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First notions

� From now on, D ⊂ CN denotes a bounded domain and Aut(D) denotes the group
of biholomorphisms of D.

� We will also consider D endowed with the Lebesgue measure dv(z) normalized so
that v(D) = 1.

� The domain D is called a bounded symmetric domain if for every z ∈ D there
exists a biholomorphism ϕ ∈ Aut(D) such that ϕ(z) = z and ϕ(w) 6= w for all
w ∈ D \ {z}.
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First notions

� Bounded symmetric domains, BSD for short, have many interesting features.

I There are enough BSDs to have a non-trivial and large family of domains.
I The collection of BSDs has been classified and can (almost) be easily enumerated

through examples.

� BSDs are part of a larger family of special manifolds.

� Let M be a Riemannian manifold.

I M is called a Riemannian symmetric space if for every x ∈ M there exists an
isometry ϕ ∈ Iso(M) such that ϕ(x) = x and ϕ(y) 6= y for every y 6= x in a
neighborhood of x .

I M is called a Hermitian symmetric space if it is both a complex manifold and a
Riemannian symmetric space so that the Riemannian metric is a Kähler metric.
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Irreducible BSDs

� A domain D ⊂ CN is called reducible if there is a domain of the form D1 × D2

where Dj ⊂ CNj , j = 1, 2 and N1,N2 ≥ 1, such that D ' D1 × D2 (' means
biholomorphically equivalent). Otherwise, the domain D is called irreducible.

Theorem

If D is a BSD, then there exist D1, . . . ,Dk irreducible domains such that
D ' D1 × · · · × Dk . Furthermore, each factor Dj is a BSD, and the decomposition is
unique up to biholomorphisms and permutations of the factors.

Proof.

Use Riemannian Geometry.

Corollary

To enumerate the BSDs it is enough to enumerate the irreducible BSDs.
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Irreducible BSDs

� There are four infinite families of irreducible BSDs and 2 exceptional irreducible
BSDs.

� The BSDs that belong to the infinite families are also known as classical Cartan
domains.

� The classical Cartan domains are better understood by their relationship with their
compact duals.

� We recall the natural embeddings

D ⊂ C ↪→ CP1 ' S2

z 7→ [z , 1].

Theorem (Borel embedding theorem)

For every BSD D ⊂ CN and for its compact dual M (a Hermitian symmetric space),
there is a biholomorphic open embedding D ⊂ CN ↪→ M.
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The unit ball

� The unit ball Bn = {z ∈ Cn | |z | < 1} has the Borel embedding ϕ : Bn ↪→ CPn

given by

z 7→

[
z
1

]

� Problem: Find a property P(n) such that [w ] ∈ CPn belongs to the image ϕ(Bn)
if and only if [w ] satisfies P(n).

� Solution: For w ∈ Cn+1

[w ] =

[
z
1

]
with |z | < 1⇐⇒ wn+1 6= 0,

|w ′|
|wn+1|

= |z | < 1

⇐⇒ w ′ · w ′ < |wn+1|2 ⇐⇒ the line Cw is negative definite for 〈·, ·〉n,1
where 〈·, ·〉n,1 denotes the Hermitian form on Cn+1 given by

〈a, b〉n,1 =
n∑

j=1

ajbj − an+1bn+1.
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Cartan domains of type I

� On Cn+m, let us consider the Hermitian form given by

〈a, b〉n,m = a∗In,mb,

where In,m = diag(In,−Im).

� From Cn+m we also consider the complex Grassmannian GrC(n + m,m) which
consists of the m-dimensional subspaces of Cn+m.

� Alternatively, let us denote with M(n+m)×m(C)∗ the set of rank m elements of
M(n+m)×m(C) and define the equivalence relation

W1 'W2 ⇐⇒ ∃ A ∈ GL(m,C) such that W1 = W2A.

Then, the complex Grassmanniannan in question is given by
GrC(n + m,m) = M(n+m)×m(C)∗/ '.
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Cartan domains of type I

� There is a natural embedding Mn×m(C) ↪→ GrC(n + m,m) given by

Z 7→

[
Z
Im

]
.

� Problem: Find the elements of GrC(n + m,m) that are negative definite with
respect to 〈·, ·〉n,m.

� Solution: For Z ∈ Mn×m(C) we have[
Z
Im

]
is negative definite

⇐⇒ (Z ∗, Im)In,m

(
Z
Im

)
< 0⇐⇒ (Z ∗,−Im)

(
Z
Im

)
< 0

⇐⇒ Z ∗Z < Im.



