Weighted Bergman Spaces associated with the hyperbolic group International Workshop on Operator Theory on Function Spaces

Miguel Antonio Morales Ramos

Joint work with Armando Sánchez Nungaray and María del Rosario Ramírez Mora.

Septiembre 2022

Contenido

- 1 Preliminary

• Π denotes the upper half-plane in $\mathbb C$ with the usual Lebesgue area measure $d\mu(z)=dxdy,\ z=x+iy.$

- Π denotes the upper half-plane in $\mathbb C$ with the usual Lebesgue area measure $d\mu(z)=dxdy,\ z=x+iy.$
- We consider the following normalized invariant measure on the upper half-plane Π ,

$$d\nu(z) = \frac{1}{\pi} \frac{dxdy}{(2 \text{ Im} z)^2}.$$

- Π denotes the upper half-plane in $\mathbb C$ with the usual Lebesgue area measure $d\mu(z)=dxdy$, z=x+iy.
- We consider the following normalized invariant measure on the upper half-plane Π ,

$$d\nu(z) = \frac{1}{\pi} \frac{dxdy}{(2 \text{ Im} z)^2}.$$

• For each $\lambda \in (-1, \infty)$, the weighted Bergman space $\mathcal{A}^2_{\lambda}(\Pi)$ on the upper half-plane is the space of analytic functions in $L_2(\Pi, d\nu_{\lambda})$, where

$$d\nu_{\lambda}(z) = (\lambda + 1)(2\operatorname{Im}(z))^{\lambda + 2}d\nu(z) = c_{\lambda}(\operatorname{Im}(z))^{\lambda}dxdy,$$

the normalizing constant is given by

$$c_{\lambda}=2^{\lambda}rac{\lambda+1}{\pi},$$

And

$$||f||_{\lambda} = \left(\int_{\Pi} |f(z)|^2 d\nu_{\lambda}(z)\right)^{1/2}.$$

The weighted Bergman projection $B_{\Pi,\lambda}: L_2(\Pi,d\nu_\lambda) \longrightarrow \mathcal{A}^2_\lambda(\Pi)$ has the form

$$(B_{\Pi,\lambda}f)(z)=(\lambda+1)\int_{\Pi}f(\zeta)\left(rac{\zeta-\overline{\zeta}}{z-\overline{\zeta}}
ight)^{\lambda+2}d
u(\zeta).$$

Weighted poly-Bergman space

Let $\mathcal{A}^2_{\lambda,n}(\Pi)$ be the weighted poly-Bergman space that consists of all functions in $L_2(\Pi,d\nu)$ satisfying the equation

$$\left(\frac{\partial}{\partial \overline{z}}\right)^n \varphi = 0.$$

Weighted poly-Bergman space

Let $\mathcal{A}^2_{\lambda,n}(\Pi)$ be the weighted poly-Bergman space that consists of all functions in $L_2(\Pi,d\nu)$ satisfying the equation

$$\left(\frac{\partial}{\partial \overline{z}}\right)^n \varphi = 0.$$

The weighted true-poly-Bergman spaces are:

$$\mathcal{A}^2_{\lambda,(n)}(\Pi) = \mathcal{A}^2_{\lambda,n}(\Pi) \ominus \mathcal{A}^2_{\lambda,n-1}(\Pi), \quad n = 1, 2, \dots$$
 (1)

where $\mathcal{A}^2_{\lambda,0}(\Pi) = \{0\}.$

 $\mathcal{A}^2_{\lambda}(\Pi) = \mathcal{A}^2_{\lambda,(1)}(\Pi)$ is the usual Bergman space.

