Programa de estudios de experiencia educativa

I.-Área académica

Área Académica Técnica

2.-Programa educativo

Ingeniería Mecánica Eléctrica

3.-Campus

Xalapa, Boca del Río, Ixtaczoquitlán, Coatzacoalcos, Poza Rica Tuxpan.

4.-Dependencia/Entidad

Facultad de Mecánica Eléctrica, Facultad de Ingeniería Mecánica y ciencias navales, Facultad de Ingeniería

, 5Código	6Nombre de la	7Área de formación		
J. Courgo	experiencia educativa	Principal	Secundaria	
MEEC 18013	Técnicas de control no lineal	Т	No aplica	

8.-Valores de la experiencia educativa

Créditos	Teoría	Práctica	Total de horas	Equivalencia(s)
6	2	2	60	Ninguna

9.-Modalidad

10. Oportunidades de evaluación

Curso-Taller	ABGHJK=Todas

II.-Requistos

Prerrequisitos	Correquisitos
Ninguno	Ninguno

12.-Características del proceso de enseñanza aprendizaje

Individual/Grupal	Máximo	Mínimo
Grupal	40	10

13.-Agrupación natural de la experiencia educativa

14.-Proyecto integrador

Academia de Electrónica y control	No aplica
Academia de Electronica y control	No aplica

15.-Fecha

Elaboración	Modificación	A probación
Enero 2020		Junio 2020

16.-Nombre de los académicos que participaron

Dr. Fernando Aldana Franco, Dr. Ervin Jesús Álvarez Sánchez

17.-Perfil docente

Ingeniero mecánico electricista, ingeniero electricista, ingeniero mecánico, ingeniero en instrumentación electrónica, ingeniero en electrónica, ingeniero en mecatrónica o carrera afín a la experiencia educativa, preferentemente con posgrado afín al área de conocimiento correspondiente.

18.-Espacio

19.-Relación disciplinaria

Intrafacultades	Multidisciplinario
-----------------	--------------------

20.-Descripción

Esta experiencia educativa se localiza en el AFT, cuenta con 2 horas teóricas, 2 horas prácticas y 6 créditos, que integran el plan de estudios 2020. En ella se estudian los sistemas de control bajo técnicas no lineales. Para ello se abordan los procesos de modelado de sistemas dinámicos lineales y no lineales, variantes e invariantes en el tiempo, de una o varias entradas, de una o varias salidas. Se presentan los mecanismos de análisis de control no lineal apoyados en simuladores. Además, se aborda el diseño de controladores para los sistemas no lineales. Para su desarrollo se proponen las estrategias metodológicas de explicación de procedimientos, dirección de prácticas y estudio de casos, por lo tanto, el desempeño de la unidad de competencia se evidencia mediante exámenes parciales, solución de ejercicios propuestos y prácticas de laboratorio.

21.-Justificación

Dentro del campo de estudio de la ingeniería de control, no todos los sistemas dinámicos estudiados son lineales e invariantes en el tiempo. Existen técnicas de control que no implican las restricciones del control clásico. A dichas técnicas se les conoce como control no lineal e involucran ramas como el control moderno, el control robusto, el control óptimo, el control inteligente, entre otras.

22.-Unidad de competencia

El estudiante diseña sistemas de control retroalimentados mediante técnicas de control no lineal; empleando información, interpretación de datos, simuladores computacionales especializados y herramientas TIC, con actitudes de iniciativa, colaboración, objetividad, tolerancia, respeto, tenacidad y equidad, para el diseño, mantenimiento e investigación de elementos, equipo y sistemas de control mecánicos, eléctricos, térmicos, hidráulicos y neumáticos.

23.-Articulación de los ejes

El estudiante reflexiona en grupo en un marco de orden y respeto mutuo, sobre los sistemas de control no lineal; utilizando simuladores computacionales especializados y herramientas TIC en equipo con objetividad; elabora exámenes parciales o final junto con un proyecto integrador.

