Superficies de Energía

Densidad de Estados 000000

Fenómenos críticos en sistemas luz-materia con interacciones colectivas de la materia

Proyecto de Investigación

Ricardo Herrera Romero Asesores: Dr. Miguel Ángel Bastarrachea Magnani Dr. Román Linares Romero

Universidad Autónoma Metropolitana Unidad Iztapalapa

19 de enero 2023

Superficies de Energía

Densidad de Estados

Contenido

1 Introducción

2 Correspondencia Clásica

3 Superficies de Energía

4 Densidad de Estados

Superficies de Energía

Densidad de Estados

Hamiltoniano de Dicke con Interacciones qubit-qubit

$$\begin{aligned} \hat{H}_{D} &= \omega \hat{a}^{\dagger} \hat{a} + \omega_{0} \hat{J}_{z} + \frac{\gamma}{\sqrt{N}} \left[(\hat{a} \hat{J}_{+} + \hat{a}^{\dagger} \hat{J}_{-}) + \xi (\hat{a}^{\dagger} \hat{J}_{+} + \hat{a} \hat{J}_{-}) \right] \\ &+ \frac{1}{N} \left(\eta_{x} \hat{J}_{x}^{2} + \eta_{y} \hat{J}_{y}^{2} + \eta_{z} \hat{J}_{z}^{2} \right). \end{aligned}$$
(1)

Figura: Yi-Xiang, Y., Ye, J., & Liu, W. M. (2013). Goldstone and Higgs modes of photons inside a cavity. Scientific reports, 3(1), 1-8.

Límite de Dicke $\xi = 1$ Límite de Tavis Cummings $\xi = 0$

Interacciones qubit-qubit

Sistemas atómicos con interacciones dipolares.

Chen, G., Zhao, D., & Chen, Z. (2006). Quantum phase transition for the Dicke model with the dipole–dipole interactions. Journal of Physics B: Atomic, Molecular and Optical Physics, 39(16), 3315.

Efecto Stark en configuraciones optomecánicas.

Abdel-Rady, A. S., Hassan, S. S., Osman, A. N. A., & Salah, A. (2017). Evolution of Extended JC-Dicke Quantum Phase Transition with a Coupled Optical Cavity in Bose-Einstein Condensate System. International Journal of Theoretical Physics, 56(11), 3655-3666.

Utilizar en circuitos y trampa de iones QED. Yuan, J. B., Lu, W. J., Song, Y. J., &

Kuang, L. M. (2017). Single-impurity-induced Dicke quantum phase transition in a cavity-Bose-Einstein condensate. Scientific Reports, 7(1), 1-9.

Transiciones de Fase Cuántica (QPT)

- \blacksquare QPT \rightarrow se definen como cambios en las propiedades del estado base de un sistema cuántico.
- Ejemplo QPT en Dicke: Transiciones de fase superradiante.

¿Qué es una fase superradiante?

Se caracteriza por el valor de expectación diferente de cero del número de fotones cuando el acoplamiento luz-materia alcanza un valor crítico en el límite termodinámico.

Hepp, K., & Lieb, E. H. (1973). On the superradiant phase transition for molecules in a quantized radiation field: the Dicke maser model. Annals of Physics, 76(2), 360-404.

Correspondencia clásica del Hamiltoniano

Consideraciones para la correspondencia clásica

- Límite Termodinámico $N \to \infty$
- Límite Clásico $\hbar \to 0$
- Nħ = cte

El Hamiltoniano Clásico se obtiene tomando el valor de expectación con el producto tensorial de los estados coherentes de Glauber $|z\rangle$ y Bloch $|\omega\rangle$

$$|z\rangle \otimes |w\rangle = \frac{e^{-|z|^2/2}}{(1+|w|^2)^j} e^{z\hat{a}^{\dagger}} e^{w\hat{J}_+} |0\rangle \otimes |j,-j\rangle.$$
⁽²⁾

$$H_{cl}^{(\xi)}(z,w) = j^{-1}\langle z,w|\hat{H}_D|z,w\rangle =$$

$$H_{cl}^{(\xi)} = \frac{\omega}{2} (q^2 + p^2) + j_z \left(\omega_0 + \frac{\eta_z j_z}{2} \right) + \frac{1}{2} \left(1 - j_z^2 \right) \left(\eta_x \cos^2 \phi + \eta_y \sin^2 \phi \right) + \quad (3)$$
$$+ \gamma \sqrt{1 - j_z^2} \left[(1 + \xi) q \cos \phi - (1 - \xi) p \sin \phi \right].$$

