Bounded Symmetric Domains: Biholomorphisms, Spaces and Representations

Raul Quiroga-Barranco
CIMAT, Mexico

Congreso Internacional de Teoría de Operadores en los Espacios de Funciones Analíticas, Xalapa, Veracruz
September 28th to 30th, 2022
(1) Bounded symmetric domains
(2) Bounded symmetric domains by example
(3) Bergman spaces
(4) Unitary representations and Bergman spaces
(1) Bounded symmetric domains

- First notions
- Irreducible BSDs

2 Bounded symmetric domains by example
(3) Bergman spaces

4 Unitary representations and Bergman spaces
\diamond From now on, $D \subset \mathbb{C}^{N}$ denotes a bounded domain and $\operatorname{Aut}(D)$ denotes the group of biholomorphisms of D.
\diamond From now on, $D \subset \mathbb{C}^{N}$ denotes a bounded domain and $\operatorname{Aut}(D)$ denotes the group of biholomorphisms of D.

- We will also consider D endowed with the Lebesgue measure $\mathrm{d} v(z)$ normalized so that $v(D)=1$.
\diamond From now on, $D \subset \mathbb{C}^{N}$ denotes a bounded domain and $\operatorname{Aut}(D)$ denotes the group of biholomorphisms of D.
- We will also consider D endowed with the Lebesgue measure $\mathrm{d} v(z)$ normalized so that $v(D)=1$.
\diamond The domain D is called a bounded symmetric domain if for every $z \in D$ there exists a biholomorphism $\varphi \in \operatorname{Aut}(D)$ such that $\varphi(z)=z$ and $\varphi(w) \neq w$ for all $w \in D \backslash\{z\}$.
\diamond Bounded symmetric domains, BSD for short, have many interesting features.
\diamond Bounded symmetric domains, BSD for short, have many interesting features.
- There are enough BSDs to have a non-trivial and large family of domains.
- Bounded symmetric domains, BSD for short, have many interesting features.
- There are enough BSDs to have a non-trivial and large family of domains.
- The collection of BSDs has been classified and can (almost) be easily enumerated through examples.
\diamond Bounded symmetric domains, BSD for short, have many interesting features.
- There are enough BSDs to have a non-trivial and large family of domains.
- The collection of BSDs has been classified and can (almost) be easily enumerated through examples.
\diamond BSDs are part of a larger family of special manifolds.
\diamond Bounded symmetric domains, BSD for short, have many interesting features.
- There are enough BSDs to have a non-trivial and large family of domains.
- The collection of BSDs has been classified and can (almost) be easily enumerated through examples.
\diamond BSDs are part of a larger family of special manifolds.
\diamond Let M be a Riemannian manifold.
\diamond Bounded symmetric domains, BSD for short, have many interesting features.
- There are enough BSDs to have a non-trivial and large family of domains.
- The collection of BSDs has been classified and can (almost) be easily enumerated through examples.
\diamond BSDs are part of a larger family of special manifolds.
\diamond Let M be a Riemannian manifold.
- M is called a Riemannian symmetric space if for every $x \in M$ there exists an isometry $\varphi \in \operatorname{Iso}(M)$ such that $\varphi(x)=x$ and $\varphi(y) \neq y$ for every $y \neq x$ in a neighborhood of x.
\diamond Bounded symmetric domains, BSD for short, have many interesting features.
- There are enough BSDs to have a non-trivial and large family of domains.
- The collection of BSDs has been classified and can (almost) be easily enumerated through examples.
\diamond BSDs are part of a larger family of special manifolds.
\diamond Let M be a Riemannian manifold.
- M is called a Riemannian symmetric space if for every $x \in M$ there exists an isometry $\varphi \in \operatorname{Iso}(M)$ such that $\varphi(x)=x$ and $\varphi(y) \neq y$ for every $y \neq x$ in a neighborhood of x.
- M is called a Hermitian symmetric space if it is both a complex manifold and a Riemannian symmetric space so that the Riemannian metric is a Kähler metric.
\diamond A domain $D \subset \mathbb{C}^{N}$ is called reducible if there is a domain of the form $D_{1} \times D_{2}$ where $D_{j} \subset \mathbb{C}^{N_{j}}, j=1,2$ and $N_{1}, N_{2} \geq 1$, such that $D \simeq D_{1} \times D_{2}(\simeq$ means biholomorphically equivalent). Otherwise, the domain D is called irreducible.
\diamond A domain $D \subset \mathbb{C}^{N}$ is called reducible if there is a domain of the form $D_{1} \times D_{2}$ where $D_{j} \subset \mathbb{C}^{N_{j}}, j=1,2$ and $N_{1}, N_{2} \geq 1$, such that $D \simeq D_{1} \times D_{2}(\simeq$ means biholomorphically equivalent). Otherwise, the domain D is called irreducible.

Theorem

If D is a $B S D$, then there exist D_{1}, \ldots, D_{k} irreducible domains such that $D \simeq D_{1} \times \cdots \times D_{k}$. Furthermore, each factor D_{j} is a $B S D$, and the decomposition is unique up to biholomorphisms and permutations of the factors.
\diamond A domain $D \subset \mathbb{C}^{N}$ is called reducible if there is a domain of the form $D_{1} \times D_{2}$ where $D_{j} \subset \mathbb{C}^{N_{j}}, j=1,2$ and $N_{1}, N_{2} \geq 1$, such that $D \simeq D_{1} \times D_{2}(\simeq$ means biholomorphically equivalent). Otherwise, the domain D is called irreducible.

Theorem

If D is a $B S D$, then there exist D_{1}, \ldots, D_{k} irreducible domains such that $D \simeq D_{1} \times \cdots \times D_{k}$. Furthermore, each factor D_{j} is a $B S D$, and the decomposition is unique up to biholomorphisms and permutations of the factors.

Proof.

Use Riemannian Geometry.
\diamond A domain $D \subset \mathbb{C}^{N}$ is called reducible if there is a domain of the form $D_{1} \times D_{2}$ where $D_{j} \subset \mathbb{C}^{N_{j}}, j=1,2$ and $N_{1}, N_{2} \geq 1$, such that $D \simeq D_{1} \times D_{2}(\simeq$ means biholomorphically equivalent). Otherwise, the domain D is called irreducible.

Theorem

If D is a $B S D$, then there exist D_{1}, \ldots, D_{k} irreducible domains such that $D \simeq D_{1} \times \cdots \times D_{k}$. Furthermore, each factor D_{j} is a $B S D$, and the decomposition is unique up to biholomorphisms and permutations of the factors.

Proof.

Use Riemannian Geometry.

Corollary

To enumerate the BSDs it is enough to enumerate the irreducible BSDs.Bounded symmetric domains
(2) Bounded symmetric domains by example

- Irreducible BSDs
- The unit ball
- Cartan domains of type I
- Cartan domains of type II and III
- Cartan domains of type IV
- Cartan domains and Lie groups
(3) Bergman spaces

4 Unitary representations and Bergman spaces
\diamond There are four infinite families of irreducible BSDs and 2 exceptional irreducible BSDs.
\diamond There are four infinite families of irreducible BSDs and 2 exceptional irreducible BSDs.

- The BSDs that belong to the infinite families are also known as classical Cartan domains.
\diamond There are four infinite families of irreducible BSDs and 2 exceptional irreducible BSDs.
\diamond The BSDs that belong to the infinite families are also known as classical Cartan domains.
\diamond The classical Cartan domains are better understood by their relationship with their compact duals.
\diamond There are four infinite families of irreducible BSDs and 2 exceptional irreducible BSDs.
\diamond The BSDs that belong to the infinite families are also known as classical Cartan domains.
\diamond The classical Cartan domains are better understood by their relationship with their compact duals.
\diamond We recall the natural embeddings

$$
\begin{aligned}
\mathbb{D} \subset \mathbb{C} & \hookrightarrow \mathbb{C P}^{1} \simeq S^{2} \\
z & \mapsto[z, 1] .
\end{aligned}
$$

\diamond There are four infinite families of irreducible BSDs and 2 exceptional irreducible BSDs.
\diamond The BSDs that belong to the infinite families are also known as classical Cartan domains.
\diamond The classical Cartan domains are better understood by their relationship with their compact duals.

- We recall the natural embeddings

$$
\begin{aligned}
\mathbb{D} \subset \mathbb{C} & \hookrightarrow \mathbb{C P}^{1} \simeq S^{2} \\
z & \mapsto[z, 1] .
\end{aligned}
$$

Theorem (Borel embedding theorem)

For every $B S D D \subset \mathbb{C}^{N}$ and for its compact dual M (a Hermitian symmetric space), there is a biholomorphic open embedding $D \subset \mathbb{C}^{N} \hookrightarrow M$.
\diamond The unit ball $\mathbb{B}^{n}=\left\{z \in \mathbb{C}^{n}| | z \mid<1\right\}$ has the Borel embedding $\varphi: \mathbb{B}^{n} \hookrightarrow \mathbb{C P}^{n}$ given by

$$
z \mapsto\left[\begin{array}{l}
z \\
1
\end{array}\right]
$$

\diamond The unit ball $\mathbb{B}^{n}=\left\{z \in \mathbb{C}^{n}| | z \mid<1\right\}$ has the Borel embedding $\varphi: \mathbb{B}^{n} \hookrightarrow \mathbb{P}^{n}$ given by

$$
z \mapsto\left[\begin{array}{l}
z \\
1
\end{array}\right]
$$

\diamond Problem: Find a property $P(n)$ such that $[w] \in \mathbb{C} \mathbb{P}^{n}$ belongs to the image $\varphi\left(\mathbb{B}^{n}\right)$ if and only if $[w]$ satisfies $P(n)$.
\diamond The unit ball $\mathbb{B}^{n}=\left\{z \in \mathbb{C}^{n}| | z \mid<1\right\}$ has the Borel embedding $\varphi: \mathbb{B}^{n} \hookrightarrow \mathbb{P}^{n}$ given by

$$
z \mapsto\left[\begin{array}{l}
z \\
1
\end{array}\right]
$$

\diamond Problem: Find a property $P(n)$ such that $[w] \in \mathbb{C} \mathbb{P}^{n}$ belongs to the image $\varphi\left(\mathbb{B}^{n}\right)$ if and only if $[w]$ satisfies $P(n)$.
\diamond Solution: For $w \in \mathbb{C}^{n+1}$
\diamond The unit ball $\mathbb{B}^{n}=\left\{z \in \mathbb{C}^{n}| | z \mid<1\right\}$ has the Borel embedding $\varphi: \mathbb{B}^{n} \hookrightarrow \mathbb{C P}^{n}$ given by

$$
z \mapsto\left[\begin{array}{l}
z \\
1
\end{array}\right]
$$

\diamond Problem: Find a property $P(n)$ such that $[w] \in \mathbb{C} \mathbb{P}^{n}$ belongs to the image $\varphi\left(\mathbb{B}^{n}\right)$ if and only if [w] satisfies $P(n)$.
\diamond Solution: For $w \in \mathbb{C}^{n+1}$

$$
[w]=\left[\begin{array}{l}
z \\
1
\end{array}\right] \text { with }|z|<1 \Longleftrightarrow w_{n+1} \neq 0, \frac{\left|w^{\prime}\right|}{\left|w_{n+1}\right|}=|z|<1
$$

