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A general problem (we cannot solve it)

Let
X be a set,
H be a reproducing kernel Hilbert space over X,
G be a locally compact group,
7: G — Sym(X) be a group action,
(p(g))gec. p(g)f =for(g™t) be a unitary representation of G in H.

Problem: describe the W*-algebra defined as the centralizer of p,

Clp) = {SGB(H): VgeG Sp(g)=p(g)5}-
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A general idea

Apply the Fourier transform to the reproducing kernel

along the orbits of the group action:

/ K:(7(g)(w))¥(g)* dvg(g), 1 € irreducible representations of G.

We hope that the obtained operator-valued function is useful to describe C(p).
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Our scheme for type-type domains G x Y

[ Crispin Herrera-Yafiez, Egor A. Maximenko, Gerardo Ramos-Vazquez (2022):
Translation-invariant operators in reproducing kernel Hilbert spaces.
Integral Equ. Oper. Theory. DOI: 10.1007/s00020-022-02705-4.

Our paper is inspired by various works of Vasilevski and other mathematicians.

8 Nikolai L. Vasilevski (1999):
On Bergman-Toeplitz operators with commutative symbol algebras.
Integral Equ. Oper. Theory. DOI: 10.1007/BF01332495.


https://doi.org/10.1007/s00020-022-02705-4
https://doi.org/10.1007/BF01332495
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Our assumptions

e X=GxY,

G is an abelian locally compact group, metrizable, and o-compact,

e v is a Haar measure on G,

(Y, ) is a o-finite measure space,
e [?(G x Y) is separable,

° H§L2(GX Y),

H is an RKHS ; we denote the RK by (K, )xecq, yev.
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Our assumptions

G actsin G X Y by
Texv(g):  (x,y) = (g+x,y)

pGxy actsin L2(G x Y)

(pGXY(a)f)(Xuy) = f(X - a7y)7

e H is invariant under pgxy,

VyeY sup [ |Ko,y(u,v)|dr(u) < +oo.
veY JG
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Criterion that H is shift-invariant

P := the orthogonal projection in L?(G x Y) whose image is H.

The following conditions are equivalent.
a) pexy(a)(H) C H for every ain G.

b) Ppexy(a) = pcxy(a)P for every ain G.

(
(
() Key(u,v)=Ko,y(u—x,v) forevery x,y in G and every y,v in Y.
(

d) pexy(a)Kx,y = Kayx,y for every a,x in G and every y in Y.

Let py(a): H — H be the compression of pgxy(a).
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Decomposition of H

P=(FoNP(F®I)*  H:=(FaI)(H).
ﬁ:/®ﬁ o (€)
N

For each ¢ in G,
He = Pe(L(Y)).

Q:={¢eG: dim(He) > 0}.

N SAPN
H:/Q He dp(€).
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Decomposition of V := C(pn)

Let ®: H — H be the compression of F ® I.
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Constructive description of the fibers ﬁg

L, =(F® DKoy,  ie,  Ley(v /Koy(uv €(u) du(u).

For every ¢ in Q, the family (L¢,),cy is the reproducing kernel of Iflg. l

Idea of the proof: convolution theorem + Fubini + Moore—Aronszajn theorem.
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Constructive criterion for the commutativity of V

The following conditions are equivalent.

a) V is commutative.

(

(b) de = dim(ltlg) =1 for every £ in Q.

() |Ley(v)]? = Ley(y)Ley(v) for every € in Q and every y, v in Y.
(

d) There exists a family (g¢)ecq in L2(Y) such that
the function (&, v) — g¢(v) is measurable, Itlg = Cgqg, |lg¢el =1, and

Ley(v) = qe(y)ge(v)  (£€Q, y,veY).
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Isometric isomorphism R: H — L?() in the commutative case

Suppose that dim(Hf) =1, 1ie,
we have a family (g¢)¢cq such that Itlg =Cqey|lgell =1.

(RF)(E) = {(®F)(E, ), qe) 2y

R

Y

A

Rfl — R*
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Diagonalization of translation-invariant operators in the case d: = 1

Proposition

Suppose that dim(lflg) =1 for every £ in Q. Entonces V = L*(Q).

(Hng(GxY)J R

Sey M, (multiplication operator)

(H < [2(G x Y)J 12(Q)

R—l — R*
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The case of finite-dimensional fibers

Suppose that
VE e Q de = dim(Iflg) < +00.

Let (gj.¢)jen.cen be a measurable basis family for the spaces H.

