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® [1 denotes the upper half-plane in C with the usual Lebesgue area measure
du(z) = dxdy, z = x + iy.
¢ We consider the following normalized invariant measure on the upper half-plane I,
1 dxdy
d =
v(2) 7 (2 Tmz)?

® For each A € (—1,00), the weighted Bergman space A3 (M) on the upper half-plane is the
space of analytic functions in Ly(I1, dvy), where

dva(z) = (A + 1)(2Im(2)) 2 dv(z) = cx(Im(2)) dxdy,
the normalizing constant is given by

A+1
C)\:2>‘ + s
™
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And

1/2
I = ([ 1F@)Pdn@)
— A3

The weighted Bergman projection Bp y : Lo(M1, dvy) — A5() has the form

(Braf)(z) = (A +1) | £(Q) (
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Weighted poly-Bergman space

Let .Aijn(l'l) be the weighted poly-Bergman space that consists of all functions in L(1, dv)

satisfying the equation
8 n
(52) #=0

The weighted true-poly-Bergman spaces are:
‘Ai,(n)(n) = ‘Ai,n(n) © Ai,n—l(n)v n=12,..

where A3 o(M) = {0}.
A3(N) = Af\’(l)(l'l) is the usual Bergman space.
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Loiza and Ramirez-Ortega studied Poly-Bergman spaces on the upper half plane

[@ M. Loaiza and J. Ramirez-Ortega. Toeplitz Operators with Homogeneous symbols Acting
on the Poly-Bergman Space of the Upper Half-Plane. In: Integr. Equ. Oper. Theory (2017)
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Loiza and Ramirez-Ortega studied Poly-Bergman spaces on the upper half plane
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|
They found that A2 := J(A2(1)) C La(R, dx) ® La([0, 7], df) consists of functions f(x, 6)

satisfying
- 0 , 0
(r-1-2in-n+igg) - (-1 igg ) =0



Alny = An © Ar_y = {f(x)Pa-1(x,0)0(x)e """ | f(x) € La(R,dx)}, n=1,2,..

where p,(x, ) is a polynomial with respect to z = e=2%/

n

pn(x,0) = E:(—1)l‘b,,k(x)e*2k9"7 n=20,1,2,...,
k=0

with bgg = 1,

bnn(X) = %\/(X2 + ].)(X2 —+ 22) . (X2 4 ,.,2)7

0 x — i+ ki |2 1
bnk(x) = (Z) bnn(x) H) i—j:—tni’ P(x) = 1_6‘%7 y ¥%(0)=—7.
J:

S
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® An orthonormal set {pn(x,6) | n=0,1,2,...} on the space L ([077T]» (¢(X))2e—2x9d9)
for each x € R.
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® An orthonormal set {p,(x,6) | n=0,1,2,...} on the space L ([077T]» (¢(X))2e—2x9d9)
for each x € R.

A%n) is the image of the pure poly-Bergman space .A%n)(l'l) under the operator U.

P(n) is the orthogonal projection of L>(R, dx) & L([0, 7], d#) onto A%n).

(Ply ), 6) = (60025, 0) ™ [ (@)oo p)e ™ e

Py := >"k—1 P(k) is the orthogonal projection of L»(R, dx) ® La([0, 7], df)) onto A2,
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Moment map for the upper half-plane

Kahler form for the upper half-plane

idz A\ dz
s = oim(z)2

where z € I1.



Moment map for the upper half-plane

Maximak Abelian subgroups for [1

Quasi-elliptic action: The T-action on D given by
t-z =tz
Parabolic action: The R-action on [1 given by
X-zZ=2z+X.
Hyperbolic action: The R -action on I1 given by

r-z=rz.




Let G be a connected Lie group acting smoothly on I and preserving its Kahler form (wn);,
with Lie algebra g. For every X € R 2 g, the G-action induces a smooth vector field given by

z

d
Xi = ds |s=0 exp(sX) - z

for every z in the upper-half-plane, where - denotes the G-action on I1.



Moment map for the upper half-plane

Definition
Let G be a maximal Abelian subgroup of biholomorphisms of [1. A - moment map for the
G-action is a smooth G-invariant map p = p© : 1 — R such that

dux = W(Xﬁ, )

for every X € R, where w is the Kahler form of Tl and px : [1 — R is the smooth function
given by
px(z) = (u(2), X),

for every z € 1.
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Moment map for the upper half-plane

The hyperbolic vector field is given by

The hyperbolic moment map for the R -action on 1 is
Re(z)
Im(z)’

The R, -action on I and the moment map associated to this action, induce a system of

coordinates for I1 given by
001~ () = (1),

u(z) =

where z = x + iy € Il.
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@ Alvaro P. Raposo, Hans J. Weber, David E. Alvarez-Castillo, Mariana Kirchbach:
Romanovski polynomials in selected physics problems, Central European Journal of
Physics 5(3) (2007) 253-284, https://doi.org/10.2478/s11534-007-0018-5
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Romanovski polynomials

Romanovski polynomials may be derived as the polynomial solutions of the ordinary differential
equation

s(x)R"(x) + t(x)R'(x) + AR(x) = 0, (2)
where s(x) = 1+ x2, t(x) = 2bx +a and a,b € R.



