Equivalent non－rational extensions of the harmonic oscillator，their ladder operators， and coherent states

Alonso Contreras－Astorga，David J．Fernández C．，César Muro－Cabral

CONACyT－Departamento de Física，Cinvestav，México．

Equivalent non-rational extensions of the harmonic oscillator, their ladder operators, and coherent states

- Heisenberg-Weyl algebra
- Coherent states
- Supersymmetric quantum mechanics
- Equivalent non-rational extensions of the harmonic oscillator and ladder operators
- Coherent states and their properties
- Concluding remarks
- A Contreras-Astorga, D. J. Fernandez C., C. Muro-Cabral, Equivalent non-rational extensions of the harmonic oscillator, their ladder operators and coherent states. EPJ Plus, In press.

Heisenberg-Weyl algebra

Let us take as H the harmonic oscillator Hamiltonian,

$$
H=-\frac{1}{2} \frac{d^{2}}{d x^{2}}+\frac{1}{2} x^{2}
$$

whose eigenfunctions and eigenvalues are given by

$$
\psi_{n}(x)=\sqrt{\frac{1}{2^{n} \sqrt{\pi} n!}} e^{-\frac{x^{2}}{2}} H_{n}(x), \quad E_{n}=n+\frac{1}{2}, \quad n=0,1,2, \ldots
$$

where $H_{n}(x)$ is the Hermite polynomial of n-th degree. The first-order differential ladder operators

$$
a^{-}=\frac{1}{\sqrt{2}}\left(\frac{d}{d x}+x\right), \quad a^{+}=\frac{1}{\sqrt{2}}\left(-\frac{d}{d x}+x\right)
$$

factorize the oscillator Hamiltonian as $a^{+} a^{-}=H-\frac{1}{2}$ and $a^{-} a^{+}=H+\frac{1}{2}$; they also generate the Lie algebra (Heisenberg-Weyl) $\left[H, a^{ \pm}\right]= \pm a^{ \pm},\left[a^{-}, a^{+}\right]=\mathbb{I}$, which indicates that work as ladder operators.

Heisenberg-Weyl algebra

$$
\begin{array}{llll}
{\left[H, a^{+}\right]=+a^{+}} & \rightarrow & H a^{+}=a^{+}(H+1) \\
{\left[H, a^{-}\right]=-a^{+}} & \rightarrow & H a^{-}=a^{-}(H-1)
\end{array}
$$

Heisenberg-Weyl algebra

$$
\begin{array}{lll}
{\left[H, a^{+}\right]=+a^{+}} & \rightarrow & H a^{+}=a^{+}(H+1) \\
{\left[H, a^{-}\right]=-a^{+}} & \rightarrow & H a^{-}=a^{-}(H-1)
\end{array}
$$

Coherent States

The coherent states of the harmonic oscillator are given by

$$
|z\rangle=e^{-\frac{|z|^{2}}{2}} \sum_{n=0}^{\infty} \frac{z^{n}}{\sqrt{n!}}|n\rangle
$$

These states can be derived from four definitions:

1. Eigenstates of the annihilaton operator, $a^{-}|z\rangle=z|z\rangle$.
2. They are obtained by applying the displacement operator $D(z) \equiv e^{z a^{+}-z^{*} a^{-}}$on the harmonic oscillator vacuum state, i.e. $|z\rangle=D(z)|0\rangle$.
3. They are states with minimum uncertainty relation for the position q and momentum p operators: $\langle\Delta q\rangle^{2}\langle\Delta p\rangle^{2}=\frac{1}{4}$.
4. They are an overcomplete set satisfying the completeness relation

$$
\frac{1}{\pi} \int_{\mathbb{C}}|z\rangle\langle z| d^{2} z=\mathbb{I}_{\mathbb{H}} .
$$

Supersymmetric quantum mechanics

Let us suppose that H is an initial solvable Hamiltonian with eigenfunctions $\psi_{n}(x)$ and eigenvalues $E_{n}, n=0,1,2, \ldots$. It is assumed the following relations

$$
\widetilde{H} B^{+}=B^{+} H, \quad H B=B \widetilde{H} .
$$

where H, \widetilde{H} are the two Schrödinger Hamiltonians

$$
\widetilde{H}=-\frac{1}{2} \frac{d^{2}}{d x^{2}}+\widetilde{V}(x), \quad H=-\frac{1}{2} \frac{d^{2}}{d x^{2}}+V(x) .
$$

