because we are assuming successive precision points.

3.1.5 Experiments Design

Experiments details are detailed here. The vector of design variables is

p = (r1, r2, r3, r4, rcx, rcy, x0, y0, θ0, θ
1
2, θ

2
2, . . . , θ

n
2) ∈ S ⊂ R9+n, (3.13)

where the search space is S = [0, 60]4× [−60, 60]4× [0, 2π]n+1, i.e. each boundary
is:

r1, r2, r3, r4 ∈ [0, 60]

rcx, rcy, x0, y0 ∈ [−60, 60]

θ0, θ
1
2, . . . , θ

n
2 ∈ [0, 2π].

Here, r1, . . . , r4 correspond to the lengths of the bars. (rcx, rcy) is the position of
the coupler. O2(x0, y0) is the coordinate position, θ0 is the orientation angle of the
system with respect to the horizontal. Finally, θ1

2, . . . , θ
n
2 are angle values of the

input bar r2.

58 CHAPTER 3. OPTIMAL SYNTHESIS OF MECHANISMS WITH ECA

Based on the mentioned above, constructing a four-bar crank-rocker mechanism
is equivalent to solve the following constrained optimization problem:

min f(p) =
n∑
i=1

[
(Ci

xd − Ci
x)

2 + (Ci
yd − Ci

y)
2
]
. (3.14)

subject to:

g1(p) = r1 + r2 − r3 − r4 (3.15)
gj(p) = rj − rj+1 ≤ 0, for j = 2, 3 (3.16)
g4(p) = r4 − r1 (3.17)

g4+j(p) = θj2 − θ
j+1
2 ≤ 0, for j = 1, . . . , n− 1. (3.18)

The next section presents three study cases and how they are solved using the
Algorithm 3.

3.1.6 Study Cases
Here, three study cases are presented. Each case consists of n precision points which
we need obtain a four-bar mechanism such that the coupler passes through them.
Figure 3.2 shows the point distribution for each case.

19.0 19.5 20.0 20.5 21.0
20

25

30

35

40

45
M01

1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
2.8

3.0

3.2

3.4

3.6

3.8

4.0
M02

0.5 0.0 0.5 1.0 1.5 2.0 2.5
1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0
M03

Figure 3.2: Distribution of the precision points. Three study cases are considered.

M01. It is the design of a four-bar mechanism that follows a linear vertical path de-
fined by a sequence of six precision points, without a previously established

3.1. SYNTHESIS OF FOUR-BAR MECHANISMS 59

synchronization. The set of precision points is defined as

M1 = {(20, 20), (20, 25), (20, 30), (20, 35), (20, 40), (20, 45)}

The vector of design variables (see Eq. 3.13) becomesp ∈ R15, since |M | = 6.

M02. The second study case is the design of a four-bar mechanism that follows a
trajectory generated by precision points. Here, the values of angles are known.
That is,

M2 = {(3, 3), (2.759, 3.363), (2.372, 3.663), (1.890, 3.862), (1.355, 3.943)}

at respective angles of crank:

θi2 =
2π

12
,
3π

12
, . . . ,

6π

12
.

Also, x0, y0, θ0 = 0. Hence, the design variables is p ∈ R6. This case has
only four constraints g1(p), . . . , g4(p) in the COP (3.14)-(3.17).

M03. This case considers a sequence of ten pairs of precision points: The vector of
design variables is p ∈ R19. Here, the coupler must adjust a trajectory to each
par simultaneously.

Pair M1
3 M2

3

1 (1.768, 2.3311) (1.9592, 2.44973)
2 (1.947, 2.6271) (2.168, 2.675)
3 (1.595, 2.7951) (1.821, 2.804)
4 (1.019, 2.7241) (1.244, 2.720)
5 (0.479, 2.4281) (0.705, 2.437)
6 (0.126, 2.0521) (0.346, 2.104)
7 (-0.001, 1.720) (0.195, 1.833)
8 (0.103, 1.514) (0.356, 1.680)
9 (0.442, 1.549) (0.558, 1.742)
10 (1.055, 1.905) (1.186, 2.088)

Table 3.1: Pairs of precision points for case study 3.

60 CHAPTER 3. OPTIMAL SYNTHESIS OF MECHANISMS WITH ECA

In this case, It is necessary to modify the objective function, then:

f(p) =
n∑
i=1

[
(Ci

xd − Ci
x) + Ci

yd − Ci
y)
]

+
n∑
i=1

[
(Ci

2xd − Ci
x) + Ci

2yd − Ci
y)
]
,

(3.19)

with (Ci
xd, C

i
yd) ∈ M1

3 and (Ci
2xd, C

i
2yd) ∈ M2

3 . Thus, the optimization
problem for this cased is given by (3.19) and (3.15)–(3.18).

The next section presents the results and discussion about how ECA solve those
study cases.

3.1.7 Results and Discussion
Algorithm 3 was used for solving the three four bar-mechanism synthesis design
problems detailed above. ECA was coded in Julia 0.6 [8] and executed on a PC with
a Core i5 and 8GB of RAM, and 64 bits Linux Mint 18 operating system. Since
those problems are complex to solve, the set of parameters for ECA for each case
(and run) are chosen randomly:

• K ∈ {3, 4, . . . 7}

• N = K ∗D

• ηmax ∈ [2, 4]

• Pexploit = [0.90, 0.91]

The constraint-handling approach used in work is based on three feasibility rules,
also called Deb’s rules [24]. Additional information is presented in Table 3.2.

The statistical results obtained from 31 independent runs for each problem and
algorithm are reported in Table 3.3. Furthermore, we compared ECA against a vari-
ant of differential evolution (DE) [80] which is a competitive evolutionary algorithm
designed for solving optimal four-bar synthesis [39] and some recent representative
algorithms: an adaptive version of DE called jSO [15], an evolutionary strategy with
auxiliary evolution path (CMA-ES) [53] and a physics-inspired algorithm based on

3.1. SYNTHESIS OF FOUR-BAR MECHANISMS 61

Max. Evals. Constraints
M01 300000 10
M02 60000 4
M03 350000 14

Table 3.2: Parameters of Algorithm 3. First column is the number of study case.
Note the high number of constraints.

Alg. Evals. Best Median Mean Std. FR

M01

ECA 300000 0.000000E+00 3.455233E–04 4.449034E–04 7.345703E–04 100

DE 750000 7.573065E–29 1.328421E–05 2.601458E–03 7.588249E–03 100

jSO 300000 1.009917E–05 4.035744E–04 6.499463E–04 6.215423E–04 100

CMA-ES 300000 1.045442E–03 2.266048E+00 9.512426E+02 2.332255E+03 100

CGSA 300000 1.407237E+03 2.879480E+03 4.652438E+03 3.420529E+03 16

M02

ECA 60000 2.628079E–03 2.628079E–03 2.628079E–03 4.408496E–19 100

DE 100000 2.628079E–03 2.628079E–03 2.628079E–03 6.736261E–18 100

jSO 60000 2.628079E–03 2.628079E–03 2.628079E–03 1.010175e-17 100

CMA-ES 60000 2.628079E–03 2.628079E–03 2.180029E+00 1.212253E+01 100

CGSA 60000 4.400252E+00 9.183622E+01 6.436224E+02 1.072564E+03 97

M03

ECA 380000 2.749687E–01 2.783940E–01 3.755563E–01 2.502182E–01 100

DE 500000 2.749687E–01 2.773593E–01 7.610914E–01 1.116940E+00 100

jSO 380000 2.749911E–01 3.094869E–01 3.802881E–01 2.314864E–01 100

CMA-ES 380000 2.864445E+00 9.541319E+01 8.168649E+03 2.395725E+04 84

CGSA 380000 – – – – 0

Table 3.3: Each algorithm solved 31 times each problem, and their statistical results
are presented here. A result in boldface indicates the best values found.

the law of gravity and mass interactions (CGSA) [59]. For those recent algorithms,
Deb rules were used as constraint handling method.

The feasibility rate (FR) is defined as (# of feasible runs) / Total runs, where a
feasible run is a run where at least one feasible solution was found. Here, “algorithm
A1 outperforms algorithm A2” means FRA1 > FRA2 or if FRA1 = FRA2 = 100,
then a 95%-confidence Wilcoxon Rank-Sum test was computed.

62 CHAPTER 3. OPTIMAL SYNTHESIS OF MECHANISMS WITH ECA

DE jSO CMA-ES CGSA
M01 ≈ + + +
M02 ≈ ≈ ≈ +
M03 ≈ ≈ + +

Table 3.4: A comparison between ECA, DE, JSO, CMA-ES and CGSA. “+” means
that ECA outperformed DE, JSO, CMA-ES and CGSA in the problem in the corre-
sponding row and “≈” means that no significant-difference was observed between
algorithms, all based on the 95% confidence Wilcoxon Rank-Sum test.

Comparing ECA and DE, ECA reached similar results in the three problems but
with less evaluations of objective function. Also, ECA outperformed jSO, CMA-ES
and CGSA most of the time. As we can see in Figure 3.4, ECA was able to converge
fast in the three cases. Figure 3.3 shows the best mechanism found by this approach
(numerical values in Table 3.5). Thus, ECA is capable to solve this kind of problems
with less objective function evaluations.

Figure 3.3: Mechanisms provided by ECA. From a mechanical point of view, these
designs are good, since the trajectory of M01 and M02 pass over the precision points.

On the other hand, to solve real-word problems, it is necessary to find the op-
timal value of the objective function, here ECA obtained the best value known in
all problems. Section 3.2 presents a low-dimensional problem but with a computa-
tional expensive objective function. Thus, a fast convergence with good results are
required.

