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EXCITON - POLARITON BILLIARD (MOTIVATION)

» Excitons are collective excitations that naturally arise in semiconductors interacting with light.

» Polaritons are the quantum superposition of photons and excitons (quasiparticles). When the
coupling between photons and excitons in a semiconductor inside a microcavity is increased

enough.
» “Microcavity exciton-polaritons represent a unique quantum macroscopic system, which
combines the main advantages of light and matter waves”!.
b .
> EXxciton-polaritons billiards has been studied experimentally | ‘, ‘v

for Gao et al.' A Sinai Billiard for a condensed excition-polaritons.
It has two parameters: thickness of the walls and radius of the
defect (geometry).

» They showed! that the inherent non-Hermitian nature of

exciton-polaritons determines their basic properties, which are
crucial for transport and quantum information processing. Figure of Gao et al.

[1] T Gao, E. Estrecho, K. Bliokh, T. Liew, M. Fraser, S. Brodbeck, M. Kamp, C. Schneider, S. Hifling, Y. Yamamoto, et al., “Observation of non-hermitian degeneracies in a

L . 1s 2
chaotic exciton-polariton billiard,” Nature, vol. 526, no. 7574, pp. 554-558, 2015.



BILLIARDS

» We define a billiard table as a set of obstacles (boundaries).

» Every particle collision results in an specular reflection.
Let us call this as the hard-wall limit.

» (Classical and quantum hard-wall billiards can be represented by potential wells.

» |ts collision space can be map via Poincaré-Birkhoff coordinates.
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HARD WALL VS. SOFT WALL

We introduce a hardness parameter 1 which makes a smooth potential well. We achieve this

using error function.
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HARD WALL VS. SOFT WALL

» For hard-wall billiards there are discontinuities at
the boundaries. A map is needed to handle the
evolution at the boundaries.

» Evolution for soft-wall billiards is totally given by its
Hamiltonian.

» Defining the collision space is a subtle task, turning
the Poincaré-Birkhoff coordinates around.

» Has been found that softness is a parameter for
chaos modulationz, as the geometry.

[2] T. Kroetz, H. A. Oliveira, J. S. Portela, and R. L. Viana, “Dynamical properties of the soft- wall elliptical billiard,” Physical Review E, vol. 94, no. 2, p. 022218, 2016. 5



CHAOS INDICATORS AND OUR SYSTEM

» Lyapunov spectrum. dp, oH 4hy 2
. , _ — = — exp —h? | x*A > 1
> Poincaré surface of section dt Oy b2/ 7 b
» Geometry, energy and dp oH Ahx y2
hardness - = = exp | —h*| x* 1
' dt 0x T b?
 0H OH
X = . y —_ — .
0Py apy

Our main goal is to find a tool that compute Lyapunov exponents, PSOS as well as
evolves the dynamic.

Starting point is studying elliptical billiard. Because its geometry depends mainly in
one parameter: eccentricity. As well, we already have a parametrization for the billiard.

i , i
V(xz,y) = erf |h (:132 | ?;2 1)




CHAOS INDICATORS AND OUR SYSTEM

We will share some of the main issues we confront when analyzing and computing
chaos indicators and even solving the dynamic.

» Stiffness

» Energy dependence initial conditions

» Long time computing Lyapunov exponents
» Defining collision

» Construct collision space

» Not expected regions in PSOS for higher hardness values



SOLVING MOVEMENT EQUATIONS

» The stiffness of the movement equations for increasing hardness values makes
getting solutions a rough task.

» We attack this using an adaptive step solver. Taking smaller steps where potential
changes abruptly.

» Useftul for long trajectories for computing Lyapunov exponents.

(N=1,t=8,b=0.694, E=0.0) (N=1,t=8,b=0.694, E=0.0)




PARAMETER DEPENDENCE

(t =30, b =0.694, E=0.0, hardness = 1) (t = 100, b = 0.866, E = -0.046, hardness = 1)

(t=30,b=0.694, E =-0.311, hardness = 2)




PARAMETER DEPENDENCE

For hard-wall billiards is usual to test trajectories within a vicinity of initial conditions.

(t=15,b =0.694, E = 0.0)
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PARAMETER DEPENDENCE

There is a range of valid energy values.

(t=15,b =0.694, E = 0.62)
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LONG TIME COMPUTING LYAPUNOV EXPONENTS
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DEFINING COLLISIONS

We look for the instant when particle moment is totally
parallel to the equipotential curve.

(N=1,t=30,b=0.694, E = 0.0)
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CONSTRUCT COLLISION SPACE

Let us set collision space inspired by Poincaré-Birkhoff coordinates. @ is polar angle and P,
denotes parallel momentum normalized.
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CONSTRUCT COLLISION SPACE
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IDENTIFICATION OF TRAJECTORIES
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IDENTIFICATION OF TRAJECTORIES
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CONSTRUCT COLLISION SPACE
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IDENTIFICATION OF TRAJECTORIES

Vertical-like collisions are problematic for the numerical algorithm.

Problem arise from loss of Hamiltonian character in hard-wall limit.

(N=1,t=50,b=0.694, E = 0.0) 1.0 [
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IDENTIFICATION OF TRAJECTORIES

Vertical-like collisions are problematic for the numerical algorithm.

Problem arise from loss of Hamiltonian character in hard-wall limit.
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COMPARISON OF THE TOOL DEVELOPED

Looking for extend calculations in others billiards.
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FURTHER TOPICS FOR STUDY

» Extend the analysis between chaos, geometry, hardness, and energy in other
billiards.

» Deepen the problem between Hamiltonian vs. non-Hamiltonian systems.

» Improving numerical implementations for stifness.

» Study quantization process for soft-wall billiards.

» Aim for studying quantum chaos in tunable systems.

» Extend our knowledge In classical soft-wall billiards for exciton-polariton billiards.
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