“Efecto de la lombricomposta como sustrato alterno en el crecimiento inicial de Pinus ayacahuite Ehrenb, Pinus oaxacana Mirov, Pinus rudis End., y Pinus hartwegii Lindl.”

TESIS

QUE PARA OPTAR POR EL GRADO DE

MAESTRA EN

ECOLOGÍA FORESTAL

PRESENTA

María Teresa de Jesús Altamirano Quiroz

DIRIGIDA POR

MC. Armando Aparicio Rentería

Xalapa, Veracruz, México

Septiembre de 2002
CONTENIDO

ÍNDICE DE FIGURAS Y CUADROS ... iii
RESUMEN ... v
SUMMARY .. vi
1. INTRODUCCIÓN ... 1
2. OBJETIVOS .. 3
 2.1 Objetivo General ... 3
 2.2 Objetivos Específicos ... 3
3. HIPÓTESIS ... 3
4. REVISIÓN DE LITERATURA ... 4
 4.1. Importancia de los sustratos ... 4
 4.2. Descripción, distribución y uso de las especies 9
 4.2.1. Pinus ayacahuite Ehrenb. .. 10
 4.2.2. Pinus hartwegii Lindl. ... 11
 4.2.3. Pinus rudis End. ... 13
 4.2.4. Pinus oaxacana Mirov. ... 14
5. MATERIAL Y MÉTODOS ... 17
 5.1. Ubicación del ensayo ... 17
 5.2. Trabajo de vivero .. 17
 5.3. Origen de los sustratos empleados .. 18
 5.4. Diseño experimental ... 18
 5.5. Variables evaluadas .. 21
 5.5.1. Altura del tallo de la planta .. 21
 5.5.2. Diámetro del tallo .. 21
 5.5.3. Análisis de los sustratos .. 22
 5.5.4. Análisis de datos de cada variable 23
 5.6. Modelo estadístico ... 23
6. RESULTADOS .. 26
 6.1. Altura del tallo de la planta ... 26
 6.1.1. Análisis de varianza ... 30
ÍNDICE DE FIGURAS Y CUADROS

Figura 1. Croquis del diseño experimental en campo ... 20

Figura 2. Diagrama de cajas y alambres para altura en *Pinus ayacahuite* y *Pinus oaxacana* ... 26

Figura 3. Diagrama de cajas y alambres para altura en las especies *Pinus rudis* y *Pinus hartwegii* ... 27

Figura 4. Diagrama de cajas y alambres de los tratamientos en *Pinus ayacahuite* y *Pinus oaxacana* ... 27

Figura 5. Diagrama de cajas y alambres de los tratamientos en *Pinus rudis* y *Pinus hartwegii* ... 28

Figura 6. Diagrama de cajas y alambres de la altura media por tratamiento y la media general en *Pinus ayacahuite* y *Pinus oaxacana* ... 29

Figura 7. Diagrama de cajas y alambres de la altura media general por tratamiento y la media y la media general en *Pinus rudis* y *Pinus hartwegii* ... 29

Figura 8. Comparación entre las alturas medias en *Pinus ayacahuite* 31

Figura 9. Comparación entre las alturas medias en *Pinus oaxacana* 31

Figura 10. Comparación de media en los tratamientos en *Pinus rudis* 32

Figura 11. Comparación de medias en los tratamientos en *Pinus hartwegii* 32

Figura 12. Diagrama de cajas y alambres de la relación tratamientos y diámetro del tallo de las plantas en *Pinus ayacahuite* y *Pinus oaxacana* ... 33

Figura 13. Diagrama de cajas y alambres de la relación tratamientos y diámetro en *Pinus rudis* y *Pinus hartwegii* ... 34

Figura 14. Comparación de medias en diámetro de tallo en *Pinus ayacahuite* 35

Figura 15. Comparación de medias en diámetro de tallo en *Pinus oaxacana* 36

Figura 16. Curva de crecimiento en *Pinus ayacahuite* .. 36

Figura 17. Esquema de crecimiento en *Pinus oaxacana* ... 37

Figura 18. Curva de crecimiento en *Pinus rudis* ... 37

Figura 19. Curva de crecimiento de *Pinus hartwegii* .. 38
Tabla 1. Datos de colecta de las especies.	17
Tabla 2. Composición porcentual de los tratamientos.	19
Tabla 3. Análisis de varianza para altura en *Pinus ayacahuite* y *Pinus oaxacana.*	30
Tabla 4. Análisis de varianza para altura en *Pinus rudis* y *Pinus hartwegii.*	30
Tabla 5. Análisis de varianza para diámetro en *Pinus ayacahuite* y *Pinus oaxacana*	34
Tabla 6. Análisis de varianza para diámetro de tallo en *Pinus rudis* y *Pinus hartwegii.*	
35	
RESUMEN

El género *Pinus* es uno de los principales grupos forestales por su importancia económica en la producción de madera y productos derivados, así como su utilización en los programas de reforestación.

En la producción de especies forestales se empieza tradicionalmente suelo de bosque, y para su abasto es necesario extraerlo de los bosques naturales. Una propuesta para disminuir la extracción de suelo de bosque es sustituir parcialmente el suelo de bosque por un sustrato alterno como la lombricomposta.

En Estado de Veracruz, durante el proceso de beneficio de café se producen grandes cantidades de pulpa, este subproducto puede ser utilizado mediante el método de lombricompostaje como sustrato alterno en la producción en vivero de plantas forestales.

El presente trabajo tiene como objetivos evaluar el efecto de la lombricomposta de pulpa de café como sustrato alterno en la producción de *Pinus ayacahuite*, *Pinus oaxacana*, *Pinus rudis* y *Pinus hartwegii*, así como determinar cuál es la mejor mezcla de sustratos para cada una de las especies en estudio a través de su comportamiento en cuanto al crecimiento inicial en altura y diámetro.

Los resultados obtenidos demuestran que hay diferencias estadísticas altamente significativas entre los tratamientos para altura y diámetro de la planta, en *Pinus ayacahuite* y *Pinus oaxacana*. En base a la prueba de Tukey se encontró que se puede utilizar cualquiera de los tratamientos que contenga lombricomposta para obtener resultados óptimos en la producción de plantas y que el mejor económicamente es el sustrato (30% de arena + 20% de lombricomposta+50% de suelo de bosque), mientras que para *Pinus rudis* y *Pinus hartwegii* los resultados estadísticos reportan diferencias altamente significativas en los tratamientos para la altura.
SUMMARY

The gender Pinus is one of the main forest groups for its economic importance in the wooden production and derived products, as well as its use in the reforestation programs.

In the production of forest species you empela traditionally forest floor, and it stops their supply it is necessary to extract it of the natural forests. A proposal to diminish the extraction of forest floor is to substitute the forest floor partially for an alternating sustrato as the lombricomposta.

In State of Veracruz, during the process of benefit of coffee big quantities of pulp take place, este by-product it can be used by means of the lombricompostaje method like alternating sustrato in the production in vivero of forest plants.

The present work has as objectives to evaluate the effect of the lombricomposta of pulp of coffee as alternating sustrato in the production of Pinus ayacahuite, Pinus oaxacana, Pinus rudis and Pinus hartwegii, as well as to determine which the best sustratos mixture is for each one of the species in study through its behavior as for the growth iniacial in height and diameter.

The obtained results demonstrate that there are highly significant statistical differences among the treatments for height and diameter of the plant, in Pinus ayacahuite and Pinus oaxacana. En bases to the test of Tukey it was found that you can use anyone of the treatments that contains lombricomposta for good obtenr in the production of plants and that the best economically is the sustrato (30% of sand + 20% of lombricomposta+50% of forest floor), while it stops Pinus rudis and Pinus hartweggi the statistical results they report highly significant differences in the treatments for the height.
1. INTRODUCCIÓN

Los viveros forestales en México utilizan como sustrato para el cultivo de diversas especies, grandes cantidades de suelo de bosque. Sin embargo, no se cuenta con suficiente información en cuanto al empleo de sustratos en especies forestales, reportándose que generalmente se emplea una mezcla de sustratos en la parte superior de los almácigos, compuesta de suelo de bosque y arena de mina, siendo el suelo de bosque el sustrato más popular y fácil de conseguir para los viveristas forestales (Fernández, 1986 y SARH, 1985) y para su abasto es necesario extraerlo de los bosques naturales, lo que produce un gran impacto, evidente pero no cuantificado (Altamirano y Aparicio, 2002).

Para disminuir esta situación se ha buscado la mecanización de los viveros para la producción de plantas con diversos contenedores y la importación de sustratos comerciales sin contenidos de suelo (SEMARNAP, 1996). Otra línea de acción puede ser el uso de productos y subproductos de cosechas que se generan en la región, como la lombricomposta de pulpa de café, que además de disminuir la extracción del suelo de bosque, puede reducir los problemas de contaminación generados por las grandes cantidades de desechos orgánicos procedentes de la pulpa que se producen en las comunidades (Martínez, 1996).

Hanson y Cassman (1994), mencionan que a nivel mundial se están implementando prácticas de conservación de la fertilidad del suelo, empleando cultivos “orgánicos”, “alternativos”, sustentables, biodinámicos, integrales u otros similares que pretendan disminuir o, eliminar por completo la aplicación de pesticidas, herbicidas y fertilizantes químicos.