Contenido

- Preliminary
- 2 Espacios poli-Bergman sin peso
- Moment map for the upper half-plane
- 4 Polinomios de Romanovsk
- **5** Espacios poli Bergman con peso

Loiza and Ramírez-Ortega studied Poly-Bergman spaces on the upper half plane

M. Loaiza and J. Ramírez-Ortega. *Toeplitz Operators with Homogeneous symbols Acting on the Poly-Bergman Space of the Upper Half-Plane*. In: Integr. Equ. Oper. Theory (2017)

Loiza and Ramírez-Ortega studied Poly-Bergman spaces on the upper half plane

M. Loaiza and J. Ramírez-Ortega. *Toeplitz Operators with Homogeneous symbols Acting on the Poly-Bergman Space of the Upper Half-Plane*. In: Integr. Equ. Oper. Theory (2017)

They found that $A_n^2 := \hat{U}(\mathcal{A}_n^2(\Pi)) \subset L_2(\mathbb{R}, dx) \otimes L_2([0, \pi], d\theta)$ consists of functions $f(x, \theta)$ satisfying

$$\left(ix-1-2[n-1]+i\frac{\partial}{\partial\theta}\right)\cdots\left(ix-1+i\frac{\partial}{\partial\theta}\right)f=0.$$

$$A_{(n)}^2 = A_n^2 \ominus A_{n-1}^2 = \{ f(x) p_{n-1}(x, \theta) \psi(x) e^{-x\theta - \theta i} \mid f(x) \in L_2(\mathbb{R}, dx) \}, \quad n = 1, 2, \dots$$

where $p_n(x,\theta)$ is a polynomial with respect to $z=e^{-2\theta i}$

$$p_n(x,\theta) = \sum_{k=0}^n (-1)^k b_{nk}(x) e^{-2k\theta i}, n = 0, 1, 2, ...,$$

with $b_{00} = 1$,

$$b_{nn}(x) = \frac{1}{n!} \sqrt{(x^2+1)(x^2+2^2)\cdots(x^2+n^2)},$$

$$b_{nk}(x) = \binom{n}{k} b_{nn}(x) \prod_{i=0}^{n-1} \frac{x - ji + ki}{x - ji + ni}, \quad \psi(x) = \sqrt{\frac{2x}{1 - e^{-2\pi x}}}, \quad y \quad \psi(0) = \frac{1}{\sqrt{\pi}}.$$

• An orthonormal set $\{p_n(x,\theta) \mid n=0,1,2,...\}$ on the space $L_2\left([0,\pi],(\psi(x))^2e^{-2x\theta}d\theta\right)$ for each $x \in \mathbb{R}$.

- An orthonormal set $\{p_n(x,\theta) \mid n=0,1,2,...\}$ on the space $L_2\left([0,\pi],(\psi(x))^2e^{-2x\theta}d\theta\right)$ for each $x \in \mathbb{R}$.
- $A_{(n)}^2$ is the image of the pure poly-Bergman space $A_{(n)}^2(\Pi)$ under the operator \hat{U} .

- An orthonormal set $\{p_n(x,\theta) \mid n=0,1,2,...\}$ on the space $L_2\left([0,\pi],(\psi(x))^2e^{-2x\theta}d\theta\right)$ for each $x \in \mathbb{R}$.
- $A_{(n)}^2$ is the image of the pure poly-Bergman space $A_{(n)}^2(\Pi)$ under the operator \hat{U} .
- $P_{(n)}$ is the orthogonal projection of $L_2(\mathbb{R}, dx) \otimes L_2([0, \pi], d\theta)$ onto $A_{(n)}^2$.

$$(P_{(n)}f)(x,\theta)=(\psi(x))^2p_{n-1}(x,\theta)e^{-x\theta-\theta i}\int_0^\pi f(x,\varphi)\overline{p_{n-1}(x,\varphi)}e^{-x\varphi+\varphi i}d\varphi.$$

- An orthonormal set $\{p_n(x,\theta) \mid n=0,1,2,...\}$ on the space $L_2\left([0,\pi],(\psi(x))^2e^{-2x\theta}d\theta\right)$ for each $x \in \mathbb{R}$.
- $A_{(n)}^2$ is the image of the pure poly-Bergman space $A_{(n)}^2(\Pi)$ under the operator \hat{U} .
- $P_{(n)}$ is the orthogonal projection of $L_2(\mathbb{R}, dx) \otimes L_2([0, \pi], d\theta)$ onto $A_{(n)}^2$.