\diamond The unit ball $\mathbb{B}^{n}=\left\{z \in \mathbb{C}^{n}| | z \mid<1\right\}$ has the Borel embedding $\varphi: \mathbb{B}^{n} \hookrightarrow \mathbb{P}^{n}$ given by

$$
z \mapsto\left[\begin{array}{l}
z \\
1
\end{array}\right]
$$

\diamond Problem: Find a property $P(n)$ such that $[w] \in \mathbb{C} \mathbb{P}^{n}$ belongs to the image $\varphi\left(\mathbb{B}^{n}\right)$ if and only if [w] satisfies $P(n)$.
\diamond Solution: For $w \in \mathbb{C}^{n+1}$

$$
\begin{aligned}
{[w]=} & {\left[\begin{array}{l}
z \\
1
\end{array}\right] \text { with }|z|<1 \Longleftrightarrow w_{n+1} \neq 0, \frac{\left|w^{\prime}\right|}{\left|w_{n+1}\right|}=|z|<1 } \\
& \Longleftrightarrow \bar{w}^{\prime} \cdot w^{\prime}<\left|w_{n+1}\right|^{2}
\end{aligned}
$$

\diamond The unit ball $\mathbb{B}^{n}=\left\{z \in \mathbb{C}^{n}| | z \mid<1\right\}$ has the Borel embedding $\varphi: \mathbb{B}^{n} \hookrightarrow \mathbb{C P}^{n}$ given by

$$
z \mapsto\left[\begin{array}{l}
z \\
1
\end{array}\right]
$$

\diamond Problem: Find a property $P(n)$ such that $[w] \in \mathbb{C} \mathbb{P}^{n}$ belongs to the image $\varphi\left(\mathbb{B}^{n}\right)$ if and only if [w] satisfies $P(n)$.
\diamond Solution: For $w \in \mathbb{C}^{n+1}$

$$
\begin{aligned}
{[w]=} & {\left[\begin{array}{l}
z \\
1
\end{array}\right] \text { with }|z|<1 \Longleftrightarrow w_{n+1} \neq 0, \frac{\left|w^{\prime}\right|}{\left|w_{n+1}\right|}=|z|<1 } \\
& \Longleftrightarrow \bar{w}^{\prime} \cdot w^{\prime}<\left|w_{n+1}\right|^{2} \Longleftrightarrow \text { the line } \mathbb{C} w \text { is negative definite for }\langle\cdot, \cdot\rangle_{n, 1}
\end{aligned}
$$

where $\langle\cdot, \cdot\rangle_{n, 1}$ denotes the Hermitian form on \mathbb{C}^{n+1} given by

$$
\langle a, b\rangle_{n, 1}=\sum_{j=1}^{n} \bar{a}_{j} b_{j}-\bar{a}_{n+1} b_{n+1} .
$$

\bullet On \mathbb{C}^{n+m}, let us consider the Hermitian form given by

$$
\langle a, b\rangle_{n, m}=a^{*} I_{n, m} b
$$

where $I_{n, m}=\operatorname{diag}\left(I_{n},-I_{m}\right)$.
\diamond On \mathbb{C}^{n+m}, let us consider the Hermitian form given by

$$
\langle a, b\rangle_{n, m}=a^{*} I_{n, m} b,
$$

where $I_{n, m}=\operatorname{diag}\left(I_{n},-I_{m}\right)$.
\diamond From \mathbb{C}^{n+m} we also consider the complex $\operatorname{Grassmannian~} \operatorname{Gr}_{\mathbb{C}}(n+m, m)$ which consists of the m-dimensional subspaces of \mathbb{C}^{n+m}.
\diamond On \mathbb{C}^{n+m}, let us consider the Hermitian form given by

$$
\langle a, b\rangle_{n, m}=a^{*} I_{n, m} b
$$

where $I_{n, m}=\operatorname{diag}\left(I_{n},-I_{m}\right)$.
\diamond From \mathbb{C}^{n+m} we also consider the complex $\operatorname{Grassmannian~} \operatorname{Gr}_{\mathbb{C}}(n+m, m)$ which consists of the m-dimensional subspaces of \mathbb{C}^{n+m}.
\diamond Alternatively, let us denote with $M_{(n+m) \times m}(\mathbb{C})^{*}$ the set of rank m elements of $M_{(n+m) \times m}(\mathbb{C})$ and define the equivalence relation

$$
W_{1} \simeq W_{2} \Longleftrightarrow \exists A \in \mathrm{GL}(m, \mathbb{C}) \text { such that } W_{1}=W_{2} A
$$

Then, the complex Grassmanniannan in question is given by $\operatorname{Gr}_{\mathbb{C}}(n+m, m)=M_{(n+m) \times m}(\mathbb{C})^{*} / \simeq$.

- There is a natural embedding $M_{n \times m}(\mathbb{C}) \hookrightarrow \operatorname{Gr}_{\mathbb{C}}(n+m, m)$ given by

$$
Z \mapsto\left[\begin{array}{c}
Z \\
I_{m}
\end{array}\right] .
$$

- There is a natural embedding $M_{n \times m}(\mathbb{C}) \hookrightarrow \operatorname{Gr}_{\mathbb{C}}(n+m, m)$ given by

$$
Z \mapsto\left[\begin{array}{c}
Z \\
I_{m}
\end{array}\right]
$$

\diamond Problem: Find the elements of $\operatorname{Gr}_{\mathbb{C}}(n+m, m)$ that are negative definite with respect to $\langle\cdot, \cdot\rangle_{n, m}$.

- There is a natural embedding $M_{n \times m}(\mathbb{C}) \hookrightarrow \operatorname{Gr}_{\mathbb{C}}(n+m, m)$ given by

$$
Z \mapsto\left[\begin{array}{c}
Z \\
I_{m}
\end{array}\right]
$$

\diamond Problem: Find the elements of $\operatorname{Gr}_{\mathbb{C}}(n+m, m)$ that are negative definite with respect to $\langle\cdot, \cdot\rangle_{n, m}$.
\diamond Solution: For $Z \in M_{n \times m}(\mathbb{C})$ we have

$$
\begin{aligned}
& {\left[\begin{array}{c}
Z \\
I_{m}
\end{array}\right] \text { is negative definite } } \\
& \Longleftrightarrow\left(Z^{*}, I_{m}\right) I_{n, m}\binom{Z}{I_{m}}<0 \Longleftrightarrow\left(Z^{*},-I_{m}\right)\binom{Z}{I_{m}}<0 \\
& \Longleftrightarrow Z^{*} Z<I_{m} .
\end{aligned}
$$

\diamond The Cartan domain of type $\mathbf{I} D_{n \times m}^{\prime}$ is the subset of matrices $Z \in M_{n \times m}(\mathbb{C})$ that satisfy $Z^{*} Z<I_{m}$.

- The Cartan domain of type $\mathbf{I} D_{n \times m}^{\prime}$ is the subset of matrices $Z \in M_{n \times m}(\mathbb{C})$ that satisfy $Z^{*} Z<I_{m}$.
- Note that $\mathbb{B}^{n}=D_{n \times 1}^{\prime}$.
\diamond The Cartan domain of type $\mathbf{I} D_{n \times m}^{\prime}$ is the subset of matrices $Z \in M_{n \times m}(\mathbb{C})$ that satisfy $Z^{*} Z<I_{m}$.
\diamond Note that $\mathbb{B}^{n}=D_{n \times 1}^{l}$.
\diamond The Borel embedding in this case is given by

$$
\begin{aligned}
D_{n \times m}^{\prime} & \hookrightarrow \operatorname{Gr}_{\mathbb{C}}(n+m, m) \\
Z & \mapsto\left[\begin{array}{c}
Z \\
I_{m}
\end{array}\right]
\end{aligned}
$$

and proves that $D_{n \times m}^{\prime}$ is the set of m-dimensional subspaces of \mathbb{C}^{n+m} that are negative definite for $\langle\cdot, \cdot\rangle_{n, m}$.
\diamond The Cartan domain of type $\mathbf{I} D_{n \times m}^{\prime}$ is the subset of matrices $Z \in M_{n \times m}(\mathbb{C})$ that satisfy $Z^{*} Z<I_{m}$.

- Note that $\mathbb{B}^{n}=D_{n \times 1}^{l}$.
\diamond The Borel embedding in this case is given by

$$
\begin{aligned}
D_{n \times m}^{\prime} & \hookrightarrow \operatorname{Gr}_{\mathbb{C}}(n+m, m) \\
Z & \mapsto\left[\begin{array}{c}
Z \\
I_{m}
\end{array}\right]
\end{aligned}
$$

and proves that $D_{n \times m}^{\prime}$ is the set of m-dimensional subspaces of \mathbb{C}^{n+m} that are negative definite for $\langle\cdot, \cdot\rangle_{n, m}$.
\diamond We can use this to compute the biholomorphism group $\operatorname{Aut}\left(D_{n \times m}^{\prime}\right)$.

- The biholomorphism group of $\operatorname{Gr}_{\mathbb{C}}(n+m, m)$ is given by linear transformations. More precisely, the action of $\mathrm{SL}(n+m, \mathbb{C})$ given by

$$
M \cdot[W]=[M W],
$$

where $M \in \operatorname{SL}(n+m, \mathbb{C})$ and $[W] \in \operatorname{Gr}_{\mathbb{C}}(n+m, m)$, realizes the biholomorphisms of $\operatorname{Gr}_{\mathbb{C}}(n+m, m)$.
\diamond The biholomorphism group of $\operatorname{Gr}_{\mathbb{C}}(n+m, m)$ is given by linear transformations. More precisely, the action of $\mathrm{SL}(n+m, \mathbb{C})$ given by

$$
M \cdot[W]=[M W]
$$

where $M \in \operatorname{SL}(n+m, \mathbb{C})$ and $[W] \in \operatorname{Gr}_{\mathbb{C}}(n+m, m)$, realizes the biholomorphisms of $\operatorname{Gr}_{\mathbb{C}}(n+m, m)$.
\diamond The special pseudo-unitary group $\mathrm{SU}(n, m)$ is the subgroup of matrices $M \in \operatorname{SL}(n+m, \mathbb{C})$ such that $M^{*} I_{n, m} M=I_{n, m}$.
\diamond The biholomorphism group of $\operatorname{Gr}_{\mathbb{C}}(n+m, m)$ is given by linear transformations. More precisely, the action of $\operatorname{SL}(n+m, \mathbb{C})$ given by

$$
M \cdot[W]=[M W]
$$

where $M \in \operatorname{SL}(n+m, \mathbb{C})$ and $[W] \in \operatorname{Gr}_{\mathbb{C}}(n+m, m)$, realizes the biholomorphisms of $\operatorname{Gr}_{\mathbb{C}}(n+m, m)$.
\diamond The special pseudo-unitary group $\mathrm{SU}(n, m)$ is the subgroup of matrices $M \in \operatorname{SL}(n+m, \mathbb{C})$ such that $M^{*} I_{n, m} M=I_{n, m}$.

Proposition

For the realization of $D_{n \times m}^{\prime}$ as an open subset of $\mathrm{Gr}_{\mathbb{C}}(n+m, m)$, the group $\operatorname{Aut}\left(D_{n \times m}^{l}\right)$ is given by the action of $\mathrm{SU}(n, m)$

$$
M \cdot[W]=[M W]
$$

where $M \in \operatorname{SU}(n, m)$ and $[W] \in D_{n \times m}^{\prime}$.

Corollary

For $D_{n \times m}^{\prime}=\left\{Z \in M_{n \times m}(\mathbb{C}) \mid Z^{*} Z<I_{m}\right\}$, the biholomorphism group $\operatorname{Aut}\left(D_{n \times m}^{\prime}\right)$ is realized by the action of $\operatorname{SU}(n, m)$ given by

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \cdot Z=(A Z+B)(C Z+D)^{-1}
$$

where A and D have sizes $n \times n$ and $m \times m$, respectively.

