Analysis of translation-invariant operators via the Fourier transform of the reproducing kernel

Egor Maximenko, joint results with
Gerardo Ramos-Vazquez, Crispin Herrera-Yañez, and Alejandro Hernández Arteaga

Instituto Politécnico Nacional
Escuela Superior de Física y Matemáticas, México

2022-09-27
Operator Theory and Function Spaces, Xalapa, Mexico

Outline

(1) Scheme for domains $G \times Y$
(2) Separately radial operators/Bergman space
(3) Vertical operators/poly-Fock space

Outline

(1) Scheme for domains $G \times Y$
(2) Separately radial operators/Bergman space
(3) Vertical operators/poly-Fock space

A general problem (we cannot solve it)

Let
X be a set,
H be a reproducing kernel Hilbert space over X,
G be a locally compact group,
$\tau: G \rightarrow \operatorname{Sym}(X)$ be a group action,
$(\rho(g))_{g \in G}, \quad \rho(g) f:=f \circ \tau\left(g^{-1}\right)$ be a unitary representation of G in H.

Problem: describe the W^{*}-algebra defined as the centralizer of ρ,

$$
\mathcal{C}(\rho):=\{S \in \mathcal{B}(H): \quad \forall g \in G \quad S \rho(g)=\rho(g) S\} .
$$

A general idea

Apply the Fourier transform to the reproducing kernel along the orbits of the group action:

$$
\int_{G} K_{z}(\tau(g)(w)) \psi(g)^{*} \mathrm{~d} \nu_{G}(g), \quad \psi \in \text { irreducible representations of } G .
$$

We hope that the obtained operator-valued function is useful to describe $\mathcal{C}(\rho)$.

Our scheme for type-type domains $G \times Y$

(R. Crispin Herrera-Yañez, Egor A. Maximenko, Gerardo Ramos-Vazquez (2022):

Translation-invariant operators in reproducing kernel Hilbert spaces. Integral Equ. Oper. Theory. DOI: 10.1007/s00020-022-02705-4.

Our paper is inspired by various works of Vasilevski and other mathematicians.

圊 Nikolai L. Vasilevski (1999):
On Bergman-Toeplitz operators with commutative symbol algebras. Integral Equ. Oper. Theory. DOI: 10.1007/BF01332495.

Our assumptions

- $X=G \times Y$,
- G is an abelian locally compact group, metrizable, and σ-compact,
- ν is a Haar measure on G,
- (Y, λ) is a σ-finite measure space,
- $L^{2}(G \times Y)$ is separable,
- $H \leq L^{2}(G \times Y)$,
- H is an RKHS ; we denote the RK by $\left(K_{x, y}\right)_{x \in G, y \in Y}$,

Our assumptions

- G acts in $G \times Y$ by

$$
\tau_{G \times Y}(g): \quad(x, y) \mapsto(g+x, y),
$$

- $\rho_{G \times Y}$ acts in $L^{2}(G \times Y)$

$$
\left(\rho_{G \times Y}(a) f\right)(x, y):=f(x-a, y),
$$

- H is invariant under $\rho_{G \times Y}$,
- $\forall y \in Y \quad \sup _{v \in Y} \int_{G}\left|K_{(0, y)}(u, v)\right| \mathrm{d} \nu(u)<+\infty$.

Criterion that H is shift-invariant

$P:=$ the orthogonal projection in $L^{2}(G \times Y)$ whose image is H.

Proposition

The following conditions are equivalent.
(a) $\rho_{G \times Y}(a)(H) \subseteq H$ for every a in G.
(b) $P \rho_{G \times Y}(a)=\rho_{G \times Y}(a) P$ for every a in G.
(c) $K_{x, y}(u, v)=K_{0, y}(u-x, v)$ for every x, y in G and every y, v in Y.
(d) $\rho_{G \times Y}(a) K_{x, y}=K_{a+x, y}$ for every a, x in G and every y in Y.

Let $\rho_{H}(a): H \rightarrow H$ be the compression of $\rho_{G \times Y}(a)$.

