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Polyanalytic functions from the
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Polyanalytic functions

We will deal with the functions defined in the domain D being
either he unit disk D in the complex plane, or the entire plane C.
Recall that an n-differentiable function φ is called n-polyanalytic if
it satisfies in D the equation

∂nφ

∂zn
= 0, n ∈ N.

As known (Balk), the above condition is equivalent to the
following its representations

φ =
n−1∑
q=0

zqfq,

where all fq are analytic functions.
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Step to a general situation

Observe: two operators zI and ∂
∂z act invariantly on the linear

space of all smooth function in D, and satisfy the relation[
∂

∂z
, z

]
=

∂

∂z
z − z

∂

∂z
= I .

This is a particular case of the following general situation.

Lemma
Let L be a linear space, which is invariant under the action of the
two operators a and b and satisfying therein the relation

[a, b] = I .

Then an element h ∈ L satisfies the equation anh = 0 if and only if
it admits the representation

h =
n−1∑
s=0

bshs , with hs ∈ ker a.
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Observation

Let us mention some properties.

As known [a, b] = I easily implies [a, bn] = nbn−1, for all n ∈ N,
which, in turn, yields that for each h ∈ ker a and all n ∈ N,

abnh = nbn−1h.

By induction, for all h ∈ ker a, we have then

akbnh =


n(n − 1) · · · (n − k + 1)bn−kh, if k < n

n!h, if k = n

0, if k > n

.

Home Page: https://www.math.cinvestav.mx/˜nvasilev



Several important properties

Introduce the following subspaces of L

L[1] = ker a = {h ∈ L : ah = 0} and L[n] := bn−1L[1], n ∈ N,

Denote then by L0 the subspace of L formed by finite linear
combinations of elements from the linear subsets L[n], n ∈ N.
Unless otherwise specified, in what follows we will always consider
operators a and b (and those generated by them) in their action on
elements of L0.

Lemma
The kernel of the operator b is trivial, ker b|L0 = {0}.

Corollary

For each n ∈ N, the operator b maps linearly independent elements
of L[n] onto linearly independent elements of L[n+1], implying thus
that dim L[n] = dim L[n+1].
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Several important properties

Corollary

For all k ̸= n, the intersection of the subspaces L[k] and L[n] is
trivial, L[k] ∩ L[n] = {0}.

Note that the above Lemma admits the following equivalent
reformulation.

Lemma
An element h ∈ L satisfies the equation anh = 0 if and only if

h ∈ L[1] + L[2] + . . .+ L[n].
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Extended Fock space construction
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Fock space formalism

We add now a Hilbert space structure to the above pure linear
algebra considerations.
A formal construction of the Fock space is based on the two
formally adjoint operators a and b = a† defined on a dense linear
subset of a separable Hilbert space H, where they act invariantly
and satisfy the commutation relation [a, a†] = I .
There also exists a normalized element |0⟩ := Φ0 ∈ H, ∥Φ0∥ = 1,
called the vacuum vector, such that aΦ0 = 0, and the linear span
of elements (a†)nΦ0 with n ∈ Z+ is dense in H.

Example (Berezin)

Let H = F2(C) be the space of all anti-analytic functions f (z)
endowed with the scalar product

⟨f , g⟩ = 1

π

∫
C
f (z)g(z)e−|z|2dxdy , z = x − iy ,

and a = ∂
∂z , a

† = z with Φ0 = 1.
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Extended Fock space construction

Introduce the three-dimensional Heisenberg algebra H3 = {a, b, 1}
with commutators [a, b] = 1 and [a, 1] = [b, 1] = 0.
Extended Fock space construction is given by the representation of
the algebra H3 in a separable Hilbert space H:

There are a separable Hilbert space H and operators a and b
defined on their natural (maximal) domains Da and Db both dense
in H and such that
- there is a linear subset D ⊂ Da ∩ Db, dense in H and invariant
under the action of a and b, on which they satisfy the relation

[a, b] = I ;

- the linear subset ker a|D := L[1] = {h ∈ D : ah = 0} spanned by
vacuum vectors, is non-trivial with dim L[1] ≥ 1;
- the set D0, formed by finite linear combinations of elements from
the linear subsets L[n] := bn−1L[1], n ∈ N, is dense in H.
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Remarks

The classical Fock formalism corresponds to the case when b = a†

and L[1] is one-dimensional, being generated by a single element
|0⟩ := Φ0 ∈ H.

The operators a and b generate in fact the representation of the
universal enveloping algebra of H3 in D0 ⊂ H.

As examples show, the subspases L[n] may or may not be closed, as
well as, they may or may not be mutually orthogonal to each other.
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Examples

Two classical examples: H = L2(D, dνλ), where λ > −1 and the
measure dνλ is given by

dνλ(z) = (λ+ 1)(1− |z |2)λdA(z), dA(z) = 1
πdxdy ,

and H = L2(C, dµα), where the Gaussian measure dµα is given by

dµα(z) = αe−α|z|2dA(z), for α > 0.

In both cases, a = ∂
∂z and b = z is the multiplication by z

operator; D = D0 consists of finite linear combinations of the
monomials mp,q = zpzq, p, q ∈ Z+, and ker a coincides with the
set of all analytic polynomials (polynomials on z).
Note that the linear set D = D0 is nothing but the set of all
polyanalytic polynomials, i.e., the set of all functions

φ =
n−1∑
q=0

zqfq,

where all fq are analytic polynomials.
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Examples

A natural extension of the previous example is as follows:

Let D be either D or C. We set H for any weighted Hilbert space
L2(D, ω), with the probability measure dν(z) = ω(|z |)dA(z),
whose radial weight function ω : D → R+ is such that the linear
span of the monomials mp,q := zpzq, for all p, q ∈ Z+, is dense in
H.
Here, as in the previous example, a = ∂

∂z and b = z , D = D0 is the
linear set of all polyanalytic polynomials, and ker a coincides with
the set of all analytic polynomials.

In the above examples ker a is infinite dimensional, and the
operators a and b are not formally adjoint. Indeed,

⟨azn, zn+1⟩ = ⟨0, zn+1⟩ = 0,

while

⟨zn, bzn+1⟩ = ⟨zn, zzn+1⟩ = ⟨zn+1, zn+1⟩ = ∥zn+1∥2 ̸= 0.
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Examples

Let H = L2(C, dµ) be the Hilbert space of square-integrable
functions on C with the Gaussian measure

dµ(z) = e−z·z̄dA(z) .

Introduce

a =
∂

∂z
− ωz and b = z .

The functions φ, satisfying the equation aφ = 0, are the particular
case of the so-called generalized analytic functions introduced and
studied by I. Vekua. Generically they are the functions that satisfy
the equation

∂φ

∂z
+ A(z)φ+ B(z)φ = 0.

In our case A(z) = −ωz , B(z) = 0.

It is easy to see that [a, b] = I .
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Examples

Of course we can also consider:

- H = L2(D, dνλ) and a = ∂
∂z , b = z ;

- H = L2(C, dµ) and a = ∂
∂z , b = z ;

- H = L2(C, dµ) and a = ∂
∂z − ωz b = z .

These examples leed to the anty-polyanalytic type spaces.
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Examples

We give also two examples with b = a†.

Take H = L2(C, dµ) with the Gaussian measure

dµ(z) = e−z·z̄dA(z) ,

And let

a =
∂

∂z
and a† = − ∂

∂z
+ z .

Again, let D = D0 be the linear set of all polyanalytic polynomials,
and ker a coincides with the set of all analytic polynomials.