Corollary

For $D_{n \times m}^{\prime}=\left\{Z \in M_{n \times m}(\mathbb{C}) \mid Z^{*} Z<I_{m}\right\}$, the biholomorphism group $\operatorname{Aut}\left(D_{n \times m}^{\prime}\right)$ is realized by the action of $\operatorname{SU}(n, m)$ given by

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \cdot Z=(A Z+B)(C Z+D)^{-1}
$$

where A and D have sizes $n \times n$ and $m \times m$, respectively.

Proof.

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \cdot Z \mapsto\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \cdot\left[\begin{array}{l}
Z \\
I_{m}
\end{array}\right]=\left[\begin{array}{c}
A Z+B \\
C Z+D
\end{array}\right]=\left[\begin{array}{c}
(A Z+B)(C Z+D)^{-1} \\
I_{m}
\end{array}\right] \mapsto(A Z+B)(C Z+D)^{-1} .
$$

\diamond The Grassmannian $\operatorname{Gr}_{\mathbb{C}}(2 n, n)$ contains two special submanifolds.
\diamond The Grassmannian $\operatorname{Gr}_{\mathbb{C}}(2 n, n)$ contains two special submanifolds.

- Let us consider the matrices

$$
J_{n}=\left(\begin{array}{cc}
0 & -I_{n} \\
I_{n} & 0
\end{array}\right), \quad S_{n}=\left(\begin{array}{cc}
0 & I_{n} \\
I_{n} & 0
\end{array}\right),
$$

which yield corresponding groups of symmetries.
\diamond The Grassmannian $\operatorname{Gr}_{\mathbb{C}}(2 n, n)$ contains two special submanifolds.

- Let us consider the matrices

$$
J_{n}=\left(\begin{array}{cc}
0 & -I_{n} \\
I_{n} & 0
\end{array}\right), \quad S_{n}=\left(\begin{array}{cc}
0 & I_{n} \\
I_{n} & 0
\end{array}\right),
$$

which yield corresponding groups of symmetries.

- $\operatorname{Sp}(n, \mathbb{C})=\left\{M \in \mathrm{GL}(2 n, \mathbb{C}) \mid M^{\top} J_{n} M=J_{n}\right\}$.
\diamond The Grassmannian $\operatorname{Gr}_{\mathbb{C}}(2 n, n)$ contains two special submanifolds.
- Let us consider the matrices

$$
J_{n}=\left(\begin{array}{cc}
0 & -I_{n} \\
I_{n} & 0
\end{array}\right), \quad S_{n}=\left(\begin{array}{cc}
0 & I_{n} \\
I_{n} & 0
\end{array}\right),
$$

which yield corresponding groups of symmetries.

- $\operatorname{Sp}(n, \mathbb{C})=\left\{M \in \mathrm{GL}(2 n, \mathbb{C}) \mid M^{\top} J_{n} M=J_{n}\right\}$.
- $\left.\operatorname{SO}(2 n, \mathbb{C})=\{M \in \mathrm{SL}(2 n, \mathbb{C})) \mid M^{\top} S_{n} M=S_{n}\right\}$.
\diamond The Grassmannian $\operatorname{Gr}_{\mathbb{C}}(2 n, n)$ contains two special submanifolds.
\diamond Let us consider the matrices

$$
J_{n}=\left(\begin{array}{cc}
0 & -I_{n} \\
I_{n} & 0
\end{array}\right), \quad S_{n}=\left(\begin{array}{cc}
0 & I_{n} \\
I_{n} & 0
\end{array}\right)
$$

which yield corresponding groups of symmetries.

- $\operatorname{Sp}(n, \mathbb{C})=\left\{M \in \operatorname{GL}(2 n, \mathbb{C}) \mid M^{\top} J_{n} M=J_{n}\right\}$.
- $\left.\operatorname{SO}(2 n, \mathbb{C})=\{M \in \operatorname{SL}(2 n, \mathbb{C})) \mid M^{\top} S_{n} M=S_{n}\right\}$.
- We consider the submanifolds of $\operatorname{Gr}_{\mathbb{C}}(2 n, n)$ consisting of isotropic subspaces for either of the bilinear forms defined by J_{n} and S_{n}.
\diamond We denote by $\operatorname{LGr}_{\mathbb{C}}(n)$ the subspace of $\operatorname{Gr}_{\mathbb{C}}(2 n, n)$ consisting of the elements $[W]$ where the anti-symmetric bilinear form defined by J_{n} vanishes. This is equivalent to $W^{\top} J_{n} W=0$.
\diamond We denote by $\operatorname{LGr}_{\mathbb{C}}(n)$ the subspace of $\operatorname{Gr}_{\mathbb{C}}(2 n, n)$ consisting of the elements [W] where the anti-symmetric bilinear form defined by J_{n} vanishes. This is equivalent to $W^{\top} J_{n} W=0$.
$\diamond \operatorname{LGr}_{\mathbb{C}}(n)$ consists of the Lagrangian subspaces of $\mathbb{C}^{2 n}$.
\diamond We denote by $\operatorname{LGr}_{\mathbb{C}}(n)$ the subspace of $\operatorname{Gr}_{\mathbb{C}}(2 n, n)$ consisting of the elements $[W]$ where the anti-symmetric bilinear form defined by J_{n} vanishes. This is equivalent to $W^{\top} J_{n} W=0$.
$\diamond \operatorname{LGr}_{\mathbb{C}}(n)$ consists of the Lagrangian subspaces of $\mathbb{C}^{2 n}$.

Proposition

The space $\mathrm{LGr}_{\mathbb{C}}(n)$ is a complex submanifold of $\mathrm{Gr}_{\mathbb{C}}(2 n, n)$, whose group of biholomorphisms is realized by the action of $\operatorname{Sp}(n, \mathbb{C})$

$$
M \cdot[W]=[M W]
$$

where $M \in \operatorname{Sp}(n, \mathbb{C})$ and $[W] \in \operatorname{LGr}_{\mathbb{C}}(n)$.
\diamond There is a natural embedding $\varphi: M_{n \times n}(\mathbb{C}) \hookrightarrow \operatorname{Gr}_{\mathbb{C}}(2 n, n)$ given by

$$
Z \mapsto\left[\begin{array}{l}
Z \\
I_{n}
\end{array}\right]
$$

\diamond There is a natural embedding $\varphi: M_{n \times n}(\mathbb{C}) \hookrightarrow \operatorname{Gr}_{\mathbb{C}}(2 n, n)$ given by

$$
Z \mapsto\left[\begin{array}{l}
Z \\
I_{n}
\end{array}\right]
$$

\diamond Problem: Find the set of matrices $Z \in M_{n \times n}(\mathbb{C})$ such that $\varphi(Z) \in \operatorname{LGr}_{\mathbb{C}}(n)$.
\diamond There is a natural embedding $\varphi: M_{n \times n}(\mathbb{C}) \hookrightarrow \operatorname{Gr}_{\mathbb{C}}(2 n, n)$ given by

$$
Z \mapsto\left[\begin{array}{l}
Z \\
I_{n}
\end{array}\right]
$$

\diamond Problem: Find the set of matrices $Z \in M_{n \times n}(\mathbb{C})$ such that $\varphi(Z) \in \operatorname{LGr}_{\mathbb{C}}(n)$.
\diamond Solution: For $Z \in M_{n \times n}(\mathbb{C})$

$$
\begin{aligned}
& {\left[\begin{array}{l}
Z \\
I_{n}
\end{array}\right] \text { is isotropic for } J_{n}} \\
& \\
& \quad \Longleftrightarrow\left(Z^{\top}, I_{n}\right) J_{n}\binom{Z}{I_{n}}=0 \Longleftrightarrow\left(I_{n},-Z^{\top}\right)\binom{Z}{I_{n}}=0 \\
& \\
& \quad \Longleftrightarrow Z=Z^{\top} .
\end{aligned}
$$

\diamond The Cartan domain of type III $D_{n}^{\prime \prime \prime}$ is the set of n-dimensional subspaces of $\mathbb{C}^{2 n}$ that are both Lagrangian and negative definite for the Hermitian form $\langle\cdot, \cdot\rangle_{n, n}$

$$
D_{n}^{\prime \prime \prime}=\operatorname{LGr}_{\mathbb{C}}(n) \cap D_{n \times n}^{\prime}
$$

\diamond The Cartan domain of type III $D_{n}^{I I I}$ is the set of n-dimensional subspaces of $\mathbb{C}^{2 n}$ that are both Lagrangian and negative definite for the Hermitian form $\langle\cdot, \cdot\rangle_{n, n}$

$$
D_{n}^{\prime \prime \prime}=\operatorname{LGr}_{\mathbb{C}}(n) \cap D_{n \times n}^{\prime}
$$

\diamond From the previous computations, we also have

$$
D_{n}^{\prime \prime \prime}=\left\{Z \in M_{n \times n}(\mathbb{C}) \mid Z=Z^{\top}, \bar{Z} Z<I_{n}\right\}
$$

\diamond The Cartan domain of type III $D_{n}^{I I I}$ is the set of n-dimensional subspaces of $\mathbb{C}^{2 n}$ that are both Lagrangian and negative definite for the Hermitian form $\langle\cdot, \cdot\rangle_{n, n}$

$$
D_{n}^{\prime \prime \prime}=\operatorname{LGr}_{\mathbb{C}}(n) \cap D_{n \times n}^{\prime}
$$

\diamond From the previous computations, we also have

$$
D_{n}^{\prime \prime \prime}=\left\{Z \in M_{n \times n}(\mathbb{C}) \mid Z=Z^{\top}, \bar{Z} Z<I_{n}\right\}
$$

\diamond The Borel embedding in this case is the map $D_{n}^{\prime \prime \prime} \hookrightarrow \operatorname{LGr}_{\mathbb{C}}(n)$ given by

$$
Z \mapsto\left[\begin{array}{c}
Z \\
I_{n}
\end{array}\right]
$$

- The Cartan domain of type III $D_{n}^{\prime \prime I}$ is the set of n-dimensional subspaces of $\mathbb{C}^{2 n}$ that are both Lagrangian and negative definite for the Hermitian form $\langle\cdot, \cdot\rangle_{n, n}$

$$
D_{n}^{\prime \prime \prime}=\operatorname{LGr}_{\mathbb{C}}(n) \cap D_{n \times n}^{\prime}
$$

\diamond From the previous computations, we also have

$$
D_{n}^{\prime \prime \prime}=\left\{Z \in M_{n \times n}(\mathbb{C}) \mid Z=Z^{\top}, \bar{Z} Z<I_{n}\right\}
$$

\diamond The Borel embedding in this case is the map $D_{n}^{\prime \prime \prime} \hookrightarrow \operatorname{LGr}_{\mathbb{C}}(n)$ given by

$$
Z \mapsto\left[\begin{array}{c}
Z \\
I_{n}
\end{array}\right]
$$

\diamond As before, this allows us to compute $\operatorname{Aut}\left(D_{n}^{\prime \prime \prime}\right)$.

Proposition
For $D_{n}^{\prime \prime \prime}=\left\{Z \in M_{n \times n}(\mathbb{C}) \mid Z=Z^{\top}, \bar{Z} Z<I_{n}\right\}$, the biholomorphism group Aut $\left(D_{n}^{\prime \prime \prime}\right)$ is realized by the action of $\operatorname{Sp}(n, \mathbb{C}) \cap \operatorname{SU}(n, n)$ given by

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \cdot Z=(A Z+B)(C Z+D)^{-1}
$$

where A, B, C, D all have size $n \times n$.

