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RTCP

The focus concerns the case where f is real-valued with a cosine expansion,
that is, a function of the form

f(θ) = f̂0 +2
m∑

k=1
f̂k cos(kθ), f̂0, f̂1, . . . , f̂m ∈ R,

so that f(2π−s) = f(s), s ∈ [0,π].

When approximating the operator
(−1)q d2q

dx2q , q = 0,1,2, . . ., we end up with structures as Tn(fq) with fq being
a monotone, real-valued cosine polynomial of the form

fq(θ) = (2−2cos(θ))q, q = 0,1,2, . . . ,

(minimal bandwidth centered Finite Differences of order 2).
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RTCP

When using the IgA with maximal regularity, we will obtain structures like
Tn(gq) with gq being a real-valued cosine polynomial of the form

gq(θ) = (2−2cos(θ))qpq(θ), q = 0,1,2, . . . ,

where pq is a strictly positive cosine polynomial.

• The considered Finite Differences are characterized by O(n−2) precision
and minimal bandwidth, while for gq the bandwidth is larger, but the
precision order is much higher.

• The fractional analysis approach will produce a Toeplitz matrix with a
symbol like gq with q ∈ Q this time.
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RTCP

The nth Toeplitz matrix generated by f is the real symmetric matrix given
by

Tn(f) =



f̂0 f̂1 · · · f̂m

f̂1
. . .

. . .
. . .

...
. . .

. . .
. . .

. . .

f̂m

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

f̂m · · · f̂1 f̂0 f̂1 · · · f̂m

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . . f̂m

. . .
. . .

. . .
. . .

...
. . .

. . .
. . . f̂1

f̂m · · · f̂1 f̂0



,

our analysis will be not restricted to banded matrices.
M. Bogoya Eigenvalue superposition expansion



Contents

Motivation

The problem and the literature

GLT Theory

Simple Loop theory

Simple Loop superposition

Numerical experiments

M. Bogoya Eigenvalue superposition expansion



The Problem and the Literature

Under the simple loop condition over the interval [−π,π] we find

λj(Tn(f)) = f(σj,n)+ c1(σj,n)h+ c2(σj,n)h2 + · · ·+O(hα),

where h= 1
n+1 , σj,n = πjh, and ck,γk are some bounded coefficients

depending only on f , α is a positive integer depending on the smoothness of
f .

The numerical results presented in the literature suggests that the effective
conditions for the expansion to hold are weaker: an even character of f and
monotonicity over [0,π].
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The Problem and the Literature

We investigate the superposition caused over this expansion, when
considering a linear combination of symbols, that is

λj

(
Tn(f0 +β

(1)
n f1 +β

(2)
n f2)

)
,

where the symbols fj are either simple loop or satisfy the weaker conditions
mentioned before.

• we formally prove that the asymptotic expansion holds also in this
setting under mild assumptions;

• there is much more to investigate, opening the door to linear in time
algorithms for the computation of eigenvalues of large matrices of this
type.
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GLT Theory

Let f : D → C be a measurable function defined on the Lebesgue measurable
set D of positive and finite measure. Assume that {An}n is a sequence of
matrices such that dim(An) = dn → ∞, as n→ ∞ and with eigenvalues
λj(An) and singular values σj(An), j = 1, . . . ,dn.

We say that {An}n is distributed as f over D in the sense of the eigenvalues,
and we write {An}n ∼λ (f,D), if

lim
n→∞

1
dn

dn∑
j=1

F (λj(An)) = 1
µ(D)

∫
D
F (f(t))dt,

for every continuous function F with compact support. In this case, we say
that f is the spectral symbol of {An}n.
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GLT Theory

We say that {An}n is distributed as f over D in the sense of the singular
values, and we write {An}n ∼σ (f,D), if

lim
n→∞

1
dn

dn∑
j=1

F (σj(An)) = 1
µ(D)

∫
D
F (|f(t)|)dt,

for every continuous function F with compact support. In this case, we say
that f is the symbol of {An}n in the sense of the singular values.

