BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography

Bounded Symmetric Domains: Biholomorphisms, Spaces and Representations

Raul Quiroga-Barranco

CIMAT, Mexico

Congreso Internacional de Teoría de Operadores en los Espacios de Funciones Analíticas, Xalapa, Veracruz September 28th to 30th, 2022

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography

Bounded symmetric domains

2 Bounded symmetric domains by example

3 Bergman spaces

Onitary representations and Bergman spaces

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
0000				

1) Bounded symmetric domains

- First notions
- Irreducible BSDs

2 Bounded symmetric domains by example

3 Bergman spaces

4 Unitary representations and Bergman spaces

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
0000				
First notions				

• From now on, $D \subset \mathbb{C}^N$ denotes a bounded domain and $\operatorname{Aut}(D)$ denotes the group of biholomorphisms of D.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
0000				
First notions				

- From now on, $D \subset \mathbb{C}^N$ denotes a bounded domain and $\operatorname{Aut}(D)$ denotes the group of biholomorphisms of D.
- We will also consider D endowed with the Lebesgue measure dv(z) normalized so that v(D) = 1.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
0000				
First notions				

- From now on, $D \subset \mathbb{C}^N$ denotes a bounded domain and $\operatorname{Aut}(D)$ denotes the group of biholomorphisms of D.
- We will also consider D endowed with the Lebesgue measure dv(z) normalized so that v(D) = 1.
- The domain D is called a **bounded symmetric domain** if for every $z \in D$ there exists a biholomorphism $\varphi \in Aut(D)$ such that $\varphi(z) = z$ and $\varphi(w) \neq w$ for all $w \in D \setminus \{z\}$.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
0000				
First notions				

 $_{\diamond}\,$ Bounded symmetric domains, BSD for short, have many interesting features.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
0000				
First notions				

- $\,\circ\,$ Bounded symmetric domains, BSD for short, have many interesting features.
 - ▶ There are enough BSDs to have a non-trivial and large family of domains.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
0000				
First notions				

- $\,\circ\,$ Bounded symmetric domains, BSD for short, have many interesting features.
 - ▶ There are enough BSDs to have a non-trivial and large family of domains.
 - ► The collection of BSDs has been classified and can (almost) be easily enumerated through examples.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
0000	000000000000000000000000000000000000000	000000000	00000000000	
First notions				

- $\diamond\,$ Bounded symmetric domains, BSD for short, have many interesting features.
 - ▶ There are enough BSDs to have a non-trivial and large family of domains.
 - The collection of BSDs has been classified and can (almost) be easily enumerated through examples.
- BSDs are part of a larger family of special manifolds.

BSDs ○○●○	BSDs by example 000000000000000000000000000000000000	Bergman spaces	Unitary representations	Bibliography 0
First notions				

- $\diamond\,$ Bounded symmetric domains, BSD for short, have many interesting features.
 - ▶ There are enough BSDs to have a non-trivial and large family of domains.
 - The collection of BSDs has been classified and can (almost) be easily enumerated through examples.
- $_{\diamond}\,$ BSDs are part of a larger family of special manifolds.
- $\diamond\,$ Let M be a Riemannian manifold.

BSDs ○○●○	BSDs by example	Bergman spaces 000000000	Unitary representations	Bibliography 0
First notions				

- $\diamond\,$ Bounded symmetric domains, BSD for short, have many interesting features.
 - ▶ There are enough BSDs to have a non-trivial and large family of domains.
 - ► The collection of BSDs has been classified and can (almost) be easily enumerated through examples.
- BSDs are part of a larger family of special manifolds.
- $\diamond\,$ Let M be a Riemannian manifold.
 - M is called a Riemannian symmetric space if for every x ∈ M there exists an isometry φ ∈ Iso(M) such that φ(x) = x and φ(y) ≠ y for every y ≠ x in a neighborhood of x.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
	000000000000000000000000000000000000000	000000000	00000000000	
First notions				

- Bounded symmetric domains, BSD for short, have many interesting features.
 - ▶ There are enough BSDs to have a non-trivial and large family of domains.
 - ► The collection of BSDs has been classified and can (almost) be easily enumerated through examples.
- $\diamond\,$ BSDs are part of a larger family of special manifolds.
- $\diamond\,$ Let M be a Riemannian manifold.
 - M is called a Riemannian symmetric space if for every x ∈ M there exists an isometry φ ∈ Iso(M) such that φ(x) = x and φ(y) ≠ y for every y ≠ x in a neighborhood of x.
 - ► *M* is called a **Hermitian symmetric space** if it is both a complex manifold and a Riemannian symmetric space so that the Riemannian metric is a Kähler metric.

BSDs ○○○●		BSDs by ex	ample	Be	rgman spa	ces 00	Jnitary re	epresenta 000000			Bibliograp O	phy
Irreducible BSD)s											
			$\sim N$.	 				<u> </u>	~	-	-	

◦ A domain $D ⊂ ℂ^N$ is called **reducible** if there is a domain of the form $D_1 × D_2$ where $D_j ⊂ ℂ^{N_j}$, j = 1, 2 and $N_1, N_2 ≥ 1$, such that $D ≃ D_1 × D_2$ (≃ means biholomorphically equivalent). Otherwise, the domain D is called **irreducible**.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
0000				
Irreducible BSDs				

• A domain $D \subset \mathbb{C}^N$ is called **reducible** if there is a domain of the form $D_1 \times D_2$ where $D_j \subset \mathbb{C}^{N_j}$, j = 1, 2 and $N_1, N_2 \ge 1$, such that $D \simeq D_1 \times D_2$ (\simeq means biholomorphically equivalent). Otherwise, the domain D is called **irreducible**.

Theorem

If D is a BSD, then there exist D_1, \ldots, D_k irreducible domains such that $D \simeq D_1 \times \cdots \times D_k$. Furthermore, each factor D_j is a BSD, and the decomposition is unique up to biholomorphisms and permutations of the factors.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
0000				
Irreducible BSDs				

• A domain $D \subset \mathbb{C}^N$ is called **reducible** if there is a domain of the form $D_1 \times D_2$ where $D_j \subset \mathbb{C}^{N_j}$, j = 1, 2 and $N_1, N_2 \ge 1$, such that $D \simeq D_1 \times D_2$ (\simeq means biholomorphically equivalent). Otherwise, the domain D is called **irreducible**.

Theorem

If D is a BSD, then there exist D_1, \ldots, D_k irreducible domains such that $D \simeq D_1 \times \cdots \times D_k$. Furthermore, each factor D_j is a BSD, and the decomposition is unique up to biholomorphisms and permutations of the factors.

Proof.

Use Riemannian Geometry.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
0000				
Irreducible BSDs				

• A domain $D \subset \mathbb{C}^N$ is called **reducible** if there is a domain of the form $D_1 \times D_2$ where $D_j \subset \mathbb{C}^{N_j}$, j = 1, 2 and $N_1, N_2 \ge 1$, such that $D \simeq D_1 \times D_2$ (\simeq means biholomorphically equivalent). Otherwise, the domain D is called **irreducible**.

Theorem

If D is a BSD, then there exist D_1, \ldots, D_k irreducible domains such that $D \simeq D_1 \times \cdots \times D_k$. Furthermore, each factor D_j is a BSD, and the decomposition is unique up to biholomorphisms and permutations of the factors.

Proof.

Use Riemannian Geometry.

Corollary

To enumerate the BSDs it is enough to enumerate the irreducible BSDs.

Bounded symmetric domains

2 Bounded symmetric domains by example

- Irreducible BSDs
- The unit ball
- Cartan domains of type I
- Cartan domains of type II and III
- Cartan domains of type IV
- Cartan domains and Lie groups

3 Bergman spaces

Unitary representations and Bergman spaces

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
	000000000000000000000000000000000000000			
Irreducible BS	Ds			
\$	There are four infinite famili BSDs.	es of irreducible BSI	Ds and 2 exceptional irred	lucible

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography		
0000	000000000000000000000000000000000000000	0000000000	000000000000000000000000000000000000000			
Irreducible BSDs						
There are four infinite families of irreducible RSDs and 2 exceptional irreducible						

- There are four infinite families of irreducible BSDs and 2 exceptional irreducible BSDs.
- The BSDs that belong to the infinite families are also known as **classical Cartan domains**.

- There are four infinite families of irreducible BSDs and 2 exceptional irreducible BSDs.
- The BSDs that belong to the infinite families are also known as **classical Cartan domains**.
- The classical Cartan domains are better understood by their relationship with their *compact duals*.

- There are four infinite families of irreducible BSDs and 2 exceptional irreducible BSDs.
- The BSDs that belong to the infinite families are also known as **classical Cartan domains**.
- The classical Cartan domains are better understood by their relationship with their *compact duals*.
- $\diamond~$ We recall the natural embeddings

 $\mathbb{D} \subset \mathbb{C} \hookrightarrow \mathbb{CP}^1 \simeq S^2$ $z \mapsto [z, 1].$

- There are four infinite families of irreducible BSDs and 2 exceptional irreducible BSDs.
- The BSDs that belong to the infinite families are also known as **classical Cartan domains**.
- The classical Cartan domains are better understood by their relationship with their *compact duals*.
- $\diamond\,$ We recall the natural embeddings

$$\mathbb{D} \subset \mathbb{C} \hookrightarrow \mathbb{CP}^1 \simeq S^2$$
 $z \mapsto [z,1].$

Theorem (Borel embedding theorem)

For every BSD $D \subset \mathbb{C}^N$ and for its compact dual M (a Hermitian symmetric space), there is a biholomorphic open embedding $D \subset \mathbb{C}^N \hookrightarrow M$.

0000		0000000000	00000000000000000000000000000000000000	O Bibliography
The unit ball			<u>.</u>	
\$	The unit ball $\mathbb{B}^n = \{z \in \mathbb{C}^n \mid$ given by	$ z < 1 \}$ has the B $z \mapsto egin{bmatrix} z \ 1 \end{bmatrix}$	orel embedding $arphi:\mathbb{B}^n \hookrightarrow$	$ ightarrow \mathbb{CP}^n$

BSDs 0000	BSDs by example ○○●○○○○○○○○○○○○○○○○	Bergman spaces 000000000	Unitary representations	Bibliography O
The unit ball				
\$	The unit ball $\mathbb{B}^n = \{z \in \mathbb{C}^n$ given by	$ z < 1$ has the Bo $z \mapsto egin{bmatrix} z \ 1 \end{bmatrix}$	orel embedding $arphi:\mathbb{B}^n\hookrightarrow$	\mathbb{CP}^n

◦ Problem: Find a property P(n) such that $[w] \in \mathbb{CP}^n$ belongs to the image $\varphi(\mathbb{B}^n)$ if and only if [w] satisfies P(n).

BSDs 0000	BSDs by example	Bergman spaces 000000000	Unitary representations	Bibliography O
The unit ball				
\$	The unit ball $\mathbb{B}^n = \{z \in \mathbb{C}^n$ given by	$ \; z < 1 \}$ has the Bc $z \mapsto egin{bmatrix} z \ 1 \end{bmatrix}$	orel embedding $arphi:\mathbb{B}^n \hookrightarrow$	$\cdot \mathbb{CP}^n$

- Problem: Find a property P(n) such that $[w] \in \mathbb{CP}^n$ belongs to the image $\varphi(\mathbb{B}^n)$ if and only if [w] satisfies P(n).
- ♦ Solution: For $w \in \mathbb{C}^{n+1}$

BSDs 0000	BSDs by example ००●०००००००००००००००	Bergman spaces	Unitary representations	Bibliography 0
The unit ball				
\$	The unit ball $\mathbb{B}^n = \{z \in \mathbb{C}^n \mid given by$	$\mid \left z ight < 1 \}$ has the B	orel embedding $\varphi:\mathbb{B}^n\hookrightarrow$	$\cdot \mathbb{CP}^n$

$$z \mapsto \begin{bmatrix} z \\ 1 \end{bmatrix}$$

• Problem: Find a property $P(n)$ such that $[w] \in \mathbb{CP}^n$ belongs to the image $\varphi(\mathbb{B}^n)$ if and only if $[w]$ satisfies $P(n)$.