La lombricomposta tiene la ventaja de ser usada como fertilizante orgánico que libera lentamente sus elementos nutritivos; tiene gran capacidad de mezclarse con el suelo y ayuda a la transformación de los minerales en elementos inorgánicos disponibles para la planta, además que su uso en los viveros forestales, acelera el desarrollo de las plantas, a cortando en forma significativa los tiempos de producción (Martínez, 1996 y Blandón et al., 1999).
Puesto que en la zona centro del estado de Veracruz, durante el proceso de beneficio húmedo del café se producen grandes cantidades de pulpa, éste subproducto puede acelerar su descomposición mediante el proceso de lombricompostaje, el cual puede ser utilizado como sustrato alterno en la producción de plantas forestales.

Sin embargo, de acuerdo a Niembro y Fierros (1990), las características físico-químicas de los sustratos empleados en los viveros, tienen un efecto directo sobre el proceso germinativo y crecimiento inicial de las plantas cultivadas, de tal manera, que se le ha dado una atención especial por parte de los viveristas y forestales, con la finalidad de encontrar el sustrato en el cual se obtenga el mejor desarrollo de las plantas, para optimizar la producción de la diversidad de especies forestales que se manejan en los viveros (Vega, 1986; Aparicio, 1999).

Además, (May, 1985; Venator y Liegel 1985), mencionan que existen otros factores que afectan dicho proceso, como son: el tamaño y viabilidad de las semillas; el tiempo y profundidad de siembra; la estratificación; la constitución genética; las condiciones de humedad y temperatura durante la germinación; las plagas; la densidad de siembra; la textura del suelo, la fertilidad del suelo; la presencia de micorrizas, el pH y los tratamientos culturales aplicados, que pueden tener un pronunciado efecto en el crecimiento inicial de las plantas.

Razón por la cual, se reafirma la necesidad de realizar ensayos con lombricomposta de café para determinar su proporción adecuada en los sustratos que se obtenga el óptimo crecimiento de las especies Pinus ayacahuite, Pinus oaxacana, Pinus rudis, Pinus hartwegii, ya que, uno de los aspectos más importantes de los viveros forestales es el lograr una producción de plantas vigorosas y uniformes en las cantidades y con la calidad requerida al menor costo posible, que permita favorablemente la reforestación de un sitio en particular (Romero, 1997; Abad, 1993).

En adición a lo anterior el género Pinus constituye uno de los principales grupos forestales en la producción de madera y productos derivados, así como su utilización en los programas de reforestación, resaltando su importancia económica (Hernández, 1983; Eguiluz 1985).
2. OBJETIVOS

2.1 Objetivo General

Evaluación del efecto de la lombricompost de pulpa de café como sustrato alterno en la producción de Pinus ayacahuite, Pinus oaxacana, Pinus rudis, y Pinus hartwegii en condiciones de vivero.

2.2 Objetivos Específicos

- Determinar cuál es la mejor mezcla de sustrato para cada una de las especies en estudio con base en el comportamiento en cuanto al crecimiento inicial en altura y diámetro de las plántulas.

3. HIPÓTESIS

“La utilización de sustratos que contienen lombricompost en mayor proporción, superan el crecimiento inicial de las plantas en diámetro y altura en comparación a los usados tradicionalmente en vivero”.
4. REVISIÓN DE LITERATURA

4.1. Importancia de los sustratos

El término sustrato se aplica en la producción viverística, se refiere a todo material sólido que puede ser natural o sintético, mineral u orgánico y que colocado en contenedor, de forma pura o mezclado, permite el anclaje de las plantas a través de su sistema radicular; el sustrato puede intervenir en o no el proceso de nutrición de la planta (Abad, 1993).

Los sustratos se clasifican en químicamente inertes (perlita, lana de roca, roca volcánica, etc.) y químicamente activos (turbas, corteza de pino, etc.).

Las características de los sustratos pueden ser: físicas; estas vienen determinadas por la estructura interna de las partículas, su granulometría y el tipo de empaquetamiento, como son:

a) Densidad real y aparente
b) Porosidad y aireación
c) retención de agua
d) permeabilidad
e) distribución del tamaño de los poros
f) estabilidad estructural.

Las características químicas están definidas por la composición elemental de los materiales; éstas caracterizan las transferencias de materia entre el sustrato y la solución del mismo. Entre las características químicas destacan:

a) Capacidad de intercambio catiónico
b) pH
c) Capacidad tampón
d) Contenido de nutrimentos
e) Relación C/N

Las características biológicas se refieren a propiedades dadas por los materiales orgánicos, cuando éstos no son de síntesis son inestables termodinámicamente y, por lo tanto, susceptibles de degradación mediante reacciones químicas de hidrólisis, o bien por la acción de los microorganismos, entre las que destacan:

a) Materia orgánica
b) Estado y velocidad de descomposición (Burés, 1999)

Napier (1985), menciona que el sustrato utilizado en las especies forestales está comúnmente constituido por una mezcla de dos o más materiales, pero también puede estar formado solamente por uno. De acuerdo a este autor un sustrato debe tener las siguientes características:

1. Ser liviano en peso.
2. Ser homogéneo, poco costoso y fácilmente disponible.
3. Tener un pH entre 5.0 y 6.0
4. Estar relativamente libre de insectos, hongos patógenos y de malezas.
5. Retener suficientemente humedad, buen drenaje y aireación.

Es importante mencionar que las características de los sustratos han de ser diferentes en función de su finalidad; por ejemplo, si va ser destinado a unos semilleros se requiere un sustrato de fácil manejo, con el mínimo de perturbación para las raíces, de textura fina y elevada retención de agua para mantener una humedad constante, escasa capacidad de nutrición y baja salinidad, mientras que características diferentes deberían de tener los sustratos destinados al enraizamiento de estaquillas o al crecimiento y desarrollo de las plantas.

Según Venator y Liegel (1985), los aspectos mas cruciales en la preparación de la mezcla de sustratos para el crecimiento de las plantas son un adecuado drenaje, combinado con
una acidez apropiada. De no emplearse lo anterior, el crecimiento y desarrollo de la raíz no será óptimo. Lo que conllevaría a que la planta no se desarrolle rápidamente y no pueda utilizar adecuadamente los nutrientes presentes en las mezcla o el fertilizante que se aplique.

Wakeley (1954), menciona que el pH debe ser el adecuado para evitar el ataque del “Damping-off”, ya que es probablemente la enfermedad más seria en los pinos producidos en vivero, el cual es causado por diversas especies de hongos, provocando la muerte a las plántulas desde el inicio de la germinación o hasta un tiempo después de la emergencia.

Davey (1984), recomienda que la mejor acidez del sustrato para los pinos es de un pH de 5.2 hasta 6.2, evitándose los sustratos que estén por encima de un pH de 7.5 debido a la acumulación de sales inherentes.

En los viveros forestales de Colombia se recomienda, en la elaboración del sustrato, que el suelo tenga un pH menor de 5.5 para evitar el ataque de “Damping-off” y que no se presente un alto contenido de materia orgánica ya que el sustrato debe tener buena porosidad para permitir un buen drenaje y aireación, y por otra parte la superficie del almácigo debe estar completamente nivelada (Galloway y Borgo, 1983).

Wood (1994), en su trabajo de Conifer Seedling Grower Guide menciona, de acuerdo a Landis (1989), que el pH puede afectar la disponibilidad de algunos de los nutrientes requeridos para el crecimiento de las plántulas. Las especies de coníferas de acuerdo a este autor, crecen mejor a un pH de 5.5, aunque pueden presentar un mayor rango de tolerancia.

Napier (1985), menciona que en los viveros del trópico se han utilizado muchos materiales para la preparación del sustrato, incluyendo los siguientes: arena, materia orgánica, turba, musgo, vermiculita, fibra de coco, paja de arroz molida y corteza de árboles molida. Sin embargo, los altos costos de transporte y, en algunos casos, el alto contenido costo de estos materiales, los hacen ser de uso muy limitado.
Por lo tanto, los sustratos basados en suelo y arena se han convertido en los más comunes, prefiriéndose aquellos que mantienen una textura franco arenosa.

En cuanto al sustrato la mezclas más comunes que se usan en los viveros de México son: tierra de monte-arena de río, en diferentes proporciones (Prieto y Sánchez, 1991), en proporciones 1:1 Niembro (1979); mientras Ramírez y Pech (1981) recomiendan una proporción de 75% de tierra de monte y un 25% de arena de río.

Fernández (1986), asevera que en México no se cuenta con mucha información en cuanto al uso de mezclas de sustratos en especies forestales, ya que generalmente en los viveros se ha usado una mezcla de sustratos en la parte superior de los almácigos, compuesta de tierra de monte y arena de mina. La tierra de monte al parecer constituye el sustrato más popular y fácil de conseguir para los viveros forestales. Sin embargo, el viverista ha tenido por muchos años que adecuarse al sustrato que encuentra más a la mano, utilizando en muchas ocasiones un solo sustrato para toda la producción, independientemente de las especies y del tiempo que las plantas deban permanecer en el vivero (SARH;1985)

Vega (1986), menciona que los sustratos utilizados en los almácigos ejerce un efecto directo en la germinación y desarrollo inicial de las plantas, por lo cual, es necesario determinar el tipo de sustrato en el cual se obtenga una mayor producción. Además Fierros (1990), señala que es importante considera la calidad del sustrato empleado; en general éste debe mantener una textura y composición tal que proporcione las condiciones adecuadas de humedad, temperatura, aireación y acidez que ayuden a promover una buena germinación.