Decomposition of H

$$
\begin{gathered}
\widehat{P}:=(F \otimes I) P(F \otimes I)^{*}, \quad \hat{H}:=(F \otimes I)(H) . \\
\widehat{P}=\int_{\widehat{G}}^{\oplus} \widehat{P}_{\xi} \mathrm{d} \widehat{\nu}(\xi) .
\end{gathered}
$$

For each ξ in \widehat{G},

$$
\begin{gathered}
\hat{H}_{\xi}:=\widehat{P}_{\xi}\left(L^{2}(Y)\right) . \\
\Omega:=\left\{\xi \in \widehat{G}: \operatorname{dim}\left(\widehat{H}_{\xi}\right)>0\right\} . \\
\hat{H}=\int_{\Omega}^{\oplus} \widehat{H}_{\xi} \mathrm{d} \widehat{\nu}(\xi) .
\end{gathered}
$$

Decomposition of $\mathcal{V}:=\mathcal{C}\left(\rho_{H}\right)$

Let $\Phi: H \rightarrow \widehat{H}$ be the compression of $F \otimes I$.

Theorem

$$
\Phi \mathcal{V} \Phi^{*}=\int_{\Omega}^{\oplus} \mathcal{B}\left(\widehat{H}_{\xi}\right) \mathrm{d} \widehat{\nu}(\xi)
$$

Constructive description of the fibers \widehat{H}_{ξ}

$$
L_{, y}:=(F \otimes I) K_{0, y}, \quad \text { i.e., } \quad L_{\xi, y}(v):=\int_{G} K_{(0, y)}(u, v) \overline{\xi(u) d} \mathrm{~d} \nu(u) .
$$

Theorem

For every ξ in Ω, the family $\left(L_{\xi, y}\right)_{y \in Y}$ is the reproducing kernel of \hat{H}_{ξ}.

Idea of the proof: convolution theorem + Fubini + Moore-Aronszajn theorem.

Constructive criterion for the commutativity of \mathcal{V}

Theorem

The following conditions are equivalent.
(a) \mathcal{V} is commutative.
(b) $d_{\xi}:=\operatorname{dim}\left(\widehat{H}_{\xi}\right)=1$ for every ξ in Ω.
(c) $\left|L_{\xi, y}(v)\right|^{2}=L_{\xi, y}(y) L_{\xi, v}(v)$ for every ξ in Ω and every y, v in Y.
(d) There exists a family $\left(q_{\xi}\right)_{\xi \in \Omega}$ in $L^{2}(Y)$ such that the function $(\xi, v) \mapsto q_{\xi}(v)$ is measurable, $\widehat{H}_{\xi}=\mathbb{C} q_{\xi},\left\|q_{\xi}\right\|=1$, and

$$
L_{\xi, y}(v)=\overline{q_{\xi}(y)} q_{\xi}(v) \quad(\xi \in \Omega, y, v \in Y)
$$

Isometric isomorphism $R: H \rightarrow L^{2}(\Omega)$ in the commutative case

Suppose that $\operatorname{dim}\left(\widehat{H}_{\xi}\right)=1$, i.e., we have a family $\left(q_{\xi}\right)_{\xi \in \Omega}$ such that $\widehat{H}_{\xi}=\mathbb{C} q_{\xi}$ y $\left\|q_{\xi}\right\|=1$.

$$
(R f)(\xi):=\left\langle(\Phi f)(\xi, \cdot), q_{\xi}\right\rangle_{L^{2}(Y)}
$$

Diagonalization of translation-invariant operators in the case $d_{\xi}=1$

Proposition

Suppose that $\operatorname{dim}\left(\widehat{H}_{\xi}\right)=1$ for every ξ in Ω. Entonces $\mathcal{V} \cong L^{\infty}(\Omega)$.

The case of finite-dimensional fibers

Suppose that

$$
\forall \xi \in \Omega \quad d_{\xi}:=\operatorname{dim}\left(\widehat{H}_{\xi}\right)<+\infty
$$

Let $\left(q_{j, \xi}\right)_{j \in \mathbb{N}, \xi \in \Omega}$ be a measurable basis family for the spaces \widehat{H}_{ξ}.

$$
L_{\xi, y}(v)=\sum_{j=1}^{d_{\xi}} \overline{q_{j, \xi}(y)} q_{j, \xi}(v)
$$

Then

$$
\Phi H=\widehat{H}=\int_{\Omega}^{\oplus} \widehat{H}_{\xi} \mathrm{d} \widehat{\nu}(\xi) \cong \int_{\Omega}^{\oplus} \mathbb{C}^{d_{\xi}} \mathrm{d} \widehat{\nu}(\xi)
$$

