Spectral kissing and its dynamical consequences
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1) Generalized survival probability and multifractality

2) Ground state energy distributions
3) Quantum speed limit
4) Experimental platform for ESQPT: Kerr nonlinear oscillator
(shared with Jorge: Dynamics)

Kerr + linear part (shared with Miguel)

Driven Kerr and driven Dicke model
(shared with Jorge: Driven oscillator)
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Generalized Survival Probability
&
Multifractality
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Model

The 1D XXZ model with onsite disorder: spin1/2 model.
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From Wigner-Dyson to Poisson
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Localization and entanglement

Participation Ratio

200 — T .
PR PR o Dim , PR = —
100 : et
i=1
TVMHITLTY Localization in real space
0
[integrable ] (1) ™
1 szg localization C Yy >
77 L q N | AN
C(z) Y YYY >
0.5 7 AN
. ‘O{> _ C(3) /\\r VYV >
O .Cha.OtiC 2 2 1 2 2 2 2 C(4)
0 25 h 5 e
Inverse Participation Ratio
Dim

LFS, Rigolin, Escobar A
Entanglement versus chaos in disordered spin chains IP Ra — E |Cén> |
PRA 69, 042304 (2004) n—1



Maximum Delocalization

Eigenstates of Full Random Matrices: GOE (real and symmetric)

Participation Ratio
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Multifractality

IPR® =) |C2*7
q k generalized inverse participation ratio
k

<IPRq> X Dim_(q_l)Dq Dq: generalized dimension

Fully delocalized states: Dq = ]

Multifractal states: () < Dq <1

(nonlinear dependence of D, on q)

4 6 g§ 10 12
In(Dim)
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Localized states: [ ) g = (0



Multifractality

L L
hn > J z _z xr X
H = E 7(7” + g 1 [0n0n+1 + (0n0n+1 + U%Uzﬂ)]

IPR® = Z Tk Fully delocalized states: [), = 1
k . Multifractal states: ] < Dq < O

Localized states:  [) g = 0

Is there a region of multifractality before the critical point?
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Lack of Self-Averaging
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Survival Probability

Survival Probability (w(0) =144t

Return Probability qu(()) I lp(t»‘z

Fidelity C." =(a|¥(0))
5 2 2
L2 .
SP(¢) = K\P(O) | ‘P(t))‘ =S| =|f p, (E)e™ dE
Energy distribution of the initial state  ©;,(E) = Y, [Ci" "8(E-E,)
LDOS




D, in one-body system

SP(t) o t~DP2/d

Huckstein & Klesse
PRB 59, 9714 (1999)

In P(t)
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FIG. 2. Return probability for a wave packet at the Anderson
transition in d=3. The solid line is a best fit to the data with slope
D,/3=043%=0.04. The dashed line shows the conventional behav-
ior p(t)oct 32,
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Ketzmerick & Geisel
PRL 69, 695 (1992)

100 R
' AN :\j-:»"*-.,‘ ‘IO }
C(t) i AU |
\ D A
0.10¢ \ po-14 A“f
r \_‘
r ;\.\
"\ |
| N\ J
N 084 !
‘\ t 4
| "\
0.01! - L L NN
1 10 t 100 1000
FIG. 1. Correlation function in the Harper model (solid

lines) for o=1597/2584, an approximant of the golden mean,
displaying power laws C(1)~r 7% with §=08430.01, §
=0.14£0.01, and §=0 for A=1, 2, and 3, respectively. For
the kicked Harper model (dashed lines) with o the golden
mean, the same asymptotic behavior is obtained for K =6 and
L =3, 6, and 9 corresponding to the extended, critical, and lo-
calized regimes, respectively.
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Power-law Exponent and D,

2
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J. Phys. A: Math. Theor. 44 (2011) 305003 V E Kravtsov et al

behavior as well. The simplest correlation function involving two eigenstates corresponding
to two different energies E,, and E, can be defined as

C@) = (1Y) PYn (@) 6 (En — En — 0)). @

r

As any other correlator at criticality C(w) is expected to decay in a power-law fashion
C(w) x (Eo/w)", A <K<K Ey, (3)

where A is the mean level spacing and Ej is a high-energy cutoff. What is more surprising is
the fact that the dynamical exponent p is related to the fractal dimension d5 in a simple way

p=1—d/d. “4)

This relation was suggested by Chalker and Daniel [2, 3] and confirmed by a great number of
computer simulations [2, 4, 5] thereafter. As Ey/w > 1 and > 0, equation (3) implies an