Bajo condiciones naturales la germinación de las semillas de pino toma lugar en diversos tipos de sustratos, particularmente el ocochal y el suelo mineral. Las semillas que caen en el ocochal por lo general germinan lentamente, debido a que ese tipo de sustratos pierde rápidamente la humedad dadas sus características (Farrar y Fraser, 1953). Por el contrario el suelo mineral tiene la reputación de ser uno de los mejores sustratos debido a su excelente capacidad de aireación e infiltración (Baker, 1950; Fowells, 1965).
Las mezclas comerciales ofrecen algunas ventajas para el manejo de los viveros, ya que la mayor parte de ellas son estériles y poseen un alto contenido de nutrientes. Sin embargo, poseen entre otras desventajas como un alto costo, falta de control respecto a los componentes de la mezcla y presencia de nutrientes innecesarios o no beneficiosos para las plantas (Venator y Liegel, 1985).

El agotamiento de los recursos no renovables se ve afectado cuando son utilizados como parte de las mezclas que forman los sustratos, y un alternativa para disminuir la extracción de éstos es la utilización de materiales “ecológicamente correctos” como los procedentes del reciclaje de subproductos que son a la vez biodegradables o reciclables (Burés, 1997).

El creciente interés en el uso de lombrices para la transformación de residuos orgánicos se apoya en el conocimiento de su potencial de crecimiento y desarrollo en sustrato poco tradicionales, como la pulpa de café y su capacidad de transformarlos en abono orgánico de calidad, además de ser una alternativa ecológica al problema de la pulpa, integra varias actividades de la agroindustria cafetalera (beneficiado y uso de abono orgánico en semilleros, viveros y plantaciones establecidas) y otorga valor agregado a este subproducto que por muchos años fue un problema para las industrias (Sabine, 1988).

Martínez (1996); Capistran et al., (1999), mencionan características y bondades del uso de la lombricomposta y describen que el humus de lombriz, vermicomposta o lombricomposta, es un fertilizante orgánico, de aspecto terroso, suave, ligero e inodoro; que libera lentamente sus elementos nutritivos, y tiene la gran capacidad de mezclarse con el suelo ayudando a la transformación de los elementos minerales nutritivos en elementos inorgánicos disponibles por la planta, por lo que se puede decir que mejora las características físicas y químicas del suelo. Asimismo mencionan que el pH es cercano al neutro, contrarrestando la formación de acidez dañina a las plantas y sus raíces. Contiene ácidos húmicos y fúlvicos, dando lugar éstos a otros diversos compuestos de origen y acción biológica, como son las enzimas, hormonas, vitaminas y antibióticos, incrementando la capacidad inmunológica y de resistencia a la sequía de las plantas.
Siles, et al., (1997), concluyen que la lombricomposta de pulpa de café representa una alternativa ecológica para reducir la dependencia de insumos externos, dándole además un valor agregado a los subproductos del cultivo.

Además se debe promover la lombricultura como un alternativa tecnológica para el manejo y aprovechamiento de la pulpa y, sobre todo, como una vía para reducir la contaminación y la degradación de las cuencas hidrológicas.

4.2. Descripción, distribución y uso de las especies

En México se encuentra la mayor cantidad de especies del género Pinus, sin duda esto obedece a la ubicación geográfica, a la gran variabilidad de suelos, climas y condiciones topográficas de este país.

Económicamente y socialmente este género conforma uno de los pilares más fuertes de la economía de algunos países americanos y eurasiáticos principalmente; es una de las fuentes permanentes de resina y sus derivados, para la industria química, así como la producción de papel y otros productos maderables de incomparable utilidad en el desarrollo actual de la humanidad; como recursos escénico y recreativos, ya que esta especie forma uno de los árboles de mejor porte y belleza de los cuales es posible derivar cientos de utilidades (Eguiluz, 1977).

Son varios autores que han elaborado trabajos referentes a la identificación de los pinos, tomando en consideración su morfología, anatomía, incluyendo claves y descripciones de los taxa estudiados.

Shaw (1909), citado por Martínez (1948), reporta identificaciones, clasificaciones y descripciones de varias especies y variedades de pinos mexicanos.
Los pinos en México se encuentran en una variación altitudinal aproximada, entre 1200 y 4500 metros sobre el nivel del mar, representada cada zona por especies características (Shaw, 1909; Perry, 1991).

El rango de distribución del género Pinus en México y América Central se extiende desde la frontera de México y Los Estados Unidos hasta la parte central de Nicaragua, y el mismo se puede dividir en seis amplias zonas geográficas: La Sierra Madre Occidental, El Eje Volcánico, La Sierra madre oriental, La Sierra Madre del Sur, La Cordillera de América Central, los alrededores y el Llano de la Costa (Dvorak, 1997).

4.2.1. Pinus ayacahuite Ehrenb.

Es un pino que alcanza alturas entre los 35-40 m de alto y diámetro hasta de 2 m (Perry, 1991), según (Navare y Taylor, 1997) lo reportan con alturas que van de los 20-35 m, de forma piramidal angostándose hacia el ápice, d.a.p. hasta de 1m, de corteza delgada, pardo-grisácea, lisa en árboles jóvenes, áspera o fisurada con la edad.

Martínez (1948), describe que es un árbol grande que crece en alturas frías a templadas desde Centro América hasta el límite con los Estados Unidos.

Hojas con vainas deciduas, en fascículos de 5, de 10 a 20 cm. de largo serradas; estomas ventrales; conductos resiníferos externos con número variable de 2 a 8. Conillos en grupos de 2 ó 3, sobre pedúnculos largos y fuertes, cilíndricos; sus escamas son delgadas y muy imbricadas. Conos sobre pedúnculos largos, colgantes de 20 a 45 cm. de largo, rectos o curvos apófisis opaca a veces sublustrosa amarillenta pálida o café rojiza, con frecuencia muy corrugada con sus ápices reflejados, recurvados o revolutos en diversos grados. El tamaño de las semillas y de las alas es variable; ramillas café pálidas y pubescentes al principio, con el tiempo se ponen gris cenizo y glabras; la corteza es persistentemente suave por muchos años.
Perry (1991), reporta que se puede encontrar desde el sur de México a Guatemala, Honduras y El Salvador. En México en las partes altas de Chiapas, Oaxaca y Guerrero, en grupos pequeños en Puebla y Tlaxcala. El Guatemala se encuentra individualmente y en grupos en montañas elevadas de Santa Barbara (Cerro Santa Barbara, altitud de 2800 m), Lempira (Cerro Celaque altitud de 2900 m) y cerca de la aldea de las Trancas en la Paz. En El Salvador en el Departamento de Chalatenango en las faldas del Cerro el Pital (altitud de 2800 m).

Navare y Taylor (1997), reporta su distribución en México (Chiapas, Chihuahua, Distrito Federal, Durango, Estado de México, Guanajuato, Guerrero, Michoacán, Nuevo León, Oaxaca, Puebla, Sinaloa, Tlaxcala y Veracruz); Guatemala, Honduras y el Salvador. En el estado de Veracruz se ha encontrado en los municipios de Xico, Calcahualco, Perote, Acajete y Huayacocotla.

Según, Eguiluz (1988) reporta que el rango altitudinal de esta especie va de los 2300 a 2700 metros, mientras que Perry (1991) lo establece de 2000 hasta 3200 metros sobre el nivel del mar, (Santiago et al., 1997) lo reportan de 2300 a 2460 msnm.

La madera de *P. ayacahuite* es suave, ligera, blanca cremosa de poca resina y de fácil manipulación para la elaboración de puertas, ventanas, gabinetes, etc. (Perry, 1991), otro uso que se reporta es que se emplean pedazos de esta madera para hacer los techos de las casas (tejamanil), así como para la elaboración de muebles en algunas localidades del estado de Veracruz (Navare y Taylor, 1997).

4.2.2. *Pinus hartwegii* Lindl.

Hernández (1983), hace una descripción tomando en cuenta las partes vegetativas: tallo, hojas, conos, escamas y semillas, elaborándose una clave para su fácil identificación y comparando con Martínez (1948) y Shaw (1909), lo describe como árboles de 15 a 30 m de alto y unos 60 cm de diámetro, con corteza agrietada, de color rojizo a obscuro, con ramas irregulares situadas, generalmente después de los 8 m de altura. Hojas en números de 3,4 y 5 por fascículo;
lo más típico 4 y 5 con numero constante; anchamente triangulares, miden de 11 a 24 cm de largo y 1 mm de grosor, medianamente gruesas y rígidas. Bordes finamente aserrados, con los dientes pequeños y próximos. Los canales resiníferos de 4 a 5 en posición media. vainas de 10 a 20 mm de color café grisáceo, anillada. Conos largamente ovoides, ligeramente oblicuos, miden de 7 a 12 cm de largo; de color café obscuro casi negro; colocados por pares o solitarios, persistentes, se observan del año anterior; subsésiles con pedúnculos de unos 8 mm; cuando el cono cae, el pedúnculo queda en la ramilla con algunas escamas basales.

Escamas delgadas y frágiles, miden de 23 a 28 mm de largo por 8 a 13 mm de ancho; ápice ligeramente triangular; apófisis aplastada, cúspide hundidas que rematan en una espinita persistente, sobre todo en las escamas basales.

Semillas de 5 a 7 mm de largo, de color a café- amarillento, con ala de unos 15 mm. de largo por 5 mm. de ancho.

Este autor difiere notablemente con lo reportado por Martínez (1948), sobre todo en cuanto a la longitud de la hoja, llegando a medir hasta 24 cm.

Esta especie crece en altitudes frías a templadas, más arriba del límite de la vegetación, en las máximas elevaciones, formando masas puras o mezcladas (Martínez 1948; Eguiluz, 1985).