 \diamond Solution: For $w \in \mathbb{C}^{n+1}$

$$[w] = egin{bmatrix} z \ 1 \end{bmatrix}$$
 with $|z| < 1 \Longleftrightarrow w_{n+1}
eq 0, rac{|w'|}{|w_{n+1}|} = |z| < 1$

BSDs 0000	BSDs by example ००●००००००००००००००	Bergman spaces	Unitary representations	Bibliography 0
The unit ball				
\$	The unit ball $\mathbb{B}^n = \{z \in \mathbb{C}^n \mid given by$	$ z < 1 \}$ has the B	orel embedding $\varphi: \mathbb{B}^n \hookrightarrow$	\mathbb{CP}^n

$$z \mapsto \begin{bmatrix} z \\ 1 \end{bmatrix}$$

• Problem: Find a property $P(n)$ such that $[w] \in \mathbb{CP}^n$ belongs to the image $\varphi(\mathbb{B}^n)$ if and only if $[w]$ satisfies $P(n)$.

♦ Solution: For $w \in \mathbb{C}^{n+1}$

$$\begin{split} [w] &= \begin{bmatrix} z \\ 1 \end{bmatrix} \text{ with } |z| < 1 \Longleftrightarrow w_{n+1} \neq 0, \frac{|w'|}{|w_{n+1}|} = |z| < 1 \\ &\iff \overline{w}' \cdot w' < |w_{n+1}|^2 \end{split}$$

BSDs 0000	BSDs by example ○○●○○○○○○○○○○○○○○○○	Bergman spaces	Unitary representations	Bibliography O
The unit ball				
\$	The unit ball $\mathbb{B}^n = \{z \in \mathbb{C}^n \$ given by	$\mid z < 1 \}$ has the Be	orel embedding $\varphi:\mathbb{B}^n\hookrightarrow$	$\cdot \mathbb{CP}^n$

$$z \mapsto \begin{bmatrix} z \\ 1 \end{bmatrix}$$

• Problem: Find a property $P(n)$ such that $[w] \in \mathbb{CP}^n$ belongs to the image $\varphi(\mathbb{B}^n)$ if and only if $[w]$ satisfies $P(n)$.

◊ Solution: For $w ∈ ℂ^{n+1}$

$$\begin{split} [w] &= \begin{bmatrix} z \\ 1 \end{bmatrix} \text{ with } |z| < 1 \Longleftrightarrow w_{n+1} \neq 0, \frac{|w'|}{|w_{n+1}|} = |z| < 1 \\ &\iff \overline{w}' \cdot w' < |w_{n+1}|^2 \iff \text{ the line } \mathbb{C}w \text{ is negative definite for } \langle \cdot, \cdot \rangle_{n,1} \\ &\text{where } \langle \cdot, \cdot \rangle_{n,1} \text{ denotes the Hermitian form on } \mathbb{C}^{n+1} \text{ given by} \end{split}$$

$$\langle a,b\rangle_{n,1}=\sum_{j=1}^n\overline{a}_jb_j-\overline{a}_{n+1}b_{n+1}.$$

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography	
	000000000000000000000000000000000000000				
Cartan domains of type I					

 $\,\scriptscriptstyle\diamond\,$ On \mathbb{C}^{n+m} , let us consider the Hermitian form given by

$$\langle a,b\rangle_{n,m}=a^*I_{n,m}b,$$

where $I_{n,m} = \operatorname{diag}(I_n, -I_m)$.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
	000000000000000000000000000000000000000			
Cartan domains of type	I			

 \circ On \mathbb{C}^{n+m} , let us consider the Hermitian form given by

$$\langle a,b
angle_{n,m}=a^*I_{n,m}b,$$

where $I_{n,m} = \text{diag}(I_n, -I_m)$.

• From \mathbb{C}^{n+m} we also consider the complex Grassmannian $\operatorname{Gr}_{\mathbb{C}}(n+m,m)$ which consists of the *m*-dimensional subspaces of \mathbb{C}^{n+m} .

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
	000000000000000000000000000000000000000			
Cartan domains of type	I			

 $\,\,{}_{\diamond}\,$ On $\mathbb{C}^{n+m},$ let us consider the Hermitian form given by

$$\langle a,b
angle_{n,m}=a^*I_{n,m}b,$$

where $I_{n,m} = \text{diag}(I_n, -I_m)$.

- From \mathbb{C}^{n+m} we also consider the complex Grassmannian $\operatorname{Gr}_{\mathbb{C}}(n+m,m)$ which consists of the *m*-dimensional subspaces of \mathbb{C}^{n+m} .
- Alternatively, let us denote with $M_{(n+m)\times m}(\mathbb{C})^*$ the set of rank *m* elements of $M_{(n+m)\times m}(\mathbb{C})$ and define the equivalence relation

 $W_1 \simeq W_2 \iff \exists A \in \operatorname{GL}(m, \mathbb{C}) \text{ such that } W_1 = W_2 A.$

Then, the complex Grassmanniannan in question is given by $\operatorname{Gr}_{\mathbb{C}}(n+m,m) = M_{(n+m)\times m}(\mathbb{C})^*/\simeq.$

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography	
	000000000000000000000000000000000000000				
Cartan domains of type I					

 $_{\diamond}\,$ There is a natural embedding $M_{n\times m}(\mathbb{C}) \hookrightarrow \mathrm{Gr}_{\mathbb{C}}(n+m,m)$ given by

$$Z\mapsto \begin{bmatrix} Z\\ I_m\end{bmatrix}.$$

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
	000000000000000000000000000000000000000			
Cartan domains of type	l			

 $_{\diamond}\,$ There is a natural embedding $M_{n\times \,m}(\mathbb{C}) \hookrightarrow \mathrm{Gr}_{\mathbb{C}}(n+m,m)$ given by

$$Z\mapsto \begin{bmatrix} Z\\ I_m\end{bmatrix}.$$

• Problem: Find the elements of $\operatorname{Gr}_{\mathbb{C}}(n+m,m)$ that are negative definite with respect to $\langle \cdot, \cdot \rangle_{n,m}$.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography	
	000000000000000000000000000000000000000				
Cartan domains of type I					

 $_{\diamond}\,$ There is a natural embedding $\mathit{M}_{n\times\mathit{m}}(\mathbb{C})\hookrightarrow\mathrm{Gr}_{\mathbb{C}}(\mathit{n}+\mathit{m},\mathit{m})$ given by

 $Z\mapsto \begin{bmatrix} Z\\ I_m\end{bmatrix}.$

- Problem: Find the elements of $\operatorname{Gr}_{\mathbb{C}}(n+m,m)$ that are negative definite with respect to $\langle \cdot, \cdot \rangle_{n,m}$.
- ◊ Solution: For $Z ∈ M_{n × m}(\mathbb{C})$ we have

$$\begin{bmatrix} Z \\ I_m \end{bmatrix} \text{ is negative definite}$$
$$\iff (Z^*, I_m) I_{n,m} \begin{pmatrix} Z \\ I_m \end{pmatrix} < 0 \iff (Z^*, -I_m) \begin{pmatrix} Z \\ I_m \end{pmatrix} < 0$$
$$\iff Z^*Z < I_m.$$

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
	000000000000000000000000000000000000000			
Cartan domains of type	I			

◦ The Cartan domain of type I $D_{n \times m}^{I}$ is the subset of matrices $Z \in M_{n \times m}(\mathbb{C})$ that satisfy $Z^*Z < I_m$.
BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
	000000000000000000000000000000000000000			
Cartan domains of type	I			

- The Cartan domain of type I $D_{n \times m}^{I}$ is the subset of matrices $Z \in M_{n \times m}(\mathbb{C})$ that satisfy $Z^*Z < I_m$.
- Note that $\mathbb{B}^n = D_{n \times 1}^l$.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
	000000000000000000000000000000000000000			
Cartan domains of type	l i i i i i i i i i i i i i i i i i i i			

- The Cartan domain of type I $D'_{n \times m}$ is the subset of matrices $Z \in M_{n \times m}(\mathbb{C})$ that satisfy $Z^*Z < I_m$.
- Note that $\mathbb{B}^n = D_{n \times 1}^I$.
- The Borel embedding in this case is given by

$$D_{n \times m}^{l} \hookrightarrow \operatorname{Gr}_{\mathbb{C}}(n+m,m)$$

 $Z \mapsto \begin{bmatrix} Z \\ I_m \end{bmatrix},$

and proves that $D_{n \times m}^{I}$ is the set of *m*-dimensional subspaces of \mathbb{C}^{n+m} that are negative definite for $\langle \cdot, \cdot \rangle_{n,m}$.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
	000000000000000000000000000000000000000			
Cartan domains of type	l i i i i i i i i i i i i i i i i i i i			

- The **Cartan domain of type I** $D'_{n \times m}$ is the subset of matrices $Z \in M_{n \times m}(\mathbb{C})$ that satisfy $Z^*Z < I_m$.
- Note that $\mathbb{B}^n = D_{n \times 1}^I$.
- The Borel embedding in this case is given by

$$D_{n \times m}^{I} \hookrightarrow \operatorname{Gr}_{\mathbb{C}}(n+m,m)$$

 $Z \mapsto \begin{bmatrix} Z \\ I_m \end{bmatrix},$

and proves that $D_{n\times m}^{I}$ is the set of *m*-dimensional subspaces of \mathbb{C}^{n+m} that are negative definite for $\langle \cdot, \cdot \rangle_{n,m}$.

• We can use this to compute the biholomorphism group $\operatorname{Aut}(D_{n\times m}^{I})$.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
	000000000000000000000000000000000000000			
Cartan domains of type				

• The biholomorphism group of $\operatorname{Gr}_{\mathbb{C}}(n+m,m)$ is given by linear transformations. More precisely, the action of $\operatorname{SL}(n+m,\mathbb{C})$ given by

 $M \cdot [W] = [MW],$

where $M \in SL(n + m, \mathbb{C})$ and $[W] \in Gr_{\mathbb{C}}(n + m, m)$, realizes the biholomorphisms of $Gr_{\mathbb{C}}(n + m, m)$.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
	000000000000000000000000000000000000000			
Cartan domains of type				

• The biholomorphism group of $\operatorname{Gr}_{\mathbb{C}}(n+m,m)$ is given by linear transformations. More precisely, the action of $\operatorname{SL}(n+m,\mathbb{C})$ given by

 $M\cdot[W]=[MW],$

where $M \in SL(n + m, \mathbb{C})$ and $[W] \in Gr_{\mathbb{C}}(n + m, m)$, realizes the biholomorphisms of $Gr_{\mathbb{C}}(n + m, m)$.

• The **special pseudo-unitary group** SU(n, m) is the subgroup of matrices $M \in SL(n + m, \mathbb{C})$ such that $M^* I_{n,m} M = I_{n,m}$.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
	000000000000000000000000000000000000000			
Cartan domains of type				

• The biholomorphism group of $\operatorname{Gr}_{\mathbb{C}}(n+m,m)$ is given by linear transformations. More precisely, the action of $\operatorname{SL}(n+m,\mathbb{C})$ given by

 $M \cdot [W] = [MW],$

where $M \in SL(n + m, \mathbb{C})$ and $[W] \in Gr_{\mathbb{C}}(n + m, m)$, realizes the biholomorphisms of $Gr_{\mathbb{C}}(n + m, m)$.

• The **special pseudo-unitary group** SU(n, m) is the subgroup of matrices $M \in SL(n + m, \mathbb{C})$ such that $M^* I_{n,m} M = I_{n,m}$.

