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Research questions:

1. What is the behaviour of Werhl entropy in the vicinity of Avoided Crossings?

2. How this behaviour varies when J takes larger values?
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INTRODUCTION

The Lipkin-Meshkov-Glick model is a many-body system that can be studied in a simple form
because it can be reduced to a one degree of freedom system.

Key concepts:

• In certain regions of EDoS there are ESQPT.

• This model exhibit Avoided Crossings

• Dynamical tunneling.

▶ Superposition of the Husimi function.
▶ Increase of Wehrl entropy around AC.

The aim of this work is to measure delocalization of the Husimi function through the
computation of Wehrl entropy around Avoided Crossings in the Lipkin-Meshkov-Glick model.
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THEORETICAL FRAMEWORK

In terms of pseudospin operators, LMG Hamiltonian is given by

ĤLMG = ϵ0

[
Ĵz +

(
γx

2J − 1

)
Ĵ2x +

(
γy

2J − 1

)
Ĵ2y

]
(1)

Since the Hamiltonian commutes with Ĵ2, it can be diagonalized in the basis |J, m⟩ using the
following equations.

Ĵz |J, m⟩ = ℏm |J, m⟩ (2)

Ĵ+ |J, m⟩ = ℏ
√
J(J + 1)−m(m + 1) |J, m + 1⟩ (3)

Ĵ− |J, m⟩ = ℏ
√
J(J + 1)−m(m − 1) |J, m − 1⟩ (4)

• The eigenvalues will depend on coupling parameters γx and γy .
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Figure: The Hamiltonian spectrum exhibit Avoided Crossings in the region enclosed by transitions.
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• Parameter space according to different
behaviour in EDoS.

• Semiclassically, the Energy Density of
States (EDoS) is given by

ρ(E ) =
J

2π

∫
dzdϕ δ[H(z , ϕ)− E ] (5)

where H(z , ϕ) is the semiclassical
hamiltonian.

• EDoS exhibits a logarithmic divergence.
This defines what is called Excited State
Quantum Phase Transition (ESQPT).

• This work focuses on region III.
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COHERENT STATE OF THE BLOCH SPHERE

The coherent state of Bloch sphere is useful to analyse Quantum-classical correspondence of
classical trajectories and the Husimi function.

These states are constructed applying a rotation operator to minimal projection state |J, −J⟩

|α⟩ = eαĴ+(
1 + |α|2

)J
|J,−J⟩ = 1(

1 + |α|2
)J

J∑
m=−J

(
2J

J +m

)1/2

αJ+m |J,m⟩ (6)

where α = tan (θ/2)e−iϕ is a complex number in spherical coordinates.

In general, the eigenstates of the LMG Hamiltonian are given by

|Ek⟩ =
J∑

m=−J

C k
m |J, m⟩ (7)
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HUSIMI FUNCTION

Denoted by Q(α), is a quasi-probability distribution

1. Always positive.

2. To integrate respect to θ or ϕ does not lead to marginal probability distribution.

It is defined as the expectation value of a density matrix of the form ρ̂ = |Ek⟩ ⟨Ek |.

Qk(α) = |⟨α|Ek⟩|2 (8)

It is also convenient to define the canonical variables Q and P

Q =
√
2(1− cos θ) cosϕ ; P = −

√
2(1− cos θ) sinϕ (9)
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For a fixed value of J, there are J + 1 eigenvalues for the positive parity. These are sorted in
ascending order from k = 1, . . . , J + 1.

(a) k = 15 (b) k = 60 (c) k = 80

Figure: Husimi function of eigenstates of the positive parity for a fixed value of J = 100, γx = −4.0,
γy = 3γx .
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AVOIDED CROSSINGS

The coupling parameters where Avoided Crossings (AC) and Real Crossings take place can be
determined through the following condition,

γxγy =

(
2J − 1

2J − N

)2

(10)

determined from the Einstein-Brillouin-Keller rule.

• N ∈ Z

• 0 < N < 2J.

• Neven leads to ACs.