3.2. CONTROL OF A FOUR-BAR MECHANISM WITH SPRING AND DAMPING FORCES63

r1 r2 r3 r4 rcx rcy θ0 x0 y0

M01 25.8069 7.20684 25.4333 25.5819 43.7612 17.3124 4.32806 -18.4544 56.3919

M02 14.3145 2.21117 14.3145 14.3145 2.17436 0.022209 0.0 0.0 0.0

M03 2.61459 1.0348 1.82689 2.20789 1.25092 0.447341 5.8268 0.0991696 1.3288

Table 3.5: Best feasible solutions found by ECA.

Figure 3.4: Convergence at median. ECA provides fast convergence in the three
study cases.

3.2 Control of a Four-Bar Mechanism with Spring and
Damping Forces

In the preview section, the angular velocity of the actuator is constant is the main
assumption in this problem. That assumption is not always achieved, if an electric
motor moves the crank. For example, the center of mass of FBM can move when the
crank rotates. Also, the angular velocity of the crank is not constant when the inertia
of the FBM yields an external load to the motor. Thus, we need a control system that
guarantees an efficient and uniform adjustment of the angular velocity [18].

3.2.1 Dynamic Model
One degree of freedom (DoF) in the crank is considered in the FBM with spring and
damping forces (FBM-SDF) (see Figure 3.5). Here, a DC motor is used to drive this
DoF.

64 CHAPTER 3. OPTIMAL SYNTHESIS OF MECHANISMS WITH ECA

Figure 3.5: Representation of a four-Bar mechanism with spring and damping forces.
Here, the i−th link is represented by its massmi, inertia Ji, length Li, center of mass
length ri and center of mass angle φi. The angle of the i−th link associated to the
base reference (X, Y) is set as θi; C and k are the the damping coefficient of the
damper and constant of the spring, respectively.

Angular velocity θ̇i, i = 2, 3, 4 and the linear velocity vix, viy of the center of
mass of the i− th link with respect to the inertial frame are:

θ̇ = γiθ̇2 (3.20)
vix = αiθ̇2 (3.21)
viy = βiθ̇2, (3.22)

3.2. CONTROL OF A FOUR-BAR MECHANISM WITH SPRING AND DAMPING FORCES65

where

α2 = −r2 sin(θ2 + φ2) (3.23)
α3 = −L2 sin θ2 − r3γ3 sin(θ3 + φ3) (3.24)
α4 = −r4γ4 sin(θ4 + φ4) (3.25)
β2 = r2 cos(θ2 + φ2) (3.26)
β3 = L2 cos θ2 − r2γ3 cos(θ2 + φ3) (3.27)
β4 = −r4γ4 cos(θ4 + φ4) (3.28)
γ2 = 1 (3.29)

γ3 =
L2 sin(θ4 − θ2)

L3 sin(θ3 − θ4)
(3.30)

γ4 =
L2 sin(θ3 − θ2)

L3 sin(θ3 − θ4)
. (3.31)

Let L̃ be the Lagrangian function, where P and K is potential and the kinematic
energy, respectively:

L̃ = K − P,

where

K =
4∑
i=2

(
1

2
mi(v

2
ix + v2

iy) +
1

2
Jiθ̇2

i

)
=

1

2
A(θ2)θ̇2

2 (3.32)

P =
1

2
k(θ4 − θ4,0)2 (3.33)

A(θ2) =
4∑
i=2

(mi(α
2
i + β2

i) + γ2
i Ji). (3.34)

The coupled dynamics of the DC motor with the FBM-SDF is given by combin-
ing the dynamic equation of the DC motor:

Tb = nKf i(t)− n2Bθ̇2 − n2Jθ̈2 (3.35)

L
di(t)

dt
+Ri(t) = Vin(t)− nkbθ̇2 (3.36)

and
T = A(θ2)θ̈2 +

1

2

dA(θ2)

dθ2

θ̇2
2 + kγ4(θ4 − θ4,0) + Cγ2

4 θ̇2

66 CHAPTER 3. OPTIMAL SYNTHESIS OF MECHANISMS WITH ECA

where

A(θ2) = C0 + C1γ
2
3 + C2γ

2
4 + C3γ3 cos(θ2 − θ3 − φ3) (3.37)

dA(θ2)

dθ2

= 2C1γ3
dγ3

dθ2

− 2C2γ4
dγ4

dθ2

. (3.38)

Ci,
dγ3

dθ2

and
dγ4

dθ2

are detailed in [18]. Assume that x = [x1, x2, x3]T = [θ2, θ̇2, i]
T

and the input vector u = Vin, the state space representation for the coupled dynamics
of the DC motor in the FBM-SDF is given by:

ẋ = f(x, u(t), t) (3.39)

=

x2

A0(x2
2 + A2x2 + nKfx3 + A3]

1

L
(u(t)− nKbx2 −Rx3)

 (3.40)

where

A0 =
1

A(x1) + n2J1

(3.41)

A1 = −1

2

d

A(x1)
dx1 (3.42)

A2 = −(Cγ4
2 + n2B) (3.43)

A3 = −kγ4(θ4 − θ4,0). (3.44)

3.2.2 Optimization Problem Definition

In 2013, Calva-Yáñez et al [18] based its strategy on the work of Tao and Sadler [82].
The proposed control strategy is used in this work as well. The controller is stated
as follow:

u(t) = Kpe(t)

t∫
0

θ̇d2dt+KI

t∫
0

e(t)dt+KDė(t), (3.45)

where Kp, KI , KD is the proportional, integral and derivate gains, respectively.
Here, ė(t) = −θ̈2 and e(t) = θ̇d2 − θ̇2, with θ̇d2 the constant desired speed.

3.2. CONTROL OF A FOUR-BAR MECHANISM WITH SPRING AND DAMPING FORCES67

The correct election of Kp, Kd, KI is important, since a wrong selection of the
PID gains, the input velocity of the crank can be considerably affected. Thus, the de-
sign variable vector is p = [Kp, Kd, KI]

T ∈ R3, Note that the gains of the modified
PID controller are included in p.

The dynamic optimization problem from a Mechanical point of view, consists in
finding the optimum design variables p ∈ R3 such that:

min
p∈R2

F (p) (3.46)

subject to:

ẋ = f(x, u(p, t), t) (3.47)

u(t) = Kpe(t)

t∫
0

θ̇d2dt+KI

t∫
0

e(t)dt+KDė(t) (3.48)

x(0) = x0 (3.49)
g1(x) ≤ 0 (3.50)
g2(x) ≤ 0 (3.51)
pi,min ≤ p ≤ pi,min, (3.52)

with objective function defined for t0 = min{t ∈ [0, tf] | x2(t) = θ̇d
2}:

F (p) =

∣∣∣∣ max
t∈[t0, tf]

x2(t)− min
t∈[t0, tf]

x2(t)

∣∣∣∣ , (3.53)

which may measure the change of the input speed of the crank. If F → 0, then
x2(t) = θ̇2(t) goes constant in [t0, tf]. The first constraint is the solutions of the
differential equation given by the dynamic model of the FBM-SDF where x0 is the
initial condition. This constraint provides the dynamic behavior of the system in the
optimization problem. It is necessary establish the rise time tr of the angular velocity
of the crank θ̇2(t) < 0.1 and the overshoot does not exceed of 1.7% of the desired
angular velocity. Thus

g1(tr) = tr ≤ 0.1s (3.54)

g2(tr) = θ̇2(tr) ≤ θ̇d2 + 0.017θ̇d2. (3.55)

68 CHAPTER 3. OPTIMAL SYNTHESIS OF MECHANISMS WITH ECA

The next section presents the performance of Algorithm 3 solving the constrained
optimization problem (3.46) – (3.52).

3.2.3 Experiments
To solve the dynamic optimization problem (3.46) – (3.52), the close loop system
(3.48) is solved using the Runge-Kutta method [27] with initial condition x0 =

[0, 0, 0]T with desired velocity selected as θd2 = 30 rad/s and the kinematic and dy-
namic parameters of the coupled dynamics detailed in [18]. The bounds of the design
variable vector is defined as p ∈ [0.1, 50]3 ⊂ R3.

3.2.4 Results
Using the same experiment settings of Section 3.1.7, we use Algorithm 3 for solv-
ing the dynamic optimization problem (3.46) - (3.52). Here, the parameters were
randomly chosen as described before. ECA is compared against the CHDE algo-
rithm which is successfully applications for tunning the PID controller [18] and jSO,
CMA-ES, CGSA described in Section 3.1.7.

Evals. Best Median Mean Std. FR

ECA 10000 2.055877E–01 2.340816E–01 2.292241E–01 9.315045E–03 100

CHDE 20000 2.120037E–01 2.232873E–01 2.206308E–01 8.093537E–03 100 ≈

jSO 10000 2.137288E–01 2.310883E–01 2.272267E–01 8.210808E–03 100 ≈

CMA-ES 10000 2.261747E–01 2.364060E–01 2.454021E–01 1.590420E–02 100 ≈

CGSA 10000 3.334081E–01 3.908357E–01 4.291667E–01 1.304116E–01 19 +

Table 3.6: Results of 31 independent runs of ECA, CHDE, jSO, CMA-ES and CGSA
on the dynamic optimization problem (3.46) – (3.52). A result in boldface indicates
the best values found for each correspondent column.

Statistical results obtained from 31 independent runs by ECA, CHDE, jSO, CMA-
ES and CGSA are presented in Table 3.6. jSO, DE and CMA-ES do not show sig-
nificant differences against ECA, based on the 95%-confidence Wilcoxon Rank-Sum

3.2. CONTROL OF A FOUR-BAR MECHANISM WITH SPRING AND DAMPING FORCES69

test. Also, CGSA showed a poor performance. Hence, ECA obtained good results
for this kind of problems. Besides, Algorithm 3 requires less evaluations of objec-
tive function to get good results compared with competitive state-of-art evolutionary
algorithms.