Power-law Exponent and D,

Power-law exponent
coincides with the
generalized dimension D,

<1
z t~7 !
D—; ‘PR x Dim™?
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Torres & LFS
PRB 92, 01420 (2015)
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Power-law Exponent and D,

Survival Probability

Torres & LFS
PRB 92, 01420 (2015)

L=10
L=12
L=14
L=16

Power-law exponent
coincides with the
generalized dimension D,

t—Y PR o« Dim™

ADVANTAGE:

When studying dynamics,
we can deal with larger
systems, than when we
analyze the structure of
the eigenstates.
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Generalized Survival Probability

D Generalized LDOS
Ny =), ‘C[gO)‘q 1 D
= pg(E) = 57 L ICa” |76 (Ea — E)
1 a=1
£ _ 1 0 2 _ 0)2
p /\_/Z 9B, and o Zyc T(Eq — Ey ).

q=0: SPq(t) = SFF(t)

Getting analytical results for the SP(t) using GOE...



Generalized Survival Probability: GOE
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One can then state that the robustness of the
generalized LDoS for different values of q is a
sign of the ergodicity of the eigenstates of the
system.
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Generalized Survival Probability: Chaotic Spin Model

The dependence of the width of the gLDoS on q reveals the limited degree of
ergodicity of physical systems, even deep in the chaotic regime
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The components at the tails of the initial-
state energy distribution, where chaotic 4
states are nonexistent, get erased.

Lea F. Santos 10

h=0.5

We expect the same
power-law exponent
for all curves due to
tails of gLDOS




Generalized Survival Probability: Spin Model for h=2

For finite-size systems, several numerical studies supported that the eigenstates of
the disordered spin model should become multifractal in its transition to the many-

body localized phase, although this has not been confirmed in the thermodynamic
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One may be able to get D, from SP, (right).

It is clear that y, decreases as q increases and the
minimum of the correlation hole takes longer to be
reached. In this case, the power-law behavior reflects
the correlations among the components of the initial
state, which get enhanced for larger values of q.

The patterns observed
in (a)-(b) suggest fractality.
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Width of the gLDOS

The results suggest that even the WIDTH of the gLDOS can say something about
multifractality!

| | I | | I | | I | | I | | I | | I | | l‘l I | | I | | I | | I | | I | |
- 0000®-©-0 -0 — | o} -
i GOE ] | m.@ N=05 ]
= = “.“
o 08} -5 08} . @ -@. -
Uc_‘ b -mc-l - . .'..' -
Ib - - lb - . -
0.6 - 0.6 | h=2 -~
- (a) : - (b) m. B
04 [ | I [ | I [ | I [ | I [ | I [ | I [ | 04 [ | I [ | I [ | I [ | I l'l I [ |
"0 05 1 15 2 25 3 35 0 05 1 15 2 25 3 35
q q

D *) Analysis for various values of h
q vs O q *) Analysis also of the power-law decay
*) Analysis of the time to reach the hole

Discussion: SP for Dicke averaged over initial states; disordered Bose-Hubbard,
models with long-range couplings ...



Distribution of
ground-state energy
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Ground state energy: Nuclear Physics

* bulk of the spectrum
« How about the distribution of the lowest energy level?

Extreme-value statistics concerns the study of rare events, such as tsunamis, floods,
earthquakes, and large variations in the stock market. It has been employed in the context
of the Griffiths phase, in the study of the fluctuations of the smallest (largest) eigenvalue
of random matrices (applications in analyses of the stability of dynamical systems with
interactions and of the equilibrium properties of disordered systems at low temperatures)

To understand the predominance of 0* ground states.

VOLUME 87, NUMBER 2 PHYSICAL REVIEW LETTERS 9 Jury 2001
Comment on “Two-Body Random Ensembles: . 1 1.2
From Nuclear Spectra to Random Polynomials” R. Blj ker' and A. Frank"

An investigation of the spectroscopy of even-even nuclei
with random one- and two-body interactions has led to
the surprising result that the ground state has J* = 0% in
typically 60%—70% of the cases. This holds for both the
nuclear shell model [1,2] and the interacting boson model
[3]. To understand this phenomenon it was suggested that

one should study the distribution of the lowest eigenvalues

Kusnezov
Zelevinsky



Tracy-Widom distribution

Our results:

Tracy-Widom -
P(Ey) =  Fo(—Ep) exp [5 /qu(x)dx], (3)

with
o0
F(x) = exp [ - / (z— x)qz(x)dz], 4)
X
where g(x) is the solution of the Painlevé II differential
equation ¢’ = xq + 2¢° subjected to the boundary condi-

tion g(x) ~ Ai(x) for x — oo, with Ai(x) denoting the Airy
function.