Note that the closure in L2(C, dµ) of the ker a coincides with the
classical Fock space F 2(C), being the closed subspace of
L2(C, dµ), which consists of all analytic in C functions.
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Examples

Again let H = L2(C, dµ) with the Gaussian measure

dµ(z) = e−z·z̄dA(z) .

Then, for ω < 1
2 . consider

aω =
1√

1− 2ω

(
∂

∂z
− ωz

)
a†ω =

1√
1− 2ω

(
− ∂

∂z
+ (1− ω)z

)
In this case the closure in L2(C, dµ) of the ker a coincides with the
Vekua space V2(ω,C), to be described later on.

For ω = 0, we return to the previous example.
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Properties, continuation

Having at hand the Hilbert space structure, we extend now the
properties of the spaces L[n], setting L0 = D0.
Let us order the system of subspaces {L[n]}n∈Z+ by the rule

L[n1] ≺ L[n2] if only if n1 < n2.

The following lemma justifies the names lowering and raising for
the operators a and b, respectively.

Lemma
For each n ∈ Z+, the operators a and b, restricted correspondingly
on L[n+1] and L[n], act as isomorphisms between the following
spaces
a|L[n+1]

: L[n+1] −→ L[n] and b|L[n] : L[n] −→ L[n+1].

Moreover, the operators ab and ba, being restricted on L[n] and
L[n+1], respectively, act as the scalar operators,

ab|L[n] = nI : L[n] −→ L[n] and ba|L[n+1]
= nI : L[n+1] −→ L[n+1].

Home Page: https://www.math.cinvestav.mx/˜nvasilev



Properties, continuation

For each n ∈ N, the operator ab can be extended by continuity
from L[n] to its closure L[n] = clos L[n], so that ab|L[n] = nI .

The operator ab, initially defined on D0, can be extended to a
wider domain being the linear span of L[n], and even more to

D# =
{
f =

∑
n∈N fn ∈ H : fn ∈ L[n] and

∑
n∈N nfn ∈ H

}
.

Corollary

Each space L[n] is the invariant subspace of the operator ab,

defined on D#. All of them are eigenspaces of ab, whose
corresponding eigenvalues are n.

Corollary

For all k ̸= n, the intersection of the closed subspaces L[k] and L[n]
is trivial, L[k] ∩ L[n] = {0}.
Corollary

Any finite number of spaces L[k1], L[k2], ..., L[kn] are linearly
independent.
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Direct and orthogonal sum

The linear span of finite number H1, H2, ...,Hn of linearly
independent subspaces of H is called the direct sum and is denoted
by

H1 ∔ H2 ∔ . . .∔ Hn,

in case when they are additionally pairwise orthogonal, we write

H1 ⊕ H2 ⊕ . . .⊕ Hn,

and call it the orthogonal sum.

Note that, given even just two closed subspaces H1 and H2 with
trivial intersection, H1 ∩ H2 = {0}, (equivalently being linearly
independent), their direct sum H1 ∔ H2 may not be closed.

It depends on the so-called minimal angle between them.
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Minimal angle between subspaces

The minimal angle φ(m)(H1,H2) between two closed subspaces H1

and H2 of a Hilbert space H is defined as

cosφ(m)(H1,H2) = sup {|⟨x , y⟩| : x ∈ H1, y ∈ H2 and ∥x∥ = ∥y∥ = 1} .

Recall in this connection the criterion of when the direct sum of
two closed spaces is closed.

Lemma (I. Gohberg, A. Markus, ’59)

The direct sum of two closed subspaces, that intersect only by
zero, is closed if and only if the minimal angle between them is
grater then zero.

For each n ∈ N, the space L[1] ∔ L[2] ∔ . . .∔ L[n] is not necessarily
closed, even in the case when all L[k] are closed.

An example will be given later on.
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We define thus

Ln = clos (L[1] ∔ L[2] ∔ . . .∔ L[n]) = clos (L[1] ∔ L[2] ∔ . . .∔ L[n]),

with the convention that L1 = L[1].
There might be elements h ∈ Ln with anh = 0 such that

h =
n−1∑
k=0

zkhk , but zkhk /∈ L[k].

Note that the nested spaces Ln form an infinite flag
L1 ⊂ L2 ⊂ . . . ⊂ Lk . . . ⊂

⋃
n∈N Ln ⊂ H,

and the density of D0 in H implies

H = clos

(⋃
n∈N

Ln

)
,

Introduce also the spaces L(n) = Ln ⊖ Ln−1 = Ln ∩ L⊥n−1, then the
equivalent representation of H is

H =
⊕
n∈N

L(n).
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Lie-algebraic characterization

Consider three invariantly acting on D0 operators

J+n = b2a− (n − 1) b,

J0n = ba− n−1
2 ,

J−n = a.

For all n ∈ C these operators obey the sl(2)-algebra commutation
relations [J−n , J

+
n ] = 2J0n and [J±n , J

0
n ] = ∓J±n .

For n ∈ N the space

L[1] ∔ L[2] ∔ . . .∔ L[n]

is the maximal by inclusion subspace in D0, which is invariant
under the action of the operators J+n , J0n and J−n .

The space Ln thus can be defined alternatively as the closure of
the maximal by inclusion subspace in D0, which is invariant for the
action the operators J+n , J0n , J

−
n in H, obeying the sl(2)-algebra

commutation relations.
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Additional properties in case of b = a†

Proposition

Different subspaces L[n] and L[m] are orthogonal to each other. For
all k = 2, 3, ..., the raising operator

1√
k−1

a†|L[k−1]
: L[k−1] −→ L[k]

is an isometric isomorphism, and the lowering operator

1√
k−1

a|L[k] : L[k] −→ L[k−1],

is its inverse.

The proposition implies that the domain D0 of the operators a and
a† can be extended to a wider domain Dext being the linear span
of all L[k], and that ker a|Dext = L[1] is the closed subspace of H.
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The mutual orthogonality of the spaces L[k] implies that

Ln = clos (L[1]∔L[2]∔. . .∔L[n]) = L[1]⊕L[2]⊕. . .⊕L[n] and L[n] = L(n),

resulting

H =
⊕
n∈N

L(n) =
⊕
n∈N

L[n].

Corollary

The operator V defined initially on each L(k), k ∈ N, by

V |L(k) =
1√
k
a†|L(k) : L(k) −→ L(k+1)

extends by continuity to a pure isometry on H, with
(ImV )⊥ = kerV ∗ = L(1).
Its adjoint operator V ∗ is given by the following action on the
subspaces L(k)

V ∗|L(k) =

{
1√
k−1

a|L(k) : L(k) −→ L(k−1), k > 1

a|L(1) : L(1) −→ {0}, k = 1
.
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Corollary

The operators a and a† admit the extension to the common domain

D#
ext =

{
h =

∑
k∈N

hk ∈ H : hk ∈ L(k) and
∑
k∈N

k∥hk∥2 <∞

}

by

a :
∑
k∈N

hk 7−→
∑
k∈N

√
kV ∗hk and a† :

∑
k∈N

hk 7−→
∑
k∈N

√
kVhk ,

on which they are mutually adjoint.