Se reportan varios rangos altitudinales para esta especie según varios autores; (Perry, 1991) lo establece de los 3000 - 3700 m; (Eguiluz, 1985) desde los 2815 m hasta los 4000 m; (Hernández, 1983) lo localizó en altitudes desde 26000 a 2800 m.

Perry (1991), reporta su distribución en México, en Nuevo León, Tamaulipas, Hidalgo, Puebla, Veracruz, Tlaxcala, México Distrito Federal, Morelos, Colima, Michoacán, Jalisco, Oaxaca y Chiapas, además de estos estados (Eguiluz,1985) registra su distribución, en Morelos, Orizaba, Ver.,Guerrero, así como Zobel citado por este autor lo reporta en Coahuila también.
Su distribución además abarca en Guatemala; Huehuetenango, Totonicapán, Quezaltenango, Quiché, Solalá, San Marcos, Chimaltenango, Sacatepéquez y Guatemala. En Honduras en las partes más altas del Cerro Santa Barbara, asimismo se reporta en El Salvador (Perry, 1991).

La madera es dura y resinosa, de su transformación se produce celulosa, papel, pasta mecánica y en segundo término para aserrío, chapa, triplay y tablero de partículas. También se utiliza para obtención de durmientes, postes, pilotes, trozo para combustible y carbón (Eguiluz, 1978).

4.2.3. *Pinus rudis* End.

Árboles de 15 a 25 m de alto y 50 cm de diámetro; corteza gruesa, agrietada en placas alargadas de color café rojizo; ramas dispuestas irregularmente desde los 2 m de altura, las ramillas ásperas que fácilmente se descaman. Hojas entre grupos de 5, 6 y 7 por fascículo, predominando 6, anchamente triangulares de 18 a 28 cm de largo, y 1.5 mm de grueso, tensas y extendidas con bordes aserrados, los canales resiníferos en un número de 3 de posición media. Vainas de 25 a 30 mm de largo cuando jóvenes, pero viejas se acortan, midiendo de 15 a 20 mm; anilladas, de color castaño. Conos anchamente ovoides a largamente ovoides, persistentes; subsésiles con pedúnculo de unos 8 mm, al caer lo hacen con todo y pedúnculo. Escamas delgadas y duras de 20 a 30 mm de largo por 10 a 19 mm de ancho, ápice anguloso; apófisis aplanada con grietas manera de rayas obscuras; quilla transversal marcada, cúspide poco saliente de color gris que remata en una espinita corta y caediza (Hernández, 1983). Este autor difiere con la descripción de (Eguiluz, 1985), principalmente en las alturas que reporta, ya que éste último dice que alcanza alturas que van de 8 a 25 m.

Eguiluz (1985), proporciona características como su localización y menciona que en México se localiza en Coahuila, Colima, Chiapas, Durango, Hidalgo, Jalisco, Michoacán, Morelos, Nayarit, Nuevo León, Oaxaca, Puebla, Querétero, Tlaxcala, Tamahulipas, Veracruz y
Zacatecas. Asimismo su rango altitudinal es de 2490 a 3690 m. y se le puede encontrar asociado con *Pinus montezumae* y *Pinus hartwegii*.

Martínez (1948), describe que la madera de esta especie es ligera, con el duramen levemente rosado y con la albura de color amarillo brillante cuando se seca, y más intenso en los árboles gruesos y viejos.

Es de importancia económica, pues se aprovecha para la producción de madera aserrada y triplay (Eguiluz, 1978).

La densidad de la madera es una característica que está íntimamente relacionada con las propiedades de resistencia de la madera en la construcción y el rendimiento en la elaboración de pulpa para papel, así como las unidades caloríficas al utilizar la madera como combustible (Kollamn, 1959, citado por Valencia y López 1999).

4.2.4. *Pinus oaxacana* Mirov.

Pinus oaxacana Mirov fue considerado por Martínez (1948) como *P. seudostrobus* var. *oaxacana*. Posteriormente, Mirov (1967) reconsideró este pino como diferente de *P. pseudostrobus* en sus características morfológicas, especialmente en su forma y estructura del cono y en la composición de su resina, consignándolo al final como especie independiente (Eguiluz, 1977).

Martínez (1948) describe esta variedad como un árbol de 20 a 40 m de altura, curpulento, de corteza gruesa y agrietada moreno oscuro, exteriormente grisácea. Ramas fuertes, extendidas, amarillas verticales, moreno rojizo o café amarillentas con tinte glauco, casi lisas o muy poco ásperas, con marcado tinte azuloso en sus partes mas tiernas, la base de las brácteas con el ápice oval espaciadas y salientes, a veces tanto como en el *Pinus montezumae*.
Las hojas se encuentran en grupos de 5; muy rara vez en fascículos de 6, de 20 a 35 cm. de largo, de color verde claro con tinte amarillento, delgadas flexibles y colgantes, triangulares y agudas, finamente aserradas. Los canales resiníferos son medios, en números de 3 a 4, rara vez son 2, muy aproximados y en ocasiones poco distintos.

Conos semipersistentes colocados por pares o en grupos de 3 y en ocasiones 4, de 10 a 16 cm de largo, anchamente cónicos o cónicos oblongos, ligeramente encorvados y oblicuos asimétricos, con frecuencia resinosos.

Escamas fuertes, irregulares desarrolladas, de ápice redondeado o irregularmente obtuso; de 3 a 4 cm de largo por 1.2 o 2.5 cm de ancho en el ápice, ensanchadas en su parte media, aplanadas por dentro, con apófisis duras y salientes, provistas de una prolongación cenicienta ancha y generalmente aplanada que es lo que caracteriza a esta variedad.

Las semillas son de color café oscuro o casi negro, vagamente triangulares, de unos 7 a 9 mm de largo; con ala color café oscuro, de 20 a 35 mm de largo por unos 8 mm de ancho y con líneas longitudinales marcadas.

El rango altitudinal de esta especie está dado de acuerdo a diferentes autores: Martínez (1948), menciona que suele verse en alturas de 1500 - 2630 msnm, pero sus mejores calidades de estación se presentan de 2100 a 2300 m. Perry (1991) reporta altitudes de 1500 - 3200 m, mientras que Eguiluz (1985) establece un rango altitudinal de 1500 a 2400 m.

Bermejo (1980), dice que su distribución en México se localiza en los estados de Chiapas, Guerrero, Oaxaca, Puebla, Tlaxcala y Veracruz.
Navare y Taylor (1997) lo reportan en el estado de Veracruz, en las localidades de Perote y Los Altos.

La madera es resistente y moderadamente resinosa, puede ser usada en la construcción de casas (Perry, 1991).

Bermejo (1980), reporta que los árboles de *Pinus oaxacana* son buenos productores de resina, su madera es de buena calidad, los fustes son generalmente limpios y permiten su uso en aserríos, pudiendo obtenerse triplay, chapa, pulpa para papel y cajas de empaque, además de molduras, artesanías, ebanistería y muebles finos o de producción seriada, sus ramas se han usado como combustible doméstico.

Alba, *et al.* (1999), dice que es una especie con alto potencial de uso en esquemas de restauración, conservación así como con alto potencial económico por las características que presenta su madera y por el valor que tiene su germoplasma para establecer estrategias de réplicas o aumento de frecuencias alélicas para fines muy específicos.

Del Amo (1994), citado por Mencha y Maruri (1999) reporta que esta especie que puede a ayudar a obtener una mayor producción de biomasa en el corto y el largo plazo en ambientes deteriorados, lo que cumple con los requisitos esenciales de la sustentabilidad.
5. MATERIAL Y MÉTODOS

5.1. Ubicación del ensayo

El estudio se realizó en el vivero del Instituto de Genética Forestal de la Universidad Veracruzana, ubicado en el interior del parque ecológico “El Haya”, en la ciudad de Xalapa, Ver., carretera antigua Xalapa-Coatepec, con coordenadas aproximadas de 19°23’ de latitud Norte y 97°00’ de longitud Oeste, a una altitud de 1,350 msnm (García 1970; Soto y Gómez 1990).

De acuerdo a García,1970, el tipo de clima corresponde a un (A) C (fm) a (i’) que es un clima semicálido húmedo con lluvias en verano y parte de otoño. Mientras que el lugar presenta una temperatura media anual entre 18 y 22 °C, una precipitación media anual de 1,067 mm (Soto y Gómez 1990).

5.2. Trabajo de vivero

La semilla utilizada en este experimento fue proporcionada por el Banco Central Germoplasma Forestal “Los Molinos” del mismo Instituto. El origen de las semillas de las especies que intervinieron en el experimento se presentan en la tabla 1.

<table>
<thead>
<tr>
<th>ESPECIE</th>
<th>EJIDO</th>
<th>MUNICIPIO</th>
<th>ESTADO</th>
<th>ALTITUD</th>
<th>FECHA DE COLECTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Pinus ayacahuite</td>
<td>Altopixquiac</td>
<td>Las Vigas</td>
<td>Veracruz</td>
<td>2800 msnm</td>
<td>Octubre 1999</td>
</tr>
<tr>
<td>2. Pinus oaxacana</td>
<td>Los Molinos</td>
<td>Perote</td>
<td>Veracruz</td>
<td>2365 msnm</td>
<td>Diciembre 1999</td>
</tr>
<tr>
<td>3. Pinus rudis</td>
<td>Las Vigas</td>
<td>Las Vigas</td>
<td>Veracruz</td>
<td>2600 msnm</td>
<td>Diciembre 1999</td>
</tr>
<tr>
<td>4. Pinus hartwegii</td>
<td>El Rosario</td>
<td>Perote</td>
<td>Veracruz</td>
<td>4000 msnm</td>
<td>Diciembre 1999</td>
</tr>
</tbody>
</table>
5.3. Origen de los sustratos empleados

Suelo de bosque. Este material se obtuvo de una población natural donde vegetan especies de *Pinus rudis*, *P. ayacahuite* y *P. patula*, ubicado en el poblado Las Minas del municipio de Villa Aldama, Veracruz, a una altitud aproximada de 2,300 msnm.