Proposition

For $D_{n}^{\prime \prime \prime}=\left\{Z \in M_{n \times n}(\mathbb{C}) \mid Z=Z^{\top}, \bar{Z} Z<I_{n}\right\}$, the biholomorphism group Aut $\left(D_{n}^{\prime \prime \prime}\right)$ is realized by the action of $\operatorname{Sp}(n, \mathbb{C}) \cap \operatorname{SU}(n, n)$ given by

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \cdot Z=(A Z+B)(C Z+D)^{-1}
$$

where A, B, C, D all have size $n \times n$.

Proof.

The biholomorphisms come from linear maps that preserve both J_{n} and $I_{n, n}$.

Proposition

For $D_{n}^{\prime \prime \prime}=\left\{Z \in M_{n \times n}(\mathbb{C}) \mid Z=Z^{\top}, \bar{Z} Z<I_{n}\right\}$, the biholomorphism group $\operatorname{Aut}\left(D_{n}^{\prime \prime \prime}\right)$ is realized by the action of $\operatorname{Sp}(n, \mathbb{C}) \cap \operatorname{SU}(n, n)$ given by

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \cdot Z=(A Z+B)(C Z+D)^{-1}
$$

where A, B, C, D all have size $n \times n$.

Proof.

The biholomorphisms come from linear maps that preserve both J_{n} and $I_{n, n}$.

- There is an isomorphism of Lie groups

$$
\operatorname{Sp}(n, \mathbb{C}) \cap \mathrm{SU}(n, n) \simeq \operatorname{Sp}(n, \mathbb{R})=\left\{X \in \mathrm{GL}(2 n, \mathbb{R}) \mid X^{\top} J_{n} X=J_{n}\right\}
$$

\diamond We denote by $\mathrm{OGr}_{\mathbb{C}}(n)$ the subspace of $\mathrm{Gr}_{\mathbb{C}}(2 n, n)$ consisting of the elements [W] where the symmetric bilinear form defined by S_{n} vanishes. This is equivalent to $W^{\top} S_{n} W=0$.
\diamond We denote by $\operatorname{OGr}_{\mathbb{C}}(n)$ the subspace of $\operatorname{Gr}_{\mathbb{C}}(2 n, n)$ consisting of the elements [W] where the symmetric bilinear form defined by S_{n} vanishes. This is equivalent to $W^{\top} S_{n} W=0$.
$\diamond \operatorname{OGr}_{\mathbb{C}}(n)$ consists of the maximal isotropic subspaces of $\left(\mathbb{C}^{2 n}, S_{n}\right)$.
\diamond We denote by $\mathrm{OGr}_{\mathbb{C}}(n)$ the subspace of $\mathrm{Gr}_{\mathbb{C}}(2 n, n)$ consisting of the elements [W] where the symmetric bilinear form defined by S_{n} vanishes. This is equivalent to $W^{\top} S_{n} W=0$.
$\diamond \operatorname{OGr}_{\mathbb{C}}(n)$ consists of the maximal isotropic subspaces of $\left(\mathbb{C}^{2 n}, S_{n}\right)$.

Proposition

The space $\operatorname{OGr}_{\mathbb{C}}(n)$ is a complex submanifold of $\operatorname{Gr}_{\mathbb{C}}(2 n, n)$, whose group of biholomorphisms is realized by the action of $\mathrm{SO}(2 n, \mathbb{C})$

$$
M \cdot[W]=[M W]
$$

where $M \in \operatorname{SO}(2 n, \mathbb{C})$ and $[W] \in \operatorname{OGr}_{\mathbb{C}}(n)$.
\diamond As before, for the natural embedding $M_{n \times n}(\mathbb{C}) \hookrightarrow \operatorname{Gr}_{\mathbb{C}}(2 n, n)$ given by

$$
Z \mapsto\left[\begin{array}{l}
Z \\
I_{n}
\end{array}\right]
$$

we have for every $Z \in M_{n \times n}(\mathbb{C})$

$$
\left[\begin{array}{l}
Z \\
I_{n}
\end{array}\right] \text { is isotropic for } S_{n} \Longleftrightarrow Z=-Z^{\top} \text {. }
$$

\diamond As before, for the natural embedding $M_{n \times n}(\mathbb{C}) \hookrightarrow \operatorname{Gr}_{\mathbb{C}}(2 n, n)$ given by

$$
Z \mapsto\left[\begin{array}{l}
Z \\
I_{n}
\end{array}\right]
$$

we have for every $Z \in M_{n \times n}(\mathbb{C})$

$$
\left[\begin{array}{l}
Z \\
I_{n}
\end{array}\right] \text { is isotropic for } S_{n} \Longleftrightarrow Z=-Z^{\top} \text {. }
$$

\diamond The Cartan domain of type II $D_{n}^{\prime \prime}$ is the set of n-dimensional subspaces of $\mathbb{C}^{2 n}$ that are both isotropic for S_{n} and negative definite for the Hermitian form $\langle\cdot, \cdot\rangle_{n, n}$

$$
D_{n}^{\prime \prime}=\operatorname{OGr}_{\mathbb{C}}(n) \cap D_{n \times n}^{\prime}
$$

\diamond As before, for the natural embedding $M_{n \times n}(\mathbb{C}) \hookrightarrow \mathrm{Gr}_{\mathbb{C}}(2 n, n)$ given by

$$
Z \mapsto\left[\begin{array}{l}
Z \\
I_{n}
\end{array}\right]
$$

we have for every $Z \in M_{n \times n}(\mathbb{C})$

$$
\left[\begin{array}{l}
Z \\
I_{n}
\end{array}\right] \text { is isotropic for } S_{n} \Longleftrightarrow Z=-Z^{\top} \text {. }
$$

\diamond The Cartan domain of type II $D_{n}^{\|}$is the set of n-dimensional subspaces of $\mathbb{C}^{2 n}$ that are both isotropic for S_{n} and negative definite for the Hermitian form $\langle\cdot, \cdot\rangle_{n, n}$

$$
D_{n}^{\prime \prime}=\operatorname{OGr}_{\mathbb{C}}(n) \cap D_{n \times n}^{\prime}
$$

\diamond In particular, we have

$$
D_{n}^{\prime \prime}=\left\{Z \in M_{n \times n}(\mathbb{C}) \mid Z=-Z^{\top}, Z^{*} Z<I_{n}\right\}
$$

and its Borel embedding is given as before.

Proposition
For $D_{n}^{\prime \prime}=\left\{Z \in M_{n \times n}(\mathbb{C}) \mid Z=-Z^{\top}, Z^{*} Z<I_{n}\right\}$, the biholomorphism group $\operatorname{Aut}\left(D_{n}^{\prime \prime \prime}\right)$ is realized by the action of $\operatorname{SO}(2 n, \mathbb{C}) \cap \mathrm{SU}(n, n)$ given by

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \cdot Z=(A Z+B)(C Z+D)^{-1},
$$

where A, B, C, D all have size $n \times n$.

Proposition
For $D_{n}^{\prime \prime}=\left\{Z \in M_{n \times n}(\mathbb{C}) \mid Z=-Z^{\top}, Z^{*} Z<I_{n}\right\}$, the biholomorphism group $\operatorname{Aut}\left(D_{n}^{\prime \prime \prime}\right)$ is realized by the action of $\operatorname{SO}(2 n, \mathbb{C}) \cap \mathrm{SU}(n, n)$ given by

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \cdot Z=(A Z+B)(C Z+D)^{-1}
$$

where A, B, C, D all have size $n \times n$.
\diamond There is an isomorphism of Lie groups $\operatorname{SO}(2 n, \mathbb{C}) \cap \mathrm{SU}(n, n) \simeq \mathrm{SO}^{*}(2 n)$, where the latter is a Lie group associated to a quaternionic structure.
\diamond The compact complex manifold for this type is given by

$$
Q^{n}: \quad[z] \in \mathbb{C P}^{n+1} \text { such that } \sum_{j=1}^{n} z_{j}^{2}-2 z_{n+1} z_{n+2}=0
$$

an n-dimensional quadric in $\mathbb{C P}^{n+1}$.
\diamond The compact complex manifold for this type is given by

$$
Q^{n}: \quad[z] \in \mathbb{C P}^{n+1} \text { such that } \sum_{j=1}^{n} z_{j}^{2}-2 z_{n+1} z_{n+2}=0
$$

an n-dimensional quadric in $\mathbb{C P}^{n+1}$.
\diamond Let us consider the open subset Ω of Q^{n} of elements that are negative definite for the Hermitian form $\langle\cdot, \cdot\rangle_{n, 2}$.
\diamond The compact complex manifold for this type is given by

$$
Q^{n}: \quad[z] \in \mathbb{C P}^{n+1} \text { such that } \sum_{j=1}^{n} z_{j}^{2}-2 z_{n+1} z_{n+2}=0
$$

an n-dimensional quadric in $\mathbb{C P}^{n+1}$.
\diamond Let us consider the open subset Ω of Q^{n} of elements that are negative definite for the Hermitian form $\langle\cdot, \cdot\rangle_{n, 2}$.
\diamond The Cartan domain of type IV $D_{n}^{I V}$ is the connected component of Ω that contains $\left[e_{n+1}\right]$.
\diamond The compact complex manifold for this type is given by

$$
Q^{n}: \quad[z] \in \mathbb{C P}^{n+1} \text { such that } \sum_{j=1}^{n} z_{j}^{2}-2 z_{n+1} z_{n+2}=0
$$

an n-dimensional quadric in $\mathbb{C P}^{n+1}$.
\diamond Let us consider the open subset Ω of Q^{n} of elements that are negative definite for the Hermitian form $\langle\cdot, \cdot\rangle_{n, 2}$.
\diamond The Cartan domain of type IV $D_{n}^{I V}$ is the connected component of Ω that contains [e_{n+1}].
\diamond A realization of this domain is given by

$$
D_{n}^{I V}=\left\{\left.z \in \mathbb{C}^{n}| | z|<1,2| z\right|^{2}<1+\left|z^{\top} z\right|^{2}\right\} .
$$

Proposition

For $D_{n}^{I V}=\left\{\left.z \in \mathbb{C}^{n}| | z|<1,2| z\right|^{2}<1+\left|z^{\top} z\right|^{2}\right\}$, the biholomorphism group $\operatorname{Aut}\left(D_{n}^{/ V}\right)$ is realized by an action of $\mathrm{SO}(n, 2)$ by quadratic fractional transformations.
\diamond The previous realizations of the classical Cartan domains are very explicit, and so their basic properties are easy to prove.
\diamond The previous realizations of the classical Cartan domains are very explicit, and so their basic properties are easy to prove.
\diamond General properties of a classical Cartan domain D (and every BSD)
\diamond The previous realizations of the classical Cartan domains are very explicit, and so their basic properties are easy to prove.
\diamond General properties of a classical Cartan domain D (and every BSD)

- For the given realizations, D is a circular domain: $0 \in D$ and $t D=D$ for every $t \in \mathbb{T}$.
\diamond The previous realizations of the classical Cartan domains are very explicit, and so their basic properties are easy to prove.
\diamond General properties of a classical Cartan domain D (and every BSD)
- For the given realizations, D is a circular domain: $0 \in D$ and $t D=D$ for every $t \in \mathbb{T}$.
- D is homogeneous: the action of $\operatorname{Aut}(D)$ is transitive.
\diamond The previous realizations of the classical Cartan domains are very explicit, and so their basic properties are easy to prove.
\diamond General properties of a classical Cartan domain D (and every BSD)
- For the given realizations, D is a circular domain: $0 \in D$ and $t D=D$ for every $t \in \mathbb{T}$.
- D is homogeneous: the action of $\operatorname{Aut}(D)$ is transitive.
- The action of $\operatorname{Aut}(D)$ has been given as an action of a connected Lie group G. The subgroup K of G that fixes the origin acts linearly on D and yields a quotient $D=G / K$.
- We describe the Lie groups associated to classical Cartan domains.
\diamond We describe the Lie groups associated to classical Cartan domains.
- Type I, $D_{n \times m}^{\prime}: G=\mathrm{SU}(n, m)$ and $K=\mathrm{S}(\mathrm{U}(n) \times \mathrm{U}(m))$ acting by

$$
(A, B) \cdot Z=A Z B^{-1} .
$$

- We describe the Lie groups associated to classical Cartan domains.
- Type I, $D_{n \times m}^{\prime}: G=\mathrm{SU}(n, m)$ and $K=\mathrm{S}(\mathrm{U}(n) \times \mathrm{U}(m))$ acting by

$$
(A, B) \cdot Z=A Z B^{-1} .
$$

- Type II, $D_{n}^{\prime \prime}: G=\operatorname{SO}^{*}(2 n)$ and $K=\mathrm{U}(n)$ acting by

$$
A \cdot Z=A Z A^{\top} .
$$

\diamond We describe the Lie groups associated to classical Cartan domains.