Lemma
In case b = a†, we have

ker an = {h ∈ H : anh = 0}

= Ln =

{
h ∈ H : h =

n−1∑
k=0

(a†)kgk , gk ∈ ker a

}
.
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Theorem
Let H be a separable infinite dimensional Hilbert space. Then the
following statements are equivalent:

1 there is a pure isometry V in H;

2 the Hilbert space H admits the orthogonal sum decomposition

H =
∞⊕
k=1

H(k),

where all H(k) have the same (finite or infinite) dimension;

3 there are two formally adjoint lowering and raising operators a
and a†, that act invariantly on a common domain D dense in
H, such that the following commutation relation holds

[a, a†] = I ,

the set L(1) = ker a is a closed subspace of H, and the linear

span of the spaces L(n) := (a†)n−1L(1) is dense in H.
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Theorem continuation

Moreover, the subspaces H(k) in the decomposition

H =
∞⊕
k=1

H(k),

are related to the operators V , a and a† as follows

H(1) = kerV ∗ = ker a

H(k) = V k−1(kerV ∗) = (a†)k−1(ker a), for k > 1.

As a consequence, each one of the theorem items can be used (and
will be used) in the characterization of the polyanalytic type spaces.
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In particular, the Fock space construction can be done starting with
a separable Hilbert space H and a pure isometry V acting on it.

Introduce the closed subspaces L(k) := V k−1(kerV ∗) and define

the operators a and a† by their action on subspaces L(k) as the
weighted versions of the operators V ∗ and V :

a : hk ∈ L(k) 7−→

{√
k − 1V ∗hk , k > 1

0, k = 1
,

a† : hk ∈ L(k) 7−→
√
kVhk , k ∈ N,

and extend then a and a† to the domain Dext , which consists of
finite linear combinations of elements from all L(k).
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It is well known that a pure isometry is determined up to a unitary
equivalence by its multiplicity, i.e., two pure isometries V1 and V2,
acting on separable Hilbert spaces H1 and H2 respectively, are
unitary equivalent, that is there exists a unitary operator
U : H1 → H2 such that V2 = UV1U

∗, if and only if

dim kerV ∗
1 = dimkerV ∗

2 .

That is, all, up to a unitary equivalence, extended Fock space
constructions are determined by a singe parameter

d = dim ker a = dimkerV ∗ ∈ N = N ∪∞.

We denote by Fd any of the extended Fock spaces constructed in
the described way and corresponding to the parameter d.

We will propose later on a canonical, in a sense, representation of
Fd for each d ∈ N.

The case of d = 1 returns us to the classical Fock space formalism.
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Operator aa†

Given d ∈ N, let us consider the extended Fock space Fd in its
realization on a separable Hilbert space H together with the
operators a and a† with dim ker a = d.
The operator aa† is Hermitian, being defined on Dext , and act
therein by the rule

aa† :
∑
k∈N

hk 7−→
∑
k∈N

khk , where hk ∈ L(k).

The operator aa† becomes self-adjoint being extended to its
natural domain

D# =

{
h =

∑
k∈N

hk ∈ H : hk ∈ L(k) and
∑
k∈N

∥khk∥2 <∞

}

with the same action.
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Operator aa†

We denote by Pk = Pk(d) the orthogonal projection of

H =
⊕
n∈N

L(n)

onto L(k). Note that, for each k , dimRangePk = d.

Then the operator aa† admits the representation

aa† =
∑
k∈N

kPk ,

understood in the strong operator topology.
This implies immediately the the spectrum of aa† consists only on
eigenvalues of multiplicity d, sp (aa†) = N, and the eigenspace,
that corresponds to k , is L(k).
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Example: Harmonic Oscillator

It is the operator

H =
1

2

(
− d2

dx2
+ x2

)
,

densely defined in L2(R).
Consider the following representation of F1: H = L2(R),
a = 1√

2

(
x + d

dx

)
and a† = 1√

2

(
x − d

dx

)
. Then,

H = aa† − 1
2 I =

∑
k∈N

(k − 1
2)Pk ,

which implies that the spectrum of the operator H consists of
infinitely many equidistant eigenvalues,

λk = k − 1
2 , k ∈ N ,

and the corresponding eigenspaces are Hk−1(x)e
− x2

2 , where Hn are
Hermite polynomials.
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Example: Landau magnetic Hamiltonian

It is the operator

∆̃ = − ∂2

∂z ∂z
+ z

∂

∂z
,

densely defined in L2(C, dµ) with the Gaussian measure
dµ(z) = 1

π e
−|z|2dxdy .

Consider the following representation of F∞: H = L2(C, dµ),
a = ∂

∂z and a† = − ∂
∂z + z .

Then,

∆̃ = aa† − I =
∑
k∈N

(k − 1)Pk ,

which implies that the spectrum of the operator ∆̃ consists of
infinitely many equidistant eigenvalues, each of infinite multiplicity
(Landau levels), they are of the form

λk = k − 1 , k ∈ N ,

and the corresponding eigenspaces are L(k) = F 2
(k)(C), the

true-k-poly-Fock spaces.
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Example: Perturbed Landau magnetic Hamiltonian

Given ω < −1
2 , it is the operator

∆̃ω =
1

1− 2ω

{
− ∂2

∂z ∂z
+ (1− ω)z

∂

∂z
+ ωz

∂

∂z
+ ω(1− ω)zz + ω

}
,

densely defined in L2(C, dµ) with the Gaussian measure
dµ(z) = 1

π e
−|z|2dxdy .

Consider the following representation of F∞: H = L2(C, dµ),
aω = 1√

1−2ω

(
∂
∂z − ωz

)
and a†ω = 1√

1−2ω

(
− ∂

∂z + (1− ω)z
)
.

Then,

∆̃ω = aωa
†
ω − I =

∑
k∈N

(k − 1)Pk ,

which implies that the spectrum of the operator ∆̃ω consists of
infinitely many equidistant eigenvalues, each of infinite multiplicity,
they are of the form

λk = k − 1 , k ∈ N ,

and the corresponding eigenspaces are L(k) = (a†ω)k−1(ker aω), the
true-k-poly-Vekua spaces.
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Polyanalytic type spaces in C
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Fock space

We start with H = L2(C, dµ) with the Gaussian measure

dµ(z) = e−z·z̄dA(z),

and the following lowering and raising operators

a =
∂

∂z
, a† = − ∂

∂z
+ z .

Recall that the classical Fock space F 2(C) is the closed subspace
of L2(C, dµ), which consists of all analytic in C functions.

Alternatively, it can be defined as the (closed) subspace of all
smooth functions satisfying the Cauchy–Riemann equation

aφ =
∂φ

∂z
= 0.
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Poly-Fock spaces

Introduce also the poly-Fock spaces: for each k ∈ N, the
k-poly-Fock space F 2

k (C) is the closed set of all smooth functions
from L2(C, dµ) satisfying the equation

ak φ =

(
∂

∂z

)k

φ = 0.

It is convenient to introduce the spaces

F 2
(k)(C) = F 2

k (C)⊖ F 2
k−1(C), for k > 1,

F 2
(1)(C) = F 2

1 (C) = F 2(C), for k = 1.

We call the space F 2
(k)(C) the true-k-Fock space. It is evident that

F 2
k (C) =

k⊕
p=1

F 2
(p)(C).
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We have then

Proposition

The space L2(C, dµ) admits the following decomposition

L2(C, dµ) =
∞⊕
k=1

F 2
(k)(C).

An equivalent to the above proposition statement can be
formulated in terms of the k-Fock spaces as follows.