BSDs BSDs by example Bergman spaces Unitary representations Bibliography

Cartan domains of type I

� There is a natural embedding Mn×m(C) ↪→ GrC(n + m,m) given by

Z 7→

[
Z
Im

]
.

� Problem: Find the elements of GrC(n + m,m) that are negative definite with
respect to 〈·, ·〉n,m.

� Solution: For Z ∈ Mn×m(C) we have[
Z
Im

]
is negative definite

⇐⇒ (Z ∗, Im)In,m

(
Z
Im

)
< 0⇐⇒ (Z ∗,−Im)

(
Z
Im

)
< 0

⇐⇒ Z ∗Z < Im.



BSDs BSDs by example Bergman spaces Unitary representations Bibliography

Cartan domains of type I

� There is a natural embedding Mn×m(C) ↪→ GrC(n + m,m) given by

Z 7→

[
Z
Im

]
.

� Problem: Find the elements of GrC(n + m,m) that are negative definite with
respect to 〈·, ·〉n,m.

� Solution: For Z ∈ Mn×m(C) we have[
Z
Im

]
is negative definite

⇐⇒ (Z ∗, Im)In,m

(
Z
Im

)
< 0⇐⇒ (Z ∗,−Im)

(
Z
Im

)
< 0

⇐⇒ Z ∗Z < Im.



BSDs BSDs by example Bergman spaces Unitary representations Bibliography

Cartan domains of type I

� The Cartan domain of type I D I
n×m is the subset of matrices Z ∈ Mn×m(C)

that satisfy Z ∗Z < Im.

� Note that Bn = D I
n×1.

� The Borel embedding in this case is given by

D I
n×m ↪→ GrC(n + m,m)

Z 7→

[
Z
Im

]
,

and proves that D I
n×m is the set of m-dimensional subspaces of Cn+m that are

negative definite for 〈·, ·〉n,m.

� We can use this to compute the biholomorphism group Aut(D I
n×m).
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Cartan domains of type I

� The biholomorphism group of GrC(n + m,m) is given by linear transformations.
More precisely, the action of SL(n + m,C) given by

M · [W ] = [MW ],

where M ∈ SL(n + m,C) and [W ] ∈ GrC(n + m,m), realizes the biholomorphisms
of GrC(n + m,m).

� The special pseudo-unitary group SU(n,m) is the subgroup of matrices
M ∈ SL(n + m,C) such that M∗In,mM = In,m.

Proposition

For the realization of D I
n×m as an open subset of GrC(n + m,m), the group

Aut(D I
n×m) is given by the action of SU(n,m)

M · [W ] = [MW ]

where M ∈ SU(n,m) and [W ] ∈ D I
n×m.
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where M ∈ SL(n + m,C) and [W ] ∈ GrC(n + m,m), realizes the biholomorphisms
of GrC(n + m,m).

� The special pseudo-unitary group SU(n,m) is the subgroup of matrices
M ∈ SL(n + m,C) such that M∗In,mM = In,m.

Proposition

For the realization of D I
n×m as an open subset of GrC(n + m,m), the group

Aut(D I
n×m) is given by the action of SU(n,m)

M · [W ] = [MW ]

where M ∈ SU(n,m) and [W ] ∈ D I
n×m.
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Cartan domains of type I

Corollary

For D I
n×m = {Z ∈ Mn×m(C) | Z ∗Z < Im}, the biholomorphism group Aut(D I

n×m) is
realized by the action of SU(n,m) given by(

A B
C D

)
· Z = (AZ + B)(CZ + D)−1

where A and D have sizes n × n and m ×m, respectively.

Proof.

(
A B
C D

)
· Z 7→

(
A B
C D

)
·
[
Z
Im

]
=

[
AZ + B
CZ + D

]
=

[
(AZ + B)(CZ + D)−1

Im

]
7→ (AZ + B)(CZ + D)−1.
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Cartan domains of type II and III

� The Grassmannian GrC(2n, n) contains two special submanifolds.

� Let us consider the matrices

Jn =

(
0 −In
In 0

)
, Sn =

(
0 In
In 0

)
,

which yield corresponding groups of symmetries.

I Sp(n,C) = {M ∈ GL(2n,C) | M>JnM = Jn}.
I SO(2n,C) = {M ∈ SL(2n,C)) | M>SnM = Sn}.