(A) (B)

Figure 3.6: (A) Shows the angular crank velocity with time (seconds) in [0.05, 2]
with both approaches. (B) shows the behavior of the control signal obtained by the
optimum design variable vector and with the experimental tuning.

Figure 3.7: Zoom of each respective graphic in Figure 3.6. The rise time of the
angular velocity of optimization approach is less than the experimental approach.

The Figure 3.6 (A) shows that the control signal of the manual approach has a
lower overshoot than the second approach to reach the reference value of 30 rad/s.

70 CHAPTER 3. OPTIMAL SYNTHESIS OF MECHANISMS WITH ECA

0 2000 4000 6000 8000 10000
Evaluations

0

1

2

3

4

5

6

7

Lo
g
 E

rr
o
r

Figure 3.8: Convergence at median of 31 independent runs. Note the fast conver-
gence in this problem.

Finally, Algorithm 3 was capable to converge fast (see Figure 3.8), which is con-
venient because this optimization problem is, relatively, computationally expensive,
since for each constraint evaluation, it is necessary to solve the differential equations
system (3.47).

3.3 Conclusions
In this chapter ECA was used to solve engineering problems with promising results.
ECA was capable to solve those problems with fast convergence with good results
and FR = 100%. Also, this approach outperformed CMA-ES and CGSA most of
time. ECA obtained the minimum objective function value known and it is important
in applications.

Chapter 4

Non-rigid Registration using ECA

We describe the application of ECA to an image processing problem, here we want
to register two or more 2-D point set. The main idea is to find the parameter-based
transformation via affine and quadratic polynomial transform. We provide a fast and
accuracy algorithm for solving point-sets registration problem.

4.1 Introduction
Point set registration (PR) is commonly used in computer vision. The goal of point
set registration is to estimate a transformation that maps one point set to the other.
We need to consider some aspects for successful solution of this problem, i.e. large
dimensionality of point set, outliers, noise, and transformation information. Also,
point set registration can be used for Image Registration (IR). IR is an important
research field in digital image processing. It is used to align a not empty set of im-
ages obtained, at different times, using different sensors or under different conditions
[20, 30, 96].

The transformation can be rigid or non-rigid. Rigid registration does not change
the distance between any two points, i.e., for x,y ∈ Rn and T : Rn → Rn a rigid
transformation, then d(x, y) = d(T (x), y), here d is a metric function. Usually,
such a transformation consists of translation and rotation. Non-rigid transformation
maps one point set to the other. The simplest non-rigid transformation is affine which
also allows anisotropic scaling and skews. In mathematical terms PR can be defined

71

72 CHAPTER 4. NON-RIGID REGISTRATION USING ECA

as follows:

Definition 4.1.1. Point set registration is the process of finding a transformation
T : Rn → Rn, that aligns two finite point sets A, B ⊂ Rn.

Here, align means that exists an injective function µ : A→ B.

This chapter addresses the design of the mapping function for n = 2 by using
affine transform and quadratic polynomials for accuracy. To solve this problem we
use a Physics-inspired Metaheuristic [11]. The results obtained are superior by pre-
vious evolutionary approaches [6] on the same synthetic data set.

4.1.1 Related Work
This section presents a brief review of some of the most important approaches. There
is variety of techniques for solving PR problems, i.e. classical methods and evolu-
tionary algorithms based proposals.

Classical Methods

Most of the classical approaches for PR can be found in [7, 22, 31, 96]. Two famous
state-of-the-art approaches from this category of methods are Random Sample Con-
sensus (RANSAC) [31] and Robust Point Matching (TPS-RPM) [22].

RANSAC is an iterative algorithm used estimate parameters of a transformation
from a set of data that contains outliers. It is assumed that outliers do not affect the
values of the estimates. RANSAC is a stochastic method in the sense that it produces
successful results whit certain probability measure. Also, RANSAC can be robust
to estimate the model parameters and can be used for solving point set registration
problem.

On the other hand, TPS-RPM [22] is a method for matching two point-sets in
a deterministic annealing setting. TPS-RPM algorithms extend to non-rigid image
registration by registering two sets of sparse features extracted from images. The
intensity information of the extracted features are incorporated into feature matching
in order to reduce the impact from outliers. It uses a fuzzy-like matrix instead of

4.2. ECA-PR 73

a binary permutation matrix to find the matching between two sets of points. In
TPS-RPM, both the point correspondences and the transformations are computed
interchangeably.

Evolutionary Methods

The first known application of evolutionary algorithms (EA) to image registration is
reported in [32] where authors applied a genetic algorithm (GA) to medial images.
For the subsequent, other EA approaches have been proposed by different authors,
but most of them were based on the GAs. Such a GA has severe limitations when
solving optimization problems in the continuous domain, especially due to the prob-
lem of Hamming cliffs originated from the discretization of real valued variables into
binary coded values, to the fixed precision that depends on the number of bits used
for each decision (design) variable, and for imposing lower and upper bounds for a
variable’s value. In [6] the authors use a real coded representation for a GA and got
feasible results but with a high computational cost.

Most modern EA applications to PR use a direct real coded representation of so-
lutions such as Particle Swarm Optimization [88] and others presented in this recent
surveys on the topic [23, 74, 78].

Next section describes how ECA is used for solving PR problem (ECA-PR).

4.2 ECA-PR

This section presents the point set registration solution through the Evolutionary
Centers Algorithm.

We need to match the point-sets as closely as possible while outliers are detected
and ignored during matching process. The correspondence problem can be seen as
as a linear assignment problem [62, 68]. The augmented part is used to take outliers
into account. The correspondence matrix obtained by the linear assignment problem
depends on the non-rigid transformation. Thus, the general problem solution is to
minimize the following binary linear assignment-least squares error function:

74 CHAPTER 4. NON-RIGID REGISTRATION USING ECA

min
µ, T

E(µ, T) = min
µ, T

n∑
i=1

m∑
j=1

µ
i,j
‖yj − T (xi)‖2 (4.1)

where matrix µ is the binary augmented correspondence matrix consisting of two
parts. The inner n × m part of µ defines the correspondence. If a point yj corre-
sponds to a point xj , µi,j = 1, otherwise µi,j = 0. Here, each row and column should
contain a “1” to guarantee that the correspondence is one-to-one. An example of the
correspondence matrix is given in Table 4.1. First, suppose A, B ⊂ Rn such that

µi,j x1 x2 x3 x4 outlier
y1 0 0 0 0 1
y2 0 0 0 0 1
y3 0 1 0 0 0
y4 0 0 1 0 0
y5 0 0 0 1 0

outlier 1 0 0 0 0

Table 4.1: Points y3, y4 and y5 correspond to x2, x3 and x4, respectively, and the
remaining points are outliers. µ is the binary correspondence matrix. Extra outlier
row and outlier column are considered to identify outliers.

|A| = |B| < ∞, i.e., A and B are finite same-cardinality sets, and the correspon-
dence matrix is known. Our objective is to find the best transformation T for solving
this problem. We propose two kind of transformations:

• Affine transformations

• Low degree polynomial transformations

4.2.1 Affine Transformations
An affine transformation can be expressed by vector addition and matrix multiplica-
tion as shown in Equation 4.2,[

x′

y′

]
= S

[
cos(θ) − sin(θ)

sin(θ) cos(θ)

] [
x

y

]
+

[
a5

a6

]
(4.2)

4.2. ECA-PR 75

where S is the scaling parameter. By multiplying S with the rotation matrix, Equation
4.2 can be written as: [

x′

y′

]
=

[
a1 a2

a3 a4

] [
x

y

]
+

[
a5

a6

]
(4.3)

Finally, by using homogeneous coordinates, the affine transformation can be rewrit-
ten as Equation 4.3. x′y′

1

 =

a1 a2 a5

a3 a4 a6

0 0 1

xy
1

 . (4.4)

The affine transform has six parameters: a0, a1, a2, a3, a4, and a5. a5 and a6 spec-
ify the translation and a1, a2, a3, and a4 perform rotation, scaling, stretching, and
shearing.

Now, we can define the transformation Tw as the matrix in Equation 4.4 with
parameters w = [a1, a2, a3, a4, a5, a6] ∈ R6.

4.2.2 Low Degree Polynomial Transformations

X

10

5

0

5

10

Y

10

5

0

5

10

150

100

50

0

50

100

150

Quadratic Polynomial

Figure 4.1: Left image shows how an affine transformation is performed. Right
image represents a quadratic polynomial p(x, y) = −0.62+0.87x−0.85y−0.80xy+

0.71x2 − 0.87y2.

76 CHAPTER 4. NON-RIGID REGISTRATION USING ECA

Here, we present a polynomial approach for point set registration for getting ac-
curacy. Fist we define a quadratic polynomial transformation for R2 but can be easily
extended to R3:

[
x′

y′

]
=

[
a1 a2 · · · a6

b1 b2 · · · b6

]

y2

y2

xy

y

x

1

(4.5)

=

[
a1x

2 + a2y
2 + a3xy + a4x+ a5y + a6

b1x
2 + b2y

2 + b3xy + b4x+ b5y + b6

]
. (4.6)

Note that if a1 = a2 = a3 = b1 = b2 = b3 = 0, then we have an affine transfor-
mation. Figure 4.1 shows a surface where points can be projected.

Finally, we can define the quadratic transformation asTv as the matrix in Equation
4.5 where v = [a1, . . . , a6, b1, . . . , b6] ∈ R12. The next section presents some
experiments.

4.3 Experiments
The PR minimization problem in Eq. 4.1 is solved using ECA (ECA-PR). Consider
A, B ⊂ R2 where A = {x1,x2, . . . ,xn} and B = {y1,y2, . . . ,ym}:

• Affine approach

1. Space Solution: w = [a1, a2, . . . , a6] ∈ R6.

2. Objective function:

f(w; A, B, Tw) =
n∑
i=1

m∑
j=1

µ
i,j
‖yj − Tw(xi)‖2.