Ley(v Z 9.¢(y) ge(v

Then o 5
el e
= [ Fean© = | c%an(e)
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From translation-invariant operators to matrix families

de
j=1"

RH= [ckane), (RO = [(OFE ), Gehim)

{H < 12(G x Y)} J§ €% dw(¢)
Sev aG/deﬁdedﬁ(f) M,
[ H < [2(G x Y)} T J§ C% dp(€)
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Matrix families corresponding to Toeplitz operators

with translation-invariant generating symbols

Corollary

Let ¢ € L*=(Y),

o(x,y) = Y(y).
Then T, € V, RT,R* = M,,,

de

10(8) = | [, ()8 aelv) A

J,k=1




Separately radial operators/Bergman space
0000000000 0000

Outline

@ Separately radial operators/Bergman space



Separately radial operators/Bergman space
000000000000 00

Separately radial case on the Bergman space

[ Raul Quiroga-Barranco, Nikolai Vasilevski (2007):
Commutative C*-algebras of Toeplitz operators on the unit ball, .
Bargmann-type transforms and spectral representations of Toeplitz operators.
Integral Equ. Oper. Theory. DOI: 10.1007/s00020-007-1537-6.

They worked with maximal abelian subgroups of the Mobius group
and diagonalized Toeplitz operators with group-invariant symbols.
Jointly with Alejandro Herndndez Arteaga,

we studied three of these cases using the scheme above.

In this talk, we will see the separately radial (= quasi-radial) case.


https://doi.org/10.1007/s00020-007-1537-6
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A?(B,, fin.a), the analytic Bergman space

B, ={zeC": |z] <1}.

Mn+a+1)

dna = Cn,a 1-— 2ad n ' noa = 7 . a4y -
fnal) = (1= 2)* (), o = o

A? = A%(By, ina) = holomorphic functions belonging to L2(B,, fin.q)-

Mt +atl) ;,
N,
Tntat+y 20 4€70

Orthonormal basis: bj(z) = \/

1

Reproducing kernel of 42 K:¥(w) = 0 (w2
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Group RJ_ and its dual group

G=R; =T", where Ror = R/(27Z).

v := the normalized Haar measure on G.

G = Z" with the counting measure U.

Pairing between G and G:

E(u+ 272", &) =& (49,
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Rotations acting in .A?

G=R5_ =T".
Action of G on B,:

Tot(g)(2) = (ei Blz, ... eén z,).
Unitary representation of G in B,:

(Prot(8)F)(2) = f(Tror(—g)z) = l‘—(e_ig1 Z1,. .. ,e_ig” z,,).
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Passing to the polar coordinates

Let Y be the base of B, considered as a Reinhard domain:
Y = {y €0, +00)":  |y]2 < 1}.
We consider Y with the Lebesgue measure .
Opolar: G X Y — B, Ppolar(U, V) = (vr €'Y, ... vyeltn).

For every f in A2, we define Upolarf € L2(G x Y),

(Upotar ) (11, v) = /2m)7 o vt v (1= [v2)*"? F(potar(t, ).

H = Upo|a,(.A2). Upolar : A% — H is an isometric isomophism.
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Transformation of RK by a weighted change of variable

‘ H; < CX, Hilbert space

U unitary ‘ H, < CY, Hilbert space
(UF)(w) = p(w)f(p(w))

RK (KX)XGX

Then the following function is the RK of H;:
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Passing to the polar coordinates

The reproducing kernel of H is

(2m)" Cna (1= lyP)*? (1= |v[)*/? TTiey Vokvi
n _ n+a+1 )
<1 — Zyk Vi e|(Uka)>

k=1

Kyy(u,v) =

We see that K ,(u,v) = Ko,y (u— x,v).

Furthermore, Uyolar intertwines pyo: with horizontal translations:

Vg eG Upolar prot(g) = PGx Y(g) Upolar-
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Upolar intertwines the rotations acting in A?

with the horizontal translations acting in H

o ]
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Computation of L

Ko,y (-, v) decomposes into the Fourier series:

Koy (u,v) = (2m)" cna (1= V)2 (1 = yP)*? TT vviriex
k=1

Mn+El+a+1) ¢ ¢ iwe
2 dfrarn VT

€EN?

For £ in Ng, the £th Fourier coefficient is  L¢ ,(v) = ge(y) ge(v) ., where

_2rT(n A+l Fa+l) o ovage 1T Gt
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Conclusions

In this example:

Q =Ng,

dg = 1 for £ in Ng,

C(prot) = C(pH) =V = L(Ng).

V is commutative.




Separately radial operators/Bergman space
00000000000 e00

The eigenvalues of separately radial Toeplitz operators in A%(B,)

We suppose that ¢ € L*(Y).

1) = [ 20 14e() dua(v)

M(n+ ¢ +a+1)
N ETM(a+1)

[ eVO @ 1th)" ¢ dun(e).

|t|1<1

Here |t|y = t1 + -+ + tp.

This formula coincides with the formula found by Quiroga-Barranco and Vasilevski.
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Separately radial operators on the pluriharmonic Bergman space

. . 1 1
Reproducing kernel: (1= (w,2))"i7a + (1— (z, w))rHi+a -1

The analysis of separately radial operators is similar to the analytic case, but
Q=NjuU(—Np)"={0,1,2,...}"u{0,—-1,-2,...}".
V= [>®(Q). C*-alg(sep. radial Toeplitz operators) is not weakly dense in V.