Proposition

For the realization of $D_{n \times m}^{I}$ as an open subset of $\operatorname{Gr}_{\mathbb{C}}(n+m,m)$, the group $\operatorname{Aut}(D_{n \times m}^{I})$ is given by the action of $\operatorname{SU}(n,m)$

 $M \cdot [W] = [MW]$

where $M \in SU(n, m)$ and $[W] \in D_{n \times m}^{l}$.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
	000000000000000000000000000000000000000			
Cartan domains of type	l i i i i i i i i i i i i i i i i i i i			

Corollary

For $D_{n \times m}^{l} = \{Z \in M_{n \times m}(\mathbb{C}) \mid Z^{*}Z < I_{m}\}$, the biholomorphism group $\operatorname{Aut}(D_{n \times m}^{l})$ is realized by the action of $\operatorname{SU}(n, m)$ given by

$$egin{pmatrix} A & B \ C & D \end{pmatrix} \cdot Z = (AZ+B)(CZ+D)^{-1}$$

where A and D have sizes $n \times n$ and $m \times m$, respectively.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
	000000000000000000000000000000000000000			
Cartan domains of type	I			

Corollary

For $D_{n \times m}^{l} = \{Z \in M_{n \times m}(\mathbb{C}) \mid Z^*Z < I_m\}$, the biholomorphism group $\operatorname{Aut}(D_{n \times m}^{l})$ is realized by the action of $\operatorname{SU}(n, m)$ given by

$$egin{pmatrix} A & B \ C & D \end{pmatrix} \cdot Z = (AZ+B)(CZ+D)^{-1}$$

where A and D have sizes $n \times n$ and $m \times m$, respectively.

Proof.

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \cdot Z \mapsto \begin{pmatrix} A & B \\ C & D \end{pmatrix} \cdot \begin{bmatrix} Z \\ I_m \end{bmatrix} = \begin{bmatrix} AZ + B \\ CZ + D \end{bmatrix} = \begin{bmatrix} (AZ + B)(CZ + D)^{-1} \\ I_m \end{bmatrix} \mapsto (AZ + B)(CZ + D)^{-1}.$$

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
	000000000000000000000000000000000000000			
Cartan domains of type	II and III			

• The Grassmannian $\operatorname{Gr}_{\mathbb{C}}(2n, n)$ contains two special submanifolds.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
	000000000000000000000000000000000000000			
Cartan domains of type	II and III			

- The Grassmannian $\operatorname{Gr}_{\mathbb{C}}(2n, n)$ contains two special submanifolds.
- $\diamond~$ Let us consider the matrices

$$J_n = \begin{pmatrix} 0 & -I_n \\ I_n & 0 \end{pmatrix}, \quad S_n = \begin{pmatrix} 0 & I_n \\ I_n & 0 \end{pmatrix},$$

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
	000000000000000000000000000000000000000			
Cartan domains of type	II and III			

- \circ The Grassmannian $\operatorname{Gr}_{\mathbb{C}}(2n,n)$ contains two special submanifolds.
- $\diamond~$ Let us consider the matrices

$$J_n = \begin{pmatrix} 0 & -I_n \\ I_n & 0 \end{pmatrix}, \quad S_n = \begin{pmatrix} 0 & I_n \\ I_n & 0 \end{pmatrix},$$

▶ Sp $(n, \mathbb{C}) = \{ M \in \operatorname{GL}(2n, \mathbb{C}) \mid M^{\top}J_nM = J_n \}.$

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
	000000000000000000000000000000000000000			
Cartan domains of type	II and III			

- The Grassmannian $\operatorname{Gr}_{\mathbb{C}}(2n, n)$ contains two special submanifolds.
- $\diamond~$ Let us consider the matrices

$$J_n = \begin{pmatrix} 0 & -I_n \\ I_n & 0 \end{pmatrix}, \quad S_n = \begin{pmatrix} 0 & I_n \\ I_n & 0 \end{pmatrix},$$

► Sp
$$(n, \mathbb{C}) = \{M \in \operatorname{GL}(2n, \mathbb{C}) \mid M^{\top}J_nM = J_n\}.$$

► SO(2*n*,
$$\mathbb{C}$$
) = {*M* ∈ SL(2*n*, \mathbb{C})) | *M*^T*S_nM* = *S_n*}.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
	000000000000000000000000000000000000000			
Cartan domains of type	II and III			

- \circ The Grassmannian $\operatorname{Gr}_{\mathbb{C}}(2n,n)$ contains two special submanifolds.
- Let us consider the matrices

$$J_n = \begin{pmatrix} 0 & -I_n \\ I_n & 0 \end{pmatrix}, \quad S_n = \begin{pmatrix} 0 & I_n \\ I_n & 0 \end{pmatrix},$$

- ▶ Sp $(n, \mathbb{C}) = \{ M \in \operatorname{GL}(2n, \mathbb{C}) \mid M^{\top}J_nM = J_n \}.$
- ► SO(2n, \mathbb{C}) = { $M \in SL(2n, \mathbb{C})$) | $M^{\top}S_nM = S_n$ }.
- We consider the submanifolds of $\operatorname{Gr}_{\mathbb{C}}(2n, n)$ consisting of **isotropic subspaces** for either of the bilinear forms defined by J_n and S_n .

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
	000000000000000000000000000000000000000			
Cartan domains of type	II and III			

• We denote by $\mathrm{LGr}_{\mathbb{C}}(n)$ the subspace of $\mathrm{Gr}_{\mathbb{C}}(2n, n)$ consisting of the elements [W] where the anti-symmetric bilinear form defined by J_n vanishes. This is equivalent to $W^{\top}J_nW = 0$.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
	000000000000000000000000000000000000000			
Cartan domains of type	II and III			

- We denote by $\mathrm{LGr}_{\mathbb{C}}(n)$ the subspace of $\mathrm{Gr}_{\mathbb{C}}(2n, n)$ consisting of the elements [W] where the anti-symmetric bilinear form defined by J_n vanishes. This is equivalent to $W^{\top}J_nW = 0$.
- LGr_ℂ(*n*) consists of the Lagrangian subspaces of \mathbb{C}^{2n} .

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
	000000000000000000000000000000000000000			
Cartan domains of type	II and III			

- We denote by $\mathrm{LGr}_{\mathbb{C}}(n)$ the subspace of $\mathrm{Gr}_{\mathbb{C}}(2n, n)$ consisting of the elements [W] where the anti-symmetric bilinear form defined by J_n vanishes. This is equivalent to $W^{\top}J_nW = 0$.
- LGr_ℂ(*n*) consists of the Lagrangian subspaces of \mathbb{C}^{2n} .

The space $\mathrm{LGr}_{\mathbb{C}}(n)$ is a complex submanifold of $\mathrm{Gr}_{\mathbb{C}}(2n, n)$, whose group of biholomorphisms is realized by the action of $\mathrm{Sp}(n, \mathbb{C})$

 $M \cdot [W] = [MW],$

where $M \in \text{Sp}(n, \mathbb{C})$ and $[W] \in \text{LGr}_{\mathbb{C}}(n)$.

BSDs 0000	BSDs by example	Bergman spaces 000000000	Unitary representations	Bibliography 0
Cartan domains of type	II and III			

• There is a natural embedding $\varphi: M_{n \times n}(\mathbb{C}) \hookrightarrow \operatorname{Gr}_{\mathbb{C}}(2n, n)$ given by

$$Z\mapsto \begin{bmatrix} Z\\ I_n\end{bmatrix}.$$

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
	000000000000000000000000000000000000000			
Cartan domains of type II and III				

 \circ There is a natural embedding $\varphi: M_{n \times n}(\mathbb{C}) \hookrightarrow \operatorname{Gr}_{\mathbb{C}}(2n, n)$ given by

$$Z\mapsto \begin{bmatrix} Z\\ I_n\end{bmatrix}.$$

◦ Problem: Find the set of matrices $Z \in M_{n \times n}(\mathbb{C})$ such that $\varphi(Z) \in LGr_{\mathbb{C}}(n)$.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
	000000000000000000000000000000000000000			
Cartan domains of type II and III				

 \circ There is a natural embedding $\varphi: M_{n \times n}(\mathbb{C}) \hookrightarrow \operatorname{Gr}_{\mathbb{C}}(2n, n)$ given by

$$Z\mapsto \begin{bmatrix} Z\\ I_n\end{bmatrix}.$$

- Problem: Find the set of matrices $Z \in M_{n \times n}(\mathbb{C})$ such that $\varphi(Z) \in LGr_{\mathbb{C}}(n)$.
- Solution: For $Z \in M_{n \times n}(\mathbb{C})$

$$\begin{bmatrix} Z \\ I_n \end{bmatrix} \text{ is isotropic for } J_n$$
$$\iff (Z^\top, I_n) J_n \begin{pmatrix} Z \\ I_n \end{pmatrix} = 0 \iff (I_n, -Z^\top) \begin{pmatrix} Z \\ I_n \end{pmatrix} = 0$$
$$\iff Z = Z^\top.$$

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
	000000000000000000000000000000000000000			
Cartan domains of type	II and III			

$$D_n^{III} = \mathrm{LGr}_{\mathbb{C}}(n) \cap D_{n \times n}^I.$$

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
	000000000000000000000000000000000000000			
Cartan domains of type	II and III			

$$D_n^{III} = \mathrm{LGr}_{\mathbb{C}}(n) \cap D_{n \times n}^I.$$

 $\,\diamond\,$ From the previous computations, we also have

$$D_n^{III} = \{ Z \in M_{n \times n}(\mathbb{C}) \mid Z = Z^{\top}, \ \overline{Z}Z < I_n \}.$$

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
	000000000000000000000000000000000000000			
Cartan domains of type II and III				

$$D_n^{III} = \mathrm{LGr}_{\mathbb{C}}(n) \cap D_{n \times n}^I.$$

 $\,\diamond\,$ From the previous computations, we also have

$$D_n^{III} = \{ Z \in M_{n \times n}(\mathbb{C}) \mid Z = Z^{\top}, \ \overline{Z}Z < I_n \}.$$

• The **Borel embedding** in this case is the map $D_n^{\prime\prime\prime} \hookrightarrow \mathrm{LGr}_{\mathbb{C}}(n)$ given by

$$Z\mapsto \begin{bmatrix} Z\\ I_n\end{bmatrix}$$
.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
	000000000000000000000000000000000000000			
Cartan domains of type II and III				

$$D_n^{III} = \mathrm{LGr}_{\mathbb{C}}(n) \cap D_{n \times n}^I.$$

 $\,{\scriptstyle \diamond}\,$ From the previous computations, we also have

$$D_n^{III} = \{ Z \in M_{n \times n}(\mathbb{C}) \mid Z = Z^{\top}, \ \overline{Z}Z < I_n \}.$$

• The **Borel embedding** in this case is the map $D_n^{III} \hookrightarrow \mathrm{LGr}_{\mathbb{C}}(n)$ given by

$$Z\mapsto \begin{bmatrix} Z\\ I_n\end{bmatrix}$$

 $\diamond\,$ As before, this allows us to compute ${\rm Aut}(D_n^{III}).$

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
	000000000000000000000000000000000000000			
Cartan domains of type II and III				

For $D_n^{III} = \{Z \in M_{n \times n}(\mathbb{C}) \mid Z = Z^{\top}, \ \overline{Z}Z < I_n\}$, the biholomorphism group $\operatorname{Aut}(D_n^{III})$ is realized by the action of $\operatorname{Sp}(n, \mathbb{C}) \cap \operatorname{SU}(n, n)$ given by

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \cdot Z = (AZ + B)(CZ + D)^{-1},$$

where A, B, C, D all have size $n \times n$.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
	000000000000000000000000000000000000000			
artan domains of type II and III				

For $D_n^{III} = \{Z \in M_{n \times n}(\mathbb{C}) \mid Z = Z^{\top}, \ \overline{Z}Z < I_n\}$, the biholomorphism group $\operatorname{Aut}(D_n^{III})$ is realized by the action of $\operatorname{Sp}(n, \mathbb{C}) \cap \operatorname{SU}(n, n)$ given by

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \cdot Z = (AZ + B)(CZ + D)^{-1},$$

where A, B, C, D all have size $n \times n$.