From translation-invariant operators to matrix families

$$
R: H \rightarrow \int_{\Omega}^{\oplus} \mathbb{C}^{d_{\xi}} \mathrm{d} \widehat{\nu}(\xi), \quad(R f)(\xi):=\left[\left\langle(\Phi f)(\xi, \cdot), q_{j, \xi}\right\rangle_{L^{2}(Y)}\right]_{j=1}^{d_{\xi}}
$$

Matrix families corresponding to Toeplitz operators with translation-invariant generating symbols

Corollary
Let $\psi \in L^{\infty}(Y)$,

$$
\varphi(x, y)=\psi(y)
$$

Then $T_{\varphi} \in \mathcal{V}, R T_{\varphi} R^{*}=M_{\gamma_{\psi}}$,

$$
\gamma_{\psi}(\xi):=\left[\int_{Y} \psi(v) \overline{q_{j, \xi}(v)} q_{k, \xi}(v) \mathrm{d} \lambda(v)\right]_{j, k=1}^{d_{\xi}}
$$

Outline

(1) Scheme for domains $G \times Y$
(2) Separately radial operators/Bergman space
(3) Vertical operators/poly-Fock space

Separately radial case on the Bergman space

Raul Quiroga-Barranco, Nikolai Vasilevski (2007):
Commutative C^{*}-algebras of Toeplitz operators on the unit ball, I.
Bargmann-type transforms and spectral representations of Toeplitz operators.
Integral Equ. Oper. Theory. DOI: 10.1007/s00020-007-1537-6.
They worked with maximal abelian subgroups of the Möbius group and diagonalized Toeplitz operators with group-invariant symbols.

Jointly with Alejandro Hernández Arteaga, we studied three of these cases using the scheme above.

In this talk, we will see the separately radial (= quasi-radial) case.

$\mathcal{A}^{2}\left(\mathbb{B}_{n}, \mu_{n, \alpha}\right)$, the analytic Bergman space

$\mathbb{B}_{n}:=\left\{z \in \mathbb{C}^{n}:|z|<1\right\}$.
$\mathrm{d} \mu_{n, \alpha}(z)=c_{n, \alpha}\left(1-|z|^{2}\right)^{\alpha} \mathrm{d} \mu_{2 n}(z), \quad c_{n, \alpha}=\frac{\Gamma(n+\alpha+1)}{\pi^{n} \Gamma(\alpha+1)}$.
$\mathcal{A}^{2}=\mathcal{A}^{2}\left(\mathbb{B}_{n}, \mu_{n, \alpha}\right):=$ holomorphic functions belonging to $L^{2}\left(\mathbb{B}_{n}, \mu_{n, \alpha}\right)$.
Orthonormal basis: $\quad b_{j}(z)=\sqrt{\frac{\Gamma(n+|j|+\alpha+1)}{j!\Gamma(n+\alpha+1)}} z^{j}, \quad j \in \mathbb{N}_{0}^{n}$.
Reproducing kernel of \mathcal{A}^{2} :

$$
K_{z}^{\mathcal{A}^{2}}(w)=\frac{1}{(1-\langle w, z\rangle)^{n+1+\alpha}}
$$

Group $\mathbb{R}_{2 \pi}^{n}$ and its dual group

$G:=\mathbb{R}_{2 \pi}^{n} \cong \mathbb{T}^{n}, \quad$ where $\quad \mathbb{R}_{2 \pi}:=\mathbb{R} /(2 \pi \mathbb{Z})$.
$\nu:=$ the normalized Haar measure on G.

$$
\int_{G} f \mathrm{~d} \nu=\frac{1}{(2 \pi)^{n}} \int_{[0,2 \pi)^{n}} f(g) \mathrm{d} \mu_{n}(g) .
$$

$\widehat{G}=\mathbb{Z}^{n}$ with the counting measure $\widehat{\nu}$.
Pairing between G and \widehat{G} :

$$
E\left(u+2 \pi \mathbb{Z}^{n}, \xi\right)=\mathrm{e}^{\mathrm{i}\langle u, \xi\rangle}
$$