Corollary

The set of k-Fock subspaces F 2
k (C), k ∈ N, of the space L2(C, dµ)

forms an infinite flag in L2(C, dµ)

F 2
1 (C) ⊂ F 2

2 (C) ⊂ ... ⊂ F 2
k (C) ⊂ ... ⊂

∞⋃
k=1

F 2
k (C) ⊂ L2(C, dµ),

and

L2(C, dµ) =
∞⋃
k=1

F 2
k (C).
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Properties of the poly-Fock spaces

Proposition

For each k = 2, 3, ..., the operator

1√
k−1

a†|F 2
(k−1)

(C) : F
2
(k−1)(C) −→ F 2

(k)(C)

is an isometric isomorphism, and the operator

1√
k−1

a|F 2
(k)

(C) : F
2
(k)(C) −→ F 2

(k−1)(C) ,

is its inverse.
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And for each k ∈ N, the operator

A(k) :=
1√

(k−1)!
(a†) k−1|F 2(C) : F

2(C) −→ F 2
(k)(C) ,

gives an isometric isomorphism between the Fock space F 2(C) and
the true-poly-Fock space F 2

(k)(C).

Corollary

Each function ψ(z , z) from the true-k-Fock space F 2
(k)(C) is

uniquely defined by a function φ(z) ∈ F 2(C) and has the form

ψ(z) = ψ(z , z) =
k−1∑
m=0

(−1)m
√
(k − 1)!

m! (k − 1−m)!
z k−1−m φ(m)(z),

where φ(m) is the m-th derivative of the (analytic) function φ, and

∥ψ∥F 2
(k)

(C) = ∥φ∥F 2(C).
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Properties of the poly-Fock spaces

Theorem
Each function φ(z , z) ∈ F 2

k (C) is uniquely defined by k functions
f1(z), ..., fk(z) from the Fock space F 2(C) and admits the
representation

φ(z , z) =
k∑

ℓ=1

zℓ−1 · φℓ(z),

where the analytic in C functions φℓ(z) have the form

φℓ(z) =
k∑

p=ℓ

(−1)p−ℓ

√
(p − 1)!

(p − ℓ)! (ℓ− 1)!
f
(p−ℓ)
p (z).

Note that φk(z) =
fk (z)√
(k−1)!

∈ F 2(C), while the others φℓ(z), with

ℓ = 1, 2, . . . , k − 1, generically do not belong to F 2(C).

Home Page: https://www.math.cinvestav.mx/˜nvasilev



In terms of basis elements

As known, the elements ep,q, with p, q ∈ Z+, of the orthonormal
basis in L2(C, dµ) are polynomials in z and z , whole leading term
is a multiple of zpzq, and are given by

ep,q(z , z) =
√
p!q!

min{p,q}∑
k=0

(−1)k

k!(p − k)!(q − k)!
zp−kzq−k .

Apart of the operators a and a†, we introduce also formally adjoint
operators

ã =
∂

∂z
, ã† = − ∂

∂z
+ z , with [ã, ã†] = I ,

that act invariantly on the common dense in L2(C, dµ) domain
D0, being the span of all polynomials zpzq or, equivalently, the
span of all basis elements ep,q, with p, q ∈ Z+.
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Note that the first basis element e0,0 = 1, is the function identically
equals to 1, and all other basis elements are connected with it by

ep,q =
1√
p!q!

(a†)q(ã†)pe0,0 =
1√
p!q!

(ã†)p(a†)qe0,0.

Introduce then the anti-Fock space F̃ 2, which consists of all
anti-analytic functions from L2(C, dµ), being ker ã.
For all integers n > 1 we introduce also the n-poly-anti-Fock
spaces F̃ 2

n , which consist of all n-anti-polyanalytic functions from
L2(C, dµ) and are ker ãn.
It is easy to figure out, these spaces, in therms of basis elements
ep,q, admit the following representations

F 2 = F 2
1 = span {ep,q : p ∈ Z+, q = 0},

F 2
n = span {ep,q : p ∈ Z+, q = 0, 1, . . . , n − 1},

F̃ 2 = F̃ 2
1 = span {ep,q : p = 0, q ∈ Z+},

F̃ 2
n = span {ep,q : p = 0, 1, . . . , n − 1, q ∈ Z+}.
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Representation of generalised Fock spaces Fd

Given d ∈ N, our canonical realization of the generalised Fock
spaces Fd is given as follows.
We set Hd = F̃ 2

d (the set of polynomials in z of degree d− 1 with
anti-analytic coefficients), if d is finite, and H∞ = L2(C, dµ),
if d is infinite, and introduce

a =
∂

∂z
, a† = − ∂

∂z
+ z ,

which are mutually adjoint being defined on

D#
ext(d) =

{
f =

∑
k∈N

fk : fk ∈ F 2
(k) ∩Hd and

∑
k∈N

k∥fk∥2 <∞

}
.

Note that if d = 1, this is exactly the already considered Berezin
example: H = F̃ 2(C) is the space of all anti-analytic functions in
L2(C, dµ), and a = ∂

∂z , a
† = z with Φ0 = 1.
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Generalised polyanalytic function spaces

Given ω ∈ R, we start with two, invariantly acting on the linear set
of all smooth in C functions, operators

a =
∂

∂z
− ωz , and b = z , with [a, b] = I .

The set of all functions f , satisfying af = 0, forms a class of the
generalized analytic functions Aω := A(−ωz , 0;C) (in the Vekua
notation), and, as it easily seen, consists of all functions of the form

f (z) = eωzzφ(z), with analytic φ(z).

Then n-poly-generalized analytic functions (those satisfying
ang = 0) are of the form

g =
n−1∑
k=0

zk fk , with fk ∈ Aω,

or
g = eωzzφn(z), with n-poly-analytic φn(z).
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Poly-Vekua spaces

We define then the Vekua space (ω-Vekua space) by

V2 := V2(ω,C) = L2(C, dµ) ∩ A(−ωz , 0;C).

Calculate

∥f ∥2L2(C,dµ) = ∥eωzzφ(z)∥2 =
∫
C
|φ(z)|2e−(1−2ω)|z|2dA(z).

That is V2 is non-trivial if and only if ω < 1
2 , and f ∈ V2 if and

only if φ ∈ F 2(C, dµ1−2ω).

Introduce also the n-poly-Vekua space V2
n as the set of all

functions g in L2(C, dµ) that satisfy the equation ang = 0.

Then g = eωzzφn(z) ∈ V2
n if and only if φn(z) ∈ F 2

n (C, dµ1−2ω).
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Isomorphism

Introduce the unitary operator Uω : L2(C, dµ) → L2(C, dµ1−2ω) by

Uω : f 7−→ 1√
1−2ω

e−ω|z|2f ,

its inverse U−1
ω : L2(C, dµ1−2ω) → L2(C, dµ) is given by

U−1
ω : h 7−→

√
1− 2ω eω|z|

2
h.

Lemma
For each n ∈ N, the operator Uω gives the isomertical isomorphism
between the n-polyanalytic type spaces: V2

n and F 2
n (C, dµ1−2ω):

Uω : V2
n −→ F 2

n (C, dµ1−2ω).

Recall that the operators

a1−2ω = 1√
1−2ω

∂
∂z and a†1−2ω = − 1

1−2ω
∂
∂z +

√
1− 2ω z

are formally adjoint in L2(C, dµ1−2ω), being defined on the span of
all poly-Fock spaces F 2

n (C, dµ1−2ω).
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Corollary

The operators

aω = U−1
ω a1−2ωUω = 1√

1−2ω

(
∂
∂z − ω z

)
a†ω = U−1

ω a†1−2ωUω = 1√
1−2ω

(
− ∂

∂z + (1− ω)z
)

are formally adjoint in L2(C, dµ), being defined on the span of all
poly-Vekua spaces V2

n .