$$(P_{(n)}f)(x,\theta) = (\psi(x))^2 p_{n-1}(x,\theta) e^{-x\theta-\theta i} \int_0^{\pi} f(x,\varphi) \overline{p_{n-1}(x,\varphi)} e^{-x\varphi+\varphi i} d\varphi.$$

• $P_n := \sum_{k=1}^n P_{(k)}$ is the orthogonal projection of $L_2(\mathbb{R}, dx) \otimes L_2([0, \pi], d\theta)$ onto A_n^2 .

Contenido

- Preliminary
- 2 Espacios poli-Bergman sin peso
- 3 Moment map for the upper half-plane
- Polinomios de Romanovsk
- **5** Espacios poli Bergman con peso

Kähler form for the upper half-plane

$$(\omega_\Pi)_z = rac{idz \wedge d\overline{z}}{2(\operatorname{Im}(z))^2}$$

where $z \in \Pi$.

Maximak Abelian subgroups for Π

Quasi-elliptic action: The \mathbb{T} -action on \mathbb{D} given by

$$t \cdot z = tz$$
.

Parabolic action: The \mathbb{R} -action on Π given by

$$x \cdot z = z + x$$
.

Hyperbolic action: The \mathbb{R}_+ -action on Π given by

$$r \cdot z = rz$$
.

Let G be a connected Lie group acting smoothly on Π and preserving its Kähler form $(\omega_{\Pi})_z$, with Lie algebra \mathfrak{g} . For every $X \in \mathbb{R} \cong \mathfrak{g}$, the G-action induces a smooth vector field given by

$$X_z^{\sharp} = \frac{d}{ds} \mid_{s=0} \exp(sX) \cdot z$$

for every z in the upper-half-plane, where \cdot denotes the G-action on Π .

Definition

Let G be a maximal Abelian subgroup of biholomorphisms of Π . A moment map for the G-action is a smooth G-invariant map $\mu = \mu^G : \Pi \to \mathbb{R}$ such that

$$d\mu_X = \omega(X^{\sharp}, \cdot)$$

for every $X \in \mathbb{R}$, where ω is the Kähler form of Π and $\mu_X : \Pi \to \mathbb{R}$ is the smooth function given by

$$\mu_X(z) = \langle \mu(z), X \rangle,$$

for every $z \in \Pi$.

On Π

The hyperbolic vector field is given by

$$X_{z}^{\sharp}=z\frac{\partial}{\partial z}+\bar{z}\frac{\partial}{\partial \bar{z}}.$$

On Π

The hyperbolic vector field is given by

$$X_{z}^{\sharp}=z\frac{\partial}{\partial z}+\bar{z}\frac{\partial}{\partial\bar{z}}.$$

The hyperbolic moment map for the \mathbb{R}_+ -action on Π is

$$\mu(z) = \frac{\mathsf{Re}(z)}{\mathsf{Im}(z)}.$$

On Π

The hyperbolic vector field is given by

$$X_{z}^{\sharp}=z\frac{\partial}{\partial z}+\bar{z}\frac{\partial}{\partial\bar{z}}.$$

The hyperbolic moment map for the \mathbb{R}_+ -action on Π is

$$\mu(z) = \frac{\operatorname{Re}(z)}{\operatorname{Im}(z)}.$$

Coordinates

The \mathbb{R}_+ -action on Π and the moment map associated to this action, induce a system of coordinates for Π given by

$$(u, v) = \left(\frac{\operatorname{Re}(z)}{\operatorname{Im}(z)}, \operatorname{Im}(z)\right) = \left(\frac{x}{v}, y\right),$$

where $z = x + iy \in \Pi$.