Lea F. Santos

Agreement with random matrix theory for the energy levels in the
bulk of the spectrum does NOT imply the same for the ground-
state energy distribution!

: - Lem_ ! g 2
2x2 GOE: P(EO)_Zﬁe 2\/Ee Eoerfc<

P(Egs)
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Tracy-Widom distribution in physical models

L2
H = Zfi+1PiU,~)fHPi+2 +J1o{ P, +J P07,
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FIXED (not random) coupling.
DEVIATIONS from Tracy-Widom and from 2x2GOE

Why? Which other models deviate? Random Dicke? Few vs Many degrees...



Chi-square distribution

_ 1 _Ey/2 -M/2—1

(b)

(d) g )

10_1!- /-‘\ 1T F
_2: ]

& 107% W =1.0 3
10—3 M = 27
_4 X L
10 —6 —4 —2 0 2 4 —6

Eq

Just as the Brody and Izrailev distributions reproduce any of

the level spacing distributions between Poisson and Wigner- L L1

Dyson, the X2 distribution captures any of the lowest-energy g — w Z hi ¢ + I Z Gi - izl
distributions, including TW, 2x2GOE and Gaussian. i1 2" 4 i1



Open Questions

Why are there deviations?

Why does the chi-square distribution capture most of Eq-distributions
for disordered many-body quantum systems? Does it work for systems
with few degrees of freedom (random Dicke)?

What happens to the structure of the ground states? Are they

multifractal? Is the structure of the eigenstates related with the kind of
Eq-distribution that we get?

How about the prevalence of 0*? Is there an analog for spin models?

Lea F. Santos Xalapa 2023



Analog of 0 in spin models?

=10 sites

Total dimension : 22(10) = 1024

Z hio; + Z Jijafaj

1<J

SzT =-10 Occurrences =0.1 %
SzT =-8 Occurrences =0.89 %
SzT =-6 Occurrences =4.44 %
SzT =-4 Occurrences =11.81 %
SzT =-2 Occurrences =20.96 %
SzT =0 Occurrences =24.79 %
SzT =2 Occurrences =20.46 %
SzT =4 Occurrences =11.38 %
SzT =6 Occurrences =4.24 %
SzT =8 Occurrences =0.85 %
SzT =10 Occurrences =0.08 %

Lea F. Santos

Sector SzT=-10 means all spins pointing down
Number of states: 1

(same for the Sector SzT=+10)

Percentage:

(1. /1024) - 100
0.0976563

Sector SzT=-8 means 9 spins pointing down and 1 up
Number of states: 10
(same for the Sector SzT=+8)

Percentage:

(10 / 1024.) - 100
0.976563
Sector SzT=0 means 5 spins pointing down and 5 up

Number of states: 252
Percentage:

10! /5112
(252 / 1024.) ~ 100

252

24.6094




Analog of 0 in spin models?

=10 sites
Total dimension : 22(10) = 1024

Zha +ZJ’LJ 0;0; +ojoj +ojo?)

)
S7T =-10 Occurrences = 0.1 % < SzT =-10 Occurrences= 0.0 %
S7T = -8 Occurrences = 0.89 % SzT =-8 Occurrences= 0.08 %
S7T = -6 Occurrences = 4.44 % Sz=0 sector gets SzT =-6 Occurrences= 1.2 %
SzT =-4 Occurrences = 11.81 % enhanced. SzT =-4 Occurrences= 7.86 %
S7T = -2 Occurrences = 20.96 % SzT =-2 Occurrences= 23.79 %

| S7T =0 Occurrences = 24.79 % | — | SzT =0 Occurrences=35.02 % |
SzT =2 Occurrences= 23.55%

SzT =2 Occurrences =20.46 %

SzT =4 Occurrences = 11.38 % Why? SzT =4 Occurrences=17.3 %
S7T = 6 Occurrences = 4.24 % SzT =6 Occurrences=1.12 %
SzT =8 Occurrences = 0.85 % SzT =8 Occurrences= 0.07 %
SzT =10 Occurrences = 0.08 % SzT =10 Occurrences= 0.01 %

Lea F. Santos Xalapa 2023



Quantum Speed Limit

https://www.quantphys.com/2022/01/mandelstam-tamm-uncertainty-relation.html

Lea F. Santos Xalapa 2023



Mandelstam-Tamm energy-time uncertainty

relation

Derivation of the Mandelstam-Tamm energy-time relation AEAt, > h
2

A time required for a significant change of the expectation value of an
A observable A