Each function ψ(z , z) from the true-n-poly-Vekua space
V2
(n) = V2

n ⊖ V2
n−1 is uniquely defined by a function φ(z) ∈ V2 and

has the form
ψ(z) = ψ(z , z) = (a†ω)

n−1φ(z)

Furthermore
L2(C, dµ) =

⊕
n∈N

V2
(n).
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Polyanalytic type spaces in D
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Poly-Bergman spaces

For each λ > −1, introduce the probability measure

dνλ = (λ+ 1) (1− zz)λ dA(z), where dA(z) =
1

π
dxdy ,

and then the Hilbert space L2(D, dνλ). Recall that the system of
functions

e
(λ)
p,q := e

(λ)
p,qe

(λ)
p,q =

√
(λ+ p + q + 1)p!q!

(λ+ 1)Γ(λ+ p + 1)Γ(λ+ q + 1)

×
min{p,q}∑

k=0

(−1)k
Γ(λ+ p + q + 1− k)

k!(p − k)!(q − k)!
zp−kzq−k ,

with p, q ∈ Z+, forms an orthonormal basis in L2(D, dνλ).
We mention also that ∥zkzℓ∥2 = ∥zk+ℓ|∥2 in L2(D, dµλ) is given
by

∥zkzℓ∥2 = Γ(λ+ 2)(k + ℓ)!

Γ(λ+ k + ℓ+ 2)
.
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Poly-Bergman spaces

On the dense in L2(D, dνλ) domain

Da =

{
f ∈ L2(D, dνλ) :

∂f

∂z
∈ L2(D, dµλ)

}
introduce the operators

a =
∂

∂z
and b = z ,

which obviously satisfy the relation [a, b] = I .
Note that the operator z is bounded in L2(D, dνλ).
Introduce now the spaces

L[1] = ker a =

{
f ∈ L2(D, dνλ) : af =

∂f

∂z
= 0

}
,

which coincides with the standard weighted Bergman space A2
λ,

and

L[n] = bn−1L[1] =
{
zn−1f : f ∈ A2

λ

}
= zn−1A2

λ = A2
λ,[n], n ∈ N.
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Observe that the set D0, formed by finite linear combinations of
elements from the spaces L[n] := bn−1L[1], n ∈ N, is dense in
L2(D, dνλ), and that the operators a and b act invariantly in D0.

As known, the Bergman space A2
λ = L[1] is closed, and it is easy to

figure out that all subsequent subspaces L[n] = zn−1A2
λ are also

closed in L2(D, dνλ).

Surprise: the sum L[1] ∔ L[2] ∔ . . .∔ L[n] of closed subspaces is not
closed. In fact we have even more strong result.

Lemma
For each n > 1, the direct sum of the two closed subspaces

Ln−1 ∔ L[n] = clos (L[1] ∔ L[2] ∔ . . .∔ L[n−1])∔ L[n]

is not closed.
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Illustrative example

For the closed subspaces A2, zA2, and 2-poly-Bergman space A2
2

of the unweighted space L2(D, dA), we have

A2 + zA2 ⊊ clos (A2 + zA2) = A2
2.

To show this we represent first A2
2 = A2 ⊕A2

(2) as the orthogonal
sum of two true-poly-Bergman spaces, where

A2
(2) = span {ep,1 : p ∈ Z+} ,

with ep,1 for λ = 0. Observe that

ep,1 =
√

p + 2
[
(p + 1)zzp − pzp−1

]
= (p+1)e

(1)
p −

√
p(p + 2)ep−1,0,

where ep−1,0 and e
(1)
p are the basis elements of A2 and zA2,

respectively.
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It is sufficient now to give an example of a function from
A2

(2) ⊂ clos (A2 ∔ zA2) which does not belong to A2 ∔ zA2.

Indeed, consider

f =
∑
p∈N

1

p + 1
ep,1 =

∑
p∈N

e
(1)
p −

∑
p∈N

√
p(p + 2)

p + 1
ep−1,0.

Then the sequence of functions

fn =
n∑

p=1

1

p + 1
ep,1 =

n∑
p=1

e
(1)
p −

n∑
p=1

√
p(p + 2)

p + 1
ep−1,0 = f

(1)
n −f

(2)
n , n ∈ N,

converges in norm to f ∈ A2
(2) ⊂ A2

2, but none of f
(1)
n and f

(2)
n ,

n ∈ N, converges in A2 and zA2, respectively.
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Relations among poly-Bergman spaces

We have

A2
λ,n−1∔A2

λ,[n] = A2
λ,n−1∔zn−1A2

λ ⊊ A2
λ,n = clos (A2

λ,n−1∔A2
λ,[n]),

while
A2

λ,n−1 ⊕A2
λ,(n) = A2

λ,n.

Thus we have two different forms of the representation of
L2(D, dνλ) via polyanalytic functions:

L2(D, dµλ) = clos

(⋃
n∈N

A2
λ,n

)
and L2(D, dµλ) =

⊕
n∈N

A2
λ,(n).
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True-poly-Bergman spaces

Consider the unweighted case of H = L2(D, dA(z)), and recall that
the system of functions

ep,q(z , z) =
√

p + q + 1

min{p,q}∑
k=0

(−1)k
(p + q − k)!

k!(p − k)!(q − k)!
zp−kzq−k ,

with p, q ∈ Z+, forms its orthonormal basis.

So far we have the following description of the true-poly-Bergman
spaces

A2
(n) = A2

n ⊖A2
n−1,

where A2
n = clos(L[1] ∔ L[2] ∔ . . .∔ L[n]), obtained via not formally

adjoint operators ∂
∂z and z , and

A2
(n) = span {ep,q : p ∈ Z+, q = n − 1}
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On the operators a and a†

Our aim is to find formally adjoint operators a and a†, such that
[a, a†] = I and ker a = A2, being the Bergman space.
Then,

A2
(n) = (a†)n−1(ker a) = (a†)n−1A2.

Following A. Wünsche ’2005, on the dense in L2(D, dA) domain D,
which consists of all finite linear combinations of the basis
elements ep,q, or, which is the same, all finite linear combinations
of the monomials mp,q, we define the operators

L = z
∂

∂z
− z

∂

∂z
=

∂

∂z
z − ∂

∂z
z ,

H = −4
∂2

∂z∂z
+

(
z
∂

∂z
+

∂

∂z
z

)2

.
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The operators L and H act on the basis elements as follows

Lep,q = (p − q)ep,q and Hep,q = (p + q + 1)2ep,q.

All formulas characterizing the action of the involved operators on
the basis elements can be verified by the direct calculations.
All eigenvalues of the diagonal operator H are positive, thus all
powers Hs , with s ∈ R, are well defined, in particular

H
1
2 ep,q = (p + q + 1)ep,q.

Then introduce the diagonal operator, densely defined on D,

L(2) =
1

2

(
H

1
2 − L− 1

)
=

1

2

(
H

1
2 + z

∂

∂z
− ∂

∂z
z

)
,

which acts of the basis elements by L(2)ep,q = qep,q.

Note that ker L(2) = A2, while on (A2)⊥ = L2(D, dA)⊖A2 the
operator L(2) is diagonal, whose all eigenvalues are positive.

We will use then L−1
(2) and L

− 1
2

(2) , being well defined on (A2)⊥.
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Operators a and a†

We also need the following operators, densely defined on D,

K
(2)
− = H

1
4

[
zL(2) + (1− zz)

∂

∂z

]
H− 1

4

K
(2)
+ = H

1
4

[
zL(2) −

∂

∂z
(1− zz)

]
H− 1

4 .

These operators act on the basis elements as follows

K
(2)
− ep,q = qep,q−1 and K

(2)
+ ep,q = (q + 1)ep,q+1.