Theorem (Tilli, Tyrtyshnikov, Zamarashkin)
Let f ∈ L1([−π,π]), then {Tn(f)}n ∼σ (f, [−π,π]). If f is a real-valued
function almost everywhere, then {Tn(f)}n ∼λ (f, [−π,π]).
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Why this linear combination?

Theorem

For Fn ≡ f0 +β
(1)
n f1 +β

(2)
n f2 and Xn ≡ Tn(Fn) we have {Xn}n ∼λ F ,

where F ≡ limn→∞Fn.

Here by making reference to the approximations by Finite Differences, for a
fixed positive integer l, we could consider operators of the form

l∑
s=0

(−1)sαs
d2s

dx2s

which, by linearity of the approximation technique of the involved operators,
give raise to Toeplitz structures with the expression

Tn

( l∑
s=0

αsh
2(l−s)fs

)
, fs(θ) = (2−2cos(θ))s.
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Why this linear combination?

In perfect analogy, in the case where the approximation is obtained via IgA,
for a fixed positive integer l, we reach

Tn

( l∑
s=0

αsh
2(l−s)gs

)
.

In both cases it is evident that the related matrix-sequences have

l∑
s=0

αsh
2(l−s)Fs,

as GLT momentary symbols, with Fs being either fs or gs. In both cases we
are interested in using the related symbols, and the superposition effect for
computing

λj

(
Tn

( l∑
s=0

αsh
2(l−s)Fs

))
,

which is a special instance of our general problem.
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The SL Approach

For a constant α⩾ 0, the well-known weighted Wiener algebra Wα is the
collection of all functions f : [0,2π] → C whose Fourier coefficients f̂j satisfy

∥f∥α ≡
∞∑

j=−∞
|f̂j |(|j|+1)α <∞.

We address real-valued symbols f in Wα, tracing out a simple loop and
satisfying the following conditions:

(i) The range of f is a segment [0,µ] with µ > 0.
(ii) f(0) = f(2π) = 0 and f ′′(0) = f ′′(2π)> 0.

(iii) There is a σ0 ∈ (0,2π) such that f(σ0) = µ, f ′(σ)> 0 for 0< σ < σ0,
f ′(σ)< 0 for σ0 < σ < 2π, f ′(σ0) = 0, and f ′′(σ0)< 0.
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The SL Approach

0 π

2
π 3 π

2
2 π

0

1

2

3

4

A typical simple-loop simbol.
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The SL Approach

According to the simple-loop method, by considering

bf (σ,s) ≡ f(σ)−f(s)
2(cos(s)− cos(σ))

(σ ∈ [0,2π], s ∈ [0,π]),

we obtain a real and continuous function, which is also bounded away from
zero.

The resulting operator T (bf (·,s)) is invertible and therefore, since the finite
section method can be applied, the related finite Toeplitz matrices
Tn(bf (·,s)) are also invertible.

Note that bf can be thought of as the quotient between f −λ and
2(cos(s)− cos(σ)), which is similar to the preconditioning process of the
ill-conditioned matrix Tn(f −λ).
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The SL Approach

We define the function ηf : [0,π] → R by

ηf (s) ≡ 1
4π

∤
∫2π

0

logbf (σ,s)
tan

(σ − s

2
)dσ− 1

4π
∤
∫2π

0

logbf (σ,s)
tan

(σ + s

2
)dσ

= sin(s)
2π

∤
∫2π

0

logbf (σ,s)
cos(s)− cos(σ)

dσ.

Now the eigenvalues of Tn(f) are given by

λj(Tn(f)) = f(σj,n)+
⌊α⌋∑
ℓ=1

cℓ(σj,n)hℓ +Ej,n,α.
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The SL Approach

λj(Tn(f)) = f(σj,n)+
⌊α⌋∑
ℓ=1

cℓ(σj,n)hℓ +Ej,n,α.