Proof.

The biholomorphisms come from linear maps that preserve both J_n and $I_{n,n}$.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
	000000000000000000000000000000000000000			
artan domains of type II and III				

For $D_n^{III} = \{Z \in M_{n \times n}(\mathbb{C}) \mid Z = Z^{\top}, \ \overline{Z}Z < I_n\}$, the biholomorphism group $\operatorname{Aut}(D_n^{III})$ is realized by the action of $\operatorname{Sp}(n, \mathbb{C}) \cap \operatorname{SU}(n, n)$ given by

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \cdot Z = (AZ + B)(CZ + D)^{-1},$$

where A, B, C, D all have size $n \times n$.

Proof.

The biholomorphisms come from linear maps that preserve both J_n and $I_{n,n}$.

◦ There is an isomorphism of Lie groups $Sp(n, \mathbb{C}) \cap SU(n, n) \simeq Sp(n, \mathbb{R}) = \{X \in GL(2n, \mathbb{R}) \mid X^{\top}J_nX = J_n\}.$

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
	000000000000000000000000000000000000000			
Cartan domains of type	II and III			

• We denote by $OGr_{\mathbb{C}}(n)$ the subspace of $Gr_{\mathbb{C}}(2n, n)$ consisting of the elements [W] where the symmetric bilinear form defined by S_n vanishes. This is equivalent to $W^{\top}S_nW = 0$.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
	000000000000000000000000000000000000000			
Cartan domains of type	II and III			

- We denote by $OGr_{\mathbb{C}}(n)$ the subspace of $Gr_{\mathbb{C}}(2n, n)$ consisting of the elements [W] where the symmetric bilinear form defined by S_n vanishes. This is equivalent to $W^{\top}S_nW = 0$.
- $OGr_{\mathbb{C}}(n)$ consists of the maximal isotropic subspaces of (\mathbb{C}^{2n}, S_n) .

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
	000000000000000000000000000000000000000			
Cartan domains of type	II and III			

- We denote by $OGr_{\mathbb{C}}(n)$ the subspace of $Gr_{\mathbb{C}}(2n, n)$ consisting of the elements [W] where the symmetric bilinear form defined by S_n vanishes. This is equivalent to $W^{\top}S_nW = 0$.
- $OGr_{\mathbb{C}}(n)$ consists of the maximal isotropic subspaces of (\mathbb{C}^{2n}, S_n) .

The space $\operatorname{OGr}_{\mathbb{C}}(n)$ is a complex submanifold of $\operatorname{Gr}_{\mathbb{C}}(2n, n)$, whose group of biholomorphisms is realized by the action of $\operatorname{SO}(2n, \mathbb{C})$

 $M \cdot [W] = [MW],$

where $M \in SO(2n, \mathbb{C})$ and $[W] \in OGr_{\mathbb{C}}(n)$.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
	000000000000000000000000000000000000000			
Cartan domains of type	II and III			

 $_{\diamond}\,$ As before, for the natural embedding $\mathit{M}_{n\times n}(\mathbb{C}) \hookrightarrow \mathrm{Gr}_{\mathbb{C}}(2n,n)$ given by

$$Z\mapsto \begin{bmatrix} Z\\ I_n\end{bmatrix},$$

we have for every $Z \in M_{n imes n}(\mathbb{C})$

$$\begin{bmatrix} Z \\ I_n \end{bmatrix} \text{ is isotropic for } S_n \iff Z = -Z^\top.$$

 $_{\diamond}$ As before, for the natural embedding $M_{n\times n}(\mathbb{C}) \hookrightarrow \mathrm{Gr}_{\mathbb{C}}(2n,n)$ given by

$$Z\mapsto \begin{bmatrix} Z\\ I_n\end{bmatrix},$$

we have for every $Z \in M_{n \times n}(\mathbb{C})$

$$\begin{bmatrix} Z\\ I_n \end{bmatrix}$$
 is isotropic for $S_n \iff Z = -Z^{ op}.$

• The **Cartan domain of type II** D_n^{II} is the set of *n*-dimensional subspaces of \mathbb{C}^{2n} that are both isotropic for S_n and negative definite for the Hermitian form $\langle \cdot, \cdot \rangle_{n,n}$

$$D_n^{II} = \mathrm{OGr}_{\mathbb{C}}(n) \cap D_{n \times n}^I$$

 $_{\diamond}\,$ As before, for the natural embedding $\mathit{M}_{n\times n}(\mathbb{C})\hookrightarrow \mathrm{Gr}_{\mathbb{C}}(2n,n)$ given by

$$Z\mapsto \begin{bmatrix} Z\\ I_n\end{bmatrix},$$

we have for every $Z \in M_{n \times n}(\mathbb{C})$

$$\begin{bmatrix} Z\\ I_n \end{bmatrix} \text{ is isotropic for } S_n \iff Z = -Z^\top.$$

• The **Cartan domain of type II** $D_n^{\prime\prime}$ is the set of *n*-dimensional subspaces of \mathbb{C}^{2n} that are both isotropic for S_n and negative definite for the Hermitian form $\langle \cdot, \cdot \rangle_{n,n}$

$$D_n^{II} = \mathrm{OGr}_{\mathbb{C}}(n) \cap D_{n \times n}^I.$$

◊ In particular, we have

$$D_n^{II} = \{ Z \in M_{n \times n}(\mathbb{C}) \mid Z = -Z^{\top}, \ Z^* Z < I_n \},$$

and its Borel embedding is given as before.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
	000000000000000000000000000000000000000			
Cartan domains of type	II and III			

For $D_n^{II} = \{Z \in M_{n \times n}(\mathbb{C}) \mid Z = -Z^{\top}, Z^*Z < I_n\}$, the biholomorphism group $\operatorname{Aut}(D_n^{III})$ is realized by the action of $\operatorname{SO}(2n, \mathbb{C}) \cap \operatorname{SU}(n, n)$ given by

$$egin{pmatrix} \mathsf{A} & \mathsf{B} \ \mathsf{C} & \mathsf{D} \end{pmatrix} \cdot \mathsf{Z} = (\mathsf{A}\mathsf{Z} + \mathsf{B})(\mathsf{C}\mathsf{Z} + \mathsf{D})^{-1},$$

where A, B, C, D all have size $n \times n$.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
	000000000000000000000000000000000000000			
Cartan domains of type	II and III			

For $D_n^{II} = \{Z \in M_{n \times n}(\mathbb{C}) \mid Z = -Z^{\top}, Z^*Z < I_n\}$, the biholomorphism group $\operatorname{Aut}(D_n^{III})$ is realized by the action of $\operatorname{SO}(2n, \mathbb{C}) \cap \operatorname{SU}(n, n)$ given by

$$egin{pmatrix} \mathsf{A} & \mathsf{B} \ \mathsf{C} & \mathsf{D} \end{pmatrix} \cdot \mathsf{Z} = (\mathsf{A}\mathsf{Z} + \mathsf{B})(\mathsf{C}\mathsf{Z} + \mathsf{D})^{-1},$$

where A, B, C, D all have size $n \times n$.

◦ There is an isomorphism of Lie groups $SO(2n, \mathbb{C}) \cap SU(n, n) \simeq SO^*(2n)$, where the latter is a Lie group associated to a quaternionic structure.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography	
	000000000000000000000000000000000000000				
Cartan domains of type IV					

• The compact complex manifold for this type is given by

$$Q^n: \ \ [z]\in \mathbb{CP}^{n+1} ext{ such that } \sum_{j=1}^n z_j^2-2z_{n+1}z_{n+2}=0,$$

an *n*-dimensional quadric in \mathbb{CP}^{n+1} .

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
	000000000000000000000000000000000000000			
Cartan domains of type	IV			

• The compact complex manifold for this type is given by

$$Q^n: \ \ [z]\in \mathbb{CP}^{n+1}$$
 such that $\displaystyle \sum_{j=1}^n z_j^2-2z_{n+1}z_{n+2}=0,$

an *n*-dimensional quadric in \mathbb{CP}^{n+1} .

• Let us consider the open subset Ω of Q^n of elements that are negative definite for the Hermitian form $\langle \cdot, \cdot \rangle_{n,2}$.
BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
	000000000000000000000000000000000000000			
Cartan domains of type	IV			

• The compact complex manifold for this type is given by

$$Q^n: \ \ [z]\in \mathbb{CP}^{n+1}$$
 such that $\displaystyle \sum_{j=1}^n z_j^2-2z_{n+1}z_{n+2}=0,$

an *n*-dimensional quadric in \mathbb{CP}^{n+1} .

- Let us consider the open subset Ω of Q^n of elements that are negative definite for the Hermitian form $\langle \cdot, \cdot \rangle_{n,2}$.
- The **Cartan domain of type IV** D_n^{IV} is the connected component of Ω that contains $[e_{n+1}]$.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
	000000000000000000000000000000000000000			
Cartan domains of type	IV			

• The compact complex manifold for this type is given by

$$Q^n: \ \ [z]\in \mathbb{CP}^{n+1}$$
 such that $\displaystyle \sum_{j=1}^n z_j^2-2z_{n+1}z_{n+2}=0,$

an *n*-dimensional quadric in \mathbb{CP}^{n+1} .

- Let us consider the open subset Ω of Q^n of elements that are negative definite for the Hermitian form $\langle \cdot, \cdot \rangle_{n,2}$.
- The **Cartan domain of type IV** D_n^{IV} is the connected component of Ω that contains $[e_{n+1}]$.
- $\diamond\,$ A realization of this domain is given by

$$D_n^{IV} = \{ z \in \mathbb{C}^n \mid |z| < 1, \ 2|z|^2 < 1 + |z^\top z|^2 \}.$$

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
	000000000000000000000000000000000000000			
Cartan domains of type	IV			

For $D_n^{IV} = \{z \in \mathbb{C}^n \mid |z| < 1, \ 2|z|^2 < 1 + |z^\top z|^2\}$, the biholomorphism group $\operatorname{Aut}(D_n^{IV})$ is realized by an action of $\operatorname{SO}(n, 2)$ by quadratic fractional transformations.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
	000000000000000000000000000000000000000			
Cartan domains and Lie	groups			

• The previous realizations of the classical Cartan domains are very explicit, and so their basic properties are easy to prove.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography	
	000000000000000000000000000000000000000				
Cartan domains and Lie groups					

- The previous realizations of the classical Cartan domains are very explicit, and so their basic properties are easy to prove.
- \circ General properties of a classical Cartan domain D (and every BSD)

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography		
	000000000000000000000000000000000000000					
Cartan domains and Lie	Cartan domains and Lie groups					

- The previous realizations of the classical Cartan domains are very explicit, and so their basic properties are easy to prove.
- \circ General properties of a classical Cartan domain D (and every BSD)
 - ▶ For the given realizations, *D* is a circular domain: $0 \in D$ and tD = D for every $t \in \mathbb{T}$.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography	
	000000000000000000000000000000000000000				
Cartan domains and Lie groups					

- The previous realizations of the classical Cartan domains are very explicit, and so their basic properties are easy to prove.
- \circ General properties of a classical Cartan domain D (and every BSD)
 - ▶ For the given realizations, *D* is a circular domain: $0 \in D$ and tD = D for every $t \in \mathbb{T}$.
 - D is homogeneous: the action of Aut(D) is transitive.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
	000000000000000000000000000000000000000			
Cartan domains and Lie groups				

- The previous realizations of the classical Cartan domains are very explicit, and so their basic properties are easy to prove.
- \circ General properties of a classical Cartan domain D (and every BSD)
 - ▶ For the given realizations, *D* is a circular domain: $0 \in D$ and tD = D for every $t \in \mathbb{T}$.
 - D is homogeneous: the action of Aut(D) is transitive.
 - ► The action of Aut(D) has been given as an action of a connected Lie group G. The subgroup K of G that fixes the origin acts linearly on D and yields a quotient D = G/K.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
	000000000000000000000000000000000000000			
Cartan domains and Lie groups				

• We describe the Lie groups associated to classical Cartan domains.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
	000000000000000000000000000000000000000			
Cartan domains and Lie groups				

• We describe the Lie groups associated to classical Cartan domains.