AE = \/<H2> _ (H)2 , Assume that H and A do not commute

HA — AH
AA = (A7) - (AY?, AEAA > ( d
Since the rate of change of the d{A) — i(HA — AH)
expectation value of A is dt h

We have that h ’ d(A)

AEAA > 7
dt

Defining , _ ‘d<A>

2




Quantum Speed Limit

change of the expectation value of an

’d<A> | AE = \/<H2> — (H)*, observable A
M=) -y, (A) = (T(t)|AlT(1))

AEAA >

Since (H) = (U (t)|H|W(¢) Zc ChePeie™ Bt (B H|a) = ZlC ?Eq

AE s the uncertainty in the energy of the initial state = width of the LDOS =T

Let’s choose A = projection into the initial state A — | \If (O)> <\If (O) |
Therefore  (A) = ((£)|T(0)) (T (0)|¥(t)) = SP(t)
(A%) = (T(1)[T(0)) (L (0)[L(0)){T(0)|¥(t)

Lea F. Santos Xalapa 2023

) = SP(t)



Quantum Speed Limit

AEAA > ) "gt‘) AE= /() = (H),  AE 51 uioerany nne onewy
AA_\/<A2>_<A> | LDOS =T
(A) = (¥ (t)[P(0))(¥(0)|¥(t)) = SP(1)
= (W(£)[2(0))(L(0)[W(0)) (W (0)|L(t)) = SP(t)
v/ SP— SP2 > | d>P

Doing the integral

arccos(y/SP(t)) > T't =|SP(t) > cos2(Ft1

Lea F. Santos Xalapa 2023



d>1, Effectively Break the Chain

integrable chaotic (impurity model)

S}’Sy +AS SZ+1) fmal = HXXZ +dJSlZJ/2

n+1 n=~n+l

H  =H. =>J(S'S

initial

d >1 breaks the chain

DENSITY OF STATES

iy p T ooy
)=+ : 1 w)= o+
ooy of &, {1p)

0
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Quantum Speed Limit

., integrable chaotic
Hinitial = H = (Sn S:;l + SZSZH + ASZSZH) fnal = HXXZ + dJSi/z
n=1
F(t) =cos’(dt | 2)exp(-o0°t’)
LDOS
O-S-I I 1 1 I 1 I 1 I 1 I 1 | I- 1 I 1 I 1 I 1 | | j—
>4 d=8 B
‘Clnl 0 3 -_ __
0.2 N .
0.1 N .
0

L=16, 8 up spins A=0438

Torres & LFS — _ _
PRA 90 (2014) Can we get a more realistic and experimentally feasible

bimodal distribution for the LDOS in the Dicke model or



Superconducting Circuits
(Squeezed Kerr Nonlinear Oscillator)

https://www.youtube.com/watch?v=-7b-nglgcyw

arXiv:2210.07255




Spontaneous Emission

SPONTANEQOUS EMISSION:

Excited atom discharges its excess energy in the form of photons that escape to infinity
at the speed of light.
(as uncontrollable and as irreversible as the explosion of fireworks)

—O—{-m

G

Spontaneous emission

Atom is embedded in vacuum fluctuations (atom-vacuum system).
Electron is coupled with the quantized electromagnetic field of the vacuum.

Photon has many vacuum modes to propagate into.

Lea F. Santos Xalapa 2023



Cavity QED

(cavity quantum electrodynamics)

SPONTANEOUS EMISSION:

We can control and manipulate spontaneous emission by placing the atom in a
small box with reflecting walls (optical/microwave CAVITY)

CAVITY QUANTUM ELECTRODYNAMICS (QED):
is the study/control of the interaction between light and matter (atom/particle)

confined in a cavity.
4 )
\) e (l
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Circuit QED

(circuit guantum electrodynamics)

CIRCUIT QUANTUM ELECTRODYNAMICS (QED):

was inspired by atomic cavity QED;

is the study of the interaction between light and matter;

light = microwave photons (quantized electromagnetic fields)
(photons stored in high-quality coplanar waveguide resonators);

artificial atom = nonlinear superconducting circuit.

Lea F. Santos Xalapa 2023



LC Circuit

\ ‘ /' Small circuits: “coordinate” ® and the “momentum” Q
@ become noncommuting quantum observables

LB @,Q] = ih

-0 5
O =0,(a" + a) A A
7 || % IR Hyc = ho,(ata+1/2)
0> @ Quantum harmonic oscillator
Hie=56%31 "
Vv
\ /
\ /
\ /
\ /
\ /
\ /
\@/1 ho,
A



LC Circuit

\ ‘ / Small circuits: “coordinate” ® and the “momentum” Q
@ become noncommuting quantum observables

LB @,Q] = ih

-0
/ \ Low temperature: circuit is a superconducting,
resistance vanishes, electrons -> Cooper pairs.