Where the following conditions are satisfied

(i) the eigenvalues of Tn(f) are arranged in nondecreasing order;
(ii) h≡ 1

n+1 and σj,n ≡ πjh;
(iii) the coefficients cℓ depend only on f and can be found explicitly, for

example
c1 = −f ′ηf , c2 = 1

2
f ′′η2

f +f ′ηfη
′
f ;

(iv) Ej,n,α =O(hα) is the remainder (error) term, which satisfies the
bounding |Ej,n,α| ⩽ chα for some constant c depending only on f .
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Our claims

For f,g ∈ SLα and a constant β ∈ R+, we investigate the relationship
between the eigenvalues λj(Tn(f)), λj(Tn(g)), and λj(Tn(f +βg)). We
easily obtain

λj(Tn(f +βg)) = f(σj,n)+βg(σj,n)+O(h).

Indeed, as a challenge in the field, we are looking for a more detailed result
involving a complete expansion and a real constant βn depending on n. The
symbol f +βng depends on n, as a consequence the actual simple-loop
method can not be applied.

However, under proper adjustments, the quoted technique can be used when
βn is h or hh.
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The Symbol f +gh

Theorem

Let f and g be two symmetric symbols in SLα with α⩾ 2. Then

λj(Tn(f +gh)) = f(σj,n)+
⌊α⌋∑
ℓ=1

Ψℓ(σj,n)hℓ +Ej,n,α,

where Ψℓ are bounded functions from [0,π] to R depending only on f,g that
can be obtained explicitly.

The remainder Ej,n,α =O(hα) satisfies the bounding |Ej,n,α| ⩽ chα for
some constant c depending only on f and g.
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The Symbol f +gh

Where

Ψ1 = g−f ′ηf ,

Ψ2 = 1
2
f ′′η2

f +f ′ηfη
′
f −f ′ψ−g′ηf .

the function ψ is given by the following singular integral

ψ(s) ≡ sin(s)
2π

∤
∫2π

0

bg(σ,s)
bf (σ,s)(cos(s)− cos(σ))

dσ.

For the next result we will study the eigenvalues corresponding to the
symbol f +ghh, that is βn = hh. Consider the function

φ(s) ≡ sin(s)
2π

∤
∫2π

0

bg(σ,s)
(bf (σ,s)+ bg(σ,s))(cos(s)− cos(σ))

dσ.
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The Symbol f +ghh

Theorem

Let f and g be two symmetric symbols in SLα with α⩾ 2. Then

λj(Tn(f +ghh)) = f(σj,n)+g(σj,n)

+
⌊α⌋∑
ℓ=1

ℓ∑
k=0

Γℓ,k(σj,n)hℓ logk(h)+Ej,n,α,

where Γℓ,k are bounded functions from [0,π] to R depending only on f,g

that can be expressed explicitly. The remainder (error) term
Ej,n,α =O(hα| logα(h)|) satisfies |Ej,n,α| ⩽ chα| logα(h)| for some constant
c depending only on f and g.
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Proofs ideas: The magic equation

Our specific aim is to recreate the so called simple-loop method working
with the symbol f +βng for two particular values of βn, i.e. h and hh. As
we will show, in both cases we arrive at the important equation

(n+1)s+ηf+βng(s) = πj+∆j,n,α,

where ∆j,n,α satisfies some smoothness and bounding conditions.

At this point we decided to expand ηf+βng into factors with coefficients not
involving n, then we made a technical work claiming the function on the left
side is a contraction and henceforth, we can iterate in order to solve it for s.
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Proofs ideas: The expansion of η

Thus, we start with the following technical result.

Lemma
As n→ ∞, we have

(i) ηf+gh(s) = ηf (s)+ψ(s)h+O(h2),
(ii) ηf+ghh(s) = ηf+g(s)+φ(s)h log(h)+O(h2 log2(h)),

where ψ,φ are ⌊α⌋−1 times continuously differentiable functions, given by

ψ(s) ≡ sin(s)
2π

∤
∫2π

0

bg(σ,s)
bf (σ,s)(cos(s)− cos(σ))

dσ,

φ(s) ≡ sin(s)
2π

∤
∫2π

0

bg(σ,s)
(bf (σ,s)− bg(σ,s))(cos(s)− cos(σ))

dσ.