▶ Type I, $D'_{n \times m}$: G = SU(n, m) and $K = S(U(n) \times U(m))$ acting by

 $(A,B)\cdot Z=AZB^{-1}.$

BSDs 0000	BSDs by example ○○○○○○○○○○○○○○○○	Bergman spaces 000000000	Unitary representations	Bibliography 0	
Cartan domains and Lie groups					

- $\,\scriptscriptstyle\diamond\,$ We describe the Lie groups associated to classical Cartan domains.
 - ▶ Type I, $D_{n \times m}^{I}$: G = SU(n, m) and $K = S(U(n) \times U(m))$ acting by

 $(A,B)\cdot Z=AZB^{-1}.$

▶ Type II, D_n^{II} : $G = SO^*(2n)$ and K = U(n) acting by

 $A \cdot Z = AZA^{\top}.$

BSDs 0000	BSDs by example ○○○○○○○○○○○○○○○	Bergman spaces 000000000	Unitary representations	Bibliography 0
Cartan domains and Li	e groups			
◊ We	describe the Lie groups asso	ciated to classical Ca	rtan domains.	

▶ Type I, $D'_{n \times m}$: G = SU(n, m) and $K = S(U(n) \times U(m))$ acting by

 $(A,B)\cdot Z=AZB^{-1}.$

▶ Type II, D_n^{II} : $G = SO^*(2n)$ and K = U(n) acting by

 $A \cdot Z = AZA^{\top}.$

▶ Type III, D_n^{III} : $G = \operatorname{Sp}(n, \mathbb{C}) \cap \operatorname{SU}(n, n) \simeq \operatorname{Sp}(n, \mathbb{R})$ and $K = \operatorname{U}(n)$ acting by

 $A \cdot Z = AZA^{\top}.$

BSDs 0000	BSDs by example ○○○○○○○○○○○○○○○○○	Bergman spaces	Unitary representations	Bibliography 0		
Cartan domains	and Lie groups					
♦ \	• We describe the Lie groups associated to classical Cartan domains.					

 $(A, B) \cdot Z = AZB^{-1}.$

▶ Type II, D_n^{II} : $G = SO^*(2n)$ and K = U(n) acting by

$$A \cdot Z = AZA^{\top}.$$

▶ Type III, D_n^{III} : $G = \operatorname{Sp}(n, \mathbb{C}) \cap \operatorname{SU}(n, n) \simeq \operatorname{Sp}(n, \mathbb{R})$ and $K = \operatorname{U}(n)$ acting by

$$A \cdot Z = AZA^{\top}.$$

▶ Type IV, D_n^{IV} : G = SO(n, 2) and $K = SO(n) \times SO(2) \simeq SO(n) \times \mathbb{T}$ acting by

 $(A, t) \cdot z = tAz.$

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
		000000000		

Bounded symmetric domains

2 Bounded symmetric domains by example

3 Bergman spaces

- Bergman spaces
- Bergman kernels
- Weighted Bergman spaces

Initary representations and Bergman spaces

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
		00000000		
Bergman spaces				

• Let $D \subset \mathbb{C}^N$ be any domain. The **Bergman space** associated to D is given by $\mathcal{A}^2(D) = L^2(D) \cap \operatorname{Hol}(D)$.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
		00000000		
Bergman spaces				

- Let $D \subset \mathbb{C}^N$ be any domain. The **Bergman space** associated to D is given by $\mathcal{A}^2(D) = L^2(D) \cap \operatorname{Hol}(D)$.
- One usually assumes that D bounded and take the normalized Lebesgue measure dv(z) so that v(D) = 1.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
		00000000		
Bergman spaces				

- Let $D \subset \mathbb{C}^N$ be any domain. The **Bergman space** associated to D is given by $\mathcal{A}^2(D) = L^2(D) \cap \operatorname{Hol}(D)$.
- One usually assumes that D bounded and take the normalized Lebesgue measure dv(z) so that v(D) = 1.
- The boundedness of D ensures that $\mathcal{P}(\mathbb{C}^N) \subset \mathcal{A}^2(D)$. And the condition v(D) = 1 simplifies the expression of the Bergman kernel.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
		00000000		
Bergman spaces				

Let $D \subset \mathbb{C}^N$ be a domain. Then, for every compact subset $K \subset D$ there exists a constant $C_K > 0$ such that $||f||_{\infty,K} \leq C_k ||f||_2$, for every $f \in \mathcal{A}^2(D)$. In particular, the following hold

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
		00000000		
Bergman spaces				

Let $D \subset \mathbb{C}^N$ be a domain. Then, for every compact subset $K \subset D$ there exists a constant $C_K > 0$ such that $||f||_{\infty,K} \leq C_k ||f||_2$, for every $f \in \mathcal{A}^2(D)$. In particular, the following hold

◦ $A^2(D)$ is closed subspace of $L^2(D)$.

0000	000000000000000000000000000000000000000	000000000	00000000000	0
Bergman spaces				

Let $D \subset \mathbb{C}^N$ be a domain. Then, for every compact subset $K \subset D$ there exists a constant $C_K > 0$ such that $||f||_{\infty,K} \leq C_k ||f||_2$, for every $f \in \mathcal{A}^2(D)$. In particular, the following hold

◦ $A^2(D)$ is closed subspace of $L^2(D)$.

• For every $z \in D$, the evaluation functional $f \mapsto f(z)$ is L^2 -continuous on $\mathcal{A}^2(D)$.

BSDs 0000	BSDs by example	Bergman spaces	Unitary representations	Bibliography 0
Bergman spaces				

Let $D \subset \mathbb{C}^N$ be a domain. Then, for every compact subset $K \subset D$ there exists a constant $C_K > 0$ such that $||f||_{\infty,K} \leq C_k ||f||_2$, for every $f \in \mathcal{A}^2(D)$. In particular, the following hold

◦ $A^2(D)$ is closed subspace of $L^2(D)$.

• For every $z \in D$, the evaluation functional $f \mapsto f(z)$ is L^2 -continuous on $\mathcal{A}^2(D)$.

Proof.

Cauchy's integral formula.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
		00000000		
Bergman spaces				

Let $D \subset \mathbb{C}^N$ be a domain. Then, for every compact subset $K \subset D$ there exists a constant $C_K > 0$ such that $||f||_{\infty,K} \leq C_k ||f||_2$, for every $f \in \mathcal{A}^2(D)$. In particular, the following hold

◦ $A^2(D)$ is closed subspace of $L^2(D)$.

◦ For every $z \in D$, the evaluation functional $f \mapsto f(z)$ is L²-continuous on $A^2(D)$.

Proof.

Cauchy's integral formula.

Corollary

The same conclusions hold for "weighted" Bergman spaces of the form $\mathcal{A}^2_w(D) = L^2(D, w(z) dz) \cap \operatorname{Hol}(D)$, where $w : D \to (0, +\infty)$ is any continuous function.

BSDs 0000	BSDs by example	Bergman spaces	Unitary representations	Bibliography 0
Bergman ker	nels			
<	Let $D \subset \mathbb{C}^N$ be a given dominant $f($	ain. For every $z \in l$ $z) = \int_D f(w) \overline{K_z}(w)$	D, there exists $K_z \in \mathcal{A}^2(L)$ $) { m d} v(z),$)) such
	for every $f \in \mathcal{A}^2(D)$.			

BSDs 0000	BSDs by example 000000000000000000000	Bergman spaces ○○○●○○○○○	Unitary representations	Bibliography 0
Bergman ke	ernels			
	♦ Let $D \subset \mathbb{C}^N$ be a given dom	ain. For everv $z \in L$	D. there exists $K_{\tau} \in \mathcal{A}^2(L)$) such

• Let $D \subset \mathbb{C}^N$ be a given domain. For every $z \in D$, there exists $K_z \in \mathcal{A}^2(D)$ suc that

$$f(z) = \int_D f(w) \overline{K_z}(w) \, \mathrm{d} v(z),$$

for every $f \in \mathcal{A}^2(D)$.

◦ The **Bergman kernel** of *D* is the function $K : D × D → \mathbb{C}$ given by $K(z, w) = K_w(z)$, and it satisfies

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
		000000000		
Bergman kernels				
				,

$$f(z) = \int_D f(w) \overline{K_z}(w) \, \mathrm{d}v(z),$$

for every $f \in \mathcal{A}^2(D)$.

◦ The **Bergman kernel** of *D* is the function $K : D × D → \mathbb{C}$ given by $K(z, w) = K_w(z)$, and it satisfies

•
$$K(z,w) = \langle K_w, K_z \rangle$$
. In particular, $K(z,w) = \overline{K(w,z)}$.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
		000000000		
Bergman kernels				

$$f(z) = \int_D f(w) \overline{K_z}(w) \, \mathrm{d}v(z),$$

for every $f \in \mathcal{A}^2(D)$.

- The **Bergman kernel** of D is the function $K : D \times D \to \mathbb{C}$ given by $K(z, w) = K_w(z)$, and it satisfies
 - $K(z, w) = \langle K_w, K_z \rangle$. In particular, $K(z, w) = \overline{K(w, z)}$.
 - K(z, w) is holomorphic in z and anti-holomorphic in w.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
		000000000		
Bergman kernels				

$$f(z) = \int_D f(w) \overline{K_z}(w) \, \mathrm{d}v(z),$$

for every $f \in \mathcal{A}^2(D)$.

- The **Bergman kernel** of D is the function $K : D \times D \to \mathbb{C}$ given by $K(z, w) = K_w(z)$, and it satisfies
 - $K(z, w) = \langle K_w, K_z \rangle$. In particular, $K(z, w) = \overline{K(w, z)}$.
 - K(z, w) is holomorphic in z and anti-holomorphic in w.

•
$$K(z,z) > 0$$
 for every $z \in D$.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
		000000000		
Bergman kernels				

$$f(z) = \int_D f(w) \overline{K_z}(w) \, \mathrm{d}v(z),$$

for every $f \in \mathcal{A}^2(D)$.

• The **Bergman kernel** of *D* is the function $K : D \times D \to \mathbb{C}$ given by $K(z, w) = K_w(z)$, and it satisfies

•
$$K(z,w) = \langle K_w, K_z \rangle$$
. In particular, $K(z,w) = \overline{K(w,z)}$.

• K(z, w) is holomorphic in z and anti-holomorphic in w.

•
$$K(z,z) > 0$$
 for every $z \in D$.

Corollary

The orthogonal projection $B_D: L^2(D) \to \mathcal{A}^2(D)$ is given by

$$B_D(f)(z) = \int_D f(w) K(z,w) dv(w),$$

for every $z \in D$. It is called the Bergman projection.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
		000000000		
Bergman kernels				

The biholomorphism group Aut(D) has a unitary representation π on $\mathcal{A}^2(D)$ given by

$$\pi(\varphi)(f) = J_{\mathbb{C}}(\varphi^{-1})(f \circ \varphi^{-1}),$$

for every $\varphi \in \operatorname{Aut}(D)$ and $f \in \mathcal{A}^2(D)$.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
		000000000		
Bergman kernels				

The biholomorphism group Aut(D) has a unitary representation π on $\mathcal{A}^2(D)$ given by

$$\pi(\varphi)(f) = J_{\mathbb{C}}(\varphi^{-1})(f \circ \varphi^{-1}),$$

for every $\varphi \in \operatorname{Aut}(D)$ and $f \in \mathcal{A}^2(D)$.