We suppose as well that k solutions of the Schrödinger equation

$$
H u_{j}=\epsilon_{j} u_{j}, \quad j=1,2, \ldots, k,
$$

for k different factorization energies ϵ_{j} are given. Then, the SUSY partner potential \widetilde{V} will be given by

$$
\widetilde{V}=V-\left[\ln W\left(u_{1}, u_{2}, \ldots, u_{k}\right)\right]^{\prime \prime}
$$

The eigenfunctions of the Hamiltonian \tilde{H} can be obtained via

$$
\tilde{\psi}_{n} \propto B^{+} \psi_{n}=\frac{1}{\sqrt{2^{k}}} \frac{W\left(u_{1}, u_{2}, \ldots, u_{k}, \psi_{n}\right)}{W\left(u_{1}, u_{2}, \ldots, u_{k}\right)},
$$

with eigenvalue E_{n}.
The SUSY partner Hamiltonian \tilde{H} could have a finite number of additional eigenfunctions $\widetilde{\psi}_{\epsilon}$, known as missing states, which corresponding eigenvalues are the factorization energies ϵ_{j}. They can be written as

$$
\widetilde{\psi}_{\epsilon_{j}} \propto \frac{W\left(u_{1}, \ldots, u_{j-1}, u_{j+1}, \ldots, u_{k}\right)}{W\left(u_{1}, u_{2}, \ldots, u_{k}\right)} .
$$

The intertwining operators B^{+}, B satisfy as well the following factorizations:

$$
B^{+} B=\left(\widetilde{H}-\epsilon_{1}\right) \ldots\left(\widetilde{H}-\epsilon_{k}\right), \quad B B^{+}=\left(H-\epsilon_{1}\right) \ldots\left(H-\epsilon_{k}\right) .
$$

Supersymmetric quantum mechanics

Supersymmetric quantum mechanics

Equivalent non-rational extensions of the harmonic oscillator and ladder operators

Let us first write down the general solution of the stationary Schrödinger equation for the harmonic oscillator Hamiltonian with energy parameter $\mathcal{E}=\lambda+1 / 2$, as follows

$$
u(x)=e^{-\frac{x^{2}}{2}}\left[H_{\lambda}(x)+\gamma H_{\lambda}(-x)\right]
$$

where γ is a real parameter.
Now, we will use two different BUT equivalent SUSY transformation to modify the harmonic oscillator Hamiltonian.

Equivalent non-rational extensions of the harmonic oscillator and ladder operators

Equivalent non-rational extensions of the harmonic oscillator

First SUSY transformation

Let us generate now a 2-SUSY partner potential $V^{(1)}$ of the harmonic oscillator. We employ the seed solutions

$$
u_{1}^{(1)}(x)=e^{-\frac{x^{2}}{2}}\left[H_{\lambda_{1}}(x)+\gamma H_{\lambda_{1}}(-x)\right], \quad u_{2}^{(1)}(x)=\varphi_{1}(x)
$$

with factorization energies $-3 / 2<\mathcal{E}_{1}<1 / 2$, and $\mathcal{E}_{2}=E_{-2}=-3 / 2$, respectively with $\lambda_{1}=\mathcal{E}_{1}-1 / 2$. To obtain a nodeless Wronskian $W\left(u_{1}^{(1)}, u_{2}^{(1)}\right)$ we must take $\gamma>0$. The SUSY partner potential $V^{(1)}$ is

$$
V^{(1)}=\frac{x^{2}}{2}-\left[\ln W\left(u_{1}^{(1)}, u_{2}^{(1)}\right)\right]^{\prime \prime}
$$