Particularly, in this work, γy = 3γx , then ACs

are determined using

∣∣γAC
x

∣∣ = 1√
3

(
2J − 1

2J − Neven

)
(11)
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DYNAMICAL TUNNELING

Figure: Taken from Nader J. et al (2021). J = 100,
γx = −4.10331, γx = 3γy .
Superposition of Husimi function at

∣∣γAC
x

∣∣.
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ENTROPY AND MONTE CARLO INTEGRATION

Wehrl entropy is used as a delocalization measure of the Husimi function, i.e. the lack of
information of where a particular eigenstate is localized in phase space.

In terms of Qk(α), Wehrl entropy is given by

WE = −
∫

Qk(α) lnQk(α)dΩ (12)

where α = tan(θ/2)e−iϕ and dΩ = sin θdθdϕ is the solid angle of the unitary Bloch sphere.
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MONTE CARLO INTEGRATION

An essential part of the entropy computation consists of evaluating the Husimi function and
integrating numerically.

Considering a large sample of n points (θi , ϕi ) where θi ∈ [0, 2π] and ϕi ∈ [0, π]. Wehrl entropy
can be approximated numerically as follows

WEk
= −

∫ 2π

0

∫ π

0

Qk(α)k ln (Qk(α)) sin θdθdϕ

≈
(
2π2

n

)(
2J + 1

4π

) n∑
i=1

Qk(θi , ϕi ) ln (Qk(θi , ϕi )) sin θi

(13)

where a normalization factor
(
2J+1
4π

)
has been introduced.
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DIAGONALIZATION

Wolfram Mathematica built-in functions were
chosen:

• Eigenvalues[]

• Eigenvectors[]

How varies the energy difference of
consecutive energy levels?

1. Diagonalization for J=100 at γAC
x

2. 101 energy levels.

3. Sort in ascending order.

4. 50 pairs.

(E
k
+

1
−

E
k
)/

J

Pairs of Energy Levels

Energy differences, J=100, Ne=170

ACs region
High precision data 1×10

−30

 1×10
−25

 1×10
−20

 1×10
−15

 1×10
−10

 1×10
−5

 1

 5  10  15  20  25  30  35  40  45  50

Figure: The green region shows an exponential
decrease in the energy gap of avoided crossings.
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Figure: Wehrl entropy of two consecutive pairs
with the same interval of γx

• Each pair of states of greater energy
require a different interval of γx because
the interval is significantly smaller.

• What is the rate of decrease in the width
of these curves?

Case 1:

• J = 100 fixed and different ACs

Case 2:

• J = 100, 200, 500 and approximately the
same γAC

x
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GAUSSIAN FIT

Consider the next Gaussian function

f (γx) = C +
c

σ
√
2π

exp

{
− (γx − |γAC

x |)2

2σ2

}
, (14)

C is the height repect to zero of eq. (14).

c is part of the factor c

σ
√
2π

that measures the amplitude

of eq. (14).

σ control the width of eq. (14).
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PARAMETER σ̄ OF GAUSSIAN FITS
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Figure: a) k = 303− 304, b) 305− 306

To measure the rate of decreasing in the width,
consider

σ̄ ≡ σupper + σlower

2
(15)

An exponential decrease in the width is observed
as we take pairs far from ESQPT. Then,

σ̄ = Ae−α(Emean−ESQPT)/J (16)

20



RESULTS



Contents Introduction Theoretical Framework Methodology Results Conclusions

RESULTS
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Figure: Case 1: J = 100 and different ACs. 22
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Figure: Wehrl entropy of the first two pairs of
states after ESQPT