Invariant (basis indepandent) form of a and a†, satisfying
[a, a†] = I is as follows

a =

{
K

(2)
− L

− 1
2

(2) = H
1
4

[
zL(2) + (1− zz) ∂

∂z

]
H− 1

4L
− 1

2

(2) , on (A2)⊥

0, on A2
,

a† = L
− 1

2

(2)K
(2)
+ = L

− 1
2

(2)H
1
4

[
L(2)z −

∂

∂z
(1− zz)

]
H− 1

4 .
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Some (counter)examples

The situation on classification of extended Fock spaces changes
drastically in case when we do not anymore assume that b = a†.
Considering general a and b we may not expect that, for two
different H1, a1, b1 and H2, a2, b2 with dim ker a1 = dimker a2,
there exists an invertible operator S : H1 → H2 such that
Sa1S

−1 = a2 and Sb1S
−1 = b2.

Example

Let H1 = H2 = L2(D, dµλ), a1 = ∂
∂z , b1 = z and a2 =

∂
∂z ,

b2 = − ∂
∂z + z . The existence of S with SzS−1 = − ∂

∂z + z is
impossible, as the operator in the left-hand side is bounded, while
the operator in the right-hand side is unbounded.
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Examples

Note that in the above example dim ker a1 = dimker a2 = ∞, while
0 = dim ker b1 ̸= dimker b2 = ∞.
The extra condition dim ker b1 = dimker b2 does not help much.
In the next example dim ker a1 = dimker a2 = ∞ and
dim ker b1 = dimker b2 = 0.

Example

Let H1 = L2(D, dµλ), a1 = ∂
∂z , b1 = z and H2 = L2(C, dµ),

a2 =
∂
∂z , b2 = z . Again, the existence of S with SzS−1 = z is

impossible, as the operator in the left-hand side is bounded, while
the operator in the right-hand side is unbounded.

In the previous two examples the operator b1 = z was bounded,
while the operator b2 was unbounded.
In the next example all operators involved are unbounded, and
furthermore dim ker a1 = dimker a2 = ∞ and
dim ker b1 = dimker b2 = 0.
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Examples

Example

Let H1 = H2 = L2(C, dµ), a1 = a2 =
∂
∂z , b1 = z ,

b2 = a† = − ∂
∂z + z . The operators a1,2 and b1,2 are densely

defined and act invariantly on the domain D0, being the linear
span of all monomials zpzq, with p, q ∈ Z+.
Let further

L[1] = ker a1|D0 = ker a2|D0 = span{zp : p ∈ Z+},
L′[2] = b1(L[1]) = span{zzp : p ∈ Z+},

L′′[2] = b2(L[1]) = span{−pzp−1 + zzp : p ∈ Z+}.

Then L[1] + L′′[2] = L[1] ⊕ L′′[2] is a closed subspace of L2(C, dµ),
while L[1] + L′[2] = L[1] ∔ L′[2] is not closed (the minimal angle

between L[1] and L′[2] is zero).
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Assuming now the existence of the invertible operator S that
connect two extended Fock spaces of this example, we have

S−1(L[1] + L′′[2]) = L[1] + L′[2],

where the space in the left-hand side is closed, while the space in
the right-hand side is not. Contradiction.
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What is preserved?

Lemma
Given two different extended Fock spaces H1 with a1, b1 and H2

with a2, b2, for which dim ker a1 = dimker a2, there exists a
unitary operator U : H1 → H2 such that

U(L′n) = U(clos (L′[1]∔L′[2]∔. . .∔L′[n])) = clos (L′′[1]∔L′′[2]∔. . .∔L′′[n]) = L′′n,

for all n ∈ N. Here L′[n] = bn−1
1 (ker a1) and L′′[n] = bn−1

2 (ker a2).

In others words: Under the assumptions of the lemma, there exists
a unitary operator U : H1 → H2 which maps each element of the
infinite flag

L′1 ⊂ L′2 ⊂ . . . ⊂ L′n . . . ⊂
⋃
k∈N

L′k ⊂ H1

onto the corresponding element of the flag

L′′1 ⊂ L′′2 ⊂ . . . ⊂ L′′n . . . ⊂
⋃
k∈N

L′′k ⊂ H2.
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Basis oriented approach
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Nonstandard weighted Hilbert spaces

Let D be either D or C, and let J be either [0, 1) or R+, so that
D = J × T, where T is the unit circle in C.
Let H be any weighted Hilbert space L2(D, dν), with the
probability measure dν(z) = cω ω(|z |)dA(z), whose radial weight
function ω : D → R+ is such that the linear span of the monomials
mp,q := zpzq, for all p, q ∈ Z+, is dense in H.

Considered: Poly-Bergman: D, ω ≡ 1; poly-Fock: C, ω = e−|z|2 .
Standard: D, ω = (1− |z |2)λ, λ > −1; C, ω = αe−α|z|2 , α > 0.

Nonstandard: D, ω = (1− |z |)λ exp
(

−c
(1−|z|)α

)
, λ ≥ 0, α, c > 0;

C, ω = e−α|z|2

(1+|z|2)t , α > 0, t ∈ R, ω = |z |se−α|z|2m , m ≥ 1, α, s > 0.

⟨mp,q,mk,ℓ⟩ =
1

π

∫ 2π

0
eθ(p−q+ℓ−k)dθ

∫
J
rp+q+k+ℓω(r)rdr

= δp−q,k−ℓ

∫
J
s1/2(p+q+k+ℓ)ω(

√
s)ds.
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Orthonormal polynomials

For ξ = |p − q|, we introduce first the space L2(J, dηξ), where
dηξ(s) = sξω(

√
s)ds.

Then there exists a sequence {P(ξ)
k }k∈Z+ of the orthonormal

polynomials with real coefficients,

⟨P(ξ)
k ,P

(ξ)
ℓ ⟩ =

∫
J
P
(ξ)
k (s)P

(ξ)
ℓ (s)sξω(

√
s)ds = δk,ℓ,

giving a basis of L2(J, dηξ).

Observe that all moments

ω
(ξ)
k :=

∫
J
skdηξ(s) = ∥zk+ξ∥2, k ∈ Z+,

are finite.
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Orthonormal polynomials

Each polynomial P
(ξ)
k (s) is of degree k , with a positive leading

coefficient, and has the form

P
(ξ)
k (s) =

1√
∆k−1∆k

∣∣∣∣∣∣∣∣∣∣∣∣

ω
(ξ)
0 ω

(ξ)
1 ω

(ξ)
2 · · · ω

(ξ)
k

ω
(ξ)
1 ω

(ξ)
2 ω

(ξ)
3 · · · ω

(ξ)
k+1

...
...

... · · ·
...

ω
(ξ)
k−1 ω

(ξ)
k ω

(ξ)
k+1 · · · ω

(ξ)
2k−1

1 s s2 · · · sk

∣∣∣∣∣∣∣∣∣∣∣∣
,

where

∆k =

∣∣∣∣∣∣∣∣∣∣∣∣

ω
(ξ)
0 ω

(ξ)
1 ω

(ξ)
2 · · · ω

(ξ)
k

ω
(ξ)
1 ω

(ξ)
2 ω

(ξ)
3 · · · ω

(ξ)
k+1

...
...

... · · ·
...

ω
(ξ)
k−1 ω

(ξ)
k ω

(ξ)
k+1 · · · ω

(ξ)
2k−1

ω
(ξ)
k ω

(ξ)
k+1 ω

(ξ)
k+2 · · · ω

(ξ)
2k

∣∣∣∣∣∣∣∣∣∣∣∣
is the determinant of the so-called Gram matrix.
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Basis on H

Proposition

The collection of functions

ep,q = ep,q(rt) = tp−qr |p−q|P
(|p−q|)
min{p,q}(r

2), z = rt and p, q ∈ Z+,

forms an orthonormal basis on H.