The intertwining operators $B^{(1)}, B^{(1)+}$ relate the Hamiltonian $H^{(1)}$ with the oscillator Hamiltonian in the way

$$
H^{(1)} B^{(1)+}=B^{(1)+} H, \quad H B^{(1)}=B^{(1)} H^{(1)} .
$$

Second SUSY transformation

We can obtain basically the same spectrum by deleting the first excited level and adding a new level at the right place. We will employ now the seed solutions

$$
u_{1}^{(2)}(x)=\psi_{1}(x), \quad u_{2}^{(2)}(x)=e^{-\frac{x^{2}}{2}}\left[H_{\lambda_{2}}(x)+\gamma H_{\lambda_{2}}(-x)\right]
$$

with factorization energies $\widetilde{\mathcal{E}}_{1}=E_{1}$ and $\widetilde{\mathcal{E}}_{2}=\mathcal{E}_{1}+2$, respectively, thus $E_{0}<\widetilde{\mathcal{E}_{2}}<E_{2}$, and $\lambda_{2}=\lambda_{1}+2$. Moreover, we will take the same value of γ as in the previous SUSY transformation. The Wronskian $W\left(u_{1}^{(2)}, u_{2}^{(2)}\right)$ can be written as

$$
W\left(u_{1}^{(2)}, u_{2}^{(2)}\right)=e^{-x^{2}} \mathcal{W}(x),
$$

The SUSY partner potential can be expressed as

$$
V^{(2)}=\frac{1}{2} x^{2}+2-[\ln \mathcal{W}(x)]^{\prime \prime} .
$$

Again, $B^{(2)}, B^{(2)+}$ intertwine the Hamiltonian $H^{(2)}$ with H as

$$
H^{(2)} B^{(2)+}=B^{(2)+} H, \quad H B^{(2)}=B^{(2)} H^{(2)} .
$$

Ladder Operators

Let us define now the operators:

$$
\mathcal{L}^{+}=B^{(1)+} B^{(2)}, \quad \mathcal{L}^{-}=B^{(2)+} B^{(1)}
$$

Since these operators fulfill the following commutation relations

$$
\begin{aligned}
{\left[\widetilde{H}, \mathcal{L}^{ \pm}\right]=} & \pm 2 \mathcal{L}^{ \pm} \\
{\left[\mathcal{L}^{-}, \mathcal{L}^{+}\right]=} & \left(\widetilde{H}+2-\mathcal{E}_{1}\right)\left(\widetilde{H}+2-\mathcal{E}_{2}\right)\left(\widetilde{H}+2-\widetilde{\mathcal{E}}_{1}\right)\left(\widetilde{H}+2-\widetilde{\mathcal{E}}_{2}\right) \\
& -\left(\widetilde{H}-\mathcal{E}_{1}\right)\left(\widetilde{H}-\mathcal{E}_{2}\right)\left(\widetilde{H}-\widetilde{\mathcal{E}}_{1}\right)\left(\widetilde{H}-\widetilde{\mathcal{E}}_{2}\right)
\end{aligned}
$$

they are in fact ladder operators that connect eigenstates whose energy levels differ by two energy units of \widetilde{H}. The operators $\widetilde{H}, \mathcal{L}^{-}, \mathcal{L}^{+}$realize a polynomial Heisenberg algebra of third degree.
The kernel of the annihilation operator \mathcal{L}^{-}is generated by the functions

$$
K_{\mathcal{L}^{-}}=\left\{\tilde{\psi}_{E_{-2}}, \tilde{\psi}_{\epsilon}, \tilde{\psi}_{1}, B^{(1)+} u_{2}^{(2)}\right\}
$$

Equivalent non-rational extensions of the harmonic oscillator and ladder operators

Diagram of the action of the two-step ladder operators $\mathcal{L}^{-}, \mathcal{L}^{+}$.

Coherent states and their properties

Let us construct the Barut-Girardello coherent states in the standard way,

$$
\mathcal{L}^{-}|z\rangle=z|z\rangle,
$$

Recall that $\left[\widetilde{H}, \mathcal{L}^{ \pm}\right]= \pm 2 \mathcal{L}^{ \pm}$, thus the Hilbert space \mathbb{H} can be decomposed as the direct sum of two infinite dimension subspaces (labelled by the index $\nu=-2$, 1, i.e., \mathbb{H}^{-2} and \mathbb{H}^{1}, respectively) plus the subspace \mathbb{H}^{ϵ} spanned by the single eigenstate ψ_{ϵ}.
After some math, the coherent states can be written as