• Quadratic Approach

4.4. RESULTS AND DISCUSSION 77

1. Space Solution: v ∈ R12.

2. Objective function:

f(v; A, B, Tv) =
n∑
i=1

m∑
j=1

µ
i,j
‖yj − Tv(xi)‖2.

For each test-case, we supposed the µ matrix was given. Parameters for ECA were
setted as in Algorithm 3, stop condition was max evals = 1000D or std(f(x)) <

10−10. The following Section presents some results using both approaches.

RANSAC ECA using Tw ECA using Tv
Point-set 1 1.212963E–02 1.168271E–02 1.606465E–03

Point-set 2 2.662446E–03 2.624537E–03 5.606001E–04

Point-set 3 3.749500E–03 3.623729E–03 1.236684E–03

Point-set 4 3.748341E–03 3.622639E–03 1.236255E–03

Point-set 5 9.814332E–04 9.716634E–04 1.819268E–04

Table 4.2: Comparison of results between ECA-PR and a classical method. Note
that ECA always outperformed RANSAC. This result was obtained running 31 times
each algorithm and no variance was observed. A result in boldface indicates the best
value found.

4.4 Results and Discussion

Using the previous information for experiments, we obtained some interesting re-
sults. Table 4.2 shows the minimum results for each transformation for each point-
set. Note that, the quadratic approach always outperformed the affine approach.

Figures 4.2 and 4.3 plot approximated solutions for the registration problem using
affine and quadratic transformations, respectively. We observed fast convergence on
global optimal values of error, which is convenient for reducing computational cost.

78 CHAPTER 4. NON-RIGID REGISTRATION USING ECA

0.20.0 0.2 0.4 0.6 0.8 1.0 1.2
0.4

0.2

0.0

0.2

0.4

0.6

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.4
0.3
0.2
0.1
0.0
0.1
0.2
0.3
0.4
0.5

0 50 100 150 200 250 300
Generation

5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0

Lo
g
 E

rr
o
r

Convergence

0.2 0.4 0.6 0.8 1.0 1.2
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.2 0.4 0.6 0.8 1.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 50 100 150 200 250 300
Generation

4
5
6
7
8
9

10

Lo
g
 E

rr
o
r

Convergence

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0 50 100 150 200 250 300
Generation

4

5

6

7

8

9

Lo
g
 E

rr
o
r

Convergence

0.10.20.30.40.50.60.70.80.91.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0 50 100 150 200 250 300
Generation

4
5
6
7
8
9

10

Lo
g
 E

rr
o
r

Convergence

0.2 0.0 0.2 0.4 0.6 0.8 1.0
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250 300
Generation

3

4

5

6

7

8

Lo
g
 E

rr
o
r

Convergence

Figure 4.2: Results using affine transformation. Each row has a point-set input, out-
put and convergence graph. Log error was computed for visualization purposes.
Note fast convergence of ECA-PR using affine transform.

4.5 Conclusions

This chapter presented a new method based on ECA for solving the point-sets reg-
istration problem. Two strategies were detailed and compared against the RANSAC

4.5. CONCLUSIONS 79

0.20.0 0.2 0.4 0.6 0.8 1.0 1.2
0.4

0.2

0.0

0.2

0.4

0.6

0.20.00.20.40.60.81.01.21.4
0.4
0.3
0.2
0.1
0.0
0.1
0.2
0.3
0.4

0 100 200 300 400 500 600
Generation

2
3
4
5
6
7
8
9

10

Lo
g
 E

rr
o
r

Convergence

0.2 0.4 0.6 0.8 1.0 1.2
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.2 0.4 0.6 0.8 1.0
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0 100 200 300 400 500
Generation

3
4
5
6
7
8
9

10

Lo
g
 E

rr
o
r

Convergence

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0 100 200 300 400 500
Generation

3
4
5
6
7
8
9

10

Lo
g
 E

rr
o
r

Convergence

0.10.20.30.40.50.60.70.80.91.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0 100 200 300 400 500
Generation

3
4
5
6
7
8
9

10

Lo
g
 E

rr
o
r

Convergence

0.20.0 0.2 0.4 0.6 0.8 1.0
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.20.30.40.50.60.70.80.91.0
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 100 200 300 400 500
Generation

2

4

6

8

10

Lo
g
 E

rr
o
r

Convergence

Figure 4.3: Results using quadratic transformation. Each row has a point-set input,
output and convergence graph. Log error was computed for visualization purposes.
Note fast convergence of ECA-PR using quadratic polynomials.

a competitive classical method. We obtained more accuracy and fast convergence
using ECA-PR on well known point-sets.

80 CHAPTER 4. NON-RIGID REGISTRATION USING ECA

Chapter 5

Conclusion and Future Work

5.1 Conclusion

This work presented a novel physics-inspired metaheuristic based on center of mass.
Thirty test functions of a recent benchmark were employed in order to analyze the
performance of the proposed algorithm in terms of precision, objective function eval-
uations and convergence. The results showed that ECA was able to provide highly
competitive results compared to representative metaheuristics such as jSO, CMA-
ES, CGSA. First, the results showed a good balance exploration-exploitation of the
ECA algorithm, since the exploration ability of ECA was confirmed by the results.

Regarding engineering problems, ECA obtained the best known value in all prob-
lems. Moreover, our approach showed good performance on a low-dimensional
problem but with a computational expensive objective function. Besides, ECA was
capable to solve those problems with fast convergence with good results and feasi-
bility ratio of 100%.

Finally, after this current research the hypothesis planted is validated since the
given objectives were satisfied i.e. ECA was capable to solve complex problems with
competitive results compared by using a non-parametric statistical hypothesis test.
Also, ECA requires the fine-tuning of just three parameters, besides the population
size. Therefore, ECA is simple (few parameters) but efficient in terms of the objective
function evaluations.

81

82 CHAPTER 5. CONCLUSION AND FUTURE WORK

5.2 Future Work
The future paths of research are the following:

• Make a mathematical study in order to to calibrate the parametersK, ηmax and
Pexploit or implement a self-adaptive technique.

• Study other constraint-handling techniques to improve results.

• Solve other constrained optimization problems.

• Propose mechanisms to improve ECA performance in high dimensionalities
e.g. 100D.

• Implement a strategy for calculating the correspondence matrix, apply ECA-
PR to real-world image registration problems and extend this algorithm for 3D
points.

• Compare with other algorithms to verify the robustness of ECA-PR.

Appendices

83

Appendix A

CEC17 Benchmark

The CEC17 Benchmark is proposed in [3] which includes thirty test functions for
global optimization. It contains three unimodal functions, seven simple multimodal
functions, ten hybrid functions and ten composition functions. These problems where
treated as black-box problems. This set of functions are shifted and rotated. The
search range is [−100, 100]D where D = 10, 30, 50 and 100.

1. Bent Cigar Function

f1(x) = x1 + 106

D∑
i=2

x2
i .

Figure A.1: Graph of f1(x, y) and its respective level curves.

85

86 APPENDIX A. CEC17 BENCHMARK

2. Sum of Different Power Function

f2(x) =
D∑
i=1

|xi|i+1.

Figure A.2: Graph of f2(x, y) and its respective level curves.

3. Zakharov Function

f3(x) =
D∑
i=1

x2
i +

(
D∑
i=1

0.5xi

)2

+

(
D∑
i=1

0.5xi

)4

.

Figure A.3: Graph of f3(x, y) and its respective level curves.

87

4. Rosenbrock’s Function

f4(x) =
D−1∑
i=1

[100(x2
i − xi+1)2 + (xi − 1)].

Figure A.4: Graph of f4(x, y) and its respective level curves.

5. Rastrigin Function

f5(x) = 10D +
D∑
i=1

(x2
i − 10 cos(2πxi)).

Figure A.5: Graph of f5(x, y) and its respective level curves.

88 APPENDIX A. CEC17 BENCHMARK

6. Expanded Schaffer’s F6 Function
f6(x) = g(x1, x2) + g(x2, x3) + . . .+ g(xD−1, xD) + g(xD, x1),

where g(x, y) =
sin2

(√
x2 + y2

)
− 0.5

(1 + 0.001(x2 + y2))2
.

Figure A.6: Graph of f6(x, y) and its respective level curves.

7. Lunacek bi-Rastrigin Function

f7(x) = min

(
D∑
i=1

(xi− µ0)2, dD + s
D∑
i=1

(xi − µ1)2) + 10(D −
D∑
i=1

cos(2πzi))

)
,

where

µ0 = 2.5, µ1 = −
√
µ2

0 − d
s

, s = 1− 1

2
√
D + 20− 8.2

, d = 1.

8. Non-continuous Rotated Rastrigin’s Function

f8(x) =
D∑
i=1

(z2
i − 10 cos(2πzi) + 10) + f13∗,

where

x =
5.12

100
M1(x− o), yi =

{
xi if xi ≤ 0.5

round(2x)/2, if xi > 0.5
, z = M1Λ10M2T

0.2
asy(Tosy(y))

89

Figure A.7: Graph of f7(x, y) and its respective level curves.

where Λα is a diagonal D-dimensional matrix with i-th diagonal as λii = α
i−1

2(D−1)

and i = 1, . . . , D and Tasy, Tosy are defined in [3].

Figure A.8: Graph of f8(x, y) and its respective level curves.

9. Levy Function

f9(x) = sin2(πw1)+
D−1∑
i=1

(wi−1)2[1+10 sin2(πwi+1)]+(wD−1)2[1+sin2(2πwD)],

where wi = 1 +
xi − 1

4
with i = 1, . . . , D.

90 APPENDIX A. CEC17 BENCHMARK

Figure A.9: Graph of f9(x, y) and its respective level curves.