Rotations acting in \mathcal{A}^{2}

$$
G=\mathbb{R}_{2 \pi}^{n} \cong \mathbb{T}^{n}
$$

Action of G on \mathbb{B}_{n} :

$$
\tau_{\text {rot }}(g)(z):=\left(\mathrm{e}^{\mathrm{i} g_{1}} z_{1}, \ldots, \mathrm{e}^{\mathrm{i} g_{n}} z_{n}\right)
$$

Unitary representation of G in \mathbb{B}_{n} :

$$
\left(\rho_{\mathrm{rot}}(g) f\right)(z):=f\left(\tau_{\mathrm{rot}}(-g) z\right)=f\left(\mathrm{e}^{-\mathrm{i} g_{1}} z_{1}, \ldots, \mathrm{e}^{-\mathrm{i} g_{n}} z_{n}\right)
$$

Passing to the polar coordinates

Let Y be the base of \mathbb{B}_{n} considered as a Reinhard domain:

$$
Y=\left\{y \in[0,+\infty)^{n}: \quad|y|^{2}<1\right\}
$$

We consider Y with the Lebesgue measure μ_{n}.

$$
\varphi_{\text {polar }}: G \times Y \rightarrow \mathbb{B}_{n}, \quad \varphi_{\text {polar }}(u, v)=\left(v_{1} \mathrm{e}^{\mathrm{i} u_{1}}, \ldots, v_{n} \mathrm{e}^{\mathrm{i} u_{n}}\right) .
$$

For every f in \mathcal{A}^{2}, we define $U_{\text {polar }} f \in L^{2}(G \times Y)$,

$$
\left(U_{\text {polar }} f\right)(u, v):=\sqrt{(2 \pi)^{n} c_{n, \alpha} v_{1} \cdots v_{n}}\left(1-|v|^{2}\right)^{\alpha / 2} f\left(\varphi_{\text {polar }}(u, v)\right)
$$

$H:=U_{\text {polar }}\left(\mathcal{A}^{2}\right) . \quad U_{\text {polar }}: \mathcal{A}^{2} \rightarrow H$ is an isometric isomophism.

Transformation of RK by a weighted change of variable

$$
\begin{gathered}
H_{1} \leq \mathbb{C}^{X}, \text { Hilbert space } \\
\text { RK }\left(K_{x}\right)_{x \in X}
\end{gathered} \xrightarrow[(U f)(w):=p(w) f(\varphi(w))]{ } \quad H_{2} \leq \mathbb{C}^{Y} \text {, Hilbert space }
$$

Then the following function is the RK of H_{2} :

$$
\widetilde{K}_{z}(w)=\overline{p(z)} p(w) K_{\varphi(z)}(\varphi(w)) .
$$

Passing to the polar coordinates

The reproducing kernel of H is

$$
K_{x, y}(u, v)=\frac{(2 \pi)^{n} c_{n, \alpha}\left(1-|y|^{2}\right)^{\alpha / 2}\left(1-|v|^{2}\right)^{\alpha / 2} \prod_{k=1}^{n} \sqrt{y_{k} v_{k}}}{\left(1-\sum_{k=1}^{n} y_{k} v_{k} \mathrm{e}^{\mathrm{i}\left(u_{k}-x_{k}\right)}\right)^{n+\alpha+1}}
$$

We see that $K_{x, y}(u, v)=K_{0, y}(u-x, v)$.
Furthermore, $U_{\text {polar }}$ intertwines $\rho_{\text {rot }}$ with horizontal translations:

$$
\forall g \in G \quad U_{\text {polar }} \rho_{\text {rot }}(g)=\rho_{G \times Y}(g) U_{\text {polar }}
$$

$U_{\text {polar }}$ intertwines the rotations acting in \mathcal{A}^{2} with the horizontal translations acting in H