$$
\left|z^{\nu}\right\rangle=c_{0} \sum_{n=0}^{\infty}\left(\frac{z}{4}\right)^{n} \sqrt{\frac{\left\ulcorner(\frac { 2 \nu - 2 \epsilon + 5 } { 4 }) \left\ulcorner(\frac { 2 \nu - 2 \epsilon + 1 } { 4 }) \left\ulcorner(\frac { \nu + 4 } { 2 }) \left\ulcorner\left(\frac{\nu+1}{2}\right)\right.\right.\right.\right.}{\Gamma\left(\frac{2 \nu-2 \epsilon+5}{4}+n\right)\left\ulcorner(\frac { 2 \nu - 2 \epsilon + 1 } { 4 } + n) \left\ulcorner(\frac { \nu + 4 } { 2 } + n) \left\ulcorner\left(\frac{\nu+1}{2}+n\right)\right.\right.\right.}}|\nu+2 n\rangle,
$$

where c_{0} is the normalization constant given by

$$
c_{0}=\left[{ }_{1} F_{4}\left(1 ; \frac{2 \nu-2 \epsilon+5}{4}, \frac{2 \nu-2 \epsilon+1}{4}, \frac{\nu+4}{2}, \frac{\nu+1}{2} ; \frac{|z|^{2}}{16}\right)\right]^{-1 / 2} .
$$

Coherent states and their properties

- Completeness relation

We can show that our coherent states they fulfill a completeness relation of the form

$$
\int_{\mathbb{C}}\left|z^{\nu}\right\rangle\left\langle z^{\nu}\right| \mu(z) d^{2} z=\mathbb{I}_{\mathbb{H} \nu}
$$

on each Hilbert subspace \mathbb{H}^{ν} spanned by the kets $|\nu+2 n\rangle$, where $\mu(z)$ is a positive definite measure function.

Coherent states and their properties

- Continuity on the label

Modulus of the scalar product $\left\langle z^{\nu} \mid z^{\nu}\right\rangle$ of the coherent states $\left|z^{\nu}\right\rangle$ and $\mid z^{\prime} \nu$ for $z^{\prime}=4+i$ in the subspace with $\nu=-2$ (up), and $\nu=1$ (down).

Coherent states and their properties

- Mean energy values

Mean energy values as function of $|z|$ in both subspaces for $\epsilon=-\frac{1}{4}$ (up), and $\epsilon=-\frac{3}{4}$ (down).

Coherent states and their properties

- Temporal stability

By applying the time evolution operator, $U(t)=e^{-i \widetilde{H} t}$, onto our coherent states, it is found the corresponding temporal evolution

$$
U(t)\left|z^{\nu}\right\rangle=e^{-i E_{0, \nu} t}\left|\left(z e^{-i 2 t}\right)^{\nu}\right\rangle
$$

where $E_{0, \nu}=\nu+1 / 2$. Up to global phase factor, they evolve in time into another coherent states in the same subspace. As a first indication of their non-classical behavior, it can be seen that the period of every cyclic evolution is $\tau=\pi$, half the period of the standard coherent states.

Coherent states and their properties

- Time evolution of probability densities

Probability densities of the coherent states with $\epsilon=0, \gamma=2$. First: $\nu=-2, z=10$; Second: $\nu=-2$,
$z=100$; Third: $\nu=1, z=10$; Fourth: $\nu=1, z=100$.

Coherent states and their properties

- Wigner distributions

Wigner functions of the ground state $\widetilde{\psi}_{E_{-2}}$ (top left), the first excited state $\widetilde{\psi}_{\epsilon}$ (top center), the second excited state $\widetilde{\psi}_{0}$ (top left), coherent state with $\nu=-2, z=100$ (bottom left), and the coherent state with $\nu=1, z=100$ (bottom right). The parameters employed are $\epsilon=0, \gamma=2$.

Summary

- We demonstrated that non-rational SUSY extensions of the harmonic oscillator have equivalent partners.
- Using this equivalence, we were able to find novel ladder operator for such extensions.
- We constructed families of coherent states as eigenstates of the annihilation operator and studies its properties.

Thanks