10. Modified Schwefel’s Function

f10(x) = 418.9829D −
D∑
i=1

g(z),

where zi = xi + 420.9687462275036 and

g(z) =

z sin

√
|z| if |z| ≤ 500

(500−mod(z, 500))h(z)− (z − 500)2

100000D
if z > 500

(mod(z, 500)− 500)h(z)− (z − 500)2

100000D
if z < −500

with h(z) = sin
√
|500−mod(|z|, 500)|.

Figure A.10: Graph of f10(x, y) and its respective level curves.

91

11. High Conditioned Elliptic Function

f11(x) =
D∑
i=1

(106)

i− 1

D − 1x2
i .

12. Discus Function

f12(x) = 106x2
1 +

D∑
i=2

x2
i .

13. Ackley’s Function

f13(x) = −20 exp

(
−0.2

1

D

D∑
i=1

xi

)
− exp

(
1

D

D∑
i=1

cos(2πxi)

)
+ 20 + e.

14. Weierstrass Function

f14(x) =
D∑
i=1

(
kmax∑
k=1

[cos(2πbk(xi + 0.5))]

)
−D

kmax∑
k=1

[ak cos(πbk)],

with a = 0.5, b = 3 and kmax = 20.

15. Griewank’s Function

f15(x) =
D∑
i=1

x2
i

4000
−

D∏
i=1

cos

(
xi√
i

)
+ 1.

16. Katsuura Function

f16(x) =
10

D2

 D∏
i=1

(
1 + i

D∑
i=1

|2jxi − round(2jxi)|
2j

) 10
D1.2

− 1

 .
17. HappyCat Function

f17(x) =

∣∣∣∣∣
D∑
i=1

x2
i −D

∣∣∣∣∣
1
4

+
1

D

D∑
i=1

(
1

2
x2
i + xi

)
+

1

2
.

92 APPENDIX A. CEC17 BENCHMARK

18. HGBat Function

f18(x) =

∣∣∣∣∣∣
(

D∑
i=1

x2
i

)2

−

(
D∑
i=1

xi

)2
∣∣∣∣∣∣+

1

D

D∑
i=1

(
1

2
x2
i + xi

)
+

1

2
.

19. Expanded Griewank’s plus Rosenbrock’s Function
f19(x) = f7(f4(x1, x2))+f7(f4(x2, x3))+. . .+f7(f4(xD−1, xD))+f7(f4(xD, x1)).

20. Schaffer’s f7 Function

f20(x) =

[
1

D − 1

D−1∑
i=1

ai[sin
(
50a0.2

i

)
+ 1]

]2

,

where ai =
√
x2
i + x2

i+1.

Composition Functions
The ten remaining functions are composition of the previous mappings and they are
detailed in [3].

Appendix B

Tables

93

94 APPENDIX B. TABLES

fn Best Median Mean Worst Std.

1 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

2 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

3 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

4 0.0000e+00 0.0000e+00 2.7712e-01 1.5920e+00 4.7483e-01

5 4.1884e+00 8.5518e+00 8.8980e+00 1.2867e+01 1.8272e+00

6 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

7 1.4953e+01 2.1225e+01 2.0989e+01 2.5910e+01 2.4926e+00

8 4.1977e+00 8.8088e+00 8.9524e+00 1.3975e+01 2.4317e+00

9 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

10 2.8755e+02 6.8806e+02 6.6419e+02 9.3661e+02 1.7466e+02

11 0.0000e+00 0.0000e+00 9.8559e-05 3.0553e-03 5.4875e-04

12 0.0000e+00 2.0814e-01 2.4972e-01 6.4993e-01 1.9871e-01

13 0.0000e+00 1.3367e-02 4.6841e-01 5.5619e+00 1.3757e+00

14 0.0000e+00 0.0000e+00 6.4191e-02 9.9496e-01 2.4847e-01

15 4.5694e-07 2.4533e-02 1.7697e-01 4.9968e-01 2.2015e-01

16 6.2576e-02 7.0281e-01 7.2302e-01 1.6389e+00 3.1107e-01

17 1.1852e+00 4.8317e+00 1.1581e+01 2.9586e+01 9.8339e+00

18 8.0368e-05 2.9749e-01 2.6222e-01 5.0000e-01 2.1212e-01

19 0.0000e+00 2.1551e-04 1.0853e-02 4.6836e-02 1.3883e-02

20 0.0000e+00 3.0546e-05 2.9050e-01 1.3071e+00 4.2795e-01

21 1.0000e+02 1.0000e+02 1.1406e+02 2.1194e+02 3.7128e+01

22 1.0000e+02 1.0000e+02 1.0000e+02 1.0000e+02 0.0000e+00

23 3.0000e+02 3.0000e+02 3.0044e+02 3.0497e+02 1.1026e+00

24 0.0000e+00 1.0000e+02 1.6125e+02 3.3338e+02 1.0625e+02

25 3.9774e+02 3.9774e+02 3.9929e+02 4.4336e+02 8.1793e+00

26 3.0000e+02 3.0000e+02 3.0000e+02 3.0000e+02 0.0000e+00

27 3.9382e+02 3.9382e+02 3.9382e+02 3.9382e+02 0.0000e+00

28 3.0000e+02 3.0000e+02 3.0000e+02 3.0000e+02 0.0000e+00

29 2.3159e+02 2.4641e+02 2.4557e+02 2.6363e+02 6.9075e+00

30 3.9450e+02 3.9467e+02 3.9671e+02 4.0752e+02 4.8012e+00

Table B.1: Error values of 31 independent runs by jSO on CEC17 10D problems.

95

fn Best Median Mean Worst Std.

1 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

2 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

3 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

4 6.2824e-07 5.8562e+01 5.8509e+01 9.9233e+01 2.3109e+01

5 9.1343e+01 1.1040e+02 1.1035e+02 1.2761e+02 8.7782e+00

6 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

7 1.3077e+02 1.5071e+02 1.5046e+02 1.7051e+02 8.9760e+00

8 8.4033e+01 1.1291e+02 1.1282e+02 1.2853e+02 9.6769e+00

9 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

10 5.5110e+03 5.9177e+03 5.9442e+03 6.4520e+03 2.3262e+02

11 6.7787e+00 1.8032e+01 1.7845e+01 2.4301e+01 3.7310e+00

12 1.6030e+02 4.4330e+02 4.6925e+02 1.4019e+03 2.8579e+02

13 1.0625e+01 4.8255e+01 4.6606e+01 7.0006e+01 1.4599e+01

14 3.4189e+01 4.2961e+01 4.2698e+01 5.1538e+01 3.8323e+00

15 3.8938e+00 1.3878e+01 1.3490e+01 2.1809e+01 4.9208e+00

16 3.1865e+02 7.7725e+02 7.7689e+02 1.1359e+03 1.6913e+02

17 7.0761e+01 1.4930e+02 1.4474e+02 1.9897e+02 3.3915e+01

18 2.0975e+01 2.4436e+01 2.4420e+01 2.9786e+01 1.8159e+00

19 6.7204e+00 1.8674e+01 1.5831e+01 2.2460e+01 4.9502e+00

20 3.9626e+01 1.4466e+02 1.4568e+02 3.2407e+02 6.8590e+01

21 2.8573e+02 3.0087e+02 3.0305e+02 3.1943e+02 9.9140e+00

22 1.0000e+02 1.0000e+02 1.0000e+02 1.0000e+02 0.0000e+00

23 4.1014e+02 4.3620e+02 4.3656e+02 4.5619e+02 1.3069e+01

24 4.5376e+02 4.9845e+02 4.9628e+02 5.1300e+02 1.2835e+01

25 3.8669e+02 3.8672e+02 3.8672e+02 3.8677e+02 2.2078e-02

26 2.0000e+02 1.6270e+03 1.4247e+03 1.8735e+03 4.9995e+02

27 4.7426e+02 4.8572e+02 4.8565e+02 4.9822e+02 6.6030e+00

28 3.0000e+02 3.0000e+02 3.0000e+02 3.0000e+02 2.5737e-13

29 4.5822e+02 6.5946e+02 6.2118e+02 7.2117e+02 7.8558e+01

30 1.9609e+03 2.0613e+03 2.0486e+03 2.1119e+03 4.3887e+01

Table B.2: Error values of 31 independent runs by jSO on CEC17 30D problems.

96 APPENDIX B. TABLES

fn Best Median Mean Worst Std.