In complex coordinates z and z , we have

ep,q(z , z) =

min{p,q}∑
k=0

ap,q;kz
p−kzq−k ,

where ap,q;k some calculable coefficients.

Note that eq,p = ep,q for all p, q ∈ Z+.
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Example

Let H = L2(D, dνλ). In this case, for each ξ = |p − q| ∈ Z+, the

orthonormal polynomials {P(ξ)
k }k∈Z+ have to satisfy the relations

⟨P(ξ)
k ,P

(ξ)
ℓ ⟩ = (λ+ 1)

∫ 1

0
P
(ξ)
k (s)P

(ξ)
ℓ (s)sξ(1− s)λds = δk,ℓ.

They turn to be the shifted Jacobi polynomials. The corresponding
elements of the orthonormal basis are called disk polynomials and
are given by

e
(λ)
p,q (z , z) =

√
(λ+ p + q + 1) p!q!

(λ+ 1)Γ(λ+ p + 1)Γ(λ+ q + 1)

×
min{p,q}∑

k=0

(−1)k
Γ(λ+ p + q + 1− k)

k!(p − k)!(q − k)!
zp−kzq−k .
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Example

Let H = L2(C, dµ1), where dµ1 = e−|z|2dA(z).
In this case, for each ξ = |p − q| ∈ Z+, the orthonormal

polynomials {P(ξ)
k }k∈Z+ have to satisfy the relations

⟨P(ξ)
k ,P

(ξ)
ℓ ⟩ =

∫ ∞

0
P
(ξ)
k (s)P

(ξ)
ℓ (s)sξe−sds = δk,ℓ.

They coincide with the classical Laguerre polynomials L
(ξ)
n .

While the corresponding elements of the orthonormal basis are
normalized complex Hermite polynomials and are given by

ep,q(z , z) =
√
p!q!

min{p,q}∑
k=0

(−1)k

k!(p − k)!(q − k)!
zp−kzq−k .
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Example

Let H = L2(C, dν), where dν = 2√
π
e−|z|4dA(z).

Formulas for a few first basis elements in L2(C, dν):

e0,0 = 1, e1,0 = π
1
4 z , e2,0 =

√
2z2,

e1,1 =

√
2

π − 2

(
zz − 1√

π

)
, e2,1 =

2π
1
4

√
4− π

(
z2z −

√
π

2
z

)
,

e2,2 =

√
2(π − 2)√

π2 − 5π + 6

(
z2z2 −

√
π

π − 2
zz +

4− π

2(π − 2)

)
.

For ep.q with p < q:

e1,0 = π
1
4 z , e2,0 =

√
2z2, e2,1 =

2π
1
4

√
4− π

(
z2z −

√
π

2
z

)
.
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Operator S

Introduce the operator S on H defining it on the basis elements

Sep,q =

{
ep−1,q+1, if p ≥ 1

0, if p = 0
.

S is a partial isometry with ker S = Ã and (Im S)⊥ = A, where A
and Ã are the subspaces of analytic and anti-analytic functions in
H.
Its adjoint operator S∗ is also a partial isometry with ker S∗ = A
and (Im S∗)⊥ = Ã,

S∗ep,q =

{
ep+1,q−1, if q ≥ 1

0, if q = 0
.

p

q

0 1 2 3 4
0

1

2

3

4 S

S∗
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Operator S

For each k ∈ Z+, we introduce the finite dimensional spaces
Hk = span {ep,q : p + q = k} then, obviously,

H =
∞⊕
k=0

Hk .

Lemma
We have

1 the following operators are the orthogonal projections
I − SS∗ = P : H −→ A and I − S∗S = P̃ : H −→ Ã,

2 each subspace Hk in the above direct sum decomposition is
invariant under the action of S and S∗,

3 all the restrictions S |Hk
and S∗|Hk

are nilpotent,

(S |Hk
)k+1 = 0 and (S∗|Hk

)k+1 = 0,

4 the operators S and S∗ are mutually generalized inverses to
each other, SS∗S = S and S∗SS∗ = S∗.
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Dzuraev ’70th, book ’92

It was A. Dzuraev who observed first the connection between
polyanalytic spaces and the two-dimensional singular integral
operators

(SD f )(z) = −
∫
D

f (w) dA(w)

(w − z)2
, (S∗

D f )(z) = −
∫
D

f (w) dA(w)

(w − z)2
,

where dA(w) = 1
πdudv , with w = u + iv .

In particular, he proved that for a bounded domain D with a
smooth boundary the projection Pn and P̃n of L2(D) onto An and
onto Ãn are respectively given by

Pn = I − (SD)
n(S∗

D)
n +Kn and P̃n = I − (S∗

D)
n(SD)

n + K̃n,

where Kn and K̃n are compact operators.
For the unit disk D case, the compact summands are equal to zero.
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Operator SD

Proposition

For H = L2(D, dA(z)) the operators S and S∗ coincide with
two-dimensional singular integral operators SD and S∗

D. And thus

- each subspace Hk in the direct sum decomposition

L2(D, dA(z)) =
∞⊕
k=0

Hk .

is invariant under the action of SD and S∗
D,

- for each k ∈ Z+, the restrictions SD|Hk
and S∗

D|Hk
are nilpotent,

(SD|Hk
)k+1 = 0 and (S∗

D|Hk
)k+1 = 0.

That is, the operators SD and S∗
D are nothing but the direct sums

of the nilpotent operators on the finite dimensional subspaces.
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Back to general operators S and S∗

Lemma
For each n ∈ N and all f ∈ H we have

Sn(S∗)nf = f − φ, for some φ ∈ An,

(S∗)nSnf = f − ψ, for some ψ ∈ Ãn.

Corollary

The following equalities hold

An = ker(S∗)n = span {ep,q : p ∈ Z+, q = 0, 1, ..., n − 1}
Ãn = ker Sn = span {ep,q : q ∈ Z+, p = 0, 1, ..., n − 1} .

For each n ∈ N, the exact analogues of the Dzuraev formulas hold:

Pn = I−Sn(S∗)n : H −→ An and P̃n = I−(S∗)nSn : H −→ Ãn.
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Pure isometries V and Ṽ

We introduce also two pure isometries:

V : ep,q 7−→ ep,q+1 and Ṽ : ep,q 7−→ ep+1,q.

For geometric interpretation, we identify each basis element ep,q
with the node (p, q) of the lattice Z2

+.

p

q

0 1 2 3 4
0

1

2

3

4

The isomerty V moves each note one-step up, while the isometry
Ṽ moves each note one-step right.

The following relations hold

S = V Ṽ ∗ = Ṽ ∗V and S∗ = Ṽ V ∗ = V ∗Ṽ ,
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Basis oriented descriptions of polyanalytic spaces

We have the following basis oriented descriptions

An = span {ep,q : p ∈ Z+, q = 0, 1, . . . , n − 1} ,
Ãn = span {ep,q : q ∈ Z+, p = 0, 1, . . . , n − 1} .

and

A(n) = span {ep,q : p ∈ Z+, q = n − 1} ,

Ã(n) = span {ep,q : q ∈ Z+, p = n − 1} .
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True-polyanalytic and true-anti-polyanalytic spaces

Lemma
Each true-polyanalytic space A(n) (true-anti-polyanalytic space

Ã(n)) is isomorphically isometric to the analytic space A (to the

anti-analytic space Ã), and thus all true-polyanalytic spaces
(true-anti-polyanalytic spaces) are isomorphically isometric among
each other. The corresponding isomorphisms are given by the
following operators

V n|A : A −→ A(n) and (V ∗)n|A(n)
: A(n) −→ A,

Ṽ n|Ã : Ã −→ Ã(n) and (Ṽ ∗)n|Ã(n)
: Ã(n) −→ Ã.