Arena de mina. Este material proviene de la región de Coatepec, Ver. de las zonas de extracción “Los arenales” y se encuentra localizado a una altitud aproximada de 1200 msnm.

Lombricomposta. De origen de pulpa de café, producida en la finca “La Esmeralda”, en la localidad de Consolapa, municipio de Coatepec, Ver. la cual se obtuvo por el procedimiento de lombricompostaje, utilizando Lombriz Roja de California(*Eisenia andrei)*.

En la preparación de los sustratos , cada uno fue cernido en la cantidad requerida con la finalidad de eliminar hojas, ramas, raíces, piedras, grumos y algunas otras partículas grandes, para facilitar su mezclado.

Para la evaluación del crecimiento inicial se emplearon plántulas obtenidas a partir de la germinación en semillero de las cuatro especies en estudio, las cuales fueron transplantadas el 24 septiembre del año 2001. Utilizándose bolsa negra para vivero de 18X25 cm.

5.4. Diseño experimental

En la distribución de la planta en el vivero, se empleó un diseño factorial de 4 X 5; cuatro especies de pinos (*Pinus ayacahuite*, *Pinus rudis*, *Pinus oaxacana* y *Pinus hartwegii*) y 5 tratamientos (tabla 2) de diferente composición porcentual de arena, suelo de bosque y lombricomposta.
<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>ARENA DE MINA (%)</th>
<th>SUELO DE BOSQUE (%)</th>
<th>LOMBRICOMPOSTA (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>

En un arreglo de parcelas divididas al azar, con tres repeticiones; asignando las especies de pinos en las parcelas grandes y los tratamientos en las subparcelas. El tamaño de la parcela quedó conformada por 10 plantas para cada una de las combinaciones de especies y tratamientos como lo muestra la figura 1.
Figura 1. Croquis del diseño experimental en campo.

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>XXX</td>
<td>Especie 1 trat.4</td>
<td>Especie 3 trat.3</td>
<td>Especie 2 trat.4</td>
<td>Especie 4 trat.2</td>
<td></td>
</tr>
<tr>
<td>Especie 1 trat.1</td>
<td>Especie 3 trat.1</td>
<td>Especie 2 trat.3</td>
<td>Especie 4 trat.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Especie 1 trat.3</td>
<td>Especie 3 trat.5</td>
<td>Especie 2 trat.5</td>
<td>Especie 4 trat.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Especie 1 trat.2</td>
<td>Especie 3 trat.4</td>
<td>Especie 2 trat.1</td>
<td>Especie 4 trat.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XXX</td>
<td>Especie 1 trat.5</td>
<td>Especie 3 trat.2</td>
<td>Especie 2 trat.2</td>
<td>Especie 4 trat.4</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>XXX</td>
<td>Especie 2 trat.2</td>
<td>Especie 1 trat.4</td>
<td>Especie 4 trat.1</td>
<td>Especie 3 trat.5</td>
</tr>
<tr>
<td>Especie 2 trat.4</td>
<td>Especie 1 trat.5</td>
<td>Especie 4 trat.4</td>
<td>Especie 3 trat.1</td>
<td></td>
</tr>
<tr>
<td>Especie 2 trat.5</td>
<td>Especie 1 trat.3</td>
<td>Especie 4 trat.3</td>
<td>Especie 3 trat.2</td>
<td></td>
</tr>
<tr>
<td>Especie 2 trat.1</td>
<td>Especie 1 trat.1</td>
<td>Especie 4 trat.5</td>
<td>Especie 3 trat.4</td>
<td></td>
</tr>
<tr>
<td>Especie 2 trat.3</td>
<td>Especie 1 trat.2</td>
<td>Especie 4 trat.2</td>
<td>Especie 3 trat.3</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>XXX</td>
<td>Especie 4 trat.1</td>
<td>Especie 2 trat.1</td>
<td>Especie 3 trat.3</td>
<td>Especie 1 trat.3</td>
</tr>
<tr>
<td>Especie 4 trat.2</td>
<td>Especie 2 trat.2</td>
<td>Especie 3 trat.5</td>
<td>Especie 1 trat.2</td>
<td></td>
</tr>
<tr>
<td>Especie 4 trat.4</td>
<td>Especie 2 trat.4</td>
<td>Especie 3 trat.2</td>
<td>Especie 1 trat.1</td>
<td></td>
</tr>
<tr>
<td>Especie 4 trat.5</td>
<td>Especie 2 trat.5</td>
<td>Especie 3 trat.1</td>
<td>Especie 1 trat.5</td>
<td></td>
</tr>
<tr>
<td>Especie 4 trat.3</td>
<td>Especie 2 trat.3</td>
<td>Especie 3 trat.4</td>
<td>Especie 1 trat.4</td>
<td></td>
</tr>
</tbody>
</table>

Parcelas mayores = Especies
Parcelas menores = Tratamientos.
5.5. Variables evaluadas

El tamaño de la muestra para la evaluación de las variables altura y diámetro del tallo en las plantas se determinó con la aplicación de la fórmula de Scheaffer et al; (1987) resultando un total de 10 plantas por repetición y tratamiento.

\[n = \frac{N * S^2}{(N - 1)B^2 + S^2} \]

Donde:

N = Tamaño de muestra
N = Número total de semillas por árbol
S^2 = Varianza
B = Límite para el error e estimación (0.1 cm)

5.5.1. Altura del tallo de la planta

Se realizaron mediciones mensuales durante siete meses, a partir del cuello de la raíz a la yema principal de crecimiento, con el apoyo de regla metálica con aproximación a milímetros.

5.5.2. Diámetro del tallo

La medida se realizó con la ayuda de un vernier metálico marca Scala con aproximación al milímetro, en la base del tallo de la planta, realizándose la medición a los siete meses después del transplante.
5.5.3. **Análisis de los sustratos**

Los sustratos empleados en el presente estudio fueron analizados en el Departamento de Suelos del Instituto de Ecología A.C., efectuándose los análisis químicos y físicos, al inicio y término del estudio y que a continuación se enumeran:

1.- pH.
2.- Contenido de materia orgánica.
3.- Contenido de N,P, y K.
4.- Capacidad de intercambio catiónico.
5.- Contenido de Ca y Mg.
6.- Textura.
5.5.4. **Análisis de datos de cada variable**

Para las variables altura y diámetro de tallo se realizó un análisis exploratorio que consistió en la obtención de las estadísticas descriptivas y gráficos de cajas y alambres, utilizando el paquete STATISTICA (Stat Soft, 1998).

Con base en el cumplimiento de los supuestos estadísticos de normalidad y homogeneidad de varianzas (Hartley, Crochran y Bartlett) de los datos obtenidos para cada variable de estudio, se realizó el corrimiento del análisis de varianza en el paquete estadístico SAS (Statistical Análisis System) con el procedimiento ANOVA tipo III SS (Anexo).

5.6. **Modelo estadístico**

Se aplicó un modelo lineal, para un diseño de parcelas divididas, con un arreglo aleatorio de efectos fijos.

Modelo estadístico:

\[y_{ijk} = \mu + A_i + E_{ij} + B_k + (AB)_{ik} + \varepsilon_{ijk} \]

Donde:

- \(y_{ijk} \) = Respuesta observada altura
- \(\mu \) = Efecto de la media
- \(A_i \) = Efecto de la i-ésima especie (Parcelas mayores)
- \(E_{ij} \) = Error aleatorio generado en las parcelas mayores
- \(B_k \) = Efecto del K-ésimo sustrato (Parcelas menores)
- \(AB_{ik} \) = Efecto de la interacción generada entre ambas parcelas.
- \(\varepsilon_{ijk} \) = Error aleatorio generado en la parcela menor por la interacciones
En este diseño las hipótesis planteadas son:

Para especies (parcela mayor):

Ho: \(\text{Pinus ayacahuite} = \text{Pinus oaxacana} = \text{Pinus rudis} = \text{Pinus hartwegii} \).

H1: Al menos una especie de pino es diferente.

Para tratamientos (parcela menor)

Ho: \((\text{TRATAMIENTO} 1) = (\text{TRATAMIENTO} 2) = (\text{TRATAMIENTO} 3) = (\text{TRATAMIENTO} 4) = (\text{TRATAMIENTO} 5)\)

H1: Al menos un tratamiento es diferente.