M. Bogoya Eigenvalue superposition expansion



Proofs ideas: The simplest superposition

The following lemma shows how the eigenvalues of the sum of two Toeplitz
matrices are related with the individual ones, which is highly nontrivial
given the inherent nonlinearity of the eigenvalues with respect to the entries
of the considered matrix.
Lemma
Let f and g be two symmetric symbols in SLα with α⩾ 2. Then we have

λj(Tn(f +g)) = λj(Tn(f))+λj(Tn(g))

+
⌊α⌋∑
ℓ=1

Qℓ(σj,n)hℓ +Ej,n,α,

where Qℓ are bounded functions from [0,π] to R depending only on f,g,
that can be expressed explicitly. The remainder Ej,n,α =O(hα) satisfies the
bounding |Ej,n,α| ⩽ chα for some constant c depending only on f and g.
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Proofs ideas: Basic iterative equation

Lemma

For every sufficiently large natural number n there exists a real-valued
function Rn ∈ C[0,π] with the following properties:

(i) a number λ= f(s)+βng(s) is an eigenvalue of Tn(f +βng) if and only
if there is a j ∈ Z such that

(n+1)s+ηf+βng(s) = jπ+Rn(s);

(ii) Rn(0) =Rn(π) = 0;
(iii) ∥Rn∥L∞ = o(hα−1) as n→ ∞.
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Proofs ideas: Sketch of the case βn = h

We reach
Gn(s) = jπ,

where Gn(s) ≡ (n+1)s+ηf (s)+ψ(s)h−Rn(s). The function Gn is
continuous on the interval [0,π]. From SL theory know that

(i) the eigenvalues of Tn(f +gh) are all distinct:

λ1(Tn(f +gh))< · · ·< λn(Tn(f +gh));

(ii) the numbers sj,n ≡
[
f +gh

]−1
[0,π](λj(Tn(f +gh)) (j = 1, . . . ,n) satisfy the

main relation with Rn(sj,n) = o(hα−1);
(iii) for every sufficiently large n, we have exactly one solution sj,n ∈ [0,π]

for each j = 1, . . . ,n.
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Proofs ideas: Sketch of the case βn = h

Let Fn(s) ≡ (n+1)s+ηf (s)+ψ(s)h. Hence, Fn(s) = πj has a unique
solution ŝj,n for each j = 1, . . . ,n satisfying the bounding
|sj,n − ŝj,n| = o(hα), and that the function

Φj,n(s) ≡ σj,n −ηf (s)h−ψ(s)h2,

is a contraction on [0,π]. Then by the Banach fixed point theorem, the
sequence defined by

ŝ
(0)
j,n ≡ σj,n and ŝ

(ℓ)
j,n ≡ Φj,n(ŝ(ℓ−1)

j,n ) (ℓ⩾ 1),

satisfies |ŝj,n − ŝ
(ℓ)
j,n| =O(hℓ+1).
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Proofs ideas: Sketch of the case βn = h

We will iterate over the relation s= Φj,n(s). Obtaining

ŝ
(0)
j,n = σj,n,

ŝ
(1)
j,n = σj,n −ηf (σj,n)h+O(h2),

ŝ
(2)
j,n = σj,n −ηf (σj,n)h+{ηf (σj,n)η′

f (σj,n)−ψ(σj,n)}h2 +O(h3),

which combined with |sj,n − ŝ
(2)
j,n| = o(hα)+O(h3) gives us the result.
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Numerical verifications

Consider the simple-loop symbol given by

f(σ) ≡ (1+ρ)2

2
· 1− cos(σ)
1−2ρcos(σ)+ρ2 (0 ⩽ σ ⩽ 2π),

for a constant 0< ρ < 1. The respective Fourier coefficients can be explicitly
calculated as f̂k = 1

4 (ρ2 −1)ρ|k|−1 for k ̸= 0 and 1
2 (1+ρ) for k = 0. This

symbol was inspired in the Kac–Murdock–Szegő Toeplitz matrices. We have

∥f∥α = 1+ρ

2
+ ρ2 −1

2ρ

∞∑
k=1

ρk(k+1)α,

which is finite for every α > 0. Then f ∈ SLα for any α > 0. In this case the
function ηf is therefore nicely given by

ηf (s) = 2arctan
( ρsin(s)

1−ρcos(s)

)
.
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Numerical verifications

Our second symbol is given by

g(σ) ≡ 4sin2
(σ

2

)
= 2(1− cos(σ)).