Q2 P2 Quantum harmonic oscillator
HLC — + ’

2C 2L v, /
O = ®,(a" +a) \ / Non-addressable
0 =iQ,(a"—a) \ / energy levels

\\ //
HLC — ha)r(&T& —|— 1/2)
| ho,
"



Anharmonic LC Circuit

| Josephson junction is a nonlinear circuit element
L J C Superconductor uperconductor
N -
—— L
A | B 2T -
| H=—Q?—Ejcos| —
2C 0

\mg cos 0

Lea F. Santos ! m Xalapa 2023
Copyright © 2005 Pearson Prentice Hall, Inc.




Anharmonic LC Circuit

TRANSMON QUBIT

Lea F. Santos

Josephson junction is a nonlinear circuit element

Superconductor Superconductor —
1| —-
v K

. 1 . 2T 4
H:% Q—EJCOS((}T’N(I))

0
hwt iy Quantum ANharmonic oscillator
\\ : /p) (pendulum)
a

Addressable energy levels

1o It allows for selective transitions

© between energy levels

Xalapa 2023



Kerr Nonlinear Oscillator

Spectral kissing and its dynamical consequences

in the squeezed Kerr-nonlinear oscillator




Squeezed Kerr-Nonlinear Oscillator

In the case of the SNAIL transmon, the Hamiltonian of the driven circuit, which is built
by an arrangement of a few Josephson junctions, reads

At A gm
( )/h = wol'd + Z (a+ CLT) microwave

m=3 / drive

—iQq(a — a") coswgt

H(t) = woata + L (a +at)y3 + & T+ at)!
— sz(a —al) coswdt,

rotating frame
Static

effective. f{ — Ad"a — K&T2&2 +€2(&T2 _'_&2)

Hamiltonian

Lea F. Santos

Kerr nonlinearity ~ Squeezing amplitude
Xalapa 2023




Squeezed Kerr-Nonlinear Oscillator

~ Jorge's talk

— H
A =0 — = _Ka'262 + ep(a'? + a2)

Jorge will also talk about
1) Our ongoing studies of the original driven system (with Diego Wisniacki)
2) Our idea of adding time dependence to the effective H (with Curro)

ANEZH Miguel's talk
H=Ad"a— Ka™a® + eo(a' + a2)

Miguel will also talk about
the parallel with the double-well Bose-Hubbard model (with Jorge Hirsch)

Lea F. Santos Xalapa 2023



Squeezed Kerr-Nonlinear Oscillator

arXiv: 2209.03934

AN

H
— = —Ka'"a* + ex(a" + a?)

h

K=0319MHz gxperIMENT THEORY

/N
-
£a
|
)
£a
| E— " spectral
e | , kissing
~ '
m :
. 2.5 5.0

2/ K 2/ K




Vanishing of Energy Separations

arXiv: 2209.03934

EXPERIMENT THEORY

A80 =—==t=r>r>~ merging levels | clustering
< . E==2 “kissing’
S =—=—"
=1 B =
= Ersopt Fsqp
—.20
Lﬂo LLLLLL\‘: .i.l.l\':,
o 2 4 6 & 10 120 2 4 6 &8 10 12
¢[00~ §[107]
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Advantages of the Experimental Platform

There is no other platform for the analysis of ESQPTs where
% the spectrum can be measured as a function of the control
parameter.

We bring to the theoreticians, a highly controllable platform
in which new experiments can be proposed and performed.

6 8 10 12

10-1¢ We bring to the superconducting circuit community insights on

what can be explored with their developing technology.

The superconducting circuit platform that we consider is unique for studies of
ESQPTs because both spectrum and dynamics can be measured
simultaneously.

Dynamics in phase space
» Cavity QED provides unmatched fidelities for direct reconstruction and real-time observations.
» Wigner/Husimi function can be experimentally accessed in real-time.

Quantum simulator for nuclear, molecular, and condensed matter systems that
present ESQPTs and related phenomena.



Critical Point

Classical
Hamiltonian
H . 1 2 2\2 2 2
e —4(q +p°)* = &(¢" — p°)

) 0 an

0 2 4 6 8 10 12 N
g [1 0 — 1] e
O
Eesapr 0 —
—3.24 081 486 890 1295 17
The model is similar to the Lipkin model Jorge's talk

(1 degree of freedom), but the spectrum

s unbounded.