Contenido

- 1 Preliminary
- 2 Espacios poli-Bergman sin peso
- Moment map for the upper half-plane
- 4 Polinomios de Romanovski
- 5 Espacios poli Bergman con peso

Alvaro P. Raposo, Hans J. Weber, David E. Alvarez-Castillo, Mariana Kirchbach: *Romanovski polynomials in selected physics problems*, Central European Journal of Physics 5(3) (2007) 253-284, https://doi.org/10.2478/s11534-007-0018-5

Romanovski polynomials

Romanovski polynomials may be derived as the polynomial solutions of the ordinary differential equation

$$s(x)R''(x) + t(x)R'(x) + \Lambda R(x) = 0,$$
 (2)

where $s(x) = 1 + x^2$, t(x) = 2bx + a and $a, b \in \mathbb{R}$.

Romanovski polynomials

Romanovski polynomials may be derived as the polynomial solutions of the ordinary differential equation

$$s(x)R''(x) + t(x)R'(x) + \Lambda R(x) = 0,$$
 (2)

where $s(x) = 1 + x^2$, t(x) = 2bx + a and $a, b \in \mathbb{R}$.

The previous equation is a particular case of the hypergeometric differential equation

$$s(x)F''(x) + t(x)F'(x) + \Lambda F(x) = 0,$$

where F is a real function of a real variable in some open subset of the real line, $\Lambda \in \mathbb{R}$ is a corresponding eigenvalue, s is a polynomial of at most second order and t is a polynomial of at most first order.

Furthermore, for any $m \in \{0, 1, 2...\}$, there exists a polynomial $r_m^{(a,b)}$ of degree m, together with a constant Λ_m which satisfies (2). The constant is given by

$$\Lambda_m = -m\left(t'(x) + \frac{1}{2}(m-1)s''(x)\right).$$

Consider the weight function

$$w^{(a,b)}(x) = \left(1 + x^2\right)^{b-1} e^{-a \cot^{-1} x}.$$
 (3)

The function $w^{(a,b)}(x)$ is associated with equation (2) since it is a solution of Pearson's differential equation

$$[s(x)w^{(a,b)}(x)]' = t(x)w^{(a,b)}(x).$$

Rodrigues formula

$$r_m^{(a,b)}(x) = N_m \frac{(-1)^m}{w^{(a,b)}(x)} \frac{d^m}{dx^m} \left[w^{(a,b)}(x) s(x)^m \right], \quad 0 \le j \le m, \tag{4}$$

Rodrigues formula

$$r_m^{(a,b)}(x) = N_m \frac{(-1)^m}{w^{(a,b)}(x)} \frac{d^m}{dx^m} \left[w^{(a,b)}(x) s(x)^m \right], \quad 0 \le j \le m, \tag{4}$$

The Romanovski polynomials of degree 0,1 and 2 are

$$\frac{1}{N_0} r_0^{(a,b)}(x) = 1,$$

$$\frac{1}{N_1} r_1^{(a,b)}(x) = (2bx + a),$$

$$\frac{1}{N_2} r_2^{(a,b)}(x) = \left[(2b+1)(2b+2)x^2 + 2(2b+1)ax + \left(2b+a^2+2\right) \right].$$

Finite orthogonality

If $r_j^{(a,b)}(x)$ and $r_m^{(a,b)}(x)$ are Romanovski polynomials of degree j and m, respectively, then

$$\int_{\mathbb{D}} w^{(a,b)}(x) r_j^{(a,b)}(x) r_m^{(a,b)}(x) dx = 0,$$
 (5)

if and only if, j + m < 1 - 2b. Furthermore, for m < -b, the integral converges and we have that

$$\int_{m} w^{(a,b)}(x) \left(r_{m}^{(a,b)}(x) \right)^{2} dx = 1.$$

Contenido

- 1 Preliminary
- 2 Espacios poli-Bergman sin peso
- 3 Moment map for the upper half-plane
- 4 Polinomios de Romanovsk
- 5 Espacios poli Bergman con peso

We introduce the mapping $\kappa:\Pi\longrightarrow\Pi$ given by

$$\kappa:(x,y)\mapsto w=(u,v),$$

where
$$u = \frac{x}{y}$$
, $v = y$ and $z = x + iy$.