Corollary

For any domain D with Bergman kernel K and $\varphi \in Aut(D)$ we have

$$K(z,w) = J_{\mathbb{C}}(\varphi)(z)K(\varphi(z),\varphi(w))\overline{J_{\mathbb{C}}(\varphi)(w)},$$

for every $z, w \in D$.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
		000000000		
Bergman kernels				

The biholomorphism group Aut(D) has a unitary representation π on $\mathcal{A}^2(D)$ given by

$$\pi(\varphi)(f) = J_{\mathbb{C}}(\varphi^{-1})(f \circ \varphi^{-1}),$$

for every $\varphi \in \operatorname{Aut}(D)$ and $f \in \mathcal{A}^2(D)$.

Corollary

For any domain D with Bergman kernel K and $\varphi \in Aut(D)$ we have

$$K(z,w) = J_{\mathbb{C}}(\varphi)(z)K(\varphi(z),\varphi(w))\overline{J_{\mathbb{C}}(\varphi)(w)},$$

for every $z, w \in D$.

Both results are obtained applying the change of variable theorem.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
0000	000000000000000000000000000000000000000	00000000	00000000000	
Bergman kernels				

 The Bergman kernels for the classical Cartan domains have been computed and are very well known.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
		000000000		
Bergman kernels				

 The Bergman kernels for the classical Cartan domains have been computed and are very well known.

• Type I,
$$D'_{n \times m}$$
: $K(Z, W) = \det(I_n - ZW^*)^{-(n+m)}$.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
0000	000000000000000000000000000000000000000	00000000	00000000000	
Bergman kernels				

 The Bergman kernels for the classical Cartan domains have been computed and are very well known.

► Type I,
$$D'_{n\times m}$$
: $K(Z, W) = \det(I_n - ZW^*)^{-(n+m)}$.

• Type II,
$$D_n^{II}$$
: $K(Z, W) = \det(I_n + Z\overline{W})^{-(n-1)}$.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
0000	000000000000000000000000000000000000000	00000000	00000000000	
Bergman kernels				

- $\diamond\,$ The Bergman kernels for the classical Cartan domains have been computed and are very well known.
 - Type I, $D_{n\times m}^{I}$: $K(Z, W) = \det(I_n ZW^*)^{-(n+m)}$.
 - Type II, D_n^{II} : $K(Z, W) = \det(I_n + Z\overline{W})^{-(n-1)}$.
 - Type III, D_n^{III} : $K(Z, W) = \det(I_n Z\overline{W})^{-(n+1)}$.

BSDs 0000	BSDs by example	Bergman spaces	Unitary representations	Bibliography 0
Bergman kernels				

- The Bergman kernels for the classical Cartan domains have been computed and are very well known.
 - Type I, $D_{n\times m}^{I}$: $K(Z, W) = \det(I_n ZW^*)^{-(n+m)}$.
 - Type II, D_n'' : $K(Z, W) = \det(I_n + Z\overline{W})^{-(n-1)}$.
 - Type III, D_n^{III} : $\dot{K}(Z, \dot{W}) = \det(I_n Z\overline{\dot{W}})^{-(n+1)}$.
 - ► Type IV, D_n^{IV} : $K(z, w) = (1 2z \cdot \overline{w} + (z \cdot z)\overline{(w \cdot w)})^{-n}$.
| BSDs
0000 | BSDs by example | Bergman spaces | Unitary representations | Bibliography
0 |
|-----------------|-----------------|----------------|-------------------------|-------------------|
| Bergman kernels | | | | |

 The Bergman kernels for the classical Cartan domains have been computed and are very well known.

• Type I,
$$D'_{n \times m}$$
: $K(Z, W) = \det(I_n - ZW^*)^{-(n+m)}$.

• Type II,
$$D_n''$$
: $K(Z, W) = \det(I_n + Z\overline{W})^{-(n-1)}$.

• Type III, D_n^{III} : $K(Z, W) = \det(I_n - Z\overline{W})^{-(n+1)}$.

► Type IV,
$$D_n^{IV}$$
: $K(z, w) = (1 - 2z \cdot \overline{w} + (z \cdot z)\overline{(w \cdot w)})^{-n}$.

Proposition

For any irreducible BSD D there exist two invariants, the genus p and the Jordan triple determinant $\Delta: D \times D \to \mathbb{C}$, such that

$$K(z,w) = \Delta(z,w)^{-p},$$

for every $z, w \in D$.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
Bergman kernels				

• For the classical Cartan domains these invariants are given by

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
		000000000		
Bergman kernels				

- $\,\circ\,$ For the classical Cartan domains these invariants are given by
 - ► Type I, $D'_{n \times m}$: p = n + m, $\Delta(Z, W) = \det(I_n ZW^*)$.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
		000000000		
Bergman kernels				

- $\,\circ\,$ For the classical Cartan domains these invariants are given by
 - ► Type I, $D'_{n \times m}$: p = n + m, $\Delta(Z, W) = \det(I_n ZW^*)$.
 - ► Type II, $D_n^{\prime\prime}$: p = 2n 2, $\Delta(Z, W) = \det(I_n + Z\overline{W})^{\frac{1}{2}}$.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
0000	000000000000000000000000000000000000000	000000000	00000000000	
Bergman kernels				

- $\,\circ\,$ For the classical Cartan domains these invariants are given by
 - ► Type I, $D'_{n \times m}$: p = n + m, $\Delta(Z, W) = \det(I_n ZW^*)$.
 - ► Type II, $D_{n,...}^{II} p = 2n 2$, $\Delta(Z, W) = \det(I_n + Z\overline{W})^{\frac{1}{2}}$.
 - Type III, D_n^{III} : p = n + 1, $\Delta(Z, W) = \det(I_n Z\overline{W})$.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
		0000000000		
Bergman kernels				

- For the classical Cartan domains these invariants are given by
 - ► Type I, $D'_{n \times m}$: p = n + m, $\Delta(Z, W) = \det(I_n ZW^*)$.
 - ► Type II, $D_n^{\prime\prime} = 2n 2$, $\Delta(Z, W) = \det(I_n + Z\overline{W})^{\frac{1}{2}}$.
 - ► Type III, D_n^{III} : p = n + 1, $\Delta(Z, W) = \det(I_n Z\overline{W})$.
 - ► Type IV, D_n^{IV} : p = n, $\Delta(z, w) = 1 2z \cdot \overline{w} + (z \cdot z)\overline{(w \cdot w)}$.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
		0000000000		
Bergman kernels				

- For the classical Cartan domains these invariants are given by
 - Type I, $D'_{n \times m}$: p = n + m, $\Delta(Z, W) = \det(I_n ZW^*)$.
 - ► Type II, D_n^{II} : p = 2n 2, $\Delta(Z, W) = \det(I_n + Z\overline{W})^{\frac{1}{2}}$.
 - ► Type III, D_n^{III} : p = n + 1, $\Delta(Z, W) = \det(I_n Z\overline{W})$.
 - ► Type IV, D_n^{IV} : p = n, $\Delta(z, w) = 1 2z \cdot \overline{w} + (z \cdot z)\overline{(w \cdot w)}$.
- There are two exceptional irreducible BSD whose dimensions are 16 and 27, with genus 12 and 26, respectively.

◦ Let *D* be an irreducible BSD with Bergman kernel $K(z, w) = \Delta(z, w)^{-p}$. The most natural weight to consider is

$$z\mapsto \Delta(z,z)^{\lambda-p}=K(z,z)^{1-rac{\lambda}{p}}.$$

Bergman spaces 00000000000

Weighted Bergman spaces

• Let D be an irreducible BSD with Bergman kernel $K(z, w) = \Delta(z, w)^{-p}$. The most natural weight to consider is

$$z\mapsto \Delta(z,z)^{\lambda-p}={\mathcal K}(z,z)^{1-rac{\lambda}{p}}.$$

Proposition

For every
$$\lambda > p - 1$$
, we have

$$\int_D \Delta(z,z)^{\lambda-p} \, \mathrm{d} z < \infty.$$

In particular, for every $\lambda > p - 1$, there is a constant $c_{\lambda} > 0$ such that $dv_{\lambda}(z) = c_{\lambda}\Delta(z, z)^{\lambda-p} dz$ is a probability measure.

Weighted Bergman spaces

• Let D be an irreducible BSD with Bergman kernel $K(z, w) = \Delta(z, w)^{-p}$. The most natural weight to consider is

$$z\mapsto \Delta(z,z)^{\lambda-p}=K(z,z)^{1-rac{\lambda}{p}}.$$

Proposition

For every
$$\lambda > p - 1$$
, we have

$$\int_D \Delta(z,z)^{\lambda-p} \, \mathrm{d} z < \infty.$$

In particular, for every $\lambda > p - 1$, there is a constant $c_{\lambda} > 0$ such that $dv_{\lambda}(z) = c_{\lambda}\Delta(z, z)^{\lambda-p} dz$ is a probability measure.

Proof.

The value of the integral can be computed in terms of Gamma functions.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
		0000000000		
Weighted Bergman spac	es			

• Let *D* be an irreducible BSD with genus *p* and Jordan triple determinant Δ . For every $\lambda > p - 1$, the **weighted Bergman space with weight** λ is denoted by $\mathcal{A}^2_{\lambda}(D)$ and is given by

$$\mathcal{A}^2_\lambda(D) = L^2(D, v_\lambda) \cap \operatorname{Hol}(D)$$

where
$${\mathsf d} v_\lambda(z) = c_\lambda \Delta(z,z)^{\lambda-p} \, {\mathsf d} z.$$

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
		0000000000		
Weighted Bergman spaces				

• Let *D* be an irreducible BSD with genus *p* and Jordan triple determinant Δ . For every $\lambda > p - 1$, the **weighted Bergman space with weight** λ is denoted by $\mathcal{A}^2_{\lambda}(D)$ and is given by

$$\mathcal{A}^2_\lambda(D) = L^2(D, v_\lambda) \cap \operatorname{Hol}(D)$$

where
$$\mathrm{d} v_\lambda(z) = c_\lambda \Delta(z,z)^{\lambda-p} \,\mathrm{d} z.$$

 As noted before, the weighted Bergman spaces share the same properties found for the "weightless" Bergman spaces.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
		0000000000		
Weighted Bergman spaces				

• Let *D* be an irreducible BSD with genus *p* and Jordan triple determinant Δ . For every $\lambda > p - 1$, the **weighted Bergman space with weight** λ is denoted by $\mathcal{A}^2_{\lambda}(D)$ and is given by

$$\mathcal{A}^2_\lambda(D) = L^2(D, v_\lambda) \cap \operatorname{Hol}(D)$$

where
$$dv_{\lambda}(z) = c_{\lambda}\Delta(z,z)^{\lambda-p} dz$$
.

 As noted before, the weighted Bergman spaces share the same properties found for the "weightless" Bergman spaces.

•
$$\mathcal{A}^2_{\lambda}(D)$$
 is a closed subspace of $L^2(D, v_{\lambda})$.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
		0000000000		
Weighted Bergman spaces				

• Let *D* be an irreducible BSD with genus *p* and Jordan triple determinant Δ . For every $\lambda > p - 1$, the **weighted Bergman space with weight** λ is denoted by $\mathcal{A}_{\lambda}^{2}(D)$ and is given by

$$\mathcal{A}^2_\lambda(D) = L^2(D, v_\lambda) \cap \operatorname{Hol}(D)$$

where
$$dv_{\lambda}(z) = c_{\lambda}\Delta(z,z)^{\lambda-p} dz$$
.