1 0.0000e+00 0.0000e+00 2.4348e+08 2.8910e+09 7.6082e+08

2 0.0000e+00 0.0000e+00 1.0527e+02 3.2633e+03 5.8611e+02

3 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

4 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

5 9.9496e-01 1.5919e+01 2.3393e+01 7.4331e+01 2.0530e+01

6 5.0187e-05 1.8745e-01 6.1227e+00 4.6404e+01 1.3175e+01

7 1.3769e+01 2.1963e+01 2.1957e+01 3.2572e+01 4.8501e+00

8 2.9849e+00 1.0945e+01 1.1394e+01 3.2834e+01 6.2603e+00

9 0.0000e+00 8.9528e-02 6.8353e+00 1.7802e+02 3.1994e+01

10 2.5212e+02 1.2200e+03 1.1114e+03 1.6471e+03 3.7721e+02

11 4.9748e+00 2.9849e+01 5.5887e+01 4.3560e+02 8.1551e+01

12 1.1885e+02 5.6783e+02 2.0442e+06 6.1255e+07 1.0996e+07

13 5.3727e+01 3.3070e+02 3.5502e+02 7.0943e+02 1.7504e+02

14 2.4965e+01 7.0743e+01 1.2461e+02 6.2951e+02 1.4550e+02

15 9.0091e+00 5.5114e+01 1.1296e+02 1.3030e+03 2.2809e+02

16 1.1898e+00 2.4916e+02 2.3617e+02 5.6551e+02 1.7172e+02

17 2.4624e+01 5.2176e+01 6.9682e+01 2.8388e+02 4.7822e+01

18 2.2444e+01 9.3570e+01 2.1084e+05 1.7687e+06 4.5729e+05

19 7.1399e+00 5.8835e+01 9.5611e+02 1.1319e+04 2.3051e+03

20 2.4234e+01 1.2819e+02 1.2307e+02 2.7563e+02 5.3631e+01

21 1.1677e+02 1.7207e+02 1.7544e+02 2.2360e+02 3.6662e+01

22 1.0000e+02 1.0000e+02 1.0031e+02 1.0389e+02 7.1376e-01

23 3.1224e+02 3.8078e+02 3.7762e+02 4.0705e+02 2.0094e+01

24 1.0000e+02 3.3474e+02 3.1685e+02 3.7682e+02 4.9845e+01

25 3.9775e+02 4.4385e+02 4.3569e+02 4.5709e+02 2.0652e+01

26 2.0000e+02 3.0000e+02 3.4781e+02 1.2892e+03 1.9446e+02

27 3.9699e+02 4.1313e+02 4.2220e+02 4.9588e+02 2.2034e+01

28 3.0000e+02 5.8681e+02 5.4430e+02 6.8981e+02 1.0881e+02

29 2.5083e+02 3.4748e+02 3.6578e+02 5.4493e+02 6.9073e+01

30 4.8330e+02 2.8679e+03 7.1739e+05 4.0288e+06 1.0552e+06

Table B.3: Error values of 31 independent runs by CMA-ES on CEC17 10D prob-
lems.

97

fn Best Median Mean Worst Std.

1 0.0000e+00 0.0000e+00 4.7213e+09 5.5575e+10 1.4742e+10

2 0.0000e+00 1.7464e+37 1.7176e+39 2.5103e+40 4.7641e+39

3 0.0000e+00 0.0000e+00 3.7971e+03 1.1771e+05 2.1141e+04

4 0.0000e+00 1.5617e+02 3.8031e+03 1.2130e+04 4.5722e+03

5 2.7859e+01 2.1889e+02 2.2655e+02 4.4773e+02 1.4786e+02

6 2.2917e+01 4.8519e+01 5.5748e+01 8.7972e+01 2.0231e+01

7 5.5909e+01 7.6139e+01 9.0464e+01 5.2049e+02 8.0555e+01

8 2.9849e+01 6.7657e+01 1.1130e+02 3.6675e+02 9.4586e+01

9 0.0000e+00 4.5145e+00 1.8762e+03 1.3862e+04 3.8586e+03

10 1.8833e+03 3.8881e+03 4.9945e+03 7.6331e+03 2.3182e+03

11 6.2689e+01 2.9132e+03 2.6729e+03 6.7577e+03 2.6280e+03

12 9.1629e+02 1.8411e+09 2.6107e+09 7.3741e+09 2.8467e+09

13 7.5800e+02 3.2186e+03 7.9236e+08 3.1380e+09 1.0467e+09

14 8.3677e+01 2.0506e+02 1.8592e+05 7.4125e+05 2.4513e+05

15 2.5067e+01 2.4378e+02 4.6134e+06 1.4301e+08 2.5685e+07

16 6.4913e+02 2.4912e+03 2.1963e+03 3.2139e+03 7.4147e+02

17 2.3996e+02 8.8977e+02 8.6677e+02 1.6097e+03 4.2595e+02

18 7.9524e+01 1.2781e+06 3.9128e+06 1.5495e+07 4.7239e+06

19 9.8518e+01 2.0524e+02 9.6085e+06 2.9786e+08 5.3496e+07

20 1.2848e+02 5.3867e+02 5.6785e+02 9.1704e+02 2.2955e+02

21 3.5205e+02 5.5018e+02 5.3913e+02 6.1428e+02 5.8369e+01

22 1.0000e+02 1.0000e+02 6.5648e+02 6.1915e+03 1.7296e+03

23 7.4745e+02 8.9287e+02 8.9144e+02 9.8895e+02 7.4890e+01

24 6.1659e+02 9.4600e+02 9.4080e+02 1.1600e+03 1.3029e+02

25 3.8347e+02 3.8737e+02 7.5352e+02 4.7251e+03 1.1353e+03

26 1.8830e+03 5.8685e+03 5.9769e+03 8.0520e+03 1.1832e+03

27 7.2685e+02 1.0237e+03 1.0240e+03 1.2305e+03 1.2525e+02

28 3.0000e+02 4.0329e+02 1.3230e+03 4.0790e+03 1.4808e+03

29 6.1559e+02 1.4837e+03 1.5870e+03 2.7880e+03 7.8002e+02

30 3.8195e+03 1.0411e+06 1.2426e+08 4.4009e+08 1.4371e+08

Table B.4: Error values of 31 independent runs by CMA-ES on CEC17 30D prob-
lems.

98 APPENDIX B. TABLES

fn Best Median Mean Worst Std.

1 2.0450e-01 1.8719e+02 1.3181e+07 4.0858e+08 7.3384e+07

2 5.8222e-07 1.8272e-05 1.9381e-05 7.5106e-05 1.5168e-05

3 2.1386e-07 9.3136e-07 1.1253e-06 3.6679e-06 9.4219e-07

4 4.0197e-03 5.9309e+01 5.7446e+01 1.5887e+02 3.9909e+01

5 1.6914e+01 2.5869e+01 2.6222e+01 4.0793e+01 6.1255e+00

6 4.2903e-04 1.7006e-03 5.1515e-01 9.4283e+00 1.7518e+00

7 1.1347e+01 1.6203e+01 1.6590e+01 2.1278e+01 2.6118e+00

8 5.9698e+00 1.4924e+01 1.5791e+01 2.4874e+01 4.7906e+00

9 1.0449e-08 1.1876e-07 1.2937e-07 4.3790e-07 8.5597e-08

10 5.9570e+02 1.2677e+03 1.3222e+03 2.0487e+03 3.1391e+02

11 9.9747e+00 2.9891e+01 3.5320e+01 9.3572e+01 1.8310e+01

12 2.1808e+03 6.9042e+03 7.4507e+03 1.8716e+04 3.8409e+03

13 2.2496e+03 6.9528e+03 7.4119e+03 1.6476e+04 3.2131e+03

14 7.0989e+01 3.4682e+03 3.6500e+03 7.4823e+03 2.2082e+03

15 2.1841e+01 2.2717e+03 2.5960e+03 6.7612e+03 1.8913e+03

16 3.5805e+02 4.5944e+02 4.5268e+02 7.2693e+02 9.3894e+01

17 2.9859e+01 9.5168e+01 1.6157e+02 4.7323e+02 1.2766e+02

18 3.9852e+02 6.1344e+03 1.9343e+05 2.2588e+06 4.7093e+05

19 1.1549e+02 3.8146e+03 3.7784e+03 1.1085e+04 2.3910e+03

20 1.4341e+02 1.6863e+02 2.2855e+02 4.6326e+02 9.8716e+01

21 1.0000e+02 2.2866e+02 2.2379e+02 2.6295e+02 3.5420e+01

22 1.0000e+02 1.0029e+02 1.1825e+02 2.3802e+02 3.3938e+01

23 3.4026e+02 3.9666e+02 4.0944e+02 5.9387e+02 5.8581e+01

24 1.0000e+02 2.0000e+02 2.3491e+02 4.5977e+02 1.3824e+02

25 3.9774e+02 4.4338e+02 4.3724e+02 5.1066e+02 2.5729e+01

26 2.0000e+02 2.0001e+02 2.3549e+02 3.0000e+02 4.8634e+01

27 4.3639e+02 5.0042e+02 4.9873e+02 5.3777e+02 2.3131e+01

28 3.0000e+02 6.3787e+02 6.3503e+02 7.1549e+02 6.9483e+01

29 2.5334e+02 3.2480e+02 4.0740e+02 6.8611e+02 1.2977e+02

30 1.5250e+03 3.5304e+03 6.4058e+03 3.0498e+04 6.5820e+03

Table B.5: Error values of 31 independent runs by CGSA on CEC17 10D problems.

99

fn Best Median Mean Worst Std.