Para la interacción (tratamientos X especies):

Ho: \((\text{TRATAMIENTO} 1 \times \text{P.ayacahuite}) = (\text{TRATAMIENTO} 1 \times \text{P. oaxacana}) = (\text{TRATAMIENTO} 1 \times \text{P. rudis}) = (\text{TRATAMIENTO} 1 \times \text{P. hartwegii}) = (\text{TRATAMIENTO} 2 \times \text{P. ayacahuite}) = (\text{TRATAMIENTO} 2 \times \text{P. oaxacana}) = (\text{TRATAMIENTO} 2 \times \text{P. rudis}) = (\text{TRATAMIENTO} 2 \times \text{P. hartwegii}) = (\text{TRATAMIENTO} 3 \times \text{P. ayacahuite}) = (\text{TRATAMIENTO} 3 \times \text{P. oaxacana}) = (\text{TRATAMIENTO} 3 \times \text{P. rudis}) = (\text{TRATAMIENTO} 3 \times \text{P. hartwegii}) = (\text{TRATAMIENTO} 4 \times \text{P. ayacahuite}) = (\text{TRATAMIENTO} 4 \times \text{P. oaxacana}) = (\text{TRATAMIENTO} 4 \times \text{P. rudis}) = (\text{TRATAMIENTO} 4 \times \text{P. hartwegii}) = (\text{TRATAMIENTO} 5 \times \text{P. ayacahuite}) = (\text{TRATAMIENTO} 5 \times \text{P. oaxacana}) = (\text{TRATAMIENTO} 5 \times \text{P. rudis}) = (\text{TRATAMIENTO} 5 \times \text{P. hartwegii}).

H1: Al menos una interacción es diferente.

Se aplicó la prueba de comparaciones múltiples de Tukey para la variables altura y diámetro de tallo que mostraron diferencias estadísticas en el ANOVA, con la finalidad de agrupar los tratamientos que están en un mismo rango y determinar cuál de los tratamientos
puede ser el que mejor efecto tenga sobre el crecimiento de las plantas.

Finalmente, se representará el comportamiento de la altura de la planta a través de tiempo con el gráfico de crecimiento mensual por especie.
6. RESULTADOS

6.1. Altura del tallo de la planta

En función al hábito de crecimiento que presentan las especies utilizadas en este estudio, se agruparon para su análisis, comparación e interpretación estadística en; las especies que mostraron un crecimiento inicial rápido en altura del tallo como son Pinus ayacahuite y Pinus oaxacana y las que presentaron un crecimiento lento y que se caracterizan por presentar un estadio “cespitoso” durante su crecimiento inicial (Pinus hartwegii y Pinus rudis).

Los resultados obtenidos muestran que la respuesta del crecimiento manifestada en la altura de las cuatro especies en estudio es diferente, debido a que los análisis descriptivos, indican que las máximas alturas alcanzadas las obtuvieron Pinus ayacahuite y Pinus oaxacana mientras que las mínimas alturas las registran Pinus hartwegii y Pinus rudis, como lo indica la Figura 1 y 2.

![Diagrama de cajas y alambres para altura en Pinus ayacahuite y Pinus oaxacana](image_url)

Figura 2. Diagrama de cajas y alambres para altura en *Pinus ayacahuite* y *Pinus oaxacana*
En relación al efecto del sustrato, en la altura del tallo de la planta, se observa que los tratamientos que contienen 20%, 30%, 40% y 50% de lombricomposta superan en altura del tallo al empleado tradicionalmente (tratamiento No. 5), que contiene 100% de suelo de bosque, en *Pinus ayacahuite* y *Pinus oaxacana* (gráfica 3).
En *Pinus rudis* y *Pinus hartwegii* el efecto de los tratamientos en las máximas alturas obtenidas corresponden al tratamiento No. 5 que contiene 100% de suelo de bosque en comparación con las obtenidas en los tratamientos que contienen lombricomposta (gráfica 4).

![Diagrama de cajas y alambres de los tratamientos en *Pinus rudis* y *Pinus hartwegii*.](image)

Figura 5. Diagrama de cajas y alambres de los tratamientos en *Pinus rudis* y *Pinus hartwegii.*

En la gráfica 5 se muestra la comparación de la altura media obtenida en los diferentes tratamientos comparada con la media general de la especie, en donde se puede apreciar que en el tratamiento 4 se obtienen las mayores alturas promedio para *Pinus ayacucho* y *Pinus oaxacana*, mientras que el tratamiento 5 (tradicional), reporta los valores por debajo de la media de la especie en *Pinus oaxacana.*
Los resultados indican que las mejores alturas promedio por tratamiento se alcanzan en el tratamiento 3, en *Pinus rudis*; mientras que para *Pinus hartwegii* se logra en el tratamiento 4; los cuales contienen 40% y 50% de lombricomposta respectivamente (gráfica 6).
6.1.1. **Análisis de varianza**

Con base en el cumplimiento de los supuestos estadísticos de normalidad y homogeneidad de varianzas (Hartley, Crochran y Bartlett) de los datos obtenidos para cada variable de estudio, se realizó el corrimiento del análisis de varianza en el paquete estadístico SAS (Statstical Análisis System) con el procedimiento ANOVA tipo III SS (Anexo 2).

En la tabla 3 se muestra el análisis de varianza para la variable altura para *Pinus ayacahuite* y *Pinus oaxacana*, lo que indica existen diferencias significativas a un nivel de significancia de (P< 0.001) entre los tratamientos, no así para las especies e interacción.

<table>
<thead>
<tr>
<th>FUENTES DE VARIACIÓN</th>
<th>G.L.</th>
<th>S.C</th>
<th>C.M.</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESPECIE</td>
<td>1</td>
<td>71.93</td>
<td>71.93</td>
<td>30.47</td>
<td>0.0313</td>
</tr>
<tr>
<td>REPETICIONES</td>
<td>2</td>
<td>197.004</td>
<td>98.502</td>
<td>41.72</td>
<td>0.0234</td>
</tr>
<tr>
<td>ESPECIE*BLOQUE</td>
<td>2</td>
<td>4.722</td>
<td>2.3611</td>
<td>0.10</td>
<td>0.9054</td>
</tr>
<tr>
<td>TRATAMIENTOS</td>
<td>4</td>
<td>1246.0126</td>
<td>311.50</td>
<td>13.12</td>
<td>0.0054***</td>
</tr>
<tr>
<td>TRAT*ESPECIE</td>
<td>4</td>
<td>289.9931</td>
<td>72.4927</td>
<td>3.05</td>
<td>0.0185</td>
</tr>
<tr>
<td>ERROR</td>
<td>163</td>
<td>3868.75</td>
<td>23.73</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 3. Análisis de varianza para altura en *Pinus ayacahuite* y *Pinus oaxacana.*

*** Altamente significativa

Como se puede observar en *Pinus rudis* y *Pinus hartwegii* el ANOVA solo registra diferencia significativa a un nivel de significancia de (P< 0.01) para los tratamientos en la variable altura (tabla 4).

<table>
<thead>
<tr>
<th>FUENTES DE VARIACIÓN</th>
<th>G.L.</th>
<th>S.C</th>
<th>C.M.</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESPECIE</td>
<td>1</td>
<td>88.1194</td>
<td>88.119400</td>
<td>162.68</td>
<td>0.0659</td>
</tr>
<tr>
<td>REPETICIONES</td>
<td>2</td>
<td>3.51701</td>
<td>1.758549</td>
<td>3.25</td>
<td>0.0419</td>
</tr>
<tr>
<td>ESPECIE*BLOQUE</td>
<td>1</td>
<td>0.951865</td>
<td>0.951865</td>
<td>1.76</td>
<td>0.1872</td>
</tr>
<tr>
<td>TRATAMIENTOS</td>
<td>4</td>
<td>9.382534</td>
<td>2.34563</td>
<td>4.33</td>
<td>0.0025**</td>
</tr>
<tr>
<td>TRAT*ESPECIE</td>
<td>4</td>
<td>2.5227</td>
<td>0.630694</td>
<td>1.16</td>
<td>0.3293</td>
</tr>
<tr>
<td>ERROR</td>
<td>137</td>
<td>71.21</td>
<td>0.54</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 4. Análisis de varianza para altura en *Pinus rudis* y *Pinus hartwegii.*
6.1.2. Comparación de medias de Tukey

La comparación entre las medias de las alturas por tratamientos en *Pinus ayacahuite* y *Pinus oaxacana*, según la prueba de Tukey a un nivel de confianza de $\alpha = .05$, las reporta agrupando a los tratamientos en dos grupos como a continuación se muestran en las gráficas 7 y 8 para cada una de estas especies.

Figura 8. Comparación entre las alturas medias en *Pinus ayacahuite*.

Figura 9. Comparación entre las alturas medias en *Pinus oaxacana*.
La prueba de Tukey reporta a un a un nivel de confianza de $\alpha = .05$ para *Pinus rudis* y *Pinus hartwegii*, la formación de dos grupos estadísticamente iguales para los tratamientos, como lo demuestran las gráficas 9 y 10.

Figura 10. Comparación de media en los tratamientos en *Pinus rudis*.

Figura 11. Comparación de medias en los tratamientos en *Pinus hartwegii*.
6.2. Análisis de diámetro de tallo

6.2.1. Análisis exploratorios

El efecto de los tratamientos en el diámetro del tallo obtenido en *Pinus ayacahuite* y *Pinus oaxacana* está en relación con la respuesta de los sustratos que contienen lombricomposta, ya que son éstos son los tratamientos que registran los mayores diámetros en comparación con el sustrato tradicional (No. 5) que contiene 100 % de suelo de bosque como se aprecia en la gráfica 11.

![Diagrama de cajas y alambres](image)

Figura 12. Diagrama de cajas y alambres de la relación tratamientos y diámetro del tallo de las plantas en *Pinus ayacahuite* y *Pinus oaxacana*.