Computation of L

$K_{0, y}(\cdot, v)$ decomposes into the Fourier series:

$$
\begin{aligned}
& K_{0, y}(u, v)=(2 \pi)^{n} c_{n, \alpha}\left(1-|v|^{2}\right)^{\alpha / 2}\left(1-|y|^{2}\right)^{\alpha / 2} \prod_{k=1}^{n} \sqrt{v_{k} y_{k}} \times \\
& \times \sum_{\xi \in \mathbb{N}_{0}^{n}} \frac{\Gamma(n+|\xi|+\alpha+1)}{\xi!\Gamma(n+\alpha+1)} y^{\xi} v^{\xi} \mathrm{e}^{\mathrm{i}\langle u, \xi\rangle}
\end{aligned}
$$

For ξ in \mathbb{N}_{0}^{n}, the ξ th Fourier coefficient is $\quad L_{\xi, y}(v)=\overline{q_{\xi}(y)} q_{\xi}(v)$, where

$$
q_{\xi}(v)=\sqrt{\frac{2^{n} \Gamma(n+|\xi|+\alpha+1)}{\xi!\Gamma(\alpha+1)}}\left(1-|v|^{2}\right)^{\alpha / 2} \prod_{k=1}^{n} v_{k}^{\xi_{k}+\frac{1}{2}}
$$

Conclusions

In this example:

$$
\begin{aligned}
& \Omega=\mathbb{N}_{0}^{n} \\
& d_{\xi}=1 \text { for } \xi \text { in } \mathbb{N}_{0}^{n} \\
& \mathcal{C}\left(\rho_{\text {rot }}\right) \cong \mathcal{C}\left(\rho_{H}\right)=\mathcal{V} \cong L^{\infty}\left(\mathbb{N}_{0}^{n}\right)
\end{aligned}
$$

\mathcal{V} is commutative.

The eigenvalues of separately radial Toeplitz operators in $\mathcal{A}^{2}\left(\mathbb{B}_{n}\right)$

We suppose that $\varphi \in L^{\infty}(Y)$.

$$
\begin{aligned}
\gamma_{\varphi}(\xi) & =\int_{Y} \varphi(v)\left|q_{\xi}(v)\right|^{2} \mathrm{~d} \mu_{n}(v) \\
& =\frac{\Gamma(n+|\xi|+\alpha+1)}{\xi!\Gamma(\alpha+1)} \int_{|t|_{1}<1} \varphi(\sqrt{t})\left(1-|t|_{1}\right)^{\alpha} t^{\xi} \mathrm{d} \mu_{n}(t) .
\end{aligned}
$$

Here $|t|_{1}=t_{1}+\cdots+t_{n}$.
This formula coincides with the formula found by Quiroga-Barranco and Vasilevski.

Separately radial operators on the pluriharmonic Bergman space

Reproducing kernel:

$$
\frac{1}{(1-\langle w, z\rangle)^{n+1+\alpha}}+\frac{1}{(1-\langle z, w\rangle)^{n+1+\alpha}}-1 .
$$

The analysis of separately radial operators is similar to the analytic case, but

$$
\Omega=\mathbb{N}_{0}^{n} \cup\left(-\mathbb{N}_{0}\right)^{n}=\{0,1,2, \ldots\}^{n} \cup\{0,-1,-2, \ldots\}^{n}
$$

$\mathcal{V} \cong L^{\infty}(\Omega) . \quad C^{*}$-alg(sep. radial Toeplitz operators) is not weakly dense in \mathcal{V}.

囯 Jingyu Yang, Liu Liu, Yufeng Lu (2013).
固 Maribel Loaiza, Carmen Lozano (2014).

Separately radial operators on the pluriharmonic Bergman space

$$
\Omega=\mathbb{N}_{0}^{n} \cup\left(-\mathbb{N}_{0}\right)^{n}
$$

Outline

(1) Scheme for domains $G \times Y$
(2) Separately radial operators/Bergman space
(3) Vertical operators/poly-Fock space

This is a beginning of a joint work with
Gerardo Ramos Vazquez, Armando Sánchez Nungaray, and Erick Lee Guzmán.

At the moment, we have applied the $G \times Y$ scheme to the vertical operators on the m-analytic Fock space $\mathcal{F}_{m}\left(\mathbb{C}^{1}\right)$. Our results are similar to the following two papers.Nikolai L. Vasilevski (2000):
Poly-Fock spaces.
E Armando Sánchez-Nungaray, Carlos González-Flores,
Raquiel Rufino López-Martínez, Jorge Luis Arroyo-Neri (2018):
Toeplitz operators with horizontal symbols acting on the poly-Fock spaces.