- As noted before, the weighted Bergman spaces share the same properties found for the "weightless" Bergman spaces.
 - $\mathcal{A}^2_{\lambda}(D)$ is a closed subspace of $L^2(D, v_{\lambda})$.
 - The evaluation functionals $f \mapsto f(z)$ are continuous on $\mathcal{A}^2_{\lambda}(D)$.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
		0000000000		
Weighted Bergman spac	es			

• Let *D* be an irreducible BSD with genus *p* and Jordan triple determinant Δ . For every $\lambda > p - 1$, the **weighted Bergman space with weight** λ is denoted by $\mathcal{A}_{\lambda}^{2}(D)$ and is given by

$$\mathcal{A}^2_\lambda(D) = L^2(D, v_\lambda) \cap \operatorname{Hol}(D)$$

where
$$dv_{\lambda}(z) = c_{\lambda}\Delta(z,z)^{\lambda-p} dz$$
.

- As noted before, the weighted Bergman spaces share the same properties found for the "weightless" Bergman spaces.
 - $\mathcal{A}^2_{\lambda}(D)$ is a closed subspace of $L^2(D, v_{\lambda})$.
 - The evaluation functionals $f \mapsto f(z)$ are continuous on $\mathcal{A}^2_{\lambda}(D)$.
 - The orthogonal Bergman projection B_λ : L²(D, v_λ) → A²_λ(D) is realized by a "weighted" Bergman kernel K_λ : D × D → C.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
0000	000000000000000000000000000000000000	○○○○○○○○●		0
Weighted Bergman space	ces			

Let D be an irreducible BSD with genus p and (weightless) Bergman kernel $K(z, w) = \Delta(z, w)^{-p}$. Then, for every $\lambda > p - 1$ the weighted Bergman kernel of $\mathcal{A}^2_{\lambda}(D)$ is given by

$$K_{\lambda}(z,w) = \Delta(z,w)^{-\lambda} = K(z,w)^{\frac{\lambda}{p}}.$$

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
		000000000		
Weighted Bergman space	es			

Let D be an irreducible BSD with genus p and (weightless) Bergman kernel $K(z, w) = \Delta(z, w)^{-p}$. Then, for every $\lambda > p - 1$ the weighted Bergman kernel of $\mathcal{A}^2_{\lambda}(D)$ is given by

$$K_{\lambda}(z,w) = \Delta(z,w)^{-\lambda} = K(z,w)^{\frac{\lambda}{p}}.$$

 $\diamond\,$ It is now an easy exercise to write down the weighted Bergman kernels for all classical Cartan domains.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
		000000000		
Weighted Bergman spac	es			

Let D be an irreducible BSD with genus p and (weightless) Bergman kernel $K(z, w) = \Delta(z, w)^{-p}$. Then, for every $\lambda > p - 1$ the weighted Bergman kernel of $\mathcal{A}^2_{\lambda}(D)$ is given by

$$K_{\lambda}(z,w) = \Delta(z,w)^{-\lambda} = K(z,w)^{\frac{\lambda}{p}}.$$

- $\circ~$ It is now an easy exercise to write down the weighted Bergman kernels for all classical Cartan domains.
- $\diamond\,$ Since the BSDs are simply connected, it is easy to find branches of the $\lambda\text{-powers}$ with the required analyticity.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
			0000000000	

1 Bounded symmetric domains

2 Bounded symmetric domains by example

3) Bergman spaces

Onitary representations and Bergman spaces

- The representation of Aut(D)
- The representation of K

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
0000	000000000000000000000000000000000000	000000000		0
The representation of A	$\operatorname{ut}(D)$			

• Let D = G/K be an irreducible bounded symmetric domain.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography	
			0000000000		
The representation of $\operatorname{Aut}(D)$					

- Let D = G/K be an irreducible bounded symmetric domain.
- $_{\circ}\,$ Let us denote by \widetilde{G} the universal covering group of G.

BSDs 0000	BSDs by example 000000000000000000000000000000000000	Bergman spaces	Unitary representations	Bibliography 0
The representation of	$f \operatorname{Aut}(D)$			
◊ Let	D = G/K be an irreduct	ible bounded symme	tric domain.	

- Let us denote by \widetilde{G} the universal covering group of G.
- $\diamond\,$ Problem: Determine the fundamental group of G.

BSDs 0000	BSDs by example	Bergman spaces 0000000000	Unitary representations	Bibliography 0
The representation of $\boldsymbol{\mathrm{A}}$	$\operatorname{ut}(D)$			

- Let D = G/K be an irreducible bounded symmetric domain.
- \circ Let us denote by \widetilde{G} the universal covering group of G.
- \diamond Problem: Determine the fundamental group of G.

Proposition

For any irreducible BSD of the form D = G/K, there is a diffeomorphism $G \simeq D \times K$. In particular, $\pi_1(G) \simeq \pi_1(K)$.

BSDs 0000	BSDs by example	Bergman spaces 000000000	Unitary representations	Bibliography 0
The representation of A	$\operatorname{ut}(D)$			

- Let D = G/K be an irreducible bounded symmetric domain.
- $\,\circ\,$ Let us denote by \widetilde{G} the universal covering group of G.
- \diamond Problem: Determine the fundamental group of G.

Proposition

For any irreducible BSD of the form D = G/K, there is a diffeomorphism $G \simeq D \times K$. In particular, $\pi_1(G) \simeq \pi_1(K)$.

• For the unit ball and the Cartan domains of type II and III, we have K = U(n). Its universal covering map is given by

$$\mathbb{R} imes \mathrm{SU}(n) o \mathrm{U}(n) \ (x, \mathcal{A}) \mapsto e^{ix}\mathcal{A}.$$

BSDs 0000	BSDs by example	Bergman spaces 000000000	Unitary representations	Bibliography 0
The representation of $\boldsymbol{\mathrm{A}}$	$\operatorname{ut}(D)$			

- $_{\diamond}$ Let D=G/K be an irreducible bounded symmetric domain.
- \circ Let us denote by \widetilde{G} the universal covering group of G.
- \diamond Problem: Determine the fundamental group of G.

Proposition

For any irreducible BSD of the form D = G/K, there is a diffeomorphism $G \simeq D \times K$. In particular, $\pi_1(G) \simeq \pi_1(K)$.

• For the unit ball and the Cartan domains of type II and III, we have K = U(n). Its universal covering map is given by

$$\mathbb{R} imes \mathrm{SU}(n) o \mathrm{U}(n) \ (x, A) \mapsto e^{ix}A.$$

◇ For every irreducible BSD $\widetilde{K} = \mathbb{R} \times L$ where L is a simply connected compact semisimple Lie group. The factor \mathbb{R} covers a subgroup $\mathbb{T} \hookrightarrow K$.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
			0000000000	
The representation of A	$\operatorname{ut}(D)$			

• Let D = G/K be an irreducible BSD with genus p.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
			0000000000	
The representation of A	$\operatorname{ut}(D)$			

- Let D = G/K be an irreducible BSD with genus p.
- For every $\lambda > p-1$, there is a unitary representation $\pi_{\lambda} : \widetilde{G} \times \mathcal{A}^2_{\lambda}(D) \to \mathcal{A}^2_{\lambda}(D)$ given by

$$\pi_{\lambda}(\varphi)(f) = J_{\mathbb{C}}(\varphi^{-1})^{rac{\lambda}{p}}(f\circ \varphi^{-1}).$$

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
			0000000000	
The representation of A	$\operatorname{ut}(D)$			

- Let D = G/K be an irreducible BSD with genus p.
- For every $\lambda > p-1$, there is a unitary representation $\pi_{\lambda} : \widetilde{G} \times \mathcal{A}^2_{\lambda}(D) \to \mathcal{A}^2_{\lambda}(D)$ given by

$$\pi_{\lambda}(\varphi)(f) = J_{\mathbb{C}}(\varphi^{-1})^{\frac{\lambda}{p}}(f \circ \varphi^{-1}).$$

If D = G/K is an irreducible BSD with genus p, then for every $\lambda > p-1$ the unitary representation π_{λ} is irreducible: the spaces $\mathcal{A}^2_{\lambda}(D)$ and 0 are the only closed subspaces invariant under $\pi_{\lambda}(\varphi)$ for every $\varphi \in \widetilde{G}$.

BSDs 0000	BSDs by example 000000000000000000000000000000000000	Bergman spaces	Unitary representations	Bibliography 0
The representation of K				

• Let $H \subset \widetilde{G}$ be a closed subgroup. Then, we will denote by $\pi_{\lambda}|_{H}$ the restriction of π_{λ} to H, which yields a unitary representation $H \times \mathcal{A}^{2}_{\lambda}(D) \to \mathcal{A}^{2}_{\lambda}(D)$.

BSDs 0000	BSDs by example 000000000000000000000000000000000000	Bergman spaces	Unitary representations	Bibliography 0
The representation of K				

- Let $H \subset \widetilde{G}$ be a closed subgroup. Then, we will denote by $\pi_{\lambda}|_{H}$ the restriction of π_{λ} to H, which yields a unitary representation $H \times \mathcal{A}^{2}_{\lambda}(D) \to \mathcal{A}^{2}_{\lambda}(D)$.
- Problem: for an arbitrary closed subgroup $H \subset \widetilde{G}$ decompose $\mathcal{A}^2_{\lambda}(D)$ as a direct integral of irreducible unitary representations of H.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
0000	000000000000000000000000000000000000000	000000000	0000000000	
The representation of K				

- Let $H \subset \widetilde{G}$ be a closed subgroup. Then, we will denote by $\pi_{\lambda}|_{H}$ the restriction of π_{λ} to H, which yields a unitary representation $H \times \mathcal{A}^{2}_{\lambda}(D) \to \mathcal{A}^{2}_{\lambda}(D)$.
- Problem: for an arbitrary closed subgroup $H \subset \widetilde{G}$ decompose $\mathcal{A}^2_{\lambda}(D)$ as a direct integral of irreducible unitary representations of H.
- \circ Solution: depending on the group H this problem could be "unsolvable", with unknown solution, hard to solve or very well known.

BSDs 0000	BSDs by example	Bergman spaces 000000000	Unitary representations	Bibliography 0
The representation of <i>k</i>				

 $_{\diamond}\;$ For $D=G/K\subset \mathbb{C}^{N},$ we will consider the action of K.

BSDs 0000	BSDs by example	Bergman spaces	Unitary representations	Bibliography 0
The representation of K				

- For $D = G/K \subset \mathbb{C}^N$, we will consider the action of K.
- Recall that we can choose D circled so that the action of K on $D \subset \mathbb{C}^N$ is linear.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
			0000000000	
The representation of K				

- For $D = G/K \subset \mathbb{C}^N$, we will consider the action of K.
- Recall that we can choose D circled so that the action of K on $D ⊂ ℂ^N$ is linear.
- If $\widetilde{K} \to K$ is the universal covering group, then for every $\varphi \in \widetilde{K}$ there exists $A \in K \subset \operatorname{GL}(N, \mathbb{C})$ such that $\varphi \mapsto A$ and so

$$J_{\mathbb{C}}(arphi,z)=\det(A)\in\mathbb{T}$$

for every $z \in D$.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
			0000000000	
The representation of K				

- For $D = G/K \subset \mathbb{C}^N$, we will consider the action of K.
- Recall that we can choose D circled so that the action of K on $D ⊂ ℂ^N$ is linear.
- If $\widetilde{K} \to K$ is the universal covering group, then for every $\varphi \in \widetilde{K}$ there exists $A \in K \subset \operatorname{GL}(N, \mathbb{C})$ such that $\varphi \mapsto A$ and so

$$J_{\mathbb{C}}(arphi,z)=\det(A)\in\mathbb{T}$$

for every $z \in D$.