We introduce the mapping $\kappa:\Pi\longrightarrow\Pi$ given by

$$\kappa:(x,y)\mapsto w=(u,v),$$

where $u = \frac{x}{y}$, v = y and z = x + iy.

Under the mapping κ we have

$$d\nu_{\lambda}(z) = v d\nu_{\lambda}(w). \tag{6}$$

Introduce the space $L_2(\Pi, d\eta_{\lambda})$, where

$$d\eta_{\lambda}(w) = c_{\lambda}v^{\lambda+1}d\mu(w), \quad \lambda > -1.$$

Consider the unitary operator $U_0: L_2(\Pi, d\nu_\lambda) \longrightarrow L_2(\Pi, d\eta_\lambda)$, defined as

$$(U_0f)(w)=f(\kappa(w)),$$

and its adjoint operator

$$(U_0^*f)(z)=f(\kappa^{-1}(z))$$

Representing the upper half-plane Π in (u,v) coordinates we have the tensor decomposition

$$L_2(\Pi, d\eta_{\lambda}(w)) = L_2(\mathbb{R}) \otimes L_2(\mathbb{R}_+, c_{\lambda}v^{\lambda+1}dv),$$

with $\lambda \in (-1, \infty)$ and c_{λ} given by (3).

Bergman Space

Now the image of the Bergman space under the operator U_0 , $A_0(\Pi) = U_0(A_{\lambda}^2(\Pi))$, is the subspace of $L_2(\Pi, d\eta_{\lambda})$ which consists of all functions φ satisfying the equation

$$U_0 2 \frac{\partial}{\partial \bar{z}} U_0^{-1} \varphi = 0.$$

It follows that

$$U_0 2 \frac{\partial}{\partial \bar{z}} U_0^{-1} = BD, \tag{7}$$

where,

$$B = \frac{i}{v}$$
 and $D = -(i+u)\frac{\partial}{\partial u} + v\frac{\partial}{\partial v}$.

$$DB = B(D-1). (8)$$

Using (7) and (8) we have

$$U_{0}\left(2\frac{\partial}{\partial \overline{z}}\right)^{n}U_{0}^{-1}\varphi = \left(U_{0}2\frac{\partial}{\partial \overline{z}}U_{0}^{-1}\right)^{n}\varphi$$

$$= (BD)^{n}\varphi$$

$$= B^{2}(D-1)D\cdots BD\varphi$$

$$\vdots$$

$$= B^{n}(D-(n-1))\cdots(D-1)D\varphi. \tag{9}$$

 $A_{0,n,\lambda}^2=U_0(A_{n,\lambda}^2(\Pi))$ is the closed subspace of $L_2(\Pi,d\eta_\lambda)$ that consists of all *n*-analytic functions φ in $L_2(\Pi,d\eta_\lambda)$ satisfying the equation

$$ilde{D}arphi=(D-(n-1))\cdots(D-1)Darphi=0.$$

Henceforth we denote by $A_{0,n}^2=A_{0,n,\lambda}^2$ and assume λ a fixed constant. Introduce the unitary operator

$$U_1 = I \otimes M$$

from $L_2(\mathbb{R}) \otimes L_2(\mathbb{R}_+, c_\lambda v^{\lambda+1} dv)$ onto $L_2(\mathbb{R}) \otimes L_2(\mathbb{R}, c_\lambda d\xi)$, where the Mellin transform $M: L_2(\mathbb{R}_+, v^{\lambda+1} dv) \longmapsto L_2(\mathbb{R})$ is given by

$$(M\psi)(\xi) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}_+} v^{-i\xi + \frac{\lambda}{2}} \psi(v) dv.$$