The respective Fourier coefficients can be calculated as ĝk = −1 for k = ±1,
ĝk = 2 for k = 0, and ĝk = 0 in any other case: we remind that the quoted
symbol is related to the classical discrete Laplacian in one dimension. Hence
∥g∥α <∞ for any α > 0. Then g ∈ SLα for any α > 0. In this case we obtain
bg(σ,s) = 1 and ηg(s) = 0, and the eigenvalues of Tn(g) can be obtained
explicitly as λj(Tn(g)) = g(σj,n).
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Numerical verifications: f +g

Since Wα is an algebra, the symbol f +g clearly belongs to SLα for any
α > 0. For k = 1,2,3 let λ(k)

j (Tn(f)) be the kth term approximation of
λj(Tn(f)) given by our formulas. Specifically we find

λ
(1)
j (Tn(f +g)) = λj(Tn(f))+λj(Tn(g)),

λ
(2)
j (Tn(f +g)) = λj(Tn(f))+λj(Tn(g))+hQ1(σj,n),

λ
(3)
j (Tn(f +g)) = λj(Tn(f))+λj(Tn(g))+hQ1(σj,n)+h2Q2(σj,n).

Consider the error terms ε(k)
j,n ≡ λj(Tn(f +g))−λ

(k)
j (Tn(f +g)), and the

corresponding maximal absolute error ε(k)
n .

We must have ε(k)
j,n =O(hk) for k = 1,2,3 uniformly in j, more specifically,

the normalized errors (n+1)kε
(k)
j,n for k = 1,2 must be “close” to the terms

Q1 and Q2, respectively.
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Numerical verifications: f +g
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The term Q1 versus the normalized error (n+1)ε(1)
j,n for n= 128.
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Numerical verifications: f +g
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The term Q2 versus the normalized error (n+1)2ε
(2)
j,n for n= 128.
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Numerical verifications: f +g
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The normalized error (n+1)3ε
(3)
j,n for n= 128.
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Numerical verifications: f +g

n 1024 2048 4096 8192

ε
(1)
n 1.1753×10-4 5.8918×10-5 2.9498×10-5 1.4759×10-5

ε̂
(1)
n 1.2047×10-1 1.2072×10-1 1.2085×10-1 1.2092×10-1

ε
(2)
n 6.1091×10-7 1.5295×10-7 3.8265×10-8 9.5697×10-9

ε̂
(2)
n 6.4184×10-1 6.4214×10-1 6.4229×10-1 6.4237×10-1

ε
(3)
n 1.0885×10-9 1.3634×10-10 1.7059×10-11 2.1231×10-12

ε̂
(3)
n 1.1722×100 1.1729×100 1.1732×100 1.1736×100
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Numerical verifications: f +gh

We need to calculate the singular integral in ψ, which for this example can
be simplified to

ψ(s) = sin(s)
π

∤
∫2π

0

1
f(σ)−f(s)

dσ.

For the kth term approximation we get this time

λ
(1)
j = f(σj,n),

λ
(2)
j = f(σj,n)+Ψ1(σj,n)h,

λ
(3)
j = f(σj,n)+Ψ1(σj,n)h+Ψ2(σj,n)h2.