Polyanalytic Bargmann-Segal-Fock space

$\mathcal{F}_{m}:=m$-analytic functions $\mathbb{C} \rightarrow \mathbb{C}$, square integrable with weight $\mathrm{e}^{-|z|^{2}}$.

$$
\|f\|_{\mathcal{F}_{m}}:=\left(\frac{1}{\pi} \int_{\mathbb{C}}|f(z)|^{2} \mathrm{e}^{-|z|^{2}} \mathrm{~d} \mu_{2}(z)\right)^{1 / 2}
$$

Nour eddine Askour, Ahmed Intissar, Zouhaïr Mouayn (1997) computed the reproducing kernel of this space:

$$
K_{z}^{\mathcal{F}_{m}}(w)=\mathrm{e}^{\bar{z} w} L_{m-1}^{(1)}\left(|w-z|^{2}\right)
$$

Polyanalytic Steinwart-Hush-Scovel space

$\mathcal{S}_{m}:=m$-analytic functions $\mathbb{C} \rightarrow \mathbb{C}$ such that

$$
\|f\|_{\mathcal{S}_{m}}:=\left(\frac{1}{\pi} \int_{\mathbb{C}}|f(z)|^{2} \exp \left(-2 \operatorname{Im}(z)^{2}\right) \mathrm{d} \mu_{2}(z)\right)^{1 / 2}<+\infty
$$

Isometric isomorphism $U_{\mathcal{F}_{m}}^{\mathcal{S}_{m}}: \mathcal{F}_{m} \rightarrow \mathcal{S}_{m}$,

$$
\left(U_{\mathcal{F}_{m}}^{\mathcal{S}_{m}} f\right)(z):=\mathrm{e}^{-z^{2} / 2} f(z) .
$$

Reproducing kernel of \mathcal{S}_{m} :

$$
K_{z}^{\mathcal{S}_{m}}(w)=\mathrm{e}^{-\frac{1}{2}(w-\bar{z})^{2}} L_{m-1}^{(1)}\left(|w-z|^{2}\right) .
$$

The original Steinwart-Hush-Scovel space on \mathbb{C}^{n}

庫 Ingo Steinwart, Don Hush, Clint Scovel (2006).
Analytic functions on \mathbb{C}^{n} such that

$$
\frac{2^{n} \alpha^{2 n}}{\pi^{n}} \int_{\mathbb{C}^{n}}|f(z)|^{2} \exp \left(-4 \alpha^{2} \sum_{j=1}^{n} \operatorname{lm}\left(z_{j}\right)^{2}\right) \mathrm{d} \mu_{2 n}(z)<+\infty
$$

Reproducing kernel:

$$
\exp \left(-\alpha^{2} \sum_{j=1}^{n}\left(w_{j}-\overline{z_{j}}\right)^{2}\right)
$$

Its restriction to \mathbb{R}^{n} (the Gaussian kernel) is widely used in machine learning.

"Flattened poly-Fock space"

Isometric isomorphism $U_{\mathcal{F}_{m}}^{\mathcal{H}_{m}}: \mathcal{F}_{m} \rightarrow \mathcal{H}_{m}<L^{2}\left(\mathbb{R}^{2}\right)$,

$$
\left(U_{\mathcal{F}_{m}}^{\mathcal{H}_{m}} f\right)(x, y):=\left(\frac{2}{\pi}\right)^{1 / 4} \mathrm{e}^{-\frac{x^{2}+y^{2}}{2}-\mathrm{i} x y} f(x+\mathrm{i} y) .
$$

Reproducing kernel of \mathcal{H}_{m} :

$$
K_{x, y}(u, v)=\sqrt{\frac{2}{\pi}} \mathrm{e}^{-\frac{(u-x)^{2}+(v-y)^{2}}{2}-\mathrm{i}(u-x)(v+y)} L_{m-1}^{(1)}\left((u-x)^{2}+(v-y)^{2}\right) .
$$

We see that $\quad K_{x, y}(u, v)=K_{0, y}(u-x, v)$.