Corollary

For every $\lambda > p-1$, the representations of \widetilde{K} and K on $\mathcal{A}^2_{\lambda}(D)$ given, respectively, by

$$(\varphi, f) \mapsto J_{\mathbb{C}}(f \circ \varphi^{-1})(f \circ \varphi^{-1}), \quad \textit{and} \quad (A, f) \mapsto f \circ A^{-1},$$

have the same representation theoretic features. In particular, their decomposition into Hilbert directs sums of irreducible subspaces are the same.

BSDs 0000	BSDs by example 000000000000000000000000000000000000	Bergman spaces	Unitary representations	Bibliography 0
The representation of K				

 $\diamond~$ From now on, we will consider the representation $\pi_\lambda|_{\mathcal{K}},$ for every $\lambda>p-1,$ given by

$$\pi_{\lambda}(A)(f) = f \circ A^{-1}.$$
BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
0000	000000000000000000000000000000000000000	0000000000	0000000000	
The representation of K				

 $\diamond\,$ From now on, we will consider the representation $\pi_\lambda|_{\mathcal K},$ for every $\lambda>p-1,$ given by

$$\pi_{\lambda}(A)(f) = f \circ A^{-1}.$$

 \circ Recall that $\mathcal{P}(\mathbb{C}^N) \subset \mathcal{A}^2_{\lambda}(D)$ is dense for every $\lambda > p-1$. Furthermore, we have

$$\pi_{\lambda}(A)(\mathcal{P}(\mathbb{C}^{N}))=\mathcal{P}(\mathbb{C}^{N}),$$

for every $A \in K$.

BSDs 0000	BSDs by example	Bergman spaces 000000000	Unitary representations	Bibliography 0
The representation of K				

 $\diamond\,$ From now on, we will consider the representation $\pi_\lambda|_{\mathcal K},$ for every $\lambda>p-1,$ given by

$$\pi_{\lambda}(A)(f) = f \circ A^{-1}.$$

◦ Recall that $\mathcal{P}(\mathbb{C}^N) \subset \mathcal{A}^2_\lambda(D)$ is dense for every $\lambda > p-1$. Furthermore, we have

$$\pi_{\lambda}(A)(\mathcal{P}(\mathbb{C}^{N}))=\mathcal{P}(\mathbb{C}^{N}),$$

for every $A \in K$.

Corollary

The Hilbert direct sum decomposition into irreducible subspaces for the unitary representation $\pi_{\lambda}|_{K}$ on $\mathcal{A}^{2}_{\lambda}(D)$ is given by the decomposition into irreducible subspaces for the representation

 $\pi_{\lambda}|_{\mathcal{K}}: \mathcal{K} \times \mathcal{P}(\mathbb{C}^{N}) \to \mathcal{P}(\mathbb{C}^{N}).$

BSDs 0000	BSDs by example	Bergman spaces 000000000	Unitary representations	Bibliography 0
The representation of K				

 $\,\,\diamond\,\,$ Recall that $\mathbb{T}\subset K$ acting linearly, so that

$$\pi_{\lambda}(t)(f)(z) = f(t^{-1}z)$$

for every $t \in \mathbb{T}$, $f \in \mathcal{A}^2_{\lambda}(D)$ and $z \in D$.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
0000	000000000000000000000000000000000000000	000000000	0000000000	
The representation of K				

 $\,\scriptscriptstyle\diamond\,$ Recall that $\mathbb{T}\subset K$ acting linearly, so that

$$\pi_{\lambda}(t)(f)(z) = f(t^{-1}z)$$

for every $t \in \mathbb{T}$, $f \in \mathcal{A}^2_{\lambda}(D)$ and $z \in D$.

• Let us denote by $\mathcal{P}^m(\mathbb{C}^N)$ the space of homogeneous polynomials of degree m in \mathbb{C}^N . It follows that the direct sums

$$\mathcal{P}(\mathbb{C}^N) = \bigoplus_{m=0}^{\infty} \mathcal{P}^m(\mathbb{C}^N), \quad ext{ algebraic direct sum},$$
 $\mathcal{A}^2_\lambda(D) = \bigoplus_{m=0}^{\infty} \mathcal{P}^m(\mathbb{C}^N), \quad ext{ Hilbert direct sum},$

are both invariant under the representation $\pi_{\lambda}|_{\mathcal{K}}$.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
0000	000000000000000000000000000000000000000	000000000	00000000000	
The representation of K				

For D = G/K and for every $\lambda > p - 1$, there is a $\pi_{\lambda}|_{K}$ -invariant Hilbert direct sum

$$\mathcal{A}^2_\lambda(D) = igoplus_{m=0}^\infty \mathcal{P}^m(\mathbb{C}^N),$$

satisfying the following properties

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
0000	000000000000000000000000000000000000000	000000000	00000000000	
The representation of K				

For D = G/K and for every $\lambda > p-1$, there is a $\pi_{\lambda}|_{K}$ -invariant Hilbert direct sum

$$\mathcal{A}^2_\lambda(D) = igoplus_{m=0}^\infty \mathcal{P}^m(\mathbb{C}^N),$$

satisfying the following properties

♦ The sum is $\pi_{\lambda}|_{K}$ -invariant.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
0000	000000000000000000000000000000000000000	000000000	00000000000	
The representation of K				

For D = G/K and for every $\lambda > p - 1$, there is a $\pi_{\lambda}|_{K}$ -invariant Hilbert direct sum

$$\mathcal{A}^2_\lambda(D) = igoplus_{m=0}^\infty \mathcal{P}^m(\mathbb{C}^N),$$

satisfying the following properties

- ♦ The sum is $\pi_{\lambda}|_{K}$ -invariant.
- If $V_j \subset \mathcal{P}^{m_j}(\mathbb{C}^N)$, j = 1, 2, are irreducible K-submodules and $m_1 \neq m_2$, then $V_1 \simeq V_2$ as K-modules.

BSDs 0000	BSDs by example	Bergman spaces 000000000	Unitary representations	Bibliography ○
The representation of K				

For D = G/K and for every $\lambda > p-1$, there is a $\pi_{\lambda}|_{K}$ -invariant Hilbert direct sum

$$\mathcal{A}^2_\lambda(D) = igoplus_{m=0}^\infty \mathcal{P}^m(\mathbb{C}^N),$$

satisfying the following properties

- ♦ The sum is $\pi_{\lambda}|_{K}$ -invariant.
- If $V_j \subset \mathcal{P}^{m_j}(\mathbb{C}^N)$, j = 1, 2, are irreducible K-submodules and $m_1 \neq m_2$, then $V_1 \simeq V_2$ as K-modules.
- Conclusion: To obtain the decomposition of $\mathcal{A}^2_{\lambda}(D)$ into irreducible *K*-submodules, it is enough to study the representation $K \times \mathcal{P}^m(\mathbb{C}^N) \to \mathcal{P}^m(\mathbb{C}^N)$, for every $m \in \mathbb{N}$.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
0000	000000000000000000000000000000000000000	000000000	00000000000	
The representation of K				

◊ There are very general Lie theoretic statements that describe the representation of K on the spaces P^m(C^N). Nevertheless, for classical Cartan domains such statements can be made very explicit.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
0000	000000000000000000000000000000000000000	000000000	00000000000	
The representation of K				

- There are very general Lie theoretic statements that describe the representation of K on the spaces \$\mathcal{P}^m(\mathbb{C}^N)\$. Nevertheless, for classical Cartan domains such statements can be made very explicit.
- The first key point is to understand the representation $K \to \operatorname{GL}(N, \mathbb{C})$.

BSDs 0000	BSDs by example 000000000000000000000000000000000000	Bergman spaces	Unitary representations	Bibliography 0
The representation of K				

- There are very general Lie theoretic statements that describe the representation of K on the spaces $\mathcal{P}^m(\mathbb{C}^N)$. Nevertheless, for classical Cartan domains such statements can be made very explicit.
- The first key point is to understand the representation $K \to \operatorname{GL}(N, \mathbb{C})$.
- Next, one uses the so called Invariant Theory.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
			00000000000	
The representation of K				

• We can describe some general features of the representation $K \to \operatorname{GL}(N, \mathbb{C})$ for the classical Cartan domains.

BSDs 0000	BSDs by example	Bergman spaces	Unitary representations ○○○○○○○○○○○	Bibliography 0
The representation of K				

- We can describe some general features of the representation $K \to \operatorname{GL}(N, \mathbb{C})$ for the classical Cartan domains.
 - ▶ Cartan domains of type I, $D'_{n \times m}$. In this case, we have $K = S(U(n) \times U(m))$,

$$\mathbb{C}^{N} = M_{n \times m}(\mathbb{C}) \simeq L(\mathbb{C}^{m}, \mathbb{C}^{n}),$$

and the representation of K is given by

$$(A, B) \cdot Z = AZB^{-1} \simeq A \circ T_Z \circ B^{-1}$$

where T_Z is the linear transformation with matrix representation Z. This is the usual action obtained from changes of (unitary) coordinates.

BSDs 0000	BSDs by example	Bergman spaces	Unitary representations	Bibliography 0
The representation of K	<u> </u>			-

◦ Types II and III are very similar.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography	
			00000000000		
The representation of K					

- ◊ Types II and III are very similar.
 - ▶ Cartan domains of type III, D_n^{II} . In this case, we have K = U(n),

$$\mathbb{C}^N = SM(n,\mathbb{C}) \simeq Sym(\mathbb{C}^n),$$

and the representation of K is given by

$$A \cdot Z = AZA^{\top} \simeq B_Z(A(\cdot), A(\cdot)),$$

where B_Z is the symmetric bilinear form with matrix Z. This is the usual action obtained from changes of (unitary) coordinates.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography	
			00000000000		
The representation of K					

- ◊ Types II and III are very similar.
 - ▶ Cartan domains of type III, D_n^{II} . In this case, we have K = U(n),

$$\mathbb{C}^N = SM(n,\mathbb{C}) \simeq Sym(\mathbb{C}^n),$$

and the representation of K is given by

$$A \cdot Z = AZA^{\top} \simeq B_Z(A(\cdot), A(\cdot)),$$

where B_Z is the symmetric bilinear form with matrix Z. This is the usual action obtained from changes of (unitary) coordinates.

► Cartan domains of type II, D^{II}_n. Replace "symmetric" by "anti-symmetric" everywhere.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography	
			0000000000		
The representation of K					

• For the Cartan domains of type IV we have $K = SO(n) \times SO(2)$.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography	
			0000000000		
The representation of K					

- For the Cartan domains of type IV we have $K = SO(n) \times SO(2)$.
- This requires to study the natural representation $SO(n) \hookrightarrow GL(n, \mathbb{C})$.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography	
			0000000000		
The representation of K					

- For the Cartan domains of type IV we have $K = SO(n) \times SO(2)$.
- This requires to study the natural representation $SO(n) \hookrightarrow GL(n, \mathbb{C})$.
- This is a classical problem, and the representations $SO(n) \to GL(\mathcal{P}^m(\mathbb{C}^n))$ can be studied using harmonic polynomials.

BSDs	BSDs by example	Bergman spaces	Unitary representations	Bibliography
				•

- Griffiths and Harris: Principle of Algebraic Geometry.
- Helgason: Differential Geometry, Lie Groups and Symmetric Spaces.
- Hua: Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains.
- Loos: Bounded Symmetric Domains and Jordan Pairs.
- Mok: Metric Rigidity Theorems on Hermitian Locally Symmetric Manifolds.
- Pyatetskii-Shapiro: Automorphic Forms and the Geometry of Classical Domains.
- Satake: Algebraic Structures of Symmetric Domains.
- Upmeier: Toeplitz Operators and Index Theory in Several Complex Variables.