Como lo muestra la gráfica 12, el diámetro de mayor dimensión se alcanza en *Pinus rudis*, en el tratamiento No. 1, mientras que en los tratamientos No. 2,3,4 y 5 registran diámetros que se encuentran casi en mismo rango. En *Pinus hartwegii*, se mantiene una relación semejante, mientras que el tratamiento No. 2 es el que registra los mayores diámetros, los tratamientos 1,3,4 y 5 se mantiene casi en un mismo nivel los valores del diámetro obtenidos.
Figura 13. Diagrama de cajas y alambres de la relación tratamientos y diámetro en *Pinus rudis* y *Pinus hartwegii*.

6.2.2. Análisis de varianza para diámetro de tallo

Los resultados del ANOVA practicado para la variable diámetro de tallo en *Pinus ayacahuite* y *Pinus oaxacana*, reporta que existen diferencias significativas (P< 0.001) entre los tratamientos como se lo muestra la tabla 5.

<table>
<thead>
<tr>
<th>FUENTES DE VARIACIÓN</th>
<th>G.L</th>
<th>S.C</th>
<th>C.M.</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESPECIE</td>
<td>1</td>
<td>0.026218</td>
<td>0.026218</td>
<td>19.718</td>
<td>0.0472</td>
</tr>
<tr>
<td>BLOQUE</td>
<td>2</td>
<td>0.017734</td>
<td>0.0088674</td>
<td>6.67</td>
<td>0.1304</td>
</tr>
<tr>
<td>ESPECIE*BLOQUE</td>
<td>2</td>
<td>0.0026598</td>
<td>0.001329</td>
<td>0.23</td>
<td>0.7953</td>
</tr>
<tr>
<td>TRATAMIENTOS</td>
<td>4</td>
<td>0.2461536</td>
<td>0.0615384</td>
<td>10.613</td>
<td>0.0001</td>
</tr>
<tr>
<td>TRAT*ESPECIE</td>
<td>4</td>
<td>0.0559906</td>
<td>0.0139976</td>
<td>2.41</td>
<td>0.0510</td>
</tr>
<tr>
<td>ERROR</td>
<td>163</td>
<td>3868.75</td>
<td>23.73</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 5. Análisis de varianza para diámetro en *Pinus ayacahuite* y *Pinus oaxacana*
El análisis de varianza para diámetro de tallo de la planta para *Pinus rudis* y *Pinus hartwegii* no reportó diferencia significativa (p < .0001) entre tratamientos, interacción y especies, como lo muestra la tabla No.6

<table>
<thead>
<tr>
<th>FUENTES DE VARIACIÓN</th>
<th>G.L.</th>
<th>S.C</th>
<th>C.M.</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESPECIE</td>
<td>1</td>
<td>.002195</td>
<td>0.002195</td>
<td>0.31</td>
<td>0.7502</td>
</tr>
<tr>
<td>BLOQUE</td>
<td>2</td>
<td>.0025207</td>
<td>0.001260</td>
<td>0.18</td>
<td>0.8355</td>
</tr>
<tr>
<td>ESPECIE*BLOQUE</td>
<td>1</td>
<td>0.011281</td>
<td>0.012812</td>
<td>1.83</td>
<td>0.1784</td>
</tr>
<tr>
<td>TRAT</td>
<td>4</td>
<td>0.01695</td>
<td>0.004239</td>
<td>0.61</td>
<td>0.6594</td>
</tr>
<tr>
<td>TRAT*ESPECIE</td>
<td>4</td>
<td>0.016680</td>
<td>0.004170</td>
<td>.060</td>
<td>0.6665</td>
</tr>
<tr>
<td>ERROR</td>
<td>137</td>
<td>0.959468</td>
<td>0.007003</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 6 Análisis de varianza para diámetro de tallo en *Pinus rudis* y *Pinus hartwegii*

6.2.3. Comparación de medias de Tukey

La prueba de Tukey a un nivel de confianza α = .05 para diámetro del tallo en las especies *Pinus ayacahuite* y *Pinus oaxacana* reporta la formación de dos grupos estadísticamente iguales, como se muestra en las gráficas 13 y 14.

Figura 14. Comparación de medias en diámetro de tallo en *Pinus ayacahuite*.
6.2.4. Gráfica de la curva de crecimiento

En las Figuras 15 y 16 se representa el crecimiento de *Pinus ayacahuite* y *Pinus oaxacana*, obtenido durante los siete meses de evaluación, observándose que en *Pinus ayacahuite*, el crecimiento durante los primeros tres meses es lento y a partir del cuarto mes, empieza a ser mayor, mientras que en *Pinus oaxacana* la amplitud de la curva de crecimiento abarca hasta el quinto mes y a partir del sexto mes se nota que el crecimiento es mayor.
Los gráficos 17 y 18 muestran los crecimientos de *Pinus rudis* y *Pinus hartwegii*, como se pudo observar en *Pinus rudis*, el crecimiento se mantiene casi manera constante, mientras que para *Pinus hartwegii*

Figura 17. Esquema de crecimiento en *Pinus oaxacana*.

Figura 18. Curva de crecimiento en *Pinus rudis*.
Figura 19. Curva de crecimiento de *Pinus hartwegii*.

Pinus hartwegii
7. DISCUSIÓN

En base a los resultados obtenidos en el presente trabajo de investigación, se pudo apreciar que hubo respuesta diferente entre la especies de pinos, en la altura alcanzada por las plantas, al emplear tratamientos que en su composición contienen distintos porcentajes de lombricomposta, en comparación con el sustrato tradicional (100% suelo de bosque), sin embargo en la fase inicial de crecimiento, el diámetro del tallo de las plantas no presentó diferencias entre los tratamientos usados para Pinus rudis y Pinus hartweggi, no así para Pinus ayacahuite y Pinus oaxacana, lo que indica que el crecimiento en las diferentes especies de pinos se ve afectado por el sustrato usado, lo que concuerda con lo mencionado por Niembro y Fierros (1990), debido a que las características físico-químicas de los sustratos empleados en los viveros, tiene un efecto directo en el proceso germinativo y crecimiento inicial de las plantas.

Las diferencias de crecimiento entre las especies no determina que una sea mejor que otra; obedece que a las especies Pinus hartwegii y Pinus rudis son especies de diferentes hábitos de crecimiento, que se caracterizan por presentar un crecimiento lento en fase inicial, además son consideradas como especies de grandes alturas por presentar un rango altitudinal superior en comparación Pinus ayacahuite y Pinus oaxacana.

Los resultados obtenidos en las alturas de las especies de pinos del presente estudio, reporta que en el tratamiento 4, que en su composición tiene 50% de lombricomposta, con un pH de 5.5 y que pertenece al grupo textural de Migajon arenoso (anexo 1) fue en el que se obtuvieron las mayores alturas promedio, para Pinus ayacahuite, Pinus oaxacana y Pinus hartwegii; mientras que Pinus rudis la obtuvo en el tratamiento 3 que en su composición tiene 40% de lombricomposta, un pH de 7.2 y un grupo textural de arena migajonosa, lo que concuerda con Hart Jr. (1980); Davey (1984); Napier (1985) y Wood (1994) que mencionan que el pH puede afectar la disponibilidad de algunos de algunos de los nutrientes requeridos y que las especies de pinos crecen mejor a un pH de 5.5, aunque pueden presentar un mayor rango de tolerancia, asimismo los sustratos que mantienen un textura migajón arenosa favorecen una adecuada capacidad de retención de humedad y nutrientes.
En relación a otros factores que se pudieron observar durante el crecimiento inicial de las especies, se observó que las especies *Pinus oaxacana* y *Pinus hartwegii*, mostraron valores más bajos de sobrevivencia (anexo 1), lo que concuerda con May 1985 y Niembro 1990, quienes mencionan que existen diversos factores como el tamaño y viabilidad de las semillas, el tiempo y profundidad de la siembra, la estratificación, la constitución genética, las condiciones de humedad y temperatura durante la germinación, las plagas, la densidad de siembra, textura del suelo, la fertilidad del suelo, la presencia de micorrizas, el pH , tratamientos culturales aplicados y la disponibilidad de nutrientes, los cuales afectan de manera positiva o negativa tanto el proceso germinativo como el crecimiento y desarrollo de las plantas.

Al comprar los costos de producción por planta de manera tradicional y los costos de producción por planta, sustituyendo parcialmente el suelo de bosque por lombricomposta de pulpa de café, (anexo), resulta que es más caro producir plantas con la utilización de lombricomposta que usando el sustrato tradicional (100 % suelo de bosque), sin embargo si se consideran los beneficios que aporta el uso de lombricomposta de pulpa de café, de manera inmediata y posterior en la producción de plantas, supera el beneficio-costo al sustrato tradicional por aportar al suelo elementos nutritivos disponibles para la planta, mejora las características físicas y químicas del suelo, mejora la calidad de la planta, evita la extracción de grandes cantidades suelo de bosques naturales y erosión de los mismos, lo que concuerda con lo mencionado por Sabine, 1988; Martínez 1996; Burés, 1997; Capistran et al 1999 y Altamirano y Aparico 2002. Por otra parte, la técnica de lombricompostaje ayuda a transformar productos desecho de las agroindustrias en productos ecológicamente aprovechables.
8. CONCLUSIONES

En base a los resultados obtenidos en el presente trabajo de investigación se concluye lo siguiente:

1.- Los sustratos que contienen lombricomposta superan la altura obtenida de la plantas en comparación con el sustrato tradicional (100% suelo de bosque), en Pinus ayacahuite y Pinus oaxacana.

2. Económicamente el mejor sustrato para la producción de plantas en Pinus ayacahuite y Pinus oaxacana es el que contiene (30% de arena, 20% de lombricomposta y 50% suelo de bosque).