� We consider the submanifolds of GrC(2n, n) consisting of isotropic subspaces
for either of the bilinear forms defined by Jn and Sn.
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Cartan domains of type II and III

� We denote by LGrC(n) the subspace of GrC(2n, n) consisting of the elements
[W ] where the anti-symmetric bilinear form defined by Jn vanishes. This is
equivalent to W>JnW = 0.

� LGrC(n) consists of the Lagrangian subspaces of C2n.

Proposition

The space LGrC(n) is a complex submanifold of GrC(2n, n), whose group of
biholomorphisms is realized by the action of Sp(n,C)

M · [W ] = [MW ],

where M ∈ Sp(n,C) and [W ] ∈ LGrC(n).
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Cartan domains of type II and III

� There is a natural embedding ϕ : Mn×n(C) ↪→ GrC(2n, n) given by

Z 7→

[
Z
In

]
.

� Problem: Find the set of matrices Z ∈ Mn×n(C) such that ϕ(Z ) ∈ LGrC(n).

� Solution: For Z ∈ Mn×n(C)[
Z
In

]
is isotropic for Jn

⇐⇒ (Z>, In)Jn

(
Z
In

)
= 0⇐⇒ (In,−Z>)

(
Z
In

)
= 0

⇐⇒ Z = Z>.
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Cartan domains of type II and III

� The Cartan domain of type III D III
n is the set of n-dimensional subspaces of

C2n that are both Lagrangian and negative definite for the Hermitian form
〈·, ·〉n,n

D III
n = LGrC(n) ∩ D I

n×n.

� From the previous computations, we also have

D III
n = {Z ∈ Mn×n(C) | Z = Z>, ZZ < In}.

� The Borel embedding in this case is the map D III
n ↪→ LGrC(n) given by

Z 7→

[
Z
In

]
.

� As before, this allows us to compute Aut(D III
n ).
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Cartan domains of type II and III

Proposition

For D III
n = {Z ∈ Mn×n(C) | Z = Z>, ZZ < In}, the biholomorphism group

Aut(D III
n ) is realized by the action of Sp(n,C) ∩ SU(n, n) given by(

A B
C D

)
· Z = (AZ + B)(CZ + D)−1,

where A,B,C ,D all have size n × n.

Proof.

The biholomorphisms come from linear maps that preserve both Jn and In,n.

� There is an isomorphism of Lie groups
Sp(n,C) ∩ SU(n, n) ' Sp(n,R) = {X ∈ GL(2n,R) | X>JnX = Jn}.
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Cartan domains of type II and III

� We denote by OGrC(n) the subspace of GrC(2n, n) consisting of the elements
[W ] where the symmetric bilinear form defined by Sn vanishes. This is equivalent
to W>SnW = 0.

� OGrC(n) consists of the maximal isotropic subspaces of (C2n, Sn).

Proposition

The space OGrC(n) is a complex submanifold of GrC(2n, n), whose group of
biholomorphisms is realized by the action of SO(2n,C)

M · [W ] = [MW ],

where M ∈ SO(2n,C) and [W ] ∈ OGrC(n).
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Cartan domains of type II and III

� As before, for the natural embedding Mn×n(C) ↪→ GrC(2n, n) given by

Z 7→

[
Z
In

]
,

we have for every Z ∈ Mn×n(C)[
Z
In

]
is isotropic for Sn ⇐⇒ Z = −Z>.

� The Cartan domain of type II D II
n is the set of n-dimensional subspaces of

C2n that are both isotropic for Sn and negative definite for the Hermitian form
〈·, ·〉n,n

D II
n = OGrC(n) ∩ D I

n×n.

� In particular, we have

D II
n = {Z ∈ Mn×n(C) | Z = −Z>, Z ∗Z < In},

and its Borel embedding is given as before.
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Cartan domains of type II and III

Proposition

For D II
n = {Z ∈ Mn×n(C) | Z = −Z>, Z ∗Z < In}, the biholomorphism group

Aut(D III
n ) is realized by the action of SO(2n,C) ∩ SU(n, n) given by(

A B
C D

)
· Z = (AZ + B)(CZ + D)−1,

where A,B,C ,D all have size n × n.

� There is an isomorphism of Lie groups SO(2n,C) ∩ SU(n, n) ' SO∗(2n), where
the latter is a Lie group associated to a quaternionic structure.
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Cartan domains of type IV

� The compact complex manifold for this type is given by

Qn : [z ] ∈ CPn+1 such that
n∑

j=1

z2j − 2zn+1zn+2 = 0,

an n-dimensional quadric in CPn+1.

