Programa de estudio de experiencia educativa

I. Área académica

Área Académica Técnica

2.-Programa educativo

Ingeniería en Instrumentación Electrónica

3.- Campus

Xalapa

4.-Dependencia/Entidad

Facultad de Instrumentación Electrónica

5 Código	6Nombre de la experiencia	7 Area de formación		
	educativa .	Principal	Secundaria	
IEFD 18019	Sistemas embebidos	D	No aplica	

8.-Valores de la experiencia educativa

Créditos	Teoría	Práctica	Total horas	Equivalencia (s)		
				Tópicos Avanzados de		
E	i	2	60	Ingeniería er		
3		3	3	3	60	Instrumentación Electrónica
				II (Sistemas Embebidos)		

9.-Modalidad

10.-Oportunidades de evaluación

Curso-Taller	ABGHJK=Todas
	,

II.-Requisitos

Pre-requisitos	Co-requisitos
Microprocesadores y Microcontroladores	Ninguno

12.-Características del proceso de enseñanza aprendizaje

Individual / Grupal	Máximo	Mínimo
Grupal	40	10

13.-Agrupación natural de la Experiencia educativa

14.-Proyecto integrador

Academia de Formación Disciplinar	No aplica
-----------------------------------	-----------

15.-Fecha

Elaboración	Modificación	A probación
Enero 2020		Junio 2020

16.-Nombre de los académicos que participaron

M. en I. Sergio Francisco Hernández Machuca, Dr. Roberto Castañeda Sheissa

17.-Perfil del docente

Licenciatura en Instrumentación Electrónica, Informática o Física o Licenciatura en Ingeniería en Instrumentación Electrónica, Electrónica, Electrónica Digital, Electrónica y/en Comunicaciones, Industrial, Eléctrica, Mecánica Eléctrica, Mecatrónica, Sistemas Computacionales o Computación; con grado de Maestría y/o Doctorado en el área de conocimiento de la experiencia educativa; con experiencia docente en instituciones de educación superior; con experiencia profesional en el ámbito de su disciplina.

18.-Espacio 19.-Relación disciplinaria

Intraprograma educativo	Multidisciplinario
-------------------------	--------------------

20.-Descripción

En esta experiencia educativa, con una hora de teoría y tres de práctica, el alumno conocerá, analizará y ejercitará Sistemas Embebidos en diversas plataformas de desarrollo, empleando la teoría de los Sistemas de Tiempo Real y sus herramientas. Como estrategias metodológicas se emplearán exposiciones del docente apoyado en material multimedia, exposición de casos de estudio, se guiará al estudiante para el desarrollo de un proyecto que integre el material desarrollado a lo largo del curso. La evaluación de la asignatura se hará con exámenes parciales, prácticas de laboratorio y un proyecto final que será elaborado en equipos de trabajo.

21.-Justificación

La aplicación de Sistemas Embebidos es frecuente en ámbitos cotidianos, industriales, de la medicina, investigación, enseñanza, seguridad y automatización de procesos. El adecuado estudio de esta tecnología permitirá al Ingeniero en instrumentación Electrónica contar con herramientas que le permitan desarrollar habilidades en el desarrollo de proyectos tecnológicos.

22.-Unidad de competencia

El alumno adquiere capacidades para analizar los sistemas embebidos empleados en los procesos de adquisición, procesamiento y explotación de datos, para posteriormente Planear Proyectos Tecnológicos en donde Diseñe y Evalúe Sistemas de Tiempo Real e implementarles, a través del uso de herramientas computacionales resolver problemas presentes en áreas de la Instrumentación Electrónica. Lo anterior lo desarrollará a través de un pensamiento lógico, crítico y creativo, propiciando una actitud de Autoaprendizaje permanente, fortaleciendo los valores y actitudes que le permitan relacionarse y convivir con otros, el trabajo en equipo, el respeto a las opiniones que difieren de las suya y el respeto a la diversidad cultural.

23.-Articulación de los ejes

Los saberes que se abordan en esta experiencia educativa se relacionan con el aprendizaje y aplicación de conceptos, teorías y técnicas asociadas con Sistemas de Tiempo Real, a partir de los cuáles se desarrollan Sistemas Embebidos, así como herramientas computacionales que se emplean en el diagnóstico, planeación y diseño de sistemas en donde estos se aplican. (Eje Teórico), lo anterior se aplicará en un marco de responsabilidad, conciencia ecológica, colaboración, iniciativa, respeto, cooperación y trabajo eficiente en equipo, (Eje Axiológico), haciendo lo anterior mediante la búsqueda planeada y organizada, la consulta bibliográfica en diversos medios impreso y electrónicos el desarrollo y lectura de mapas conceptuales y mapas mentales, a través de ejercicios, prácticas y laboratorios y en la planeación, desarrollo y presentación de un proyecto final que muestre los conocimientos adquiridos en la materia. (Eje Heurístico).