23



Contents Introduction Theoretical Framework Methodology Results Conclusions

−2.06

−2.04

−2.02

−2

−1.98

−1.96

 3.8  3.82  3.84  3.86  3.88

Ek/J

|γx|

Energy spectrum LMG Model (J=500,γy=3γx)
N=850, |γ|x

AC
 = 3.845152792802908 

300
301
302
303

304
305
306
307

308
309
310
311

312
313
314

ESQPT

 3.6
 3.7
 3.8
 3.9

 4
 4.1
 4.2
 4.3
 4.4
 4.5

 3
.8

3

 3
.8

35
 3

.8
4

 3
.8

45
 3

.8
5

 3
.8

55
 3

.8
6

 3
.8

65

W
E

|γx|

|γx
AC

|=3.84515279280291, J=500, Ne=850

301
302

 3.7

 3.8

 3.9

 4

 4.1

 4.2

 4.3

 4.4

 4.5

 3
.8

43
5

 3
.8

44

 3
.8

44
5

 3
.8

45

 3
.8

45
5

 3
.8

46

 3
.8

46
5

 3
.8

47

W
E

|γx|

|γx
AC

|=3.84515279280291, J=500, Ne=850

303
304

Figure: Wehrl entropy of the first two pairs of
states after ESQPT. Case 2

24



Contents Introduction Theoretical Framework Methodology Results Conclusions

 1×10
−14

 1×10
−12

 1×10
−10

 1×10
−8

 1×10
−6

 0.0001

 0.01

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

P
a

ra
m

e
te

r 
σ

b
a

r

(E(mean) − ESQPTN)/J

Parameter σbar as a function of energy

Ne, J=100

140
156
170
172
174
186
196

Figure: Parameter σ̄ in logarithmic scale as a function of (Emean − ESQPT)/J for different avoided
crossings. σ̄ decreases exponentially. 25



Contents Introduction Theoretical Framework Methodology Results Conclusions

 1×10
−14

 1×10
−12

 1×10
−10

 1×10
−8

 1×10
−6

 0.0001

 0.01

 0  0.1  0.2  0.3  0.4  0.5  0.6

P
a

ra
m

e
te

r 
σ

b
a
r

(E(mean) − ESQPTN)/J

Parameter σbar as a function of energy

Ne, Size J

170, 100
340, 200
850, 500

Figure: σ̄ decreases exponentially.
26



Contents Introduction Theoretical Framework Methodology Results Conclusions

ENERGY GAP ∆E AT AC

As we observed previously, the energy gap ∆E
of consecutive pairs at AC also decreases ex-
ponentially. The solid lines in the figure are

described by

∆E

J
= Be−β(Emean−ESQPT)/J (17)
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Figure: Energy gap has a similar behaviour along
the energy spectrum.
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Figure: The range of energy where it is possible to detect Dynnamical Tunneling is narrower as the size
of the system increases.
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σ̄ AND ∆E CORRELATION

From expressions for σ̄ and σ̄, it is possible to show that

ln σ̄ = m ln (∆E/J) + b (18)

where m ≡ α
β and b ≡ ln A

Bα/β .
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NUMERICAL RESULTS

Equation (18) implies a power law between σ̄ and ∆E

σ̄ = C (∆E/J)α/β (19)

with C = A
Bα/β

J Ne m ∆m b ∆b

100 140 1.00398 0.00371 1.1408 0.06019
100 156 1.0109 0.005189 1.32628 0.08536
100 170 1.01285 0.006995 1.33982 0.1119
100 172 1.02573 0.01103 1.86144 0.202
100 174 1.06102 0.007393 2.2779 0.1632
100 186 1.01349 0.001369 2.39909 0.02395
100 196 1.00094 0.003417 3.35955 0.05828
200 340 1.04369 0.004264 2.31694 0.0912
500 850 1.01315 0.0237 1.67272 0.415

Table: Linear fits ln σ̄ = m ln (∆E/J) + b. The third column shows that m = α
β
≈ 1
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CONCLUSIONS

In this project, the width of Wehrl entropy curves was determined for different ACs for a fixed
value of J and different system sizes.

Observations:

• The parameter σ̄ shows an exponential decrease.

• The Energy gap ∆E shows a similar behaviour.

• These variables are correlated.

• This behaviour is similar along the energy spectrum and for different system sizes.

• Since m ≈ 1, the σ̄ parameter is proportional to energy gap ∆E of the corresponding AC.

Consequences:

• The detection of Dynamical Tunneling far above from ESQPT is difficult because it occurs
in a very narrow γx interval.

• The energy interval where Dynnamical Tunneling occurs decreases as the size of the
system increases.
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