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Heisenberg-Weyl algebra
Let us take as H the harmonic oscillator Hamiltonian,

H = −1
2

d2

dx2 +
1
2

x2,

whose eigenfunctions and eigenvalues are given by

ψn(x) =

√
1

2n√πn!
e−

x2
2 Hn(x), En = n +

1
2
, n = 0,1,2, . . . ,

where Hn(x) is the Hermite polynomial of n-th degree. The
first-order differential ladder operators

a− =
1√
2

(
d
dx

+ x
)
, a+ =

1√
2

(
− d

dx
+ x

)
,

factorize the oscillator Hamiltonian as a+a− = H − 1
2 and

a−a+ = H + 1
2 ; they also generate the Lie algebra

(Heisenberg-Weyl) [H,a±] = ±a±, [a−,a+] = I, which
indicates that work as ladder operators.
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Coherent States
The coherent states of the harmonic oscillator are given by

|z〉 = e−
|z|2

2

∞∑
n=0

zn
√

n!
|n〉 .

These states can be derived from four definitions:
1. Eigenstates of the annihilaton operator, a− |z〉 = z |z〉.
2. They are obtained by applying the displacement operator

D(z) ≡ eza+−z∗a− on the harmonic oscillator vacuum state,
i.e. |z〉 = D(z) |0〉 .

3. They are states with minimum uncertainty relation for the
position q and momentum p operators: 〈4q〉2〈4p〉2 = 1

4 .
4. They are an overcomplete set satisfying the completeness

relation
1
π

∫
C
|z〉 〈z|d2z = IH.



Supersymmetric quantum mechanics
Let us suppose that H is an initial solvable Hamiltonian with
eigenfunctions ψn(x) and eigenvalues En, n = 0,1,2, . . . .
It is assumed the following relations

H̃B+ = B+H, HB = BH̃.

where H, H̃ are the two Schrödinger Hamiltonians

H̃ = −1
2

d2

dx2 + Ṽ (x), H = −1
2

d2

dx2 + V (x).

We suppose as well that k solutions of the Schrödinger
equation

Huj = εjuj , j = 1, 2, . . . , k ,

for k different factorization energies εj are given. Then, the
SUSY partner potential Ṽ will be given by

Ṽ = V − [lnW (u1,u2, . . . ,uk )]
′′.



The eigenfunctions of the Hamiltonian H̃ can be obtained via

ψ̃n ∝ B+ψn =
1√
2k

W (u1,u2, . . . ,uk , ψn)

W (u1,u2, . . . ,uk )
,

with eigenvalue En.
The SUSY partner Hamiltonian H̃ could have a finite number of
additional eigenfunctions ψ̃εj , known as missing states, which
corresponding eigenvalues are the factorization energies εj .
They can be written as

ψ̃εj ∝
W (u1, . . . ,uj−1,uj+1, . . . ,uk )

W (u1,u2, . . . ,uk )
.

The intertwining operators B+,B satisfy as well the following
factorizations:

B+B = (H̃ − ε1) . . . (H̃ − εk ), BB+ = (H − ε1) . . . (H − εk ).
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Equivalent non-rational extensions of the harmonic
oscillator and ladder operators

Let us first write down the general solution of the stationary
Schrödinger equation for the harmonic oscillator Hamiltonian
with energy parameter E = λ+ 1/2, as follows

u(x) = e−
x2
2 [Hλ(x) + γHλ(−x)],

where γ is a real parameter.
Now, we will use two different BUT equivalent SUSY
transformation to modify the harmonic oscillator Hamiltonian.



Equivalent non-rational extensions of the harmonic
oscillator and ladder operators

-4 -2 0 2 4

-2

0

2

4

6

8

10

-4 -2 0 2 4

-2

0

2

4

6

8

10
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First SUSY transformation
Let us generate now a 2-SUSY partner potential V (1) of the
harmonic oscillator. We employ the seed solutions

u(1)
1 (x) = e−

x2
2 [Hλ1(x) + γHλ1(−x)], u(1)

2 (x) = ϕ1(x),

with factorization energies −3/2 < E1 < 1/2, and
E2 = E−2 = −3/2, respectively with λ1 = E1 − 1/2. To obtain a
nodeless Wronskian W (u(1)

1 ,u(1)
2 ) we must take γ > 0. The

SUSY partner potential V (1) is

V (1) =
x2

2
− [lnW (u(1)

1 ,u(1)
2 )]′′.

The intertwining operators B(1),B(1)+ relate the Hamiltonian
H(1) with the oscillator Hamiltonian in the way

H(1)B(1)+ = B(1)+H, HB(1) = B(1)H(1).