24.-Saberes

Teóricos	Heurísticos	Axiológicos
 Introducción al control no lineal. Sistemas retroalimentados. Puntos de equilibrio y linealización. Invarianza en el tiempo. Sistemas SISO, SIMO, MISO y MIMO. Técnicas de control no lineal. Modelado de sistemas dinámicos continuos. Método Euler-Lagrange. Simulación de sistemas en control no lineal. Herramientas de análisis para control no lineal. Diseño de controladores. Tipos de controladores mediante técnicas de control no lineal. 	 Análisis de la información. Interpretación de datos. Uso de simuladores computacionales especializados y herramientas TIC 	 Disposición para la colaboración. Trabajo en equipo en un ambiente de respeto y responsabilidad Resuelve problemas con honestidad, autocritica y creatividad.

•	Implementación de	
	controladores.	

25.-Estrategias metodológicas

De aprendizaje	De enseñanza
-Exposición con apoyo tecnológico variado -Investigación documental -Discusión de problemas -Guion de prácticas -Problemario -Modelaje -Simulación -Estudios de caso -Aprendizaje autónomo -Aprendizaje in situ	-Atención a dudas y comentarios -Preguntas detonadoras -Explicación de procedimientos -Recuperación de saberes previos -Dirección de prácticas -Organización de grupos -Supervisión de trabajos -Asignación de tareas

26.-Apoyos educativos

Materiales didácticos	Recursos didácticos
-Artículos de revista y capítulos de libros	-Proyector/cañón
especializados	-Pantalla
-Libros	-Pizarrón
-Antologías	-Computadoras
-Software	-Bocinas
-Simulaciones interactivas	-Borrador
-Páginas web	-Plumones
-Presentaciones	-i idiliones
-Manual	

27.-Evaluación del desempeño

Evidencia(s) de desempeño	Criterios de desempeño	Ámbito(s) de aplicación	Porcentaje
Exámenes finales o parciales	Demostración de conocimiento	Aula	50%
Trabajos extraclase	Entrega puntual	Biblioteca	10%
	Formato adecuado	Centro de	
	Originalidad	cómputo	
	Claridad	Internet	
Prácticas	Individual o grupal	Biblioteca	10%
		Centro de	

	Oportunos Legibles Planteamiento coherente y pertinente Solución adecuada	cómputo Internet	
Proyecto integrador	Grupal Entrega puntual Formato adecuado Originalidad Claridad	Biblioteca Centro de cómputo Internet	30%

28.-Acreditación

Para acreditar esta EE el estudiante deberá haber presentado con idoneidad y pertinencia cada evidencia de desempeño, es decir, que en cada una de ellas haya obtenido cuando menos el 60%, además de cumplir el porcentaje de asistencia establecido en el estatuto de alumnos 2008.

29.-Fuentes de información

Básicas

- Åström, K. J. & Murray, R.M. (2021). Feedback Systems: An Introduction for Scientists and Engineerings. (2nd Ed). Princeton University Press.
- Golnaragh, F. & Kuo, B. (2017). Automatic Control Systems. McGraw Hill.
- Khalil, H. K. (2014). Nonlinear control. Global edition. Pearson.
- Sánchez, J. S., Herrera, R. M., & Guerra, E. T. (2013). Fundamentos de la ingeniería de control. Editorial Universitaria Ramon Areces.

Complementarias

- Biblioteca virtual UV
- Hernández, G.V.M., Silva-Ortigoza R., y Carrillo-Serrano, R.V. (2013). Control automático: Teoría de diseño, construcción de prototipos, modelado, identificación y pruebas experimentales. CIDETEC-IPN.
- Kuo, B. (2010). Sistemas de control automático. Person.
- Bolton, W. (2006). Ingeniería de Control. Editorial Alfaomega. (2ª edición), ISBN 9789701506363