Superficies de Energía

Hamiltoniano Clásico

Para identificar las superficies de energía y los puntos fijos:

$$\dot{q} = \frac{\partial H_{el}^{(\xi)}}{\partial p} = \omega p - \gamma \sqrt{1 - j_z^2} (1 - \xi) \sin \phi.$$
(4)

$$\dot{p} = -\frac{\partial H_{cl}^{(\xi)}}{\partial q} = -\omega q - \gamma \sqrt{1 - j_z^2} (1 + \xi) \cos \phi, \qquad (5)$$

$$\dot{\phi} = \frac{\partial H_{cl}^{(\xi)}}{\partial j_z} = \omega_0 + \eta_z j_z - j_z (\eta_x \cos^2 \phi + \eta_y \sin^2 \phi) - \frac{\gamma j_z}{\sqrt{1 - j_z^2}} \left[(1 + \xi) q \cos \phi - (1 - \xi) p \sin \phi \right],$$
(6)

$$\dot{j}_z = -\frac{\partial H_{cl}^{(\xi)}}{\partial \phi} = \left(1 - j_z^2\right) \left(\eta_x - \eta_y\right) \cos\phi \sin\phi + \gamma \sqrt{1 - j_z^2} \left[(1 + \xi)q\sin\phi + (1 - \xi)p\cos\phi\right].$$
(7)

Superficies de Energía

Densidad de Estados

Superficies de Energía y sus extremos

Fase Normal: Las coordenadas de los puntos estacionarios son:

$$(p_s, q_s, j_{zs}, \phi_s) = (0, 0, \pm 1, \text{indeterminate})$$
(8)

la energía está dada por:

$$\epsilon_{\pm} = \pm 1 + \frac{\eta_z}{2\omega_0} \tag{9}$$

 $j_{zs} = -1$ (estable), $j_{zs} = +1$ (inestable) $|j_{zs}| \le 1$ espacio de fase disponible de la dinámica del pseudospín.

Fase Normal Deformada:

- La superficie de energía se deforma gracias a la influencia de las interacciones $-x y y \rightarrow$ la simetría rotacional se rompe.
- $j_z = \pm 1$ es invariante entre las interacciones qubit-qubit en las direcciones -x y -y

Superficies de Energía

Densidad de Estados

Superficie de energía

Figura: Fase Normal Deformada

$$u = \arccos(-j_z) \cos \phi$$
$$v = \arccos(-j_z) \sin \phi$$

$$\gamma_{0+} = \sqrt{\omega\omega_0}$$

Punto estable

Límite Tavis-Cummings $\xi = 0$

Fase Superradiante-x $\eta_x \neq \eta_y$ y cos $\phi_s = \pm 1$ (sin $\phi_s = 0$) $\rightarrow p_s = 0$

$$j_{zs} = -\left(\frac{\eta_z - \eta_x}{\omega_0} + \frac{\gamma^2}{\omega\omega_0}\right)^{-1} = -\frac{1}{f_{0x}}, \quad f_{0x} = \frac{\Delta\eta_{zx}}{\omega_0} + f_{0+}, \quad (10)$$

Acoplamiento crítico

$$\gamma_{0x}^c = \gamma_{0+} \sqrt{1 - \frac{\eta_z - \eta_x}{\omega_0}}.$$
(11)

Puntos fijos:

$$(p_s, q_s, j_{zs}, \phi_s) = \left(0, \pm \frac{\gamma}{\omega} \sqrt{1 - \frac{1}{f_{0x}^2}}, -\frac{1}{f_{0x}}, \pi \text{ or } 0\right),$$
 (12)

Energía:

$$\epsilon_{s0x} = -\frac{1}{2} \left(f_{0x} + \frac{1}{f_{0x}} \right) + \frac{\eta_z}{2\omega_0},\tag{13}$$

La fase está determinada por η_X independientemente de η_Y

Xalapa, Veracruz

Proyecto de Investigación

Superficies de Energía

Densidad de Estados

Superficies de energía

Figura: Fase Superradiante x, TC.

$$u = \arccos(-j_z) \cos \phi$$
$$v = \arccos(-j_z) \sin \phi$$

$$\gamma_{0+} = \sqrt{\omega\omega_0}$$

Superficies de Energía

Densidad de Estados

Límite Tavis Cummings

Fase Superradiante-y

$$\eta_x
eq \eta_y$$
 y sin $\phi_s = \pm 1~(\cos \phi_s = 0)$, $ightarrow q_s = 0$

$$j_{zs} = -\left(\frac{\eta_z - \eta_y}{\omega_0} + \frac{\gamma^2}{\omega\omega_0}\right)^{-1} = -\frac{1}{f_{0y}}, \quad f_{0y} = \frac{\Delta\eta_{zy}}{\omega_0} + f_{0+}$$
(14)

Acoplamiento Crítico:

$$\gamma_{0y}^{c} = \gamma_{0+} \sqrt{1 - \frac{\eta_{z} - \eta_{y}}{\omega_{0}}}.$$
(15)