- Type I, $D_{n \times m}^{\prime}: G=\mathrm{SU}(n, m)$ and $K=\mathrm{S}(\mathrm{U}(n) \times \mathrm{U}(m))$ acting by

$$
(A, B) \cdot Z=A Z B^{-1} .
$$

- Type II, $D_{n}^{\prime \prime}: G=\mathrm{SO}^{*}(2 n)$ and $K=\mathrm{U}(n)$ acting by

$$
A \cdot Z=A Z A^{\top}
$$

- Type III, $D_{n}^{\text {III }}: G=\operatorname{Sp}(n, \mathbb{C}) \cap \operatorname{SU}(n, n) \simeq \operatorname{Sp}(n, \mathbb{R})$ and $K=\mathrm{U}(n)$ acting by

$$
A \cdot Z=A Z A^{\top}
$$

\diamond We describe the Lie groups associated to classical Cartan domains.

- Type I, $D_{n \times m}^{\prime}$: $G=\mathrm{SU}(n, m)$ and $K=\mathrm{S}(\mathrm{U}(n) \times \mathrm{U}(m))$ acting by

$$
(A, B) \cdot Z=A Z B^{-1}
$$

- Type II, $D_{n}^{\prime \prime}: G=\operatorname{SO}^{*}(2 n)$ and $K=\mathrm{U}(n)$ acting by

$$
A \cdot Z=A Z A^{\top} .
$$

- Type III, $D_{n}^{\text {III }}: G=\operatorname{Sp}(n, \mathbb{C}) \cap \operatorname{SU}(n, n) \simeq \operatorname{Sp}(n, \mathbb{R})$ and $K=\mathrm{U}(n)$ acting by

$$
A \cdot Z=A Z A^{\top}
$$

- Type IV, $D_{n}^{\prime V}: G=\mathrm{SO}(n, 2)$ and $K=\mathrm{SO}(n) \times \mathrm{SO}(2) \simeq \mathrm{SO}(n) \times \mathbb{T}$ acting by

$$
(A, t) \cdot z=t A z
$$

(1) Bounded symmetric domains

2 Bounded symmetric domains by example
(3) Bergman spaces

- Bergman spaces
- Bergman kernels
- Weighted Bergman spaces

4. Unitary representations and Bergman spaces
\diamond Let $D \subset \mathbb{C}^{N}$ be any domain. The Bergman space associated to D is given by $\mathcal{A}^{2}(D)=L^{2}(D) \cap \operatorname{Hol}(D)$.
\diamond Let $D \subset \mathbb{C}^{N}$ be any domain. The Bergman space associated to D is given by $\mathcal{A}^{2}(D)=L^{2}(D) \cap \operatorname{Hol}(D)$.
\diamond One usually assumes that D bounded and take the normalized Lebesgue measure $\mathrm{d} v(z)$ so that $v(D)=1$.

- Let $D \subset \mathbb{C}^{N}$ be any domain. The Bergman space associated to D is given by $\mathcal{A}^{2}(D)=L^{2}(D) \cap \operatorname{Hol}(D)$.
- One usually assumes that D bounded and take the normalized Lebesgue measure $\mathrm{d} v(z)$ so that $v(D)=1$.
- The boundedness of D ensures that $\mathcal{P}\left(\mathbb{C}^{N}\right) \subset \mathcal{A}^{2}(D)$. And the condition $v(D)=1$ simplifies the expression of the Bergman kernel.

Proposition

Let $D \subset \mathbb{C}^{N}$ be a domain. Then, for every compact subset $K \subset D$ there exists a constant $C_{K}>0$ such that $\|f\|_{\infty, K} \leq C_{k}\|f\|_{2}$, for every $f \in \mathcal{A}^{2}(D)$. In particular, the following hold

Proposition

Let $D \subset \mathbb{C}^{N}$ be a domain. Then, for every compact subset $K \subset D$ there exists a constant $C_{K}>0$ such that $\|f\|_{\infty, K} \leq C_{k}\|f\|_{2}$, for every $f \in \mathcal{A}^{2}(D)$. In particular, the following hold
$\diamond \mathcal{A}^{2}(D)$ is closed subspace of $L^{2}(D)$.

Proposition

Let $D \subset \mathbb{C}^{N}$ be a domain. Then, for every compact subset $K \subset D$ there exists a constant $C_{K}>0$ such that $\|f\|_{\infty, K} \leq C_{k}\|f\|_{2}$, for every $f \in \mathcal{A}^{2}(D)$. In particular, the following hold

- $\mathcal{A}^{2}(D)$ is closed subspace of $L^{2}(D)$.
\diamond For every $z \in D$, the evaluation functional $f \mapsto f(z)$ is L^{2}-continuous on $\mathcal{A}^{2}(D)$.

Proposition

Let $D \subset \mathbb{C}^{N}$ be a domain. Then, for every compact subset $K \subset D$ there exists a constant $C_{K}>0$ such that $\|f\|_{\infty, K} \leq C_{k}\|f\|_{2}$, for every $f \in \mathcal{A}^{2}(D)$. In particular, the following hold
$\diamond \mathcal{A}^{2}(D)$ is closed subspace of $L^{2}(D)$.
\diamond For every $z \in D$, the evaluation functional $f \mapsto f(z)$ is L^{2}-continuous on $\mathcal{A}^{2}(D)$.

Proof.

Cauchy's integral formula.

Proposition

Let $D \subset \mathbb{C}^{N}$ be a domain. Then, for every compact subset $K \subset D$ there exists a constant $C_{K}>0$ such that $\|f\|_{\infty, K} \leq C_{k}\|f\|_{2}$, for every $f \in \mathcal{A}^{2}(D)$. In particular, the following hold

- $\mathcal{A}^{2}(D)$ is closed subspace of $L^{2}(D)$.
\diamond For every $z \in D$, the evaluation functional $f \mapsto f(z)$ is L^{2}-continuous on $\mathcal{A}^{2}(D)$.

Proof.

Cauchy's integral formula.

Corollary

The same conclusions hold for "weighted" Bergman spaces of the form $\mathcal{A}_{w}^{2}(D)=L^{2}(D, w(z) \mathrm{d} z) \cap \operatorname{Hol}(D)$, where $w: D \rightarrow(0,+\infty)$ is any continuous function.
\diamond Let $D \subset \mathbb{C}^{N}$ be a given domain. For every $z \in D$, there exists $K_{z} \in \mathcal{A}^{2}(D)$ such that

$$
f(z)=\int_{D} f(w) \overline{K_{z}}(w) \mathrm{d} v(z)
$$

for every $f \in \mathcal{A}^{2}(D)$.
\diamond Let $D \subset \mathbb{C}^{N}$ be a given domain. For every $z \in D$, there exists $K_{z} \in \mathcal{A}^{2}(D)$ such that

$$
f(z)=\int_{D} f(w) \overline{K_{z}}(w) \mathrm{d} v(z)
$$

for every $f \in \mathcal{A}^{2}(D)$.

- The Bergman kernel of D is the function $K: D \times D \rightarrow \mathbb{C}$ given by $K(z, w)=K_{w}(z)$, and it satisfies
\diamond Let $D \subset \mathbb{C}^{N}$ be a given domain. For every $z \in D$, there exists $K_{z} \in \mathcal{A}^{2}(D)$ such that

$$
f(z)=\int_{D} f(w) \overline{K_{z}}(w) \mathrm{d} v(z)
$$

for every $f \in \mathcal{A}^{2}(D)$.
\diamond The Bergman kernel of D is the function $K: D \times D \rightarrow \mathbb{C}$ given by $K(z, w)=K_{w}(z)$, and it satisfies

- $K(z, w)=\left\langle K_{w}, K_{z}\right\rangle$. In particular, $K(z, w)=\overline{K(w, z)}$.
\diamond Let $D \subset \mathbb{C}^{N}$ be a given domain. For every $z \in D$, there exists $K_{z} \in \mathcal{A}^{2}(D)$ such that

$$
f(z)=\int_{D} f(w) \overline{K_{z}}(w) \mathrm{d} v(z)
$$

for every $f \in \mathcal{A}^{2}(D)$.
\diamond The Bergman kernel of D is the function $K: D \times D \rightarrow \mathbb{C}$ given by $K(z, w)=K_{w}(z)$, and it satisfies

- $K(z, w)=\left\langle K_{w}, K_{z}\right\rangle$. In particular, $K(z, w)=\overline{K(w, z)}$.
- $K(z, w)$ is holomorphic in z and anti-holomorphic in w.
\diamond Let $D \subset \mathbb{C}^{N}$ be a given domain. For every $z \in D$, there exists $K_{z} \in \mathcal{A}^{2}(D)$ such that

$$
f(z)=\int_{D} f(w) \overline{K_{z}}(w) \mathrm{d} v(z)
$$

for every $f \in \mathcal{A}^{2}(D)$.
\diamond The Bergman kernel of D is the function $K: D \times D \rightarrow \mathbb{C}$ given by $K(z, w)=K_{w}(z)$, and it satisfies

- $K(z, w)=\left\langle K_{w}, K_{z}\right\rangle$. In particular, $K(z, w)=\overline{K(w, z)}$.
- $K(z, w)$ is holomorphic in z and anti-holomorphic in w.
- $K(z, z)>0$ for every $z \in D$.
\diamond Let $D \subset \mathbb{C}^{N}$ be a given domain. For every $z \in D$, there exists $K_{z} \in \mathcal{A}^{2}(D)$ such that

$$
f(z)=\int_{D} f(w) \overline{K_{z}}(w) \mathrm{d} v(z)
$$

for every $f \in \mathcal{A}^{2}(D)$.
\diamond The Bergman kernel of D is the function $K: D \times D \rightarrow \mathbb{C}$ given by $K(z, w)=K_{w}(z)$, and it satisfies

- $K(z, w)=\left\langle K_{w}, K_{z}\right\rangle$. In particular, $K(z, w)=\overline{K(w, z)}$.
- $K(z, w)$ is holomorphic in z and anti-holomorphic in w.
- $K(z, z)>0$ for every $z \in D$.