\mathcal{S}_{m} and \mathcal{H}_{m} are "flattened" versions of the poly-Fock space \mathcal{F}_{m}

Weyl operators and horizontal translations

Unitary representation of \mathbb{R} in \mathcal{F}_{m} :

$$
\left(\rho_{\mathcal{F}_{m}}(a) f\right)(z):=f(z-a) \mathrm{e}^{a z-\frac{a^{2}}{2}}
$$

Unitary representation of \mathbb{R} in \mathcal{S}_{m} :

$$
\left(\rho_{\mathcal{S}_{m}}(a) f\right)(z):=f(z-a)
$$

Unitary representation of \mathbb{R} in \mathcal{H}_{m} :

$$
\left(\rho_{\mathcal{H}_{m}}(a) f\right)(x, y):=f(x-a, y)
$$

Three Hilbert spaces and corresponding unitary representations of \mathbb{R}

Fourier connection between Laguerre and Hermite functions

$$
\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} \mathrm{e}^{-\mathrm{i} u \xi} \mathrm{e}^{-\frac{u^{2}}{2}} L_{n}\left(u^{2}+a^{2}\right) \mathrm{d} u=\frac{1}{2^{n} n!} \mathrm{e}^{-\frac{\xi^{2}}{2}} H_{n}\left(\frac{\xi+a}{\sqrt{2}}\right) H_{n}\left(\frac{\xi-a}{\sqrt{2}}\right) .
$$

Equivalently,

$$
\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} \mathrm{e}^{-\mathrm{i} \mu \xi} \mathrm{e}^{-\frac{u^{2}+a^{2}}{2}} L_{n}\left(u^{2}+a^{2}\right) \mathrm{d} u=\sqrt{\pi} \psi_{n}\left(\frac{\xi+a}{\sqrt{2}}\right) \psi_{n}\left(\frac{\xi-a}{\sqrt{2}}\right) .
$$

Here ψ_{n} is the nth Hermite function: $\quad \psi_{n}(t)=\frac{1}{\sqrt{2^{n} n!\sqrt{\pi}}} \mathrm{e}^{-t^{2} / 2} H_{n}(t)$.

Fourier transform of the reproducing kernel of \mathcal{H}_{m}

Proposition

For every ξ, y, v in \mathbb{R},

$$
L_{\xi, y}(v)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} K_{0, y}(u, v) \mathrm{e}^{-i u \xi} \mathrm{~d} u=\sum_{j=0}^{m-1} \overline{q_{j, \xi}(y)} q_{j, \xi}(v)
$$

where

$$
q_{j, \xi}(v):=2^{1 / 4} \psi_{j}\left(\frac{\xi+2 v}{\sqrt{2}}\right) .
$$

Conclusions

$$
\Omega=\mathbb{R}
$$

For every ξ in $\mathbb{R}, \quad d_{\xi}=\operatorname{dim}\left(\widehat{H}_{\xi}\right)=m$.
For every ξ in $\mathbb{R}, \quad\left(q_{0, \xi}, q_{1, \xi}, \ldots, q_{m-1, \xi}\right)$ is an orthonormal basis of \widehat{H}_{ξ}.
$\mathcal{C}\left(\rho_{\mathcal{F}_{m}}\right) \cong \mathcal{C}\left(\rho_{\mathcal{S}_{m}}\right) \cong \mathcal{C}\left(\rho_{\mathcal{H}_{m}}\right)=\mathcal{V} \cong L^{\infty}\left(\mathbb{R}, \mathcal{M}_{n}(\mathbb{C})\right) \cong L^{\infty}(\mathbb{R}) \otimes \mathcal{M}_{n}(\mathbb{C})$.
Vertical operators in $\mathcal{F}_{m} \cong$ bounded matrix-functions on \mathbb{R}.

Possible themes for future works

- Vertical operators in $\mathcal{F}_{m}\left(\mathbb{C}^{n}\right)$.
- Angular operators in the wavelet spaces.
- More generally, shift-invariant operators associated to coherent states.
- Quasi-hyperbolic and quasi-nilpotent case in $\mathcal{A}^{2}\left(\mathbb{B}_{n}, \mu_{n, \alpha}\right)$.
- Compute directly the Fourier transform of the reproducing kernel of the m-poly-Bergman space on the upper half-plane.
- Radial operators in many RKHS over the unit disk.