Polinomios de Romanovski

Romanovski polynomials

Romanovski polynomials may be derived as the polynomial solutions of the ordinary differential
equation

s(x)R"(x) + t(x)R'(x) + AR(x) = 0, (2)
where s(x) = 1+ x2, t(x) = 2bx +a and a,b € R.
The previous equation is a particular case of the hypergeometric differential equation

s(x)F"(x) + t(x)F'(x) + AF(x) = 0,

where F is a real function of a real variable in some open subset of the real line, A€ R is a
corresponding eigenvalue, s is a polynomial of at most second order and t is a polynomial of at
most first order.
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Furthermore, for any m € {0,1,2...}, there exists a polynomial r,(na’b) of degree m, together

with a constant A, which satisfies (2). The constant is given by

Ap=—m <t'(x) + %(m - 1)5"(x)> .

Consider the weight function
(a,b) 2\l _acot1x
w'® (X)z(l—i—x) e . (3)
The function w(2)(x) is associated with equation (2) since it is a solution of Pearson’s

differential equation
[sC)w @D ()] = t0)w(*P(x).



Polinomios de Romanovski
Rodrigues formula

(36)(x) = N, D™ A7 1) m :
P00 = N 530y (WD ()s(x)m], 0<j<m, (4)
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Rodrigues formula

(=1)™ d7 (WD ()s()m] . 0<j<m,

a,b _
ri; )(X)—Nmmdx—m <j< (4)

The Romanovski polynomials of degree 0,1 and 2 are

L (ab), y_
NO rO (X) - 1v

1
Ny
1
A

rP)(x) = (2bx + a),

1*P(x) = [(2b+1) (2b+2)x +2(2b+ 1) ax + (2b+ 2 +2)] .
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Finite orthogonality

If rJ-(a’b)(x) and r,(,,a’b)(x) are Romanovski polynomials of degree j and m, respectively, then
/R w(B) () (P (x) r28) (x) dx = 0, (5)

if and only if, j + m < 1 — 2b. Furthermore, for m < —b, the integral converges and we have

that )
/ W(a’b)(X) <r,(,f”b)(x)> dx = 1.
R
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We introduce the mapping « : [1 — [1 given by
k:(x,y)—w=(u,v),

whereu:f, v=yand z=x+iy.



We introduce the mapping « : [1 — [1 given by

k:(x,y)—w=(u,v),
whereu:f, v=yand z=x+iy.
Under the mapping x we have

dvy(z) = vdva(w). (6)
Introduce the space Ly(IM, dny), where

dypv(w) = v M ldp(w), A > —1.



Consider the unitary operator Uy : Lo(1, dvy) — Lo(I, dny), defined as
(Uof)(w) = f(r(w)),
and its adjoint operator
(UsF)(2) = f(x7(2))
Representing the upper half-plane I in (u, v) coordinates we have the tensor decomposition
Lo(N, dna(w)) = Lz (R) @ La(Ry, cyvldvy),
with A € (—1,00) and cy given by (3).
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Bergman Space

Now the image of the Bergman space under the operator Up, Ag(M) = Up(A3(M)), is the
subspace of Ly(I1, dny) which consists of all functions ¢ satisfying the equation

9 4
U025 UO @Y = 0.
It follows that 5
R —1 g
U0282 Uy BD, (7)

where, ) 5 5
i ,
B_; and D——(/—i-u)%—l—vm.



DB = B(D — 1), (8)
Using (7) and (8) we have

oN"
Uo (2%> Uyt

(Uozaa_ Uy 1>n<,0
(BD)"¢
B?(D—1)D---BDy

—B"(D—(n—1))---(D - 1)Dy. (9)



A%,n)\ = UO(A,%’)\(I'I)) is the closed subspace of Ly(I1,dny) that consists of all n-analytic
functions ¢ in Ly(I, dn)) satisfying the equation
Dy =(D—(n—1))---(D—1)Dyp = 0.