� Let us consider the open subset Ω of Qn of elements that are negative definite for
the Hermitian form 〈·, ·〉n,2.

� The Cartan domain of type IV D IV
n is the connected component of Ω that

contains [en+1].

� A realization of this domain is given by

D IV
n = {z ∈ Cn | |z | < 1, 2|z |2 < 1 + |z>z |2}.
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Cartan domains of type IV

Proposition

For D IV
n = {z ∈ Cn | |z | < 1, 2|z |2 < 1 + |z>z |2}, the biholomorphism group

Aut(D IV
n ) is realized by an action of SO(n, 2) by quadratic fractional

transformations.
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Cartan domains and Lie groups

� The previous realizations of the classical Cartan domains are very explicit, and so
their basic properties are easy to prove.

� General properties of a classical Cartan domain D (and every BSD)

I For the given realizations, D is a circular domain: 0 ∈ D and tD = D for every
t ∈ T.

I D is homogeneous: the action of Aut(D) is transitive.
I The action of Aut(D) has been given as an action of a connected Lie group G . The

subgroup K of G that fixes the origin acts linearly on D and yields a quotient
D = G/K .
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Cartan domains and Lie groups

� We describe the Lie groups associated to classical Cartan domains.

I Type I, D I
n×m: G = SU(n,m) and K = S(U(n)×U(m)) acting by

(A,B) · Z = AZB−1.

I Type II, D II
n : G = SO∗(2n) and K = U(n) acting by

A · Z = AZA>.

I Type III, D III
n : G = Sp(n,C) ∩ SU(n, n) ' Sp(n,R) and K = U(n) acting by

A · Z = AZA>.

I Type IV, D IV
n : G = SO(n, 2) and K = SO(n)× SO(2) ' SO(n)× T acting by

(A, t) · z = tAz .
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Bergman spaces

� Let D ⊂ CN be any domain. The Bergman space associated to D is given by
A2(D) = L2(D) ∩Hol(D).

� One usually assumes that D bounded and take the normalized Lebesgue measure
dv(z) so that v(D) = 1.

� The boundedness of D ensures that P(CN) ⊂ A2(D). And the condition
v(D) = 1 simplifies the expression of the Bergman kernel.
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Bergman spaces

Proposition

Let D ⊂ CN be a domain. Then, for every compact subset K ⊂ D there exists a
constant CK > 0 such that ‖f ‖∞,K ≤ Ck‖f ‖2, for every f ∈ A2(D). In particular, the
following hold

� A2(D) is closed subspace of L2(D).

� For every z ∈ D, the evaluation functional f 7→ f (z) is L2-continuous on A2(D).

Proof.

Cauchy’s integral formula.

Corollary

The same conclusions hold for “weighted” Bergman spaces of the form
A2

w (D) = L2(D,w(z) dz) ∩Hol(D), where w : D → (0,+∞) is any continuous
function.
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Bergman kernels

� Let D ⊂ CN be a given domain. For every z ∈ D, there exists Kz ∈ A2(D) such
that

f (z) =

∫
D
f (w)Kz(w) dv(z),

for every f ∈ A2(D).

� The Bergman kernel of D is the function K : D × D → C given by
K (z ,w) = Kw (z), and it satisfies

I K (z ,w) = 〈Kw ,Kz〉. In particular, K (z ,w) = K (w , z).
I K (z ,w) is holomorphic in z and anti-holomorphic in w .
I K (z , z) > 0 for every z ∈ D.

Corollary

The orthogonal projection BD : L2(D)→ A2(D) is given by

BD(f )(z) =

∫
D
f (w)K (z ,w) dv(w),

for every z ∈ D. It is called the Bergman projection.
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Bergman kernels

Proposition

The biholomorphism group Aut(D) has a unitary representation π on A2(D) given by

π(ϕ)(f ) = JC(ϕ−1)(f ◦ ϕ−1),

for every ϕ ∈ Aut(D) and f ∈ A2(D).

Corollary

For any domain D with Bergman kernel K and ϕ ∈ Aut(D) we have

K (z ,w) = JC(ϕ)(z)K (ϕ(z), ϕ(w))JC(ϕ)(w),

for every z ,w ∈ D.

� Both results are obtained applying the change of variable theorem.
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Bergman kernels

� The Bergman kernels for the classical Cartan domains have been computed and
are very well known.

I Type I, D I
n×m: K (Z ,W ) = det(In − ZW ∗)−(n+m).

I Type II, D II
n : K (Z ,W ) = det(In + ZW )−(n−1).

