Spectral kissing and its dynamical consequences in the squeezed Kerr-nonlinear oscillator

Jorge Chávez Carlos

6a reunión anual del grupo de investigación en caos y termalización en sistema cuánticos de muchos cuerpos Universidad Veracruzana Xalapa, Veracruz, Jan 19-22, 2023

Outline

□ Kerr model

- Quantum system
- Spectral Kissing and ESQPT
- Density of States
- Participation ratio
- Husimi function of eigenstates
- Extended Kerr model
- Classical Kerr model
 - Classical limit
- **Quantum dynamics**
 - Survival probability
 - FOTOC
 - Husimi entropy

Quantum quartic oscillator

- Stationary model
- Driven system
- RWA
- Route of chaos

Quantum Geometry

Kerr model

Kerr nonlinear oscillator

EXPERIMENT

THEORY

Experimental platform at Yale: superconducting circuit based on SNAIL transmons **Spectral kissing and its dynamical consequences in the squeezed Kerr-nonlinear oscillator:** arXiv:2210.07255

arXiv:2209.03934

Classical limit

Quantum Hamiltonian with P parameters and operators that describes it: $\hat{H} = \hat{H}(\hat{o}_1, ..., \hat{o}_n, P)$

Coherent states: $|\alpha\rangle~$ with a classical map in phase space $~\alpha=\alpha(q,p)$

In our model $\hat{H} = \hat{H}(a, a^{\dagger}, P)$ Glauber coherent states $\begin{cases} a|\alpha\rangle = \alpha|\alpha\rangle \\ a^{\dagger}|\alpha\rangle = \alpha^{*}|\alpha\rangle \end{cases}$ $h_{cl} = \lim_{\hbar \to 0} \langle \alpha | \hat{H} | \alpha \rangle$ $h_{cl} = h_{cl}(q, p)$

Kerr classical limit

$$\frac{H_{cl}}{K} = \frac{1}{4}(q^2 + p^2)^2 - \xi(q^2 - p^2) \quad \mathbf{a}$$

Lyapunov exponent of the unstable point

$$\lambda = 2K\xi$$

 $16.91431903900109 + i0.0; \tau = 0.000$

28.13019196832089+ i0; $\tau = 0.000$

 $0.0+i0.0; \tau = 0.000$

Kerr extended model*

$$\hat{H}_{eff} = \Delta a^{\dagger}a - Ka^{\dagger 2}a^2 + \epsilon_2 \left(\hat{a}^{\dagger 2} + \hat{a}^2\right)$$

Quartic oscillator

Quartic oscillator

Quartic oscillator

Driven quantum quartic oscillator

$$\hat{H}(t) = \frac{p^2}{2} + \frac{1}{2} \left[\omega_0^2 + F \cos(\omega_F t) \right] q^2 + \frac{\gamma}{4} q^4$$

In a classical scenario $\omega_0 = 1$

Driven quantum quartic oscillator

Quasienergies $\omega_0 = 1, \omega_F = 2.1, \gamma = 0.23$

Rotating Wave Approximation (RWA)

$$H(t) = H(\hat{o}_1, ..., \hat{o}_n, f(t))$$

Dicke V. M. Bastidas, C. Emary, B. Regler, T. Brandes. PRL 108, 043003 (2012)

Quartic Oscillator Yaxing Zhang and M. I. Dykman, PRA 95, 053841 (2017)

Model in the RWA

RWA: Classical Hamiltonian

$$\begin{split} \hat{H}_{RWA} &= -\hbar \delta_{\omega_F} \hat{n} + \frac{\hbar V}{2} \left(\hat{n}^2 + \hat{n} \right) + \frac{\hbar \tilde{F}}{2} (a^{\dagger 2} + a^2) \\ h_{cl} &= -\frac{\delta \omega_F}{2} \left(q^2 + p^2 \right) + \frac{V}{8} \left(q^4 + p^4 + 2q^2p^2 \right) + \frac{\tilde{F}}{2} \left(q^2 - p^2 \right) \\ \tilde{F} \\ 0.4 \\ 0.4 \\ h_{cl} &= \frac{\Delta}{2} \left(q^2 + p^2 \right) - \frac{K}{4} \left(q^4 + p^4 + 2q^2p^2 \right) + \epsilon_2 \left(q^2 - p^2 \right) \\ \end{split}$$

Route of chaos

$$\hat{H}(t) = \frac{p^2}{2} + \frac{1}{2} \left[\omega_0^2 + F \cos(\omega_F t) \right] q^2 + \frac{\gamma}{4} q^4$$

Quantum Geometry

Quantum Geometry

Geometry of the parameter space: Quantum Geometry Tensor

Quantum metric tensor of the <u>Dicke</u> model: Analytical and numerical study

Quantum Geometry

Geometry of the parameter space: Quantum Geometry Tensor

CONCLUSIONS

THANK YOU!