Puntos fijos:

$$(p_{s}, q_{s}, j_{zs}, \phi_{s}) = \left(\pm \frac{\gamma}{\omega} \sqrt{1 - \frac{1}{f_{0y}^{2}}}, 0, -\frac{1}{f_{0y}}, \pm \frac{\pi}{2}\right).$$
(16)

Energía:

$$\epsilon_{s0y} = -\frac{1}{2} \left(f_{0y} + \frac{1}{f_{0y}} \right) + \frac{\eta_z}{2\omega_0}.$$
 (17)

La fase está determinada por η_y independientemente de η_x

Superficies de Energía

Densidad de Estados 000000

Superficies de Energía

Figura: Fase superradiante y TC.

Punto estable
 Punto silla

$$u = \arccos(-j_z) \cos \phi$$
$$v = \arccos(-j_z) \sin \phi$$

$$\gamma_{0+} = \sqrt{\omega\omega_0}$$

Límite de Tavis Cummings

Fases superpuestas.

Al combinar las interacciones de las direcciones -x y - y exise la posibilidad de que los puntos fijos de las diferentes direcciones aparezcan simultaneamente. Entonces hablaremos de una superposición de las fases.

- En fases superpuestas el mínimo de la superficie de energía solo le corresponderá a un conjunto de puntos fijos degenerados.
- El paso de una fase superradiante sola a una superposición de fases no va seguido de un QPT.
- Aunque el DoS cambie abruptamente anuncia el incio de nuevos ESQPT's.

Ejemplo:

Cuando η_x toma relevancia en la transición de fase:

- Fase normal: $\gamma \in [0, \gamma_{0x}^c]$
- Fase superradiante $-x: \gamma \in [\gamma_{0x}^c, \gamma_{0y}^c]$
- Superposición fase superradiante $-x, -y: \gamma \in [\gamma_{0v}^c, \infty]$

Superficies de Energía

Densidad de Estados

Superficies de Energía TC

Figura: Herrera Romero, R., Bastarrachea-Magnani, M. A., & Linares, R. (2022). Critical Phenomena in Light–Matter Systems with Collective Matter Interactions. Entropy, 24(9), 1198.

Xalapa, Veracruz

Proyecto de Investigación

Superficies de Energía

Densidad de Estados 000000

Superficies de Energía TC

Superficies de Energía

Densidad de Estados

Límite de Dicke $\xi = 1$

Fase superradiante-x

$$j_{zs} = -\frac{1}{f_{1x}}, \ f_{1x} = \frac{\Delta \eta_{zx}}{\omega_0} + f_{1+}$$
 (18)

Acoplamiento crítico:

$$\gamma_{1x}^{c} = \gamma_{1+} \sqrt{1 - \frac{\Delta \eta_{zx}}{\omega_0}}.$$
(19)

Puntos fijos:

$$(p_s, q_s, jz_s, \phi_s) = \left(0, \pm \frac{2\gamma}{\omega} \sqrt{1 - \frac{1}{f_{1x}^2}}, -\frac{1}{f_{1x}}, 0 \text{ or } \pi\right)$$
 (20)

Energía:

$$\epsilon_{s1x} = -\frac{1}{2} \left(f_{1x} + \frac{1}{f_{1x}} \right) + \frac{\eta_z}{2\omega_0}.$$
(21)

Superficies de Energía

Densidad de Estados

Límite de Dicke

Fase Deformada

$$j_{zs} = -\frac{\omega_0}{\Delta \eta_{zy}} = -\frac{1}{f_{1y}},\tag{22}$$

Puntos fijos:

$$(p_s, q_s, jz_s, \phi_s) = \left(0, 0, -\frac{1}{f_{1y}}, \pm \frac{\pi}{2}\right),$$
 (23)

Energía mínima:

$$\epsilon_{s1y} = -\frac{1}{2f_{1y}} + \frac{\eta_y}{2\omega_0},\tag{24}$$

Superficies de Energía

Densidad de Estados

Superficies de energía

Figura: Fase Deformada Dicke

Punto estable
 Punto silla

$$U = \arccos(-j_z) \cos \phi$$
$$V = \arccos(-j_z) \sin \phi$$

$$\gamma_{1+} = \frac{\sqrt{\omega\omega_0}}{2}$$

Superficies de Energía

Densidad de Estados

Superficies de Energía Dicke

Xalapa, Veracruz

Proyecto de Investigación

Superficies de Energía

Densidad de Estados

Superficies de Energía Dicke

Introd		ió	
000			

Superficies de Energía

Densidad de Estados

Acoplamiento Arbitrario

Superficies de Energía

Acoplamiento Arbitrario

Superficies de Energía

Resumen Diagramas Fase

Xalapa, Veracruz

Proyecto de Investigación

Superficies de Energía

Densidad de Estados

Densidad de estados semiclásica

Calculamos el volumen de espacio fase disponible dada una energía:

$$\nu_{\xi}(\epsilon) = \frac{1}{(2\pi)^2} \int dq \, dp \, dj_z \, d\phi \, \delta \left[\epsilon \omega_0 - H_{cl}^{\xi}(q, p, j_z, \phi) \right].$$
(25)

$$\phi_{\xi} = \arccos \sqrt{g_{\xi}(j_z, \epsilon)} =$$
(26)

$$\operatorname{arc} \cos\left\{ \left[\frac{2}{1-j_{z}^{2}} \left[\frac{\eta_{z}}{2\omega_{0}} j_{z}^{2} + j_{z} - \epsilon \right] - \left(f_{\xi-} - \frac{\eta_{y}}{\omega_{0}} \right) \right]^{1/2} \left[\left(f_{\xi+} - f_{\xi-} \right) - \left(\frac{\eta_{x}}{\omega_{0}} - \frac{\eta_{y}}{\omega_{0}} \right) \right]^{-1/2} \right\}.$$

Superficies de Energía

Densidad de Estados ○●○○○○

Valores límite j_z y ϵ

$$\cos \phi_{\pm} = \pm 1 \rightarrow$$

$$j_{z\xi}^{(\pm)}(\varepsilon) = -\frac{1}{f_{\xi x}} \left[1 \mp \sqrt{2f_{\xi x}(\epsilon - \epsilon_{s\xi x})} \right]$$

$$\cos \phi_{1,2} = 0 \rightarrow$$

$$j_{z\xi}^{(1,2)}(\varepsilon) = -\frac{1}{f_{\xi y}} \left[1 \mp \sqrt{2f_{\xi y}(\epsilon - \epsilon_{s\xi y})} \right].$$

$$(28)$$

$$j_{zs} = \pm 1$$

$$\epsilon_{\pm} = \pm 1 + \frac{\eta_z}{2\omega_0} \tag{29}$$

Ejemplo: Caso partícular: $\epsilon_{s\xi x} < \epsilon_{s\xi y}$

Superficies de Energía

Densidad de Estados

Dominios de Energía

$$\begin{split} \frac{\omega}{2}\nu_{\xi}(\epsilon) = \begin{cases} \frac{1}{\pi}\int_{\substack{j_{z\xi}^{(+)}\\j_{z\xi}}}^{j_{z\xi}^{(+)}}\phi_{\xi}(j_{z},\epsilon)dj_{z}, & \epsilon_{s\xi x} \leq \epsilon \leq \epsilon_{s\xi y}, \text{ and } \gamma \in [\gamma_{\xi x}^{c}, \gamma_{\xi y}^{c}] \\ \frac{1}{\pi}\left[\int_{\substack{j_{z\xi}^{(1)}\\j_{z\xi}}}^{j_{z\xi}^{(1)}}\phi_{0}(j_{z},\epsilon)dj_{z} + \int_{\substack{j_{z\xi}^{(2)}\\j_{z\xi}}}^{j_{z\xi}^{(+)}}\phi_{0}(j_{z},\epsilon)dj_{z}\right] & \epsilon_{s\xi y} < \epsilon \leq \epsilon_{-}, \text{ and } \gamma \in [\gamma_{\xi y}^{c},\infty], \\ +\frac{1}{2}\left(j_{z\xi}^{(2)}-j_{z\xi}^{(1)}\right), & \epsilon_{-} < \epsilon \leq \epsilon_{+}, \text{ and } \gamma \in [0,\infty), \\ \frac{1}{\pi}\int_{\substack{j_{z\xi}^{(1)}\\j_{z\xi}}}^{j_{\xi}^{(+)}}\phi_{0}(j_{z},\epsilon)dj_{z} + \frac{1}{2}\left(j_{z\xi}^{(1)}+1\right), & \epsilon_{-} < \epsilon \leq \epsilon_{+}, \text{ and } \gamma \in [0,\infty), \\ 1, & \epsilon_{+} < \epsilon \text{ and } \gamma \in [0,\infty). \end{cases} \end{split}$$

Superficies de Energía

Densidad de Estados

Densidad de estados como función de la energía

Figura: Densidad de estados $\omega \nu_{\xi}(\epsilon)/2$ como función de la energía (Dominios de Energía)

Conclusiones

- Se investigaron las fases cuánticas en un modelo de Dicke Generalizado.
 - Tavis-Cummings.
 - Dicke.
- **C**ada dirección η_i tiene un rol particular en el fenómeno crítico.
- Se confirman las transiciones de fase a través de las técnicas semiclásicas en las densidades de estado.

Gracias por su atención!!

email: ricardo.h.romero@outlook.com