Corollary

The orthogonal projection $B_{D}: L^{2}(D) \rightarrow \mathcal{A}^{2}(D)$ is given by

$$
B_{D}(f)(z)=\int_{D} f(w) K(z, w) \mathrm{d} v(w)
$$

for every $z \in D$. It is called the Bergman projection.

Proposition

The biholomorphism group $\operatorname{Aut}(D)$ has a unitary representation π on $\mathcal{A}^{2}(D)$ given by

$$
\pi(\varphi)(f)=J_{\mathbb{C}}\left(\varphi^{-1}\right)\left(f \circ \varphi^{-1}\right)
$$

for every $\varphi \in \operatorname{Aut}(D)$ and $f \in \mathcal{A}^{2}(D)$.

Proposition

The biholomorphism group $\operatorname{Aut}(D)$ has a unitary representation π on $\mathcal{A}^{2}(D)$ given by

$$
\pi(\varphi)(f)=J_{\mathbb{C}}\left(\varphi^{-1}\right)\left(f \circ \varphi^{-1}\right)
$$

for every $\varphi \in \operatorname{Aut}(D)$ and $f \in \mathcal{A}^{2}(D)$.

Corollary

For any domain D with Bergman kernel K and $\varphi \in \operatorname{Aut}(D)$ we have

$$
K(z, w)=J_{\mathbb{C}}(\varphi)(z) K(\varphi(z), \varphi(w)) \overline{J_{\mathbb{C}}(\varphi)(w)}
$$

for every $z, w \in D$.

Proposition

The biholomorphism group $\operatorname{Aut}(D)$ has a unitary representation π on $\mathcal{A}^{2}(D)$ given by

$$
\pi(\varphi)(f)=J_{\mathbb{C}}\left(\varphi^{-1}\right)\left(f \circ \varphi^{-1}\right)
$$

for every $\varphi \in \operatorname{Aut}(D)$ and $f \in \mathcal{A}^{2}(D)$.

Corollary

For any domain D with Bergman kernel K and $\varphi \in \operatorname{Aut}(D)$ we have

$$
K(z, w)=J_{\mathbb{C}}(\varphi)(z) K(\varphi(z), \varphi(w)) \overline{J_{\mathbb{C}}(\varphi)(w)}
$$

for every $z, w \in D$.

- Both results are obtained applying the change of variable theorem.
\diamond The Bergman kernels for the classical Cartan domains have been computed and are very well known.
\diamond The Bergman kernels for the classical Cartan domains have been computed and are very well known.
- Type I, $D_{n \times m}^{\prime}: K(Z, W)=\operatorname{det}\left(I_{n}-Z W^{*}\right)^{-(n+m)}$.
\diamond The Bergman kernels for the classical Cartan domains have been computed and are very well known.
- Type I, $D_{n \times m}^{\prime}: K(Z, W)=\operatorname{det}\left(I_{n}-Z W^{*}\right)^{-(n+m)}$.
- Type II, $D_{n}^{\prime \prime}: K(Z, W)=\operatorname{det}\left(I_{n}+Z \bar{W}\right)^{-(n-1)}$.
\diamond The Bergman kernels for the classical Cartan domains have been computed and are very well known.
- Type I, $D_{n \times m}^{\prime}: K(Z, W)=\operatorname{det}\left(I_{n}-Z W^{*}\right)^{-(n+m)}$.
- Type II, $D_{n}^{\prime \prime}: K(Z, W)=\operatorname{det}\left(I_{n}+Z \bar{W}\right)^{-(n-1)}$.
- Type III, $D_{n}^{\text {III }}: K(Z, W)=\operatorname{det}\left(I_{n}-Z \bar{W}\right)^{-(n+1)}$.
\diamond The Bergman kernels for the classical Cartan domains have been computed and are very well known.
- Type I, $D_{n \times m}^{\prime}: K(Z, W)=\operatorname{det}\left(I_{n}-Z W^{*}\right)^{-(n+m)}$.
- Type II, $D_{n}^{\prime \prime}: K(Z, W)=\operatorname{det}\left(I_{n}+Z \bar{W}\right)^{-(n-1)}$
- Type III, $D_{n}^{\text {III }}: K(Z, W)=\operatorname{det}\left(I_{n}-Z \bar{W}\right)^{-(n+1)}$.
- Type IV, $D_{n}^{I V}: K(z, w)=(1-2 z \cdot \bar{w}+(z \cdot z) \overline{(w \cdot w)})^{-n}$.
\diamond The Bergman kernels for the classical Cartan domains have been computed and are very well known.
- Type I, $D_{n \times m}^{\prime}: K(Z, W)=\operatorname{det}\left(I_{n}-Z W^{*}\right)^{-(n+m)}$.
- Type II, $D_{n}^{\prime \prime}: K(Z, W)=\operatorname{det}\left(I_{n}+Z \bar{W}\right)^{-(n-1)}$
- Type III, $D_{n}^{\text {III }}: K(Z, W)=\operatorname{det}\left(I_{n}-Z \bar{W}\right)^{-(n+1)}$.
- Type IV, $D_{n}^{I V}: K(z, w)=(1-2 z \cdot \bar{w}+(z \cdot z) \overline{(w \cdot w)})^{-n}$.

Proposition

For any irreducible $B S D$ there exist two invariants, the genus p and the Jordan triple determinant $\Delta: D \times D \rightarrow \mathbb{C}$, such that

$$
K(z, w)=\Delta(z, w)^{-p}
$$

for every $z, w \in D$.
\diamond For the classical Cartan domains these invariants are given by
\diamond For the classical Cartan domains these invariants are given by

- Type I, $D_{n \times m}^{\prime}: p=n+m, \Delta(Z, W)=\operatorname{det}\left(I_{n}-Z W^{*}\right)$.
\diamond For the classical Cartan domains these invariants are given by
- Type I, $D_{n \times m}^{\prime}: p=n+m, \Delta(Z, W)=\operatorname{det}\left(I_{n}-Z W^{*}\right)$.
- Type II, $D_{n}^{\prime \prime}: p=2 n-2, \Delta(Z, W)=\operatorname{det}\left(I_{n}+Z \bar{W}\right)^{\frac{1}{2}}$.
\diamond For the classical Cartan domains these invariants are given by
- Type I, $D_{n \times m}^{\prime}: p=n+m, \Delta(Z, W)=\operatorname{det}\left(I_{n}-Z W^{*}\right)$.
- Type II, $D_{n}^{\prime \prime}: p=2 n-2, \Delta(Z, W)=\operatorname{det}\left(I_{n}+Z \bar{W}\right)^{\frac{1}{2}}$.
- Type III, $D_{n}^{\prime \prime \prime}: p=n+1, \Delta(Z, W)=\operatorname{det}\left(I_{n}-Z \bar{W}\right)$.
- For the classical Cartan domains these invariants are given by
- Type I, $D_{n \times m}^{\prime}: p=n+m, \Delta(Z, W)=\operatorname{det}\left(I_{n}-Z W^{*}\right)$.
- Type II, $D_{n}^{\prime \prime}: p=2 n-2, \Delta(Z, W)=\operatorname{det}\left(I_{n}+Z \bar{W}\right)^{\frac{1}{2}}$.
- Type III, $D_{n}^{\text {III }}: p=n+1, \Delta(Z, W)=\operatorname{det}\left(I_{n}-Z \bar{W}\right)$.
- Type IV, $D_{n}^{I V}: p=n, \Delta(z, w)=1-2 z \cdot \bar{w}+(z \cdot z) \overline{(w \cdot w)}$.
\diamond For the classical Cartan domains these invariants are given by
- Type I, $D_{n \times m}^{\prime}: p=n+m, \Delta(Z, W)=\operatorname{det}\left(I_{n}-Z W^{*}\right)$.
- Type II, $D_{n}^{\prime \prime}: p=2 n-2, \Delta(Z, W)=\operatorname{det}\left(I_{n}+Z \bar{W}\right)^{\frac{1}{2}}$.
- Type III, $D_{n}^{\text {III }}: p=n+1, \Delta(Z, W)=\operatorname{det}\left(I_{n}-Z \bar{W}\right)$.
- Type IV, $D_{n}^{I V}: p=n, \Delta(z, w)=1-2 z \cdot \bar{w}+(z \cdot z) \overline{(w \cdot w)}$.
\diamond There are two exceptional irreducible BSD whose dimensions are 16 and 27, with genus 12 and 26 , respectively.
\diamond Let D be an irreducible BSD with Bergman kernel $K(z, w)=\Delta(z, w)^{-p}$. The most natural weight to consider is

$$
z \mapsto \Delta(z, z)^{\lambda-p}=K(z, z)^{1-\frac{\lambda}{p}} .
$$

\diamond Let D be an irreducible BSD with Bergman kernel $K(z, w)=\Delta(z, w)^{-p}$. The most natural weight to consider is

$$
z \mapsto \Delta(z, z)^{\lambda-p}=K(z, z)^{1-\frac{\lambda}{p}} .
$$

Proposition

For every $\lambda>p-1$, we have

$$
\int_{D} \Delta(z, z)^{\lambda-p} \mathrm{~d} z<\infty
$$

In particular, for every $\lambda>p-1$, there is a constant $c_{\lambda}>0$ such that $\mathrm{d} v_{\lambda}(z)=c_{\lambda} \Delta(z, z)^{\lambda-p} \mathrm{~d} z$ is a probability measure.
\diamond Let D be an irreducible BSD with Bergman kernel $K(z, w)=\Delta(z, w)^{-p}$. The most natural weight to consider is

$$
z \mapsto \Delta(z, z)^{\lambda-p}=K(z, z)^{1-\frac{\lambda}{p}} .
$$

Proposition

For every $\lambda>p-1$, we have

$$
\int_{D} \Delta(z, z)^{\lambda-p} \mathrm{~d} z<\infty
$$

In particular, for every $\lambda>p-1$, there is a constant $c_{\lambda}>0$ such that $\mathrm{d} v_{\lambda}(z)=c_{\lambda} \Delta(z, z)^{\lambda-p} \mathrm{~d} z$ is a probability measure.

Proof.

The value of the integral can be computed in terms of Gamma functions.
\diamond Let D be an irreducible BSD with genus p and Jordan triple determinant Δ. For every $\lambda>p-1$, the weighted Bergman space with weight λ is denoted by $\mathcal{A}_{\lambda}^{2}(D)$ and is given by

$$
\mathcal{A}_{\lambda}^{2}(D)=L^{2}\left(D, v_{\lambda}\right) \cap \operatorname{Hol}(D)
$$

where $\mathrm{d} v_{\lambda}(z)=c_{\lambda} \Delta(z, z)^{\lambda-p} \mathrm{~d} z$.

- Let D be an irreducible BSD with genus p and Jordan triple determinant Δ. For every $\lambda>p-1$, the weighted Bergman space with weight λ is denoted by $\mathcal{A}_{\lambda}^{2}(D)$ and is given by

$$
\mathcal{A}_{\lambda}^{2}(D)=L^{2}\left(D, v_{\lambda}\right) \cap \operatorname{Hol}(D)
$$

where $\mathrm{d}_{\lambda}(z)=c_{\lambda} \Delta(z, z)^{\lambda-p} \mathrm{~d} z$.