[ Jingyu Yang, Liu Liu, Yufeng Lu (2013).
[§ Maribel Loaiza, Carmen Lozano (2014).
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Separately radial operators on the pluriharmonic Bergman space

Q= NS U (—No)n.
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This is a beginning of a joint work with

Gerardo Ramos Vazquez, Armando Sanchez Nungaray, and Erick Lee Guzman.

At the moment, we have applied the G x Y scheme
to the vertical operators on the m-analytic Fock space F,,(C!).

Our results are similar to the following two papers.

[§ Nikolai L. Vasilevski (2000):
Poly-Fock spaces.
[M Armando Sanchez-Nungaray, Carlos Gonzalez-Flores,
Raquiel Rufino Lépez-Martinez, Jorge Luis Arroyo-Neri (2018):

Toeplitz operators with horizontal symbols acting on the poly-Fock spaces.



Vertical operators/poly-Fock space
0O0®0000000000

Polyanalytic Bargmann—Segal-Fock space

Fm = m-analytic functions C — C, square integrable with weight e 17,
1 LR 1/2
Iz = (5 [ o))
T JC

[ Nour eddine Askour, Ahmed Intissar, Zouhair Mouayn (1997)
computed the reproducing kernel of this space:

zw (1
KIm(w) = L (jw — zP).
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Polyanalytic Steinwart—Hush—Scovel space

Sm = m-analytic functions C — C such that
1 1/2
Iflls,, = (/ |f(z)\2exp (—2 Im(z)z) du2(2)> < 4o00.
™ JC
Isometric isomorphism U]"’;’;: Fm — Sm,
(UFnf)(2) = e =/ f(2).

Reproducing kernel of Sp,:

KSn(w) = e 22" 10 (jw — 2?).
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The original Steinwart-Hush—Scovel space on C”

@ Ingo Steinwart, Don Hush, Clint Scovel (2006).

Analytic functions on C” such that

n

na2n
2 /C" £ (2)|? exp (—40422 Im(zj)z) dpon(z) < +oo.

n
™ j=1

Reproducing kernel:
n
exp (—a2 Z(WJ - zj)2) .
j=1

Its restriction to R" (the Gaussian kernel) is widely used in machine learning.



Vertical operators/poly-Fock space
0O0000e0000000

“Flattened poly-Fock space”

Isometric isomorphism U;‘;’: Fm — Hm < L2(R?),

/4 2.2
Uy = (2) e ki)

Reproducing kernel of H ,:

2 u—x)2+(v—y)? .
Key(v) = [ e 30O 0 (=202 4 (v = 0)P)

We see that Ky ,(u,v) = Ko, (u— x, v).
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S, and H,, are “flattened” versions of the poly-Fock space F,,

Steinwart S,
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Weyl operators and horizontal translations

Unitary representation of R in Fp:
(p7,(a)f)(2) = f(z —a) e 7.
Unitary representation of R in Sp,:
(rsn(a)f)(2) = f(z — a).

Unitary representation of R in Hp,:

(Prn(A)f)(x,y) = F(x —a,y).
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Three Hilbert spaces and corresponding unitary representations of R

USm UHm
]'—m m
m_ ) m_ .
frs| f(z - a) e % frs | flz—a) f s | F(x—a,y)
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Fourier connection between Laguerre and Hermite functions

f/ T (02 ) du = 2”1n! < (5:;;) Fin (5\;) '
Equivalently,
e e wo () wl().

1

\/2" nl\/T

¥ Gerald B. Folland (1989). Harmonic Analysis on Phase Space.

Here v, is the nth Hermite function:  ¥p(t) = e /2 H,(t).
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Fourier transform of the reproducing kernel of H,,

For every &, y, v in R,
1 m—1
L v:—/K u,v) e U duy = ; ie(v),
ey(v) Vo Je 0.y (u, v) j;o 9,¢(¥)qj¢(v)
where €12
v
ge(v) = 24y ( /2 ) :
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Conclusions

Q=R

For every { in R, de = dim(ltlg) =m.

For every € in R, (qo,@ qie, - qm—l,{) is an orthonormal basis of Iflg.
Clp7n) = Clpsn) = Clouy) =V = L2(R, M,(C)) = L*(R) @ M,(C).

Vertical operators in F,,, = bounded matrix-functions on R.
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Possible themes for future works

Vertical operators in Fp,,(C").

Angular operators in the wavelet spaces.

e More generally, shift-invariant operators associated to coherent states.

Quasi-hyperbolic and quasi-nilpotent case in A?(B, finq)-

Compute directly the Fourier transform of the reproducing kernel
of the m-poly-Bergman space on the upper half-plane.

Radial operators in many RKHS over the unit disk.
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