Second SUSY transformation
We can obtain basically the same spectrum by deleting the first
excited level and adding a new level at the right place. We will
employ now the seed solutions

u(2)
1 (x) = ψ1(x), u(2)

2 (x) = e−
x2
2 [Hλ2(x) + γHλ2(−x)]

with factorization energies Ẽ1 = E1 and Ẽ2 = E1 + 2,
respectively, thus E0 < Ẽ2 < E2, and λ2 = λ1 + 2. Moreover, we
will take the same value of γ as in the previous SUSY
transformation. The Wronskian W (u(2)

1 ,u(2)
2 ) can be written as

W (u(2)
1 ,u(2)

2 ) = e−x2W(x),

The SUSY partner potential can be expressed as

V (2) =
1
2

x2 + 2− [lnW(x)]′′.

Again, B(2), B(2)+ intertwine the Hamiltonian H(2) with H as

H(2)B(2)+ = B(2)+H, HB(2) = B(2)H(2).



Ladder Operators
Let us define now the operators:

L+ = B(1)+B(2), L− = B(2)+B(1).

Since these operators fulfill the following commutation relations

[H̃,L±] = ±2L±,

[L−,L+] = (H̃ + 2− E1)(H̃ + 2− E2)(H̃ + 2− Ẽ1)(H̃ + 2− Ẽ2)

− (H̃ − E1)(H̃ − E2)(H̃ − Ẽ1)(H̃ − Ẽ2),

they are in fact ladder operators that connect eigenstates
whose energy levels differ by two energy units of H̃.
The operators H̃, L−, L+ realize a polynomial Heisenberg
algebra of third degree.
The kernel of the annihilation operator L− is generated by the
functions

KL− = {ψ̃E−2 , ψ̃ε, ψ̃1,B(1)+u(2)
2 }.
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Diagram of the action of the two-step ladder operators L−,L+.



Coherent states and their properties
Let us construct the Barut-Girardello coherent states in the
standard way,

L− |z〉 = z |z〉 ,

Recall that [H̃,L±] = ±2L±, thus the Hilbert space H can be
decomposed as the direct sum of two infinite dimension
subspaces (labelled by the index ν = −2, 1, i.e., H−2 and H1,
respectively) plus the subspace Hε spanned by the single
eigenstate ψ̃ε.
After some math, the coherent states can be written as

∣∣zν〉 =c0

∞∑
n=0

( z

4

)n

√√√√√ Γ
(

2ν−2ε+5
4

)
Γ
(

2ν−2ε+1
4

)
Γ
(

ν+4
2

)
Γ
(

ν+1
2

)
Γ
(

2ν−2ε+5
4 + n

)
Γ
(

2ν−2ε+1
4 + n

)
Γ
(

ν+4
2 + n

)
Γ
(

ν+1
2 + n

) |ν + 2n〉 ,

where c0 is the normalization constant given by

c0 =

[
1F4

(
1;

2ν − 2ε+ 5
4

,
2ν − 2ε+ 1

4
,
ν + 4

2
,
ν + 1

2
;
|z|2

16

)]−1/2

.



Coherent states and their properties
I Completeness relation

We can show that our coherent states they fulfill a
completeness relation of the form∫

C
|zν〉 〈zν |µ(z)d2z = IHν

on each Hilbert subspace Hν spanned by the kets |ν + 2n〉,
where µ(z) is a positive definite measure function.



Coherent states and their properties
I Continuity on the label

Modulus of the scalar product
〈

z
′ν
∣∣∣zν〉 of the coherent states |zν〉 and

∣∣∣z′ν〉 for z′ = 4 + i in the

subspace with ν = −2 (up), and ν = 1 (down).



Coherent states and their properties
I Mean energy values
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Mean energy values as function of |z| in both subspaces for ε = − 1
4 (up), and ε = − 3

4 (down).



Coherent states and their properties
I Temporal stability

By applying the time evolution operator, U(t) = e−iH̃t , onto
our coherent states, it is found the corresponding temporal
evolution

U(t) |zν〉 = e−iE0,ν t
∣∣∣(ze−i2t

)ν〉
,

where E0,ν = ν + 1/2. Up to global phase factor, they
evolve in time into another coherent states in the same
subspace. As a first indication of their non-classical
behavior, it can be seen that the period of every cyclic
evolution is τ = π, half the period of the standard coherent
states.



Coherent states and their properties
I Time evolution of probability densities

Probability densities of the coherent states with ε = 0, γ = 2. First: ν = −2, z = 10; Second: ν = −2,

z = 100; Third: ν = 1, z = 10; Fourth: ν = 1, z = 100.



Coherent states and their properties
I Wigner distributions

Wigner functions of the ground state ψ̃E−2
(top left), the first excited state ψ̃ε (top center), the second

excited state ψ̃0 (top left), coherent state with ν = −2, z = 100 (bottom left), and the coherent state with

ν = 1, z = 100 (bottom right). The parameters employed are ε = 0, γ = 2.



Summary

I We demonstrated that non-rational SUSY extensions of
the harmonic oscillator have equivalent partners.

I Using this equivalence, we were able to find novel ladder
operator for such extensions.

I We constructed families of coherent states as eigenstates
of the annihilation operator and studies its properties.
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