- As noted before, the weighted Bergman spaces share the same properties found for the "weightless" Bergman spaces.
\diamond Let D be an irreducible BSD with genus p and Jordan triple determinant Δ. For every $\lambda>p-1$, the weighted Bergman space with weight λ is denoted by $\mathcal{A}_{\lambda}^{2}(D)$ and is given by

$$
\mathcal{A}_{\lambda}^{2}(D)=L^{2}\left(D, v_{\lambda}\right) \cap \operatorname{Hol}(D)
$$

where $\mathrm{d} v_{\lambda}(z)=c_{\lambda} \Delta(z, z)^{\lambda-p} \mathrm{~d} z$.
\diamond As noted before, the weighted Bergman spaces share the same properties found for the "weightless" Bergman spaces.

- $\mathcal{A}_{\lambda}^{2}(D)$ is a closed subspace of $L^{2}\left(D, v_{\lambda}\right)$.
\diamond Let D be an irreducible BSD with genus p and Jordan triple determinant Δ. For every $\lambda>p-1$, the weighted Bergman space with weight λ is denoted by $\mathcal{A}_{\lambda}^{2}(D)$ and is given by

$$
\mathcal{A}_{\lambda}^{2}(D)=L^{2}\left(D, v_{\lambda}\right) \cap \operatorname{Hol}(D)
$$

where $\mathrm{d} v_{\lambda}(z)=c_{\lambda} \Delta(z, z)^{\lambda-p} \mathrm{~d} z$.
\diamond As noted before, the weighted Bergman spaces share the same properties found for the "weightless" Bergman spaces.

- $\mathcal{A}_{\lambda}^{2}(D)$ is a closed subspace of $L^{2}\left(D, v_{\lambda}\right)$.
- The evaluation functionals $f \mapsto f(z)$ are continuous on $\mathcal{A}_{\lambda}^{2}(D)$.
\diamond Let D be an irreducible BSD with genus p and Jordan triple determinant Δ. For every $\lambda>p-1$, the weighted Bergman space with weight λ is denoted by $\mathcal{A}_{\lambda}^{2}(D)$ and is given by

$$
\mathcal{A}_{\lambda}^{2}(D)=L^{2}\left(D, v_{\lambda}\right) \cap \operatorname{Hol}(D)
$$

where $\mathrm{d} v_{\lambda}(z)=c_{\lambda} \Delta(z, z)^{\lambda-p} \mathrm{~d} z$.
\diamond As noted before, the weighted Bergman spaces share the same properties found for the "weightless" Bergman spaces.

- $\mathcal{A}_{\lambda}^{2}(D)$ is a closed subspace of $L^{2}\left(D, v_{\lambda}\right)$.
- The evaluation functionals $f \mapsto f(z)$ are continuous on $\mathcal{A}_{\lambda}^{2}(D)$.
- The orthogonal Bergman projection $B_{\lambda}: L^{2}\left(D, v_{\lambda}\right) \rightarrow \mathcal{A}_{\lambda}^{2}(D)$ is realized by a "weighted" Bergman kernel $K_{\lambda}: D \times D \rightarrow \mathbb{C}$.

Theorem

Let D be an irreducible BSD with genus p and (weightless) Bergman kernel $K(z, w)=\Delta(z, w)^{-p}$. Then, for every $\lambda>p-1$ the weighted Bergman kernel of $\mathcal{A}_{\lambda}^{2}(D)$ is given by

$$
K_{\lambda}(z, w)=\Delta(z, w)^{-\lambda}=K(z, w)^{\frac{\lambda}{p}} .
$$

Theorem

Let D be an irreducible BSD with genus p and (weightless) Bergman kernel $K(z, w)=\Delta(z, w)^{-p}$. Then, for every $\lambda>p-1$ the weighted Bergman kernel of $\mathcal{A}_{\lambda}^{2}(D)$ is given by

$$
K_{\lambda}(z, w)=\Delta(z, w)^{-\lambda}=K(z, w)^{\frac{\lambda}{p}} .
$$

\diamond It is now an easy exercise to write down the weighted Bergman kernels for all classical Cartan domains.

Theorem

Let D be an irreducible BSD with genus p and (weightless) Bergman kernel $K(z, w)=\Delta(z, w)^{-p}$. Then, for every $\lambda>p-1$ the weighted Bergman kernel of $\mathcal{A}_{\lambda}^{2}(D)$ is given by

$$
K_{\lambda}(z, w)=\Delta(z, w)^{-\lambda}=K(z, w)^{\frac{\lambda}{p}} .
$$

\diamond It is now an easy exercise to write down the weighted Bergman kernels for all classical Cartan domains.
\diamond Since the BSDs are simply connected, it is easy to find branches of the λ-powers with the required analyticity.
(1) Bounded symmetric domains
(2) Bounded symmetric domains by example
(3) Bergman spaces
(4) Unitary representations and Bergman spaces

- The representation of $\operatorname{Aut}(D)$
- The representation of K
\diamond Let $D=G / K$ be an irreducible bounded symmetric domain.
\diamond Let $D=G / K$ be an irreducible bounded symmetric domain.
\diamond Let us denote by \widetilde{G} the universal covering group of G.
\diamond Let $D=G / K$ be an irreducible bounded symmetric domain.
\diamond Let us denote by \widetilde{G} the universal covering group of G.
\diamond Problem: Determine the fundamental group of G.
\diamond Let $D=G / K$ be an irreducible bounded symmetric domain.
\diamond Let us denote by \widetilde{G} the universal covering group of G.
\diamond Problem: Determine the fundamental group of G.

Proposition

For any irreducible $B S D$ of the form $D=G / K$, there is a diffeomorphism $G \simeq D \times K$. In particular, $\pi_{1}(G) \simeq \pi_{1}(K)$.
\diamond Let $D=G / K$ be an irreducible bounded symmetric domain.
\diamond Let us denote by \widetilde{G} the universal covering group of G.
\diamond Problem: Determine the fundamental group of G.

Proposition

For any irreducible $B S D$ of the form $D=G / K$, there is a diffeomorphism $G \simeq D \times K$. In particular, $\pi_{1}(G) \simeq \pi_{1}(K)$.
\diamond For the unit ball and the Cartan domains of type II and III, we have $K=\mathrm{U}(n)$. Its universal covering map is given by

$$
\begin{aligned}
\mathbb{R} \times \mathrm{SU}(n) & \rightarrow \mathrm{U}(n) \\
(x, A) & \mapsto e^{i x} A .
\end{aligned}
$$

\diamond Let $D=G / K$ be an irreducible bounded symmetric domain.
\diamond Let us denote by \widetilde{G} the universal covering group of G.
\diamond Problem: Determine the fundamental group of G.

Proposition

For any irreducible $B S D$ of the form $D=G / K$, there is a diffeomorphism $G \simeq D \times K$. In particular, $\pi_{1}(G) \simeq \pi_{1}(K)$.
\diamond For the unit ball and the Cartan domains of type II and III, we have $K=\mathrm{U}(n)$. Its universal covering map is given by

$$
\begin{aligned}
\mathbb{R} \times \mathrm{SU}(n) & \rightarrow \mathrm{U}(n) \\
(x, A) & \mapsto e^{i x} A .
\end{aligned}
$$

- For every irreducible BSD $\widetilde{K}=\mathbb{R} \times L$ where L is a simply connected compact semisimple Lie group. The factor \mathbb{R} covers a subgroup $\mathbb{T} \hookrightarrow K$.

Let $D=G / K$ be an irreducible BSD with genus p.
\diamond Let $D=G / K$ be an irreducible BSD with genus p.
\diamond For every $\lambda>p-1$, there is a unitary representation $\pi_{\lambda}: \widetilde{G} \times \mathcal{A}_{\lambda}^{2}(D) \rightarrow \mathcal{A}_{\lambda}^{2}(D)$ given by

$$
\pi_{\lambda}(\varphi)(f)=J_{\mathbb{C}}\left(\varphi^{-1}\right)^{\frac{\lambda}{p}}\left(f \circ \varphi^{-1}\right) .
$$

\diamond Let $D=G / K$ be an irreducible BSD with genus p.
\diamond For every $\lambda>p-1$, there is a unitary representation $\pi_{\lambda}: \widetilde{G} \times \mathcal{A}_{\lambda}^{2}(D) \rightarrow \mathcal{A}_{\lambda}^{2}(D)$ given by

$$
\pi_{\lambda}(\varphi)(f)=J_{\mathbb{C}}\left(\varphi^{-1}\right)^{\frac{\lambda}{p}}\left(f \circ \varphi^{-1}\right) .
$$

Theorem

If $D=G / K$ is an irreducible $B S D$ with genus p, then for every $\lambda>p-1$ the unitary representation π_{λ} is irreducible: the spaces $\mathcal{A}_{\lambda}^{2}(D)$ and 0 are the only closed subspaces invariant under $\pi_{\lambda}(\varphi)$ for every $\varphi \in \widetilde{G}$.

- Let $H \subset \widetilde{G}$ be a closed subgroup. Then, we will denote by $\left.\pi_{\lambda}\right|_{H}$ the restriction of π_{λ} to H, which yields a unitary representation $H \times \mathcal{A}_{\lambda}^{2}(D) \rightarrow \mathcal{A}_{\lambda}^{2}(D)$.
\diamond Let $H \subset \widetilde{G}$ be a closed subgroup. Then, we will denote by $\left.\pi_{\lambda}\right|_{H}$ the restriction of π_{λ} to H, which yields a unitary representation $H \times \mathcal{A}_{\lambda}^{2}(D) \rightarrow \mathcal{A}_{\lambda}^{2}(D)$.
- Problem: for an arbitrary closed subgroup $H \subset \widetilde{G}$ decompose $\mathcal{A}_{\lambda}^{2}(D)$ as a direct integral of irreducible unitary representations of H.
\diamond Let $H \subset \widetilde{G}$ be a closed subgroup. Then, we will denote by $\left.\pi_{\lambda}\right|_{H}$ the restriction of π_{λ} to H, which yields a unitary representation $H \times \mathcal{A}_{\lambda}^{2}(D) \rightarrow \mathcal{A}_{\lambda}^{2}(D)$.
- Problem: for an arbitrary closed subgroup $H \subset \widetilde{G}$ decompose $\mathcal{A}_{\lambda}^{2}(D)$ as a direct integral of irreducible unitary representations of H.
- Solution: depending on the group H this problem could be "unsolvable", with unknown solution, hard to solve or very well known.
\diamond For $D=G / K \subset \mathbb{C}^{N}$, we will consider the action of K.
\diamond For $D=G / K \subset \mathbb{C}^{N}$, we will consider the action of K.
\diamond Recall that we can choose D circled so that the action of K on $D \subset \mathbb{C}^{N}$ is linear.
\diamond For $D=G / K \subset \mathbb{C}^{N}$, we will consider the action of K.
\diamond Recall that we can choose D circled so that the action of K on $D \subset \mathbb{C}^{N}$ is linear.
\diamond If $\widetilde{K} \rightarrow K$ is the universal covering group, then for every $\varphi \in \widetilde{K}$ there exists $A \in K \subset \mathrm{GL}(N, \mathbb{C})$ such that $\varphi \mapsto A$ and so

$$
J_{\mathbb{C}}(\varphi, z)=\operatorname{det}(A) \in \mathbb{T}
$$

for every $z \in D$.
\diamond For $D=G / K \subset \mathbb{C}^{N}$, we will consider the action of K.

- Recall that we can choose D circled so that the action of K on $D \subset \mathbb{C}^{N}$ is linear.
\diamond If $\widetilde{K} \rightarrow K$ is the universal covering group, then for every $\varphi \in \widetilde{K}$ there exists $A \in K \subset \mathrm{GL}(N, \mathbb{C})$ such that $\varphi \mapsto A$ and so

$$
J_{\mathbb{C}}(\varphi, z)=\operatorname{det}(A) \in \mathbb{T}
$$

for every $z \in D$.