We must have ε(k)
j,n =O(hk) uniformly in j = 1, . . . ,n, more specifically the

normalized errors (n+1)kε
(k)
j,n for k = 1,2 are expected to be “close” to Ψ1

and Ψ2, respectively.
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Numerical verifications: f +gh
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The term Ψ1 versus the normalized error (n+1)ε(1)
j,n for n= 128.
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Numerical verifications: f +gh
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The term Ψ2 versus the normalized error (n+1)2ε
(2)
j,n for n= 128.
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Numerical verifications: f +gh
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The normalized error (n+1)3ε
(3)
j,n for n= 128.
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Numerical verifications: f +gh

n 1024 2048 4096 8192

ε
(1)
n 3.9024×10-3 1.9522×10-3 9.7632×10-4 4.8822×10-4

ε̂
(1)
n 4.0000×100 4.0000×100 4.0000×100 4.0000×100

ε
(2)
n 1.2498×10-6 3.1315×10-7 7.8377×10-8 1.9605×10-8

ε̂
(2)
n 1.3130×100 1.3147×100 1.3156×100 1.3160×100

ε
(3)
n 3.3384×10-9 4.2375×10-10 5.6220×10-11 7.5973×10-12

ε̂
(3)
n 3.5950×100 3.6453×100 3.8662×100 3.9850×100
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Numerical verifications: f +ghh

We need to calculate the singular integral in φ, which for this example can
be simplified to

φ(s) = sin(s)
π

∤
∫2π

0

1
f(σ)−f(s)+2cos(s)−2cos(σ)

dσ.

Taking into account that the logarithm is relatively small for the matrix
sizes considered, we arrange the kth term approximation in a different way
this time

λ
(1)
j = f(σj,n)+g(σj,n),

λ
(2)
j = f(σj,n)+g(σj,n)+Γ1,1(σj,n)h log(h)+Γ1,0(σj,n)h.

We have the bound ε
(k)
j,n =O(hk| logk(h)|), more specifically the normalized

errors (n+1)k

logk(n+1)ε
(k)
j,n for k = 1,2 are expected to be “close” to the functions

Γ1,1 +Γ1,0
1

log(h) and Γ2,2 +Γ2,1
1

log(h) +Γ2,0
1

log2(h) , respectively.
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Numerical verifications: f +ghh
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The term Γ1 versus the normalized error n + 1
log(n + 1)

ε
(1)
j,n for n= 128.
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Numerical verifications: f +ghh
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The term Γ2 versus the normalized error (n + 1)2

log2(n + 1)
ε

(2)
j,n for n= 128.
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Numerical verifications: f +ghh
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The normalized error (n + 1)3

log3(n + 1)
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j,n for n= 128.
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Numerical verifications: f +ghh

n 1024 2048 4096 8192

ε
(1)
n 2.6962×10-2 1.4858×10-2 8.1128×10-3 4.3970×10-3

ε̂
(1)
n 3.9865×100 3.9926×100 3.9959×100 3.9978×100

ε
(2)
n 9.1280×10-5 2.7663×10-5 8.2384×10-6 2.4184×10-6

ε̂
(2)
n 1.9955×100 1.9975×100 1.9986×100 1.9993×100

ε
(3)
n 2.0621×10-7 3.4466×10-8 5.6243×10-9 9.0250×10-10

ε̂
(3)
n 6.6654×10-1 6.6877×10-1 6.7206×10-1 6.7835×10-1
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A non-simple-loop symbol

For k ∈ Z+ let fk(θ) ≡ (2−2cos(θ))k and αk ∈ R. Consider the symbol

Fn(θ) ≡ f2(θ)+α1f1(θ)h2 +α0f0(θ)h4.

The related Toeplitz matrices Tn(Fn) appear when discretizing differential
equations with Finite Differences.

The functions fk with k ̸= 2, do not belong to SLα for any α, thus Fn do not
fully satisfy our hypothesis and we can not apply our theoretical results,
there is numerical evidence suggesting that, nevertheless we can expect an
eigenvalue expansion of the form

λj(Tn(Fn)) = f2(σj,n)+
3∑

ℓ=1
cℓ(σj,n)hℓ +Eα,j,n,

where Eα,j,n =O(h4) means asymptotic expansion.
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A non-simple-loop symbol

λ̂j(Tn(Fn)) = f2(σj,n)+
3∑

ℓ=1
cℓ(σj,n)hℓ.

0 π
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2
3 π
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π
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-12

The 10-base logarithm for |λj(Tn(Fn))− λ̂j(Tn(Fn))| with n= 8192.
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