1 4.0052e+00 1.2572e+03 2.4301e+03 1.5765e+04 3.2219e+03

2 0.0000e+00 9.0230e-05 2.3449e+42 7.2690e+43 1.3055e+43

3 4.1817e-05 1.2110e-04 1.5727e-04 6.7661e-04 1.2690e-04

4 1.2820e+02 3.0658e+02 4.0259e+02 1.1981e+03 2.8388e+02

5 1.1144e+02 1.5024e+02 1.5178e+02 1.9800e+02 2.1970e+01

6 4.9447e+00 1.0949e+01 1.3647e+01 3.7366e+01 7.6915e+00

7 4.2762e+01 5.5302e+01 5.5260e+01 6.6419e+01 6.4683e+00

8 7.6612e+01 1.0845e+02 1.0948e+02 1.3929e+02 1.3298e+01

9 5.9129e-07 1.7427e-06 3.4286e-06 2.0236e-05 4.3907e-06

10 2.5954e+03 3.2780e+03 3.2854e+03 4.3571e+03 4.6095e+02

11 6.3695e+01 1.0150e+02 1.6805e+02 1.2938e+03 2.2536e+02

12 5.9100e+03 1.2220e+04 1.7286e+07 1.0225e+08 3.1156e+07

13 1.8867e+03 1.5305e+04 1.4608e+04 2.9076e+04 6.6137e+03

14 5.3173e+02 2.3510e+03 2.7151e+03 6.3779e+03 1.4139e+03

15 2.3171e+02 7.9532e+02 1.4326e+03 5.4236e+03 1.4256e+03

16 8.1421e+02 1.7243e+03 1.7109e+03 3.5874e+03 5.4419e+02

17 2.1330e+02 9.7264e+02 9.9596e+02 1.8236e+03 3.2713e+02

18 1.6082e+04 3.6757e+04 3.8069e+04 5.7744e+04 1.0429e+04

19 2.7133e+02 2.9584e+03 3.4305e+03 1.0608e+04 2.4010e+03

20 2.4616e+02 9.6457e+02 9.4309e+02 1.3566e+03 2.5204e+02

21 1.0000e+02 3.3759e+02 3.2436e+02 4.0225e+02 6.5411e+01

22 1.0000e+02 1.0001e+02 8.2481e+02 4.7791e+03 1.4807e+03

23 5.9630e+02 7.8617e+02 8.2813e+02 1.1037e+03 1.2769e+02

24 5.2020e+02 6.1352e+02 6.3770e+02 1.0603e+03 1.1618e+02

25 3.8355e+02 3.8748e+02 3.8961e+02 4.1236e+02 6.5821e+00

26 2.0002e+02 3.0001e+02 1.0957e+03 5.9157e+03 1.6793e+03

27 5.7993e+02 7.3908e+02 8.1208e+02 1.3202e+03 1.9583e+02

28 3.0000e+02 3.0000e+02 3.2042e+02 7.0723e+02 7.7190e+01

29 7.6682e+02 1.1836e+03 1.2617e+03 3.4789e+03 4.5115e+02

30 4.2943e+03 6.6753e+03 7.1514e+03 1.3438e+04 2.4074e+03

Table B.6: Error values of 31 independent runs by CGSA on CEC17 30D problems.

100 APPENDIX B. TABLES

Bibliography

[1] Hosein Abedinpourshotorban, Siti Mariyam Shamsuddin, Zahra Beheshti, and
Dayang NA Jawawi. Electromagnetic field optimization: A physics-inspired
metaheuristic optimization algorithm. Swarm and Evolutionary Computation,
26:8–22, 2016.

[2] Chang Wook Ahn. Advances in evolutionary algorithms: theory, design and
practice, volume 18. Springer, 2007.

[3] N.H. Awad, M.Z. Ali, B.Y. Q., J.J. Liang, and P.N. Suganthan. Problem defi-
nitions and evaluation criteria for the cec 2017 special session and competition
on single objective bound constrained real-parameter numerical optimization.
Technical report, 2016.

[4] D. Bajer, G. Martinović, and J. Brest. A population initialization method for
evolutionary algorithms based on clustering and cauchy deviates. Expert Sys-
tems with Applications, 60:294–310, 2016.

[5] W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone. Genetic programming:
an introduction, volume 1. Morgan Kaufmann San Francisco, 1998.

[6] M. Bazargani, António dos Anjos, and F.G. Lobo. Affine image registration
transformation estimation using a real coded genetic algorithm with sbx. Pro-
ceedings of the 14th annual conference companion on Genetic and evolutionary
computation, pages 1459–1460, 2012.

[7] P.J. Besl and N.D. McKay. A method for registration of 3-d shapes. Sensor
Fusion IV: Control Paradigms and Data Structures, 1611:586–607, 1992.

101

102 BIBLIOGRAPHY

[8] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. Julia: A fresh approach
to numerical computing. SIAM review, 59(1):65–98, 2017.

[9] S. Binitha, S. Siva Sathya, and et al. A survey of bio inspired optimization algo-
rithms. International Journal of Soft Computing and Engineering, 2(2):137–
151, 2012.

[10] Ş İlker Birbil and Shu-Chering Fang. An electromagnetism-like mechanism
for global optimization. Journal of global optimization, 25(3):263–282, 2003.

[11] A. Biswas, K.K. Mishra, S. Tiwari, and A.K. Misra. Physics-inspired optimiza-
tion algorithms: A survey. Journal of Optimization, vol. 2013, 2013.

[12] P. T. Boggs and J. W. Tolle. Sequential quadratic programming. Acta numerica,
4:1–51, 1995.

[13] Ilhem Boussaı̈D, Julien Lepagnot, and Patrick Siarry. A survey on optimization
metaheuristics. Information Sciences, 237:82–117, 2013.

[14] O. Bozorg-Haddad, Mohammad Solgi, and H. A. Loáiciga. Water cycle algo-
rithm. Meta-Heuristic and Evolutionary Algorithms for Engineering Optimiza-
tion, pages 231–240.

[15] J. Brest, M. Sepesy-Maučec, and B. Bošković. Single objective real-parameter
optimization: Algorithm jso. IEEE Congress on Evolutionary Computation
(CEC), pages 1311 – 1317, 2017.

[16] J. Brownlee. Clever algorithms: nature-inspired programming recipes.
Lulu.com, 2011.

[17] Thomas Bäck. Evolutionary Algorithms in Theory and Practice. Oxford Uni-
versity Press, 1996.

[18] M. B. Calva-Yáñez, P. A. Niño-Suárez, M. G. Villarreal-Cervantes,
G. Sepúlveda-Cervantes, and E. A. Portilla-Flores. Differential evolution for
the control gain’s optimal tuning of a four-bar mechanism. Polibits, (47):67–73,
2013.

BIBLIOGRAPHY 103

[19] J. Cao and H. Gao. A quantum-inspired bacterial swarming optimization al-
gorithm for discrete optimization problems. In International Conference in
Swarm Intelligence, pages 29–36. Springer, 2012.

[20] L. Cao, H. Liu, and Y. Zhou. An image registration method for surgical robots
based on human-robot cooperation. IEEE International Conference on Mecha-
tronics and Automation, pages 1107–1112, 2016.

[21] Edwin KP Chong and Stanislaw H Zak. An introduction to optimization, vol-
ume 76. John Wiley & Sons, 2013.

[22] H. Chui. A new point matching algorithm for non-rigid registration. Computer
Vision and Image Understanding, 89(2-3):114–141, 2003.

[23] S. Damas, O. Cordón, and J. Santamarı́a. Medical image registration using evo-
lutionary computation. IEEE Computational Intelligence Magazine, 6(4):26–
42, 2011.

[24] K. Deb. An efficient constraint handling method for genetic algorithms. Com-
puter methods in applied mechanics and engineering, 186(2-4):311–338, 2000.

[25] J. Derrac, S. Garcı́a, D. Molina, and F. Herrera. A practical tutorial on the use
of nonparametric statistical tests as a methodology for comparing evolutionary
and swarm intelligence algorithms. Swarm and Evolutionary Computation,
1(1):3–18, 2011.

[26] Dongsheng Ding, Donglian Qi, Xiaoping Luo, Jinfei Chen, Xuejie Wang, and
Pengyin Du. Convergence analysis and performance of an extended cen-
tral force optimization algorithm. Applied Mathematics and Computation,
219(4):2246–2259, 2012.

[27] J. R. Dormand and P. J. Prince. A family of embedded runge-kutta formulae.
Journal of computational and applied mathematics, 6(1):19–26, 1980.

[28] O.K. Erol and Ibrahim. Eksin. A new optimization method: big bang–big
crunch. Advances in Engineering Software, 37(2):106–111, 2006.

[29] Thomas A Feo and Mauricio GC Resende. Greedy randomized adaptive search
procedures. Journal of global optimization, 6(2):109–133, 1995.

104 BIBLIOGRAPHY

[30] B. Fischer and J. Modersitzki. Ill-posed medicine an introduction to image
registration. IOP Publishing Ltd Inverse Problems, 24(3):034008, 2008.

[31] M.A. Fischler and R.C. Bolles. Random sample consensus: A paradigm for
model fitting with applications to image analysis and automated cartography.
Communications of the ACM, 24(6):381–395, 1981.

[32] J. Fitzpatrick, J.J. Grefenstette, and D. Gucht. Image registration by genetic
search. Proceedings of IEEE Southeast Conference, pages 460–464, 1984.

[33] P.J. Fleming and R.C. Purshouse. Evolutionary algorithms in control systems
engineering: a survey. Control engineering practice, 10(11):1223–1241, 2002.

[34] J. J. Flores, R. López, and J. Barrera. Gravitational interactions optimization.
In International Conference on Learning and Intelligent Optimization, pages
226–237. Springer, 2011.

[35] R. A. Formato. Central force optimization: a new metaheuristic with appli-
cations in applied electromagnetics. Progress in Electromagnetics Research,
77:425–491, 01 2007.

[36] Fred Glover and Manuel Laguna. Tabu search. In Handbook of combinatorial
optimization, pages 3261–3362. Springer, 2013.

[37] K. H. Han and J. H. Kim. Quantum-inspired evolutionary algorithm for a class
of combinatorial optimization. IEEE transactions on evolutionary computa-
tion, 6(6):580–593, 2002.

[38] H. R. Hassanzadeh and M. Rouhani. A multi-objective gravitational search al-
gorithm. In Computational Intelligence, Communication Systems and Networks
(CICSyN), 2010 Second International Conference on, pages 7–12. IEEE, 2010.

[39] B. Hernández-Ocaña, M. P. Pozos-Parra, E. Mezura-Montes, E. A. Portilla-
Flores, E. Vega-Alvarado, and M. B. Calva-Yáñez. Two-swim operators in
the modified bacterial foraging algorithm for the optimal synthesis of four-bar
mechanisms. Computational intelligence and neuroscience, 2016:17, 2016.

BIBLIOGRAPHY 105

[40] M. Jamil and X.S. Yang. A literature survey of benchmark functions for global
optimisation problems. International Journal of Mathematical Modelling and
Numerical Optimisation, 4(2):150–194, 2013.

[41] Behzad Javidy, Abdolreza Hatamlou, and Seyedali Mirjalili. Ions motion algo-
rithm for solving optimization problems. Applied Soft Computing, 32:72–79,
2015.