Corollary

For every $\lambda>p-1$, the representations of \widetilde{K} and K on $\mathcal{A}_{\lambda}^{2}(D)$ given, respectively, by

$$
(\varphi, f) \mapsto J_{\mathbb{C}}\left(f \circ \varphi^{-1}\right)\left(f \circ \varphi^{-1}\right), \quad \text { and } \quad(A, f) \mapsto f \circ A^{-1}
$$

have the same representation theoretic features. In particular, their decomposition into Hilbert directs sums of irreducible subspaces are the same.
\diamond From now on, we will consider the representation $\left.\pi_{\lambda}\right|_{k}$, for every $\lambda>p-1$, given by

$$
\pi_{\lambda}(A)(f)=f \circ A^{-1}
$$

\diamond From now on, we will consider the representation $\left.\pi_{\lambda}\right|_{k}$, for every $\lambda>p-1$, given by

$$
\pi_{\lambda}(A)(f)=f \circ A^{-1}
$$

\diamond Recall that $\mathcal{P}\left(\mathbb{C}^{N}\right) \subset \mathcal{A}_{\lambda}^{2}(D)$ is dense for every $\lambda>p-1$. Furthermore, we have

$$
\pi_{\lambda}(A)\left(\mathcal{P}\left(\mathbb{C}^{N}\right)\right)=\mathcal{P}\left(\mathbb{C}^{N}\right)
$$

for every $A \in K$.
\diamond From now on, we will consider the representation $\left.\pi_{\lambda}\right|_{k}$, for every $\lambda>p-1$, given by

$$
\pi_{\lambda}(A)(f)=f \circ A^{-1}
$$

\diamond Recall that $\mathcal{P}\left(\mathbb{C}^{N}\right) \subset \mathcal{A}_{\lambda}^{2}(D)$ is dense for every $\lambda>p-1$. Furthermore, we have

$$
\pi_{\lambda}(A)\left(\mathcal{P}\left(\mathbb{C}^{N}\right)\right)=\mathcal{P}\left(\mathbb{C}^{N}\right)
$$

for every $A \in K$.

Corollary

The Hilbert direct sum decomposition into irreducible subspaces for the unitary representation $\left.\pi_{\lambda}\right|_{K}$ on $\mathcal{A}_{\lambda}^{2}(D)$ is given by the decomposition into irreducible subspaces for the representation

$$
\left.\pi_{\lambda}\right|_{K}: K \times \mathcal{P}\left(\mathbb{C}^{N}\right) \rightarrow \mathcal{P}\left(\mathbb{C}^{N}\right)
$$

\diamond Recall that $\mathbb{T} \subset K$ acting linearly, so that

$$
\pi_{\lambda}(t)(f)(z)=f\left(t^{-1} z\right)
$$

for every $t \in \mathbb{T}, f \in \mathcal{A}_{\lambda}^{2}(D)$ and $z \in D$.
\diamond Recall that $\mathbb{T} \subset K$ acting linearly, so that

$$
\pi_{\lambda}(t)(f)(z)=f\left(t^{-1} z\right)
$$

for every $t \in \mathbb{T}, f \in \mathcal{A}_{\lambda}^{2}(D)$ and $z \in D$.
\diamond Let us denote by $\mathcal{P}^{m}\left(\mathbb{C}^{N}\right)$ the space of homogeneous polynomials of degree m in \mathbb{C}^{N}. It follows that the direct sums

$$
\begin{array}{ll}
\mathcal{P}\left(\mathbb{C}^{N}\right)=\bigoplus_{m=0}^{\infty} \mathcal{P}^{m}\left(\mathbb{C}^{N}\right), & \text { algebraic direct sum }, \\
\mathcal{A}_{\lambda}^{2}(D)=\bigoplus_{m=0}^{\infty} \mathcal{P}^{m}\left(\mathbb{C}^{N}\right), \quad \text { Hilbert direct sum },
\end{array}
$$

are both invariant under the representation $\pi_{\lambda} \mid \kappa$.

Theorem

For $D=G / K$ and for every $\lambda>p-1$, there is a $\pi_{\lambda} \mid{ }_{K}$-invariant Hilbert direct sum

$$
\mathcal{A}_{\lambda}^{2}(D)=\bigoplus_{m=0}^{\infty} \mathcal{P}^{m}\left(\mathbb{C}^{N}\right)
$$

satisfying the following properties

Theorem

For $D=G / K$ and for every $\lambda>p-1$, there is a $\pi_{\lambda} \mid{ }_{K}$-invariant Hilbert direct sum

$$
\mathcal{A}_{\lambda}^{2}(D)=\bigoplus_{m=0}^{\infty} \mathcal{P}^{m}\left(\mathbb{C}^{N}\right)
$$

satisfying the following properties

- The sum is $\pi_{\lambda} \mid{ }_{K}$-invariant.

Theorem

For $D=G / K$ and for every $\lambda>p-1$, there is a $\pi_{\lambda} \mid{ }_{K}$-invariant Hilbert direct sum

$$
\mathcal{A}_{\lambda}^{2}(D)=\bigoplus_{m=0}^{\infty} \mathcal{P}^{m}\left(\mathbb{C}^{N}\right)
$$

satisfying the following properties

- The sum is $\pi_{\lambda} \mid K$-invariant.
- If $V_{j} \subset \mathcal{P}^{m_{j}}\left(\mathbb{C}^{N}\right), j=1,2$, are irreducible K-submodules and $m_{1} \neq m_{2}$, then $V_{1} \simeq V_{2}$ as K-modules.

Theorem

For $D=G / K$ and for every $\lambda>p-1$, there is a $\left.\pi_{\lambda}\right|_{K}$-invariant Hilbert direct sum

$$
\mathcal{A}_{\lambda}^{2}(D)=\bigoplus_{m=0}^{\infty} \mathcal{P}^{m}\left(\mathbb{C}^{N}\right)
$$

satisfying the following properties

- The sum is $\pi_{\lambda} \mid K$-invariant.
- If $V_{j} \subset \mathcal{P}^{m_{j}}\left(\mathbb{C}^{N}\right), j=1,2$, are irreducible K-submodules and $m_{1} \neq m_{2}$, then $V_{1} \simeq V_{2}$ as K-modules.
\diamond Conclusion: To obtain the decomposition of $\mathcal{A}_{\lambda}^{2}(D)$ into irreducible K-submodules, it is enough to study the representation $K \times \mathcal{P}^{m}\left(\mathbb{C}^{N}\right) \rightarrow \mathcal{P}^{m}\left(\mathbb{C}^{N}\right)$, for every $m \in \mathbb{N}$.
\diamond There are very general Lie theoretic statements that describe the representation of K on the spaces $\mathcal{P}^{m}\left(\mathbb{C}^{N}\right)$. Nevertheless, for classical Cartan domains such statements can be made very explicit.
\diamond There are very general Lie theoretic statements that describe the representation of K on the spaces $\mathcal{P}^{m}\left(\mathbb{C}^{N}\right)$. Nevertheless, for classical Cartan domains such statements can be made very explicit.
\diamond The first key point is to understand the representation $K \rightarrow \mathrm{GL}(N, \mathbb{C})$.
\diamond There are very general Lie theoretic statements that describe the representation of K on the spaces $\mathcal{P}^{m}\left(\mathbb{C}^{N}\right)$. Nevertheless, for classical Cartan domains such statements can be made very explicit.
\diamond The first key point is to understand the representation $K \rightarrow \mathrm{GL}(N, \mathbb{C})$.
\diamond Next, one uses the so called Invariant Theory.
\diamond We can describe some general features of the representation $K \rightarrow \mathrm{GL}(N, \mathbb{C})$ for the classical Cartan domains.
\diamond We can describe some general features of the representation $K \rightarrow \mathrm{GL}(N, \mathbb{C})$ for the classical Cartan domains.
- Cartan domains of type $\mathrm{I}, D_{n \times m}^{\prime}$. In this case, we have $K=\mathrm{S}(\mathrm{U}(n) \times \mathrm{U}(m))$,

$$
\mathbb{C}^{N}=M_{n \times m}(\mathbb{C}) \simeq L\left(\mathbb{C}^{m}, \mathbb{C}^{n}\right)
$$

and the representation of K is given by

$$
(A, B) \cdot Z=A Z B^{-1} \simeq A \circ T_{Z} \circ B^{-1}
$$

where T_{Z} is the linear transformation with matrix representation Z. This is the usual action obtained from changes of (unitary) coordinates.
\diamond Types II and III are very similar.

- Types II and III are very similar.
- Cartan domains of type III, $D_{n}^{\prime \prime}$. In this case, we have $K=\mathrm{U}(n)$,

$$
\mathbb{C}^{N}=\operatorname{SM}(n, \mathbb{C}) \simeq \operatorname{Sym}\left(\mathbb{C}^{n}\right),
$$

and the representation of K is given by

$$
A \cdot Z=A Z A^{\top} \simeq B_{Z}(A(\cdot), A(\cdot))
$$

where B_{Z} is the symmetric bilinear form with matrix Z. This is the usual action obtained from changes of (unitary) coordinates.
\diamond Types II and III are very similar.

- Cartan domains of type III, $D_{n}^{\prime \prime}$. In this case, we have $K=\mathrm{U}(n)$,

$$
\mathbb{C}^{N}=\operatorname{SM}(n, \mathbb{C}) \simeq \operatorname{Sym}\left(\mathbb{C}^{n}\right),
$$

and the representation of K is given by

$$
A \cdot Z=A Z A^{\top} \simeq B_{Z}(A(\cdot), A(\cdot))
$$

where B_{Z} is the symmetric bilinear form with matrix Z. This is the usual action obtained from changes of (unitary) coordinates.

- Cartan domains of type II, $D_{n}^{\prime \prime}$. Replace "symmetric" by "anti-symmetric" everywhere.
\diamond For the Cartan domains of type IV we have $K=\mathrm{SO}(n) \times \mathrm{SO}(2)$.
\diamond For the Cartan domains of type IV we have $K=\mathrm{SO}(n) \times \mathrm{SO}(2)$.
\diamond This requires to study the natural representation $\mathrm{SO}(n) \hookrightarrow \mathrm{GL}(n, \mathbb{C})$.
\diamond For the Cartan domains of type IV we have $K=\mathrm{SO}(n) \times \mathrm{SO}(2)$.
\diamond This requires to study the natural representation $\mathrm{SO}(n) \hookrightarrow \mathrm{GL}(n, \mathbb{C})$.
\diamond This is a classical problem, and the representations $\mathrm{SO}(n) \rightarrow \mathrm{GL}\left(\mathcal{P}^{m}\left(\mathbb{C}^{n}\right)\right)$ can be studied using harmonic polynomials.

Griffiths and Harris：Principle of Algebraic Geometry．
图 Helgason：Differential Geometry，Lie Groups and Symmetric Spaces．
雷 Hua：Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains．

Roos：Bounded Symmetric Domains and Jordan Pairs．
（ Mok：Metric Rigidity Theorems on Hermitian Locally Symmetric Manifolds．
围 Pyatetskii－Shapiro：Automorphic Forms and the Geometry of Classical Domains．
（ Satake：Algebraic Structures of Symmetric Domains．
雷 Upmeier：Toeplitz Operators and Index Theory in Several Complex Variables．