I Type III, D III
n : K (Z ,W ) = det(In − ZW )−(n+1).

I Type IV, D IV
n : K (z ,w) =

(
1− 2z · w + (z · z)(w · w)

)−n
.

Proposition

For any irreducible BSD D there exist two invariants, the genus p and the Jordan triple
determinant ∆ : D × D → C, such that

K (z ,w) = ∆(z ,w)−p,

for every z ,w ∈ D.
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Bergman kernels

� For the classical Cartan domains these invariants are given by

I Type I, D I
n×m: p = n + m, ∆(Z ,W ) = det(In − ZW ∗).

I Type II, D II
n : p = 2n − 2, ∆(Z ,W ) = det(In + ZW )

1
2 .

I Type III, D III
n : p = n + 1, ∆(Z ,W ) = det(In − ZW ).

I Type IV, D IV
n : p = n, ∆(z ,w) = 1− 2z · w + (z · z)(w · w).

� There are two exceptional irreducible BSD whose dimensions are 16 and 27, with
genus 12 and 26, respectively.
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Weighted Bergman spaces

� Let D be an irreducible BSD with Bergman kernel K (z ,w) = ∆(z ,w)−p. The
most natural weight to consider is

z 7→ ∆(z , z)λ−p = K (z , z)1−
λ
p .

Proposition

For every λ > p − 1, we have ∫
D

∆(z , z)λ−p dz <∞.

In particular, for every λ > p − 1, there is a constant cλ > 0 such that
dvλ(z) = cλ∆(z , z)λ−p dz is a probability measure.

Proof.

The value of the integral can be computed in terms of Gamma functions.
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∆(z , z)λ−p dz <∞.

In particular, for every λ > p − 1, there is a constant cλ > 0 such that
dvλ(z) = cλ∆(z , z)λ−p dz is a probability measure.

Proof.

The value of the integral can be computed in terms of Gamma functions.
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Weighted Bergman spaces

� Let D be an irreducible BSD with genus p and Jordan triple determinant ∆. For
every λ > p − 1, the weighted Bergman space with weight λ is denoted by
A2
λ(D) and is given by

A2
λ(D) = L2(D, vλ) ∩Hol(D)

where dvλ(z) = cλ∆(z , z)λ−p dz .

� As noted before, the weighted Bergman spaces share the same properties found
for the “weightless” Bergman spaces.

I A2
λ(D) is a closed subspace of L2(D, vλ).

I The evaluation functionals f 7→ f (z) are continuous on A2
λ(D).

I The orthogonal Bergman projection Bλ : L2(D, vλ)→ A2
λ(D) is realized by a

“weighted” Bergman kernel Kλ : D × D → C.
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Weighted Bergman spaces

Theorem

Let D be an irreducible BSD with genus p and (weightless) Bergman kernel
K (z ,w) = ∆(z ,w)−p. Then, for every λ > p − 1 the weighted Bergman kernel of
A2
λ(D) is given by

Kλ(z ,w) = ∆(z ,w)−λ = K (z ,w)
λ
p .

� It is now an easy exercise to write down the weighted Bergman kernels for all
classical Cartan domains.

� Since the BSDs are simply connected, it is easy to find branches of the λ-powers
with the required analyticity.
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The representation of Aut(D)

� Let D = G/K be an irreducible bounded symmetric domain.

� Let us denote by G̃ the universal covering group of G .

� Problem: Determine the fundamental group of G .

Proposition

For any irreducible BSD of the form D = G/K, there is a diffeomorphism G ' D × K.
In particular, π1(G ) ' π1(K ).

� For the unit ball and the Cartan domains of type II and III, we have K = U(n). Its
universal covering map is given by

R× SU(n)→ U(n)

(x ,A) 7→ e ixA.

� For every irreducible BSD K̃ = R× L where L is a simply connected compact
semisimple Lie group. The factor R covers a subgroup T ↪→ K .
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The representation of Aut(D)

� Let D = G/K be an irreducible BSD with genus p.

� For every λ > p − 1, there is a unitary representation πλ : G̃ ×A2
λ(D)→ A2

λ(D)
given by

πλ(ϕ)(f ) = JC(ϕ−1)
λ
p (f ◦ ϕ−1).

Theorem

If D = G/K is an irreducible BSD with genus p, then for every λ > p − 1 the unitary
representation πλ is irreducible: the spaces A2

λ(D) and 0 are the only closed subspaces

invariant under πλ(ϕ) for every ϕ ∈ G̃ .
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The representation of K

� Let H ⊂ G̃ be a closed subgroup. Then, we will denote by πλ|H the restriction of
πλ to H, which yields a unitary representation H ×A2

λ(D)→ A2
λ(D).