24.-Saberes

Teóricos	Heurísticos	Axiológicos
Sistemas Embebidos: Características y componentes típicos. Sensado, procesamiento, muestra de datos e interacción con el usuario. Características de desempeño específicas. Herramientas y plataformas para el diseño de Sistemas Embebidos.	 Búsqueda planeada y organizada Consulta Bibliográfica Mapas conceptuales y mentales 	 Responsabilidad en su desempeño y para con el grupo Colaboración con el equipo de trabajo

Sistemas de Tiempo Real: Características funcionales de un RTS. Descripción de características básicas. Teoría fundamental (Concurrencia y Paralelismo. Tareas, Kernel, Despachador de Tareas (Scheduler). Sincronización. Comunicación. Semáforos. Mútua Exclusión. Administración de recursos)	•	Ejercicios, Prácticas, Laboratorios Desarrollo de Proyecto	•	Respeto a la comunidad Iniciativa en el desarrollo de labores Cooperación con los participantes Trabajo
Sistemas Operativos de Tiempo Real: Ejemplos típicos de RTOS. Recursos y funciones básicas que proporciona un RTOS. Asociación de RTOS y plataformas de desarrollo.				eficiente en equipo
Diseños de Sistemas Embebidos: Herramientas de descripción del desempeño. Empleo de RTOS en la implementación del sistema embebido. Pruebas y evaluaciones.				
Proyecto de aplicación: Aplicaciones de Sistemas Embebidos en diversas áreas (Bioelectrónica, Telemática, Robótica, Automatización,				

25.-Estrategias metodológicas

entre otras)...

De aprendizaje	De enseñanza
Búsqueda y consulta de fuentes de	 Organización de grupos colaborativos
información	 Estudio de casos
• Lectura, síntesis e interpretación	 Dirección y asesoría de prácticas
	 Discusión dirigida
Estudio de casos	Exposición con apoyo tecnológico
Mapas conceptuales y mentales	 Simulaciones
 Investigaciones 	 Dirección de proyectos de
	investigación
	 Aprendizaje basado en problemas

26.-Apoyos educativos

Materiales didácticos	Recursos didácticos

El instructor desarrollará un programa de actividades que contemple la exposición del material a través de alguno de los siguientes medios:

- Antologías. Que recopilen la información esencial del tema que se exponga.
- Tutoriales. Material multimedia que explique a detalle los aspectos teóricos y prácticos de algún tópico en particular.
- Pizarrón de melanina, plumones y accesorios.
- Proyector de vídeo, computadora de base en el salón de clases.
- Laboratorio de Sistemas Digitales.
 Para desarrollar el ensayo de aplicaciones en plataformas de desarrollo para el diseño y construcción de Sistemas Embebidos.
- Centro de Cómputo. Para acceso a Internet; edición de material para reportes de prácticas, laboratorios y proyectos.

27.-Evaluación del desempeño

Evidencia (s) de desempeño	Criterios de desempeño	Ámbito(s) de aplicación	Porcentaje
- Exámenes parciales	Lo acertado de las respuestas que ofrezca el estudiante.	Salón de clases	20 %
- Reportes de Prácticas	El logro propuesto en la sesión en particular, de acuerdo a la guía proporcionada.	Laboratorio de Electrónica Digital	20 %
- Reportes de Laboratorios	Demostración de los conceptos asociados con el laboratorio, su aplicación en un Sistema Embebido.	Laboratorio de Electrónica Digital	20 %
Del Proyecto Final: - Presentación de desempeño del prototipo Vídeo demostrativo Manual del Usuario Manual Técnico.	La relación entre las metas y objetivos propuestos y los resultados alcanzados. La innovación en las soluciones implementadas. La calidad en la presentación del prototipo (acabado, orden de la presentación, ergonomía, variables dominadas, claridad en su uso, etc.)	Laboratorio de Electrónica Digital	40 %

28.-Acreditación

Para acreditar esta EE el estudiante deberá haber presentado con idoneidad y pertinencia cada evidencia de desempeño, es decir, que en cada una de ellas haya obtenido cuando menos el 60%, además de cumplir el porcentaje de asistencia establecido en el estatuto de alumnos 2008.

29.-Fuentes de información

Básicas

- Molloy, Derek (2016) Exploring Raspberry Pi. Interfacing to the Real World with Embedded Linux. Wiley.
- Peckol, James K. (2019) Embedded Systems A Contemporary Design Tool. Second Edition. Wiley

Complementarias

- Biblioteca Virtual UV
- Barry, Richard (2016) Mastering the FreeRTOS Real_Time Kernel A Hands-On Tutorial Guide. Real Time Engineers Ltd.
- Barry, Richard (2016) **FreeRTOS Reference Manual V9.0.0**. Real Time Engineers Ltd.
- Material de Internet, de diversas fuentes, para la realización de los proyectos.