Since

$$M\left(v\frac{\partial}{\partial v}\right)M^{-1}=i\left(\xi+\left(\frac{\lambda}{2}+1\right)i\right)I.$$

We have

$$U_1 \tilde{D} U_1^{-1} = \left[-(i+u) \frac{\partial}{\partial u} + i \left(\xi + \left(\frac{\lambda}{2} + 1 \right) i \right) - (n-1) \right] \cdots \\ \cdots \left[-(i+u) \frac{\partial}{\partial u} + i \left(\xi + \left(\frac{\lambda}{2} + 1 \right) i \right) \right].$$

Then, $A_{1,n}^2 := U_1(A_{0,n}^2)$ is the subspace of $L_2(\mathbb{R}) \otimes L_2(\mathbb{R}, c_\lambda d\xi)$ which consists of all functions $h \in L_2(\mathbb{R}) \otimes L_2(\mathbb{R}, c_\lambda d\xi)$ satisfying the equation

$$\left[-(i+u)\frac{\partial}{\partial u}+i\left(\xi+\left(\frac{\lambda}{2}+1\right)i\right)-(n-1)\right]\cdots$$

$$\cdots\left[-(i+u)\frac{\partial}{\partial u}+i\left(\xi+\left(\frac{\lambda}{2}+1\right)i\right)\right]h=0.$$

The general solution of the previous equation has the following form

$$h(u,\xi) = \sum_{k=0}^{n-1} g_k(\xi)(i+u)^{i[\xi+(\lambda/2+1)i]-k}.$$

It will be convenient to rewrite $h(u, \xi)$ as follows

$$h(u,\xi) = (i+u)^{i[\xi+(\lambda/2+1)i]-(n-1)} \sum_{k=0}^{n-1} g_k(\xi)(i+u)^{(n-1)-k}$$
$$= (i+u)^{i[\xi+(\lambda/2+1)i]-(n-1)} \sum_{k=0}^{n-1} a_k(\xi)u^k.$$
(10)

The functions $a_k(\xi)$ and $g_k(\xi)$ in (10), are adequate integrable functions such that $h(u,\xi)$ belongs to $A_{1,n}^2$.

With the Romanovski polynomials, the previous expression for $h(u,\xi)$ transforms to

$$h(u,\xi) = (i+u)^{i[\xi+(\lambda/2+1)i]-(n-1)} \sum_{k=0}^{n-1} a_k(\xi) u^k$$
$$= (i+u)^{i[\xi+(\lambda/2+1)i]-(n-1)} \sum_{k=0}^{n-1} h_k(\xi) r_k^{(a,b)}(u),$$

where $a = -2\xi$, $b = -\frac{\lambda}{2} - n + 1$.

Let f be given by

$$f(u,\xi) = (i+u)^{i[\xi+(\lambda/2+1)i]-(n-1)} \sum_{k=0}^{n-1} f_k(\xi) r_k^{(a,b)}(u).$$

$$\langle h(u,\xi), f(u,\xi) \rangle = c_{\lambda} \sum_{k=0}^{n-1} \sum_{j=0}^{n-1} \int_{\mathbb{R}} h_{k}(\xi) \bar{f}_{j}(\xi) \int_{\mathbb{R}} r_{k}^{(a,b)}(u) r_{j}^{(a,b)}(u) w^{(a,b)}(u) du d\xi,$$

for the functions $h(u,\xi)$ and $f(u,\xi)$ to be in $A_{1,n}^2$, it is necessary that the functions $f_k(\xi)$ and $h_k(\xi)$ belong to $L_2(\mathbb{R})$.

For $k, j \le n-1$ we have k+j < 1-2b, the orthogonality condition.