The density of the linear combinations of the monomials zkzm

implies that for each H in question

H =
∞⊕
n=1

A(n) =
∞⊕
k=1

V k−1(kerV ∗) and H =
∞⊕
n=1

Ã(n) = · · ·.
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Operators a and a†

Operators a, a† and ã, ã†, satisfying [a, a†] = I , are defined by the
following action on basis elements ep,q, p, q ∈ Z+:

a : ep,q 7→

{√
qep,q−1, p ∈ Z+, q > 0

0, p ∈ Z+, q = 0
, a† : ep,q 7→

√
q + 1ep,q+1,

and

ã : ep,q 7→

{√
pep−1,q, q ∈ Z+, p > 0

0, q ∈ Z+, p = 0
, ã† : ep,q 7→

√
p + 1ep+1,q.

The basis elements of H have thus the form

ep,q =
1√
p!q!

(a†)q(ã†)pe0,0 =
1√
p!q!

(ã†)p(a†)qe0,0.
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Example: weighted Gaussian measure

Let now H = L2(C, dµα), where dµα = αe−α|z|2dA(z), α > 0.
Two pairs of mutually adjoint lowering and raising operators

aα =
1√
α

∂

∂z
, a†α = − 1√

α

∂

∂z
+
√
αz ,

ãα =
1√
α

∂

∂z
, ã†α = − 1√

α

∂

∂z
+
√
αz ,

are defined on the linear span of all monomials mp,q, and satisfy

the commutation relations [aα, a
†
α] = I and [ãα, ã

†
α] = I .

Then the orthonormal basis in L2(C, dµα) has the form

ep,q =
1√
p!q!

(a†α)
q(ã†α)

pe0,0

=
√
αp+qp!q!

min{p,q}∑
k=0

(−1)k

αkk!(p − k)!(q − k)!
zp−kzq−k , p, q ∈ Z+.
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Pure isometries Wm,n

Given any pair (m, n) ∈ Z2
+ \ {(0, 0)}, we define the pure isometry

Wm,n = ṼmV n = V nṼm.

p

q

0 1 2 3 4
0

1

2

3

4

Geometrically, the isometry Wm,n moves each node (p, q) (≡ ep,q)
p steps right and q steps up to the node (p +m, q + n)
(≡ ep+m,q+n).

Being pure isometry, Wm,n implies the direct sum decomposition

H =
⊕
ℓ∈Z+

W ℓ
m,n(kerW

∗
m,n).
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Pure isometries Wm,n

Introduce the subspaces H(m,n)
(k) , defined in terms of the pure

isometry Wm,n and its adjoint W ∗
m,n, as follows:

H(m,n)
(k) = W k−1

m,n (kerW ∗
m,n)

Further, we call the space

H(m,n)
k := ker(W ∗

m,n)
k = H(m,n)

(1) ⊕H(m,n)
(2) ⊕ . . .⊕H(m,n)

(k)

k-poly-Wm,n-space, then H(m,n)
(k) = H(m,n)

k ⊖H(m,n)
k−1 is naturally to

call true-k-poly-Wm,n-space

Furthermore,
H =

⊕
k∈N

H(m,n)
(k) .
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Characterization of H(m,n)
k

For each pair (m, n) ∈ Z2
+ \ {(0, 0)}:

- the space H(m,n) = kerW ∗
m,n admits the representation

H(m,n) = ker Sm+n(S∗)n = ker (S∗)m+nSm;

- the orthogonal projection Pm,n : H −→ H(m,n) has the form

Pm,n = I − Sn(S∗)m+nSm = I − (S∗)mSm+n(S∗)n.

- the k-poly-Wm,n-space H(m,n)
k admits the representation

H(m,n)
k = ker Sk(m+n)(S∗)kn = ker (S∗)k(m+n)Skm;

- the orthogonal projection Pm,n;k : H −→ H(m,n)
k has the form

Pm,n;k = I − Skn(S∗)k(m+n)Skm = I − (S∗)kmSk(m+n)(S∗)kn.
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Back to functions

The powers of differential operators ∂
∂z and ∂

∂z permit us to single
out various important subclasses of smooth in a domain D ⊂ C
functions. A function f is called
- analytic if it satisfies the equation ∂

∂z f = 0,

- anti-analytic if it satisfies the equation ∂
∂z f = 0,

- k-polyanalytic if it satisfies the equation ∂k

∂zk
f = 0,

- k-anti-polyanalytic if it satisfies the equation ∂k

∂zk
f = 0,

- harmonic if it satisfies the equation ∆f = 4 ∂
∂z

∂
∂z f = 0,

- biharmonic if it satisfies the equation ∆2f = 16 ∂2

∂z2
∂2

∂z2
f = 0.

More general, we call a function f (m, n)-analytic if it satisfies the
equation ∂m

∂zm
∂n

∂zn f = 0, and k-(m, n)-polyanalytic if it satisfies the

equation
(

∂m

∂zm
∂n

∂zn
)k

f = 0.
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(m, n)-analytic and k-(m, n)-polyanalytic functions.

The sum φ+ ψ of any n-polyanalytic function φ and any
m-anti-polyanalytic function ψ is obviously (m, n)-analytic.
The converse statement was proven by L. Pessoa, resulting:

Statement
A function f is (m, n)-analytic if and only if it is a sum of
n-polyanalytic and m-anti-polyanalytic functions.

Further,

Statement
A function f is k-(m, n)-analytic if and only if it admits the
representation

f = (zmzn)k−1gk−1 + (zmzn)k−2gk−2 + . . .+ zmzng1 + g0,

where all functions gℓ are (m, n)-analytic.
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(m, n)-analytic function subspaces of H = L2(D, dν)

Denote by A(m,n) the subspace of H, which consists of all
(m, n)-analytic functions.

Examples: The subspaces of analytic, anti-analytic, and harmonic
functions are now A = A(0,1), Ã = A(1,0), H = A(1,1)

For other different valies of (m, n), we have spaces of
- k-polyanalytic functions Ak = A(0,k),
- true-k-polyanalytic functions
A(k) = Ak ⊖Ak−1 = A(0,k) ⊖A(0,k−1),

- k-anti-polyanalytic functions Ãk = A(k,0),
- true-k-anti-polyanalytic functions
Ã(k) = Ãk ⊖ Ãk−1 = A(k,0) ⊖A(k−1,0),

- k-polyharmonic functions Hk = A(k,k),
- true-k-polyharmonic functions
H(k) = Hk ⊖ Hk−1 = A(k,k) ⊖A(k−1,k−1).

Note that all these subspaces are closed in H = L2(D, dν).
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(m, n)-analytic function via isometries Wm,n

Statement
We have

Ak = H(0,k) = kerW ∗
0,k = ker (V ∗)k ,

Ãk = H(k,0) = kerW ∗
k,0 = ker (Ṽ ∗)k ,

Hk = H(k,k) = kerW∗
k,k = ker (V∗)k(Ṽ∗)k,

A(m,n) = kerW ∗
m,n = ker (V ∗)n(Ṽ ∗)m.

Statement
For each predefined analytic quality, (m, n) ∈ Z2

+ \ {(0, 0)}, we
have the following orthogonal decomposition of L2(D, dν) onto the
true-k-(m, n)-polyanalytic function spaces

L2(D, dν) =
⊕
k∈N

A(m,n)
(k) .
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