[42] S. Jiang, Z. Ji, and Y. Shen. A novel hybrid particle swarm optimization and
gravitational search algorithm for solving economic emission load dispatch
problems with various practical constraints. International Journal of Electrical
Power & Energy Systems, 55:628–644, 2014.

[43] Iztok Fister Jr., Xin-She Yang, Iztok Fister, Janez Brest, and Dusan Fis-
ter. A brief review of nature-inspired algorithms for optimization. CoRR,
abs/1307.4186, 2013.

[44] D. Karaboga. An idea based on honey bee swarm for numerical optimization.
Technical report, Technical report-tr06, Erciyes university, engineering faculty,
computer engineering department, 2005.

[45] Ali Husseinzadeh Kashan. A new metaheuristic for optimization: optics in-
spired optimization (oio). Computers & Operations Research, 55:99–125,
2015.

[46] A. Kaveh and M. Khayatazad. A new meta-heuristic method: Ray optimization.
Computers & structures, 112:283–294, 2012.

[47] A. Kaveh and S. Talatahari. A novel heuristic optimization method: Charged
system search. Acta Mechanica, 213(3):267–289, 2010.

[48] J. Kennedy. Particle swarm optimization. IEEE International Conference on
Neural Network, pages 1942–1948, 1995.

[49] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. science, 220(4598):671–680, 1983.

[50] D. Kleppner and R. Kolenkow. An Introduction to Mechanics. McGraw-Hill,
2nd edition, 1973.

106 BIBLIOGRAPHY

[51] W. Li, Q. Yin, and X. Zhang. Continuous quantum ant colony optimization
and its application to optimization and analysis of induction motor structure.
In Bio-Inspired Computing: Theories and Applications (BIC-TA), 2010 IEEE
Fifth International Conference on, pages 313–317. IEEE, 2010.

[52] Y. Li and L. Jiao. Quantum-inspired immune clonal algorithm. In International
Conference on Artificial Immune Systems, pages 304–317. Springer, 2005.

[53] Z. Li and Q. Zhang. An efficient rank-1 update for cholesky cma-es using auxil-
iary evolution path. In Evolutionary Computation (CEC), 2017 IEEE Congress
on, pages 913–920. IEEE, 2017.

[54] Yong Liu and Liang Ma. Improved gravitational search algorithm based on free
search differential evolution. Journal of systems Engineering and Electronics,
24(4):690–698, 2013.

[55] H. R. Lourenço, O. C. Martin, and T. Stützle. Iterated local search. In Handbook
of metaheuristics, pages 320–353. Springer, 2003.

[56] A. Malossini, E. Blanzieri, and T. Calarco. Quantum genetic optimization.
IEEE Transactions on Evolutionary Computation, 12(2):231–241, 2008.

[57] M. J. McCarthy. Geometric design of linkages, volume 11. Springer Science
& Business Media, 2006.

[58] Z. Michalewicz. Evolution strategies and other methods. In Genetic algo-
rithms+ data structures= evolution programs, pages 159–177. Springer, 1996.

[59] S. Mirjalili and A. H. Gandomi. Chaotic gravitational constants for the gravi-
tational search algorithm. Applied Soft Computing, 53:407–419, 2017.

[60] M. Mitchell. An introduction to genetic algorithms. Cambridge, MA: MIT
Press, 1996.

[61] Nenad Mladenović and Pierre Hansen. Variable neighborhood search. Com-
puters & operations research, 24(11):1097–1100, 1997.

[62] J. Munkres. Algorithms for the assignment and transportation problems. Jour-
nal of the Society for Industrial and Applied Mathematics, 5(1):32–38, 1957.

BIBLIOGRAPHY 107

[63] Venkataraman Muthiah-Nakarajan and Mathew Mithra Noel. Galactic swarm
optimization: A new global optimization metaheuristic inspired by galactic mo-
tion. Applied Soft Computing, 38:771–787, 2016.

[64] D.H. Myszka. Machines and Mechanisms, Applied Kinematic Analysis. Pear-
son Prentice Hall, 2005.

[65] Ajit Narayanan and Mark Moore. Quantum-inspired genetic algorithms. In
Evolutionary Computation, 1996., Proceedings of IEEE International Confer-
ence on, pages 61–66. IEEE, 1996.

[66] J. Nocedal and S.J. Wright. Numerical Optimization. Springer, 2006.

[67] K. F. Pál. Hysteretic optimization for the sherrington–kirkpatrick spin glass.
Physica A: Statistical Mechanics and its Applications, 367:261–268, 2006.

[68] C. Papadimitriou and K. Steiglitz. Combinatorial Optimization. Prentice-Hall,
Inc, 1982.

[69] M. D. Platel, S. Schliebs, and N. Kasabov. A versatile quantum-inspired evo-
lutionary algorithm. In Evolutionary Computation, 2007. CEC 2007. IEEE
Congress on, pages 423–430. IEEE, 2007.

[70] S. Rahnamayan, H.R.Tizhoosh, and M.M.A.Salama. A novel population initial-
ization method for accelerating evolutionary algorithms. Computers & Math-
ematics with Applications, 53(10):1605–1614, 2007.

[71] S. S. Rao and S. S. Rao. Engineering optimization: theory and practice. John
Wiley & Sons, 2009.

[72] E. Rashedi, H. Nezamabadi-Pour, and S. Saryazdi. Bgsa: binary gravitational
search algorithm. Natural Computing, 9(3):727–745, 2010.

[73] Esmat Rashedi, Hossein Nezamabadi-pour, and Saeid Saryazdi. Gsa: a gravi-
tational search algorithm. Information sciences, 179(13):2232–2248, 2009.

[74] J. Santamarı́a, O. Cordón, , and S. Damas. A comparative study of state-of-the-
art evolutionary image registration methods for 3d modeling. Computer Vision
and Image Understanding, 115(9):1340–1354, 2011.

108 BIBLIOGRAPHY

[75] R.A. Serway and J.W. Jewett. Principles of Physics: a Calculus-Based Text.
Thomson Learning, 4th edition, 2016.

[76] A. D. Sofge. Prospective algorithms for quantum evolutionary computation.
arXiv preprint arXiv:0804.1133, 2008.

[77] K. Sörensen. Metaheuristics–the metaphor exposed. International Transac-
tions in Operational Research, 22(1):3–18, 2015.

[78] A. Sotiras, C. Davatzikos, and N. Paragios. Deformable medical image regis-
tration: A survey. IEEE transactions on medical imaging, 32(7):1153–1190,
2013.

[79] James C. Spall. Introduction to Stochastic Search and Optimization. John
Wiley & Sons Inc., 2003.

[80] R. Storn and K. Price. Differential evolution - a simple and efficient adaptive
scheme for global optimization over continuous spaces. Berkeley: ICSI, 1995.

[81] J. Sun, W. Xu, and B. Feng. A global search strategy of quantum-behaved par-
ticle swarm optimization. In Cybernetics and Intelligent Systems, 2004 IEEE
Conference on, volume 1, pages 111–116. IEEE, 2004.

[82] J. Tao and J. P. Sadler. Constant speed control of a motor driven mechanism
system. Mechanism and Machine Theory, 30(5):737–748, 1995.

[83] A. Tom and A. Zilinskas. Global Optimization. Springer-Verlag New York,
Inc., 1989.

[84] G. Toussaint. Simple proofs of a geometric property of four-bar linkages. The
American mathematical monthly, 110(6):482, 2003.

[85] Christos Voudouris and Edward P. K. Tsang. Guided local search. In Handbook
of metaheuristics, pages 185–218. Springer, 2003.

[86] R. Walter. Principles of Mathematical Analysis. International Series in Pure
and Applied Mathematics. McGraw-Hill„ New York, 3rd edition, 1976.

BIBLIOGRAPHY 109

[87] Y. Wang, X.Y. Feng, Y. X. Huang, D. B. Pu, W. G. Zhou, Y. C. Liang, and C. G.
Zhou. A novel quantum swarm evolutionary algorithm and its applications.
Neurocomputing, 70(4-6):633–640, 2007.

[88] S. Winter, B. Brendel, I. Pechlivanis, K. Schmieder, and C. Igel. Registration
of ct and intraoperative 3-d ultrasound images of the spine using evolutionary
and gradient-based methods. IEEE Transactions on Evolutionary Computation,
12(3):284–296, 2008.

[89] D. H. Wolpert and W. G. Macready. No free lunch theorems for optimization.
IEEE transactions on evolutionary computation, 1(1):67–82, 1997.

[90] C. Wook-Ahn. Advances in Evolutionary Algorithms. Springer-Verlag, 2015.

[91] L. Xie, J. Zeng, and Z. Cui. The vector model of artificial physics optimization
algorithm for global optimization problems. In International Conference on In-
telligent Data Engineering and Automated Learning, pages 610–617. Springer,
2009.

[92] Liping Xie, Jianchao Zeng, and Zhihua Cui. General framework of artificial
physics optimization algorithm. In Nature & Biologically Inspired Computing,
2009. NaBIC 2009. World Congress on, pages 1321–1326. IEEE, 2009.

[93] D. H. Zerigat, L. Benasla, A. Belmadani, and M. Rahli. Galaxy-based search
algorithm to solve combined economic and emission dispatch. UPB Scientific
Bulletin, Series C: Electrical Engineering, 76(1):209–220, 2014.

[94] R. Zhang and H. Gao. Improved quantum evolutionary algorithm for combi-
natorial optimization problem. In Machine Learning and Cybernetics, 2007
International Conference on, volume 6, pages 3501–3505. IEEE, 2007.

[95] Yu Zhang, Lihua Wu, Ying Zhang, and Jianxin Wang. Immune gravitation
inspired optimization algorithm. In International Conference on Intelligent
Computing, pages 178–185. Springer, 2011.

[96] B. Zitová and J. Flusse. Image registration methods: a survey. Image and vision
computing, 21(11):977–1000, 2003.