We introduce the unitary operator

$$U_2: L_2(\mathbb{R}) \otimes L_2(\mathbb{R}, c_{\lambda} d\xi) \longrightarrow \int_{\mathbb{R}}^{\oplus} L_2(\mathbb{R}, d\omega_{a,b}) c_{\lambda} d\xi$$

$$g(u, \xi) \longmapsto g(u, \xi) (i + u)^{-i[\xi + (\lambda/2 + 1)i] + (n - 1)},$$

where

$$d\omega_{a,b} = (1+u^2)^{-\lambda/2-n} e^{-2\xi \cot^{-1}(u)} du = w^{(a,b)}(u) du,$$

with $w^{(a,b)}(u)$ the Romanovski weight function.

Moreover, the adjoint operator is given by

$$U_2^*: \int_{\mathbb{R}}^{\oplus} L_2(\mathbb{R}, d\omega_{a,b}) c_{\lambda} d\xi \longrightarrow L_2(\mathbb{R}) \otimes L_2(\mathbb{R}, c_{\lambda} d\xi)$$

$$f(u, \xi) \longmapsto f(u, \xi) (i + u)^{i[\xi + (\lambda/2 + 1)i] - (n - 1)}.$$

 $A_{2,n}^2 = U_2(A_{1,n}^2)$ this space corresponds to the functions of the form

$$f(u,\xi) = \sum_{k=0}^{n-1} f_k(\xi) r_k^{(-2\xi,b)}(u).$$

Theorem

The unitary operator $U=U_2U_1U_0$ gives an isometric isomorphism from the space $L_2(\Pi,d\nu_\lambda)$ onto $\int_{\mathbb{R}}^{\oplus} L_2(\mathbb{R},d\omega_{a,b})c_\lambda d\xi$, under which

1. the weighted poly-Bergman space $\mathcal{A}^2_{n,\lambda}(\Pi)$ is mapped onto $A^2_{2,n}$, where every function in $A^2_{2,n}$ has the form

$$f(u,\xi) = \sum_{k=1}^{n} f_k(\xi) r_{k-1}^{(-2\xi,b)}(u),$$

where $b = -\frac{\lambda}{2} - n + 1$.

2. the poly-Bergman projection $B_{\Pi,n,\lambda}$ is unitarily equivalent to $P_{n,\lambda} = UB_{\Pi,n,\lambda}U^*$ the projection from $\int_{\mathbb{R}}^{\oplus} L_2(\mathbb{R}, d\omega_{a,b})c_{\lambda}d\xi$ onto the space $A_{2,n}^2$, which is given by

$$(P_{n,\lambda}f)(u,\xi) = \sum_{k=1}^n r_{k-1}^{(-2\xi,b)}(u) \int_{\mathbb{R}} f(v,\xi) r_{k-1}^{(-2\xi,b)}(v) dw_{a,b}(v).$$

Introduce now the isometric embedding

$$R_{0,n}:(L_2(\mathbb{R}))^n\longrightarrow \int_{\mathbb{R}}^\oplus L_2(\mathbb{R},d\omega_{a,b})c_\lambda d\xi$$

by the rule

$$(R_{0,n}f)(u,\xi) = \sum_{k=0}^{n-1} f_k(\xi) r_k^{(-2\xi,b)}(u) = f(\xi) (\mathbf{r}^{(-2\xi,b)}(u))^t$$

where $f=(f_0,\ldots,f_{n-1}),\ f_k(\xi)\in L_2(\mathbb{R})$ for $k=0,\ldots,n-1$, and

$$\mathbf{r}^{(-2\xi,\mathbf{b})}(u) = \left(r_0^{(-2\xi,b)}(u), \quad r_1^{(-2\xi,b)}(u), \quad \cdots \quad , r_{n-1}^{(-2\xi,b)}(u) \right).$$

The image of $R_{0,n}$ is the space $A_{2,n}^2$.