Henceforth we denote by A%}n = A%, and assume \ a fixed constant.
Introduce the unitary operator

U =1 M,

from Ly (R) ® La(Ry, cxv M idv) onto Ly (R) ® La(R, cyd€), where the Mellin transform
M : Ly(Ry, v 1dv) — Lo(R) is given by

L ity v)dv
(Mo)(E) = o= [ v Ruv)a



(el e ()1
U DUt = {—(i—i—u);’—i—i(f—}-(;—i—l) i) —(n—l)}

Lrovaden(e (o))

Then, Ain = U1(A(2J,n) is the subspace of Ly (R) ® La(RR, cxd€) which consists of all functions
h e Ly (R) ® La(R, cyd§) satisfying the equation

Since

We have

[—(i+u)aau+i<£+</2\+1> i>—(n—1)]-~

oo (oo



The general solution of the previous equation has the following form

h(u,§) = ng(f i+ )[£+(>\/2+1),-],k‘

It will be convenient to rewrite h(u, &) as follows

n—1
h(u, &) = (i + u)ETO/21)1=(n—1) Z (67 + )1k
k=0

n—1
_ (i + u)i[§+()\/2+1)i]—(n—1) Z ak(§)uk. (10)
k=0

The functions ax(€) and gi(§) in (10), are adequate integrable functions such that h(u,§)
belongs to Ain



With the Romanovski polynomials, the previous expression for h(u,§) transforms to

n—1
h(u7§) _ (i + u)l[§+()\/2+1)l]—(n—1) Z ak(g)uk
k= 0

—(,+u)[£+(A/2+1)] n—1) Zh (©)r (ab( ),
k=0

where a = —2¢, b:—%—n—i-l.



Let f be given by

n—1
f(u,§) _ (I + u)l[£+(>\/2+1)1]7(n71) Z fk(f)rlsa’b)(u)-

k=0
ERSES 26 [ 1@ (5 () e
(.00 7)) = 0 X2 3 [ ) [ 000 o) e

for the functions h(u, &) and f(u, &) to be in A%,n, it is necessary that the functions f;(&) and
hi(€) belong to La(R).
For k,j < n—1 we have k +j < 1 — 2b, the orthogonality condition.



We introduce the unitary operator
®
Uz Lo (R) @ La(R, 1) — [ La(R, duoy p)cnd

g(u, &) — g(u, &)(i + u) /2Dl (n-1),

where )
dwap = (1+ u?) N2 =280t (W) gy — w(2b) () du,

with w(2P)(1) the Romanovski weight function.
Moreover, the adjoint operator is given by

@
Us /R La(R, dwap)erdé —s Lp (R) ® La(R, crde)

Fu, €) —> f(u, &)(i + u)EtO/2HD)=(n=1)

A%,n = UQ(Ain) this space corresponds to the functions of the form

f(u,€) = Zf )r{ 2P ).
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Theorem

The unitary operator U = Uy Uy Uy gives an isometric isomorphism from the space Ly(IM, dvy)
onto [ Lo(R, dw, p)cad€, under which

1. the weighted poly-Bergman space .A%’ \(M) is mapped onto A%,n' where every function in
A%’n has the form

(u,€) = Z fe(€)ri 35 (u),

where b = —%—n—i—l.
2. the poly-Bergman projection Bp , x is unitarily equivalent to P, x = UBn ,\U* the
projection from fﬂie L>(R, dw, p)crd€ onto the space Ai . Which is given by

(Paaf)(u,€) = Zrk E0) [ v OR3P ) dws(v)



Introduce now the isometric embedding
52}
Ron : (La(R))" —s /R La(R, duw, p)crde

by the rule

(Rof)(u6) = i (O w) = A= )’
where f = (fo, ..., fa—1), fk(§) € L2(R) for k=0,...,n—1, and

(200) = (A0, A7), W) ).

The image of Ry, is the space A%y,,



The adjoint operator
52}
Rin: [ LaR dus)ord — (La(R))"

has the form

(Ro.n)(€)
(/ o, S0 () do (), . . / o(u, €)% b’(u)dwa,b(u)>
= [ o 2D () duns(0) (11)

then
Ro.nRon =11 (L2(R))" — (L2(R))"

@ S5}
RoynRE)k’n = Fp: /R L2(R, dwa,b)C)\df — /]R LQ(R, dwa7b)C)\d§.
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Theorem

The operator R, = Rj ,U maps L(I, dvy) onto (L2(R))", and the restriction
Role my - () — (La(R))",
is an isometric isomorphism. The adjoint operator
Ry = U*Ron : (L2(R))" — A7 \(M) C Lo(N, dvy)
is the isometric isomorphism from (L2(R))" onto the subspace .Ai \(M). Furthermore,

R:Rn = Bl_l,n,/\ . L2(I_|7 d]/)\) — A%,)\(n)
RaR: = 1: (La(R))" — (La(R))",

where B , \ is the Bergman projection of Ly(I, dvy) onto A,z,’A(I'I).
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Let a(z) = § be a function in Loo(IT) depending on 1(z) = 3, the hyperbolic moment map for
the R4 -action on . We shall say that a(z) is a homogeneous symbol. The Toeplitz operator
acting on A%’)\(I_I) with symbol a(z) is the operator denoted by

T, e A2,(M) — Bna(ap) € A2 (). (12)

Theorem

For any a(z) € Loo(IN), the Toeplitz operator T, acting on A%’A(I_I) is unitary equivalent to the
matrix multiplication operator v?(&)l = R, TR} acting on (L2(R))", where the
matrix-valued function ™2 = (/) is given by

1726 = [ a()(r20(w) 20 )l ) (13)
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