� Problem: for an arbitrary closed subgroup H ⊂ G̃ decompose A2
λ(D) as a direct

integral of irreducible unitary representations of H.

� Solution: depending on the group H this problem could be “unsolvable”, with
unknown solution, hard to solve or very well known.
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The representation of K

� For D = G/K ⊂ CN , we will consider the action of K .

� Recall that we can choose D circled so that the action of K on D ⊂ CN is linear.

� If K̃ → K is the universal covering group, then for every ϕ ∈ K̃ there exists
A ∈ K ⊂ GL(N,C) such that ϕ 7→ A and so

JC(ϕ, z) = det(A) ∈ T

for every z ∈ D.

Corollary

For every λ > p − 1, the representations of K̃ and K on A2
λ(D) given, respectively, by

(ϕ, f ) 7→ JC(f ◦ ϕ−1)(f ◦ ϕ−1), and (A, f ) 7→ f ◦ A−1,

have the same representation theoretic features. In particular, their decomposition into
Hilbert directs sums of irreducible subspaces are the same.
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The representation of K

� From now on, we will consider the representation πλ|K , for every λ > p − 1, given
by

πλ(A)(f ) = f ◦ A−1.

� Recall that P(CN) ⊂ A2
λ(D) is dense for every λ > p − 1. Furthermore, we have

πλ(A)(P(CN)) = P(CN),

for every A ∈ K .

Corollary

The Hilbert direct sum decomposition into irreducible subspaces for the unitary
representation πλ|K on A2

λ(D) is given by the decomposition into irreducible subspaces
for the representation

πλ|K : K × P(CN)→ P(CN).
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The representation of K

� Recall that T ⊂ K acting linearly, so that

πλ(t)(f )(z) = f (t−1z)

for every t ∈ T, f ∈ A2
λ(D) and z ∈ D.

� Let us denote by Pm(CN) the space of homogeneous polynomials of degree m in
CN . It follows that the direct sums

P(CN) =
∞⊕

m=0

Pm(CN), algebraic direct sum,

A2
λ(D) =

∞⊕
m=0

Pm(CN), Hilbert direct sum,

are both invariant under the representation πλ|K .
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The representation of K

Theorem

For D = G/K and for every λ > p − 1, there is a πλ|K -invariant Hilbert direct sum

A2
λ(D) =

∞⊕
m=0

Pm(CN),

satisfying the following properties

� The sum is πλ|K -invariant.

� If Vj ⊂ Pmj (CN), j = 1, 2, are irreducible K-submodules and m1 6= m2, then
V1 ' V2 as K-modules.

� Conclusion: To obtain the decomposition of A2
λ(D) into irreducible

K -submodules, it is enough to study the representation K ×Pm(CN)→ Pm(CN),
for every m ∈ N.
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The representation of K

� There are very general Lie theoretic statements that describe the representation of
K on the spaces Pm(CN). Nevertheless, for classical Cartan domains such
statements can be made very explicit.

� The first key point is to understand the representation K → GL(N,C).

� Next, one uses the so called Invariant Theory.
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The representation of K

� We can describe some general features of the representation K → GL(N,C) for
the classical Cartan domains.

I Cartan domains of type I, D I
n×m. In this case, we have K = S(U(n)×U(m)),

CN = Mn×m(C) ' L(Cm,Cn),

and the representation of K is given by

(A,B) · Z = AZB−1 ' A ◦ TZ ◦ B−1

where TZ is the linear transformation with matrix representation Z . This is the usual
action obtained from changes of (unitary) coordinates.
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The representation of K

� Types II and III are very similar.

I Cartan domains of type III, D II
n . In this case, we have K = U(n),

CN = SM(n,C) ' Sym(Cn),

and the representation of K is given by

A · Z = AZA> ' BZ (A(·),A(·)),

where BZ is the symmetric bilinear form with matrix Z . This is the usual action
obtained from changes of (unitary) coordinates.

I Cartan domains of type II, D II
n . Replace “symmetric” by “anti-symmetric”

everywhere.
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The representation of K

� For the Cartan domains of type IV we have K = SO(n)× SO(2).

� This requires to study the natural representation SO(n) ↪→ GL(n,C).

� This is a classical problem, and the representations SO(n)→ GL(Pm(Cn)) can be
studied using harmonic polynomials.
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