3. Para Pinus rudis y Pinus hartwegii económicamente el mejor sustrato es el.

4. Existe un efecto del sustrato en las dimensiones del tallo en Pinus ayacahuite y Pinus oaxacana, indicado por las diferencias altamente significativas entre los tratamientos, debido a que los sustratos que contienen (30% de arena, 30% lombricomposta y 40% de suelo de bosque) y el sustrato tradicional (100% suelo de bosque), en donde se obtienen los menores diámetros.

5. Durante su etapa inicial de crecimiento de Pinus rudis y Pinus hartweggi, el diámetro del tallo de la planta obtenido, no es afectado por el uso de los sustratos que contienen lombricomposta o el tradicional 100% suelo de monte.
9. RECOMENDACIONES

1.- Utilizar productos de la región provenientes de residuos orgánicos y transformarlos mediante el proceso de lombricompostaje, para ser utilizados como sustratos alternos en la producción de plantas en vivero.

2.- Realizar más trabajos de investigación para probar diferentes proporciones de sustratos a las realizadas en este estudio.

3.- Tomar en cuenta otras variables para evaluar el efecto del sustrato en la producción de plantas como son: tamaño de envase, sanidad y peso de masa fresca y seca.

4. - Incrementar los trabajos de investigación en otras especies forestales que tengan mayor demanda en los programas de reforestación, utilizando como sustrato alterno la lombricomposta de pulpa de café.
10. BIBLIOGRAFÍA

BLANDÓN, C.C.; DÁVILA A, M.T.; RODRÍGUEZ, N. 1999. Caracterización microbiológica y físico-química de la pulpa de café sola y con mucílago, en proceso de lombricompostaje. Cenicafé , Colombia . 50(1) ; 5-23.

ANEXO 1. Gráficos de probabilidad P-Plot

Gráfico de Normalidad para diámetro de tallo.

Gráfico de Normalidad de los Residuales
variable: ALTURA

Gráfico de normalidad para altura.

Gráfico de Normalidad de los Residuales
variable: ALTURA
Prueba de Homogeneidad de Varianzas Para la Variable Altura

1. Ho: $\sigma^2 = 0$
 Vs
 H1: $\sigma^2 \neq 0$

2. Nivel de Significancia: $\alpha = 0.05$

3. Análisis de Homogeneidad de Varianzas

<table>
<thead>
<tr>
<th></th>
<th>Hartley F-max</th>
<th>Cochran C</th>
<th>Bartlett Chi-sqr</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALTURA</td>
<td>1.123834</td>
<td>392.8583</td>
<td>52</td>
<td></td>
<td>0.00</td>
</tr>
</tbody>
</table>

4. Región Critica: Cuando p > α Se rechaza Ho.

Prueba de Homogeneidad de Varianzas Para la Variable Diámetro

1. Ho: $\sigma^2 = 0$
 Vs
 H1: $\sigma^2 \neq 0$

2. Nivel de Significancia: $\alpha = 0.05$

3. Análisis de Homogeneidad de Varianzas

<table>
<thead>
<tr>
<th></th>
<th>Hartley F-max</th>
<th>Cochran C</th>
<th>Bartlett Chi-sqr</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIAMETRO</td>
<td>6617.460</td>
<td>191948</td>
<td>179.9682</td>
<td>53</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

4. Región Critica: Cuando p > α Se rechaza Ho.
ANEXO 2. Análisis de los sustratos

<table>
<thead>
<tr>
<th>MÉTODO</th>
<th>Sustrato4</th>
<th>Sustrato3</th>
<th>Sustrato2</th>
<th>Sustrato1</th>
<th>Sustrato5</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH H2O 1:2</td>
<td>Potenciométrico</td>
<td>5.5</td>
<td>7.2</td>
<td>7.8</td>
<td>8.4</td>
</tr>
<tr>
<td>Materia orgánica (%)</td>
<td>Walhley y G:Black</td>
<td>10</td>
<td>4.6</td>
<td>4.3</td>
<td>4.1</td>
</tr>
<tr>
<td>Nitrógeno Total (%)</td>
<td>Kjeldahl</td>
<td>0.54</td>
<td>0.28</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>Fósforo extractable (ppm)</td>
<td>Bray I/Olsen*</td>
<td>0.5</td>
<td>9.9</td>
<td>23.2*</td>
<td>24.4*</td>
</tr>
<tr>
<td>Sodio (cmol/kg)</td>
<td>CH₃COONH₄ flamometría</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
</tr>
<tr>
<td>Potasio cmol/Kg</td>
<td>CH₃COONH₄ flamometría</td>
<td>6.85</td>
<td>8.85</td>
<td>9.77</td>
<td>11.80</td>
</tr>
<tr>
<td>Calcio (cmol/kg)</td>
<td>CH₃COONH₄</td>
<td>5.11</td>
<td>4.96</td>
<td>8.89</td>
<td>6.93</td>
</tr>
<tr>
<td>Magnesio (cmol/kg)</td>
<td>EAA</td>
<td>8.87</td>
<td>1.21</td>
<td>1.39</td>
<td>1.26</td>
</tr>
<tr>
<td>Aluminio (cmol/kg)</td>
<td>Volumétrico</td>
<td>0.15</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>C.I.C. (cmol/kg)</td>
<td>CH₃COONH₄ pH7; CH₃COONa* pH 8.2</td>
<td>28.54</td>
<td>25.57*</td>
<td>24.00*</td>
<td>22.17</td>
</tr>
<tr>
<td>Arcilla(%)</td>
<td>Bouyoucos o pipeta</td>
<td>13.3</td>
<td>9.3</td>
<td>7.3</td>
<td>9.3</td>
</tr>
<tr>
<td>Limo grueso(%)</td>
<td></td>
<td>30</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Arena gruesa(%)</td>
<td></td>
<td>56.7</td>
<td>76.7</td>
<td>78.7</td>
<td>76.7</td>
</tr>
<tr>
<td>Clasificacióntextural</td>
<td>Migajón</td>
<td>Arena</td>
<td>Arena</td>
<td>Arena</td>
<td>Migajón</td>
</tr>
<tr>
<td></td>
<td>arenoso</td>
<td>migajosa</td>
<td>migajosa</td>
<td>migajosa</td>
<td>arenoso</td>
</tr>
</tbody>
</table>
Análisis del abono orgánico de pulpa de café por lombricompostaje

Por cada 100 g. Contiene:

<table>
<thead>
<tr>
<th>ELEMENTO</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humedad</td>
<td>56.185</td>
</tr>
<tr>
<td>Materia orgánica</td>
<td>82.58</td>
</tr>
<tr>
<td>Cenizas</td>
<td>17.42</td>
</tr>
<tr>
<td>Carbono</td>
<td>47.90</td>
</tr>
<tr>
<td>pH</td>
<td>6.37</td>
</tr>
<tr>
<td>Nitrógeno</td>
<td>4.09</td>
</tr>
<tr>
<td>Fósforo</td>
<td>0.22</td>
</tr>
<tr>
<td>Sodio</td>
<td>0.06</td>
</tr>
<tr>
<td>Potasio</td>
<td>1.05</td>
</tr>
<tr>
<td>Magnesio</td>
<td>0.58</td>
</tr>
<tr>
<td>Calcio</td>
<td>1.48</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>pH H2O 1:2</th>
<th>MÉTODO</th>
<th>ARENA</th>
<th>ANÁLISIS SUelo DE MONTE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Potencio-métrico</td>
<td>6.62</td>
<td>5.22</td>
</tr>
<tr>
<td>Materia organica (%)</td>
<td>Walhley y G:Black Kjeldahl</td>
<td>0.098</td>
<td>13.1</td>
</tr>
<tr>
<td>Nitrógeno Total (%)</td>
<td>Bray I/Olsen*</td>
<td>0.022</td>
<td>0.68</td>
</tr>
<tr>
<td>Fósforo extractable (ppm)</td>
<td>Bray CH3COON H4 flam.</td>
<td>0.9</td>
<td>3.56</td>
</tr>
<tr>
<td>Sodio (cmol/kg)</td>
<td>CH3COON H4Flam.</td>
<td>0.41</td>
<td>0.68</td>
</tr>
<tr>
<td>Potasio (cmol/Kg)</td>
<td>CH3COON H4</td>
<td>6.85</td>
<td>0.21</td>
</tr>
<tr>
<td>Calcio (cmol/kg)</td>
<td>CH3COON H4</td>
<td>1.11</td>
<td>15.03</td>
</tr>
<tr>
<td>Magnesio (cmol/kg)</td>
<td>EAA</td>
<td>1.87</td>
<td></td>
</tr>
<tr>
<td>Aluminio (cmol/kg)</td>
<td>Volumétrico</td>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>C.I.C. (cmol/kg)</td>
<td>CH3COON H4</td>
<td>5.54</td>
<td>38.22</td>
</tr>
<tr>
<td>Arcilla(%)</td>
<td>Bouyucos.</td>
<td>1.3</td>
<td>13.00</td>
</tr>
<tr>
<td>Limo grueso(%)</td>
<td></td>
<td>4.2</td>
<td>30.44</td>
</tr>
<tr>
<td>Arena gruesa(%)</td>
<td></td>
<td>94.5</td>
<td>56.56</td>
</tr>
<tr>
<td>Clasificación</td>
<td>ARENA</td>
<td></td>
<td>FRANCO ARENOSO</td>
</tr>
</tbody>
</table>
ANEXO 3. Artículo publicado como requisito parcial