The adjoint operator

$$R_{0,n}^*: \int_{\mathbb{R}}^{\oplus} L_2(\mathbb{R}, d\omega_{a,b}) c_{\lambda} d\xi \longrightarrow (L_2(\mathbb{R}))^n$$

has the form

$$(R_{0,n}^*\varphi)(\xi)$$

$$= \left(\int_{\mathbb{R}} \varphi(u,\xi) r_0^{(-2\xi,b)}(u) d\omega_{a,b}(u), \dots, \int_{\mathbb{R}} \varphi(u,\xi) r_{n-1}^{(-2\xi,b)}(u) d\omega_{a,b}(u)\right)$$

$$= \int_{\mathbb{R}} \varphi(u,\xi) \mathbf{r}^{(-2\xi,b)}(u) d\omega_{a,b}(u)$$
(11)

then

$$\begin{split} R_{0,n}^*R_{0,n} &= I: (L_2(\mathbb{R}))^n \longrightarrow (L_2(\mathbb{R}))^n \\ R_{0,n}R_{0,n}^* &= P_{n,\lambda}: \int_{\mathbb{R}}^{\oplus} L_2(\mathbb{R},d\omega_{a,b})c_{\lambda}d\xi \longrightarrow \int_{\mathbb{R}}^{\oplus} L_2(\mathbb{R},d\omega_{a,b})c_{\lambda}d\xi. \end{split}$$

Theorem

The operator $R_n=R_{0,n}^*U$ maps $L_2(\Pi,d\nu_\lambda)$ onto $(L_2(\mathbb{R}))^n$, and the restriction

$$R_n|_{\mathcal{A}^2_{n,\lambda}(\Pi)}:\mathcal{A}^2_{n,\lambda}(\Pi)\longrightarrow (L_2(\mathbb{R}))^n,$$

is an isometric isomorphism. The adjoint operator

$$R_n^* = U^* R_{0,n} : (L_2(\mathbb{R}))^n \longrightarrow \mathcal{A}_{n,\lambda}^2(\Pi) \subset L_2(\Pi, d\nu_\lambda)$$

is the isometric isomorphism from $(L_2(\mathbb{R}))^n$ onto the subspace $\mathcal{A}^2_{n,\lambda}(\Pi)$. Furthermore,

$$R_n^*R_n = B_{\Pi,n,\lambda} : L_2(\Pi, d\nu_\lambda) \longrightarrow \mathcal{A}_{n,\lambda}^2(\Pi)$$

 $R_nR_n^* = I : (L_2(\mathbb{R}))^n \longrightarrow (L_2(\mathbb{R}))^n,$

where $B_{\Pi,n,\lambda}$ is the Bergman projection of $L_2(\Pi, d\nu_{\lambda})$ onto $\mathcal{A}^2_{n,\lambda}(\Pi)$.

Let $a(z) = \frac{x}{y}$ be a function in $L_{\infty}(\Pi)$ depending on $\mu(z) = \frac{x}{y}$, the hyperbolic moment map for the \mathbb{R}_+ -action on Π . We shall say that a(z) is a homogeneous symbol. The Toeplitz operator acting on $\mathcal{A}^2_{n,\lambda}(\Pi)$ with symbol a(z) is the operator denoted by

$$T_a: \varphi \in \mathcal{A}^2_{n,\lambda}(\Pi) \longmapsto B_{\Pi,n,\lambda}(a\varphi) \in \mathcal{A}^2_{n,\lambda}(\Pi).$$
 (12)

Theorem

For any $a(z) \in L_{\infty}(\Pi)$, the Toeplitz operator T_a acting on $\mathcal{A}^2_{n,\lambda}(\Pi)$ is unitary equivalent to the matrix multiplication operator $\gamma^{n,a}(\xi)I = R_n T_a R_n^*$ acting on $(L_2(\mathbb{R}))^n$, where the matrix-valued function $\gamma^{n,a} = (\gamma^{n,a}_{i,j})$ is given by

$$\gamma^{n,a}(\xi) = \int_{\mathbb{R}} a(u) (\mathbf{r}^{(-2\xi,b)}(u))^t \mathbf{r}^{(-2\xi,b)}(u) d\omega_{a,b}(u). \tag{13}$$

Gracias