Cooperative Shielding and Localization

Department of Physics and Astronomy, Florence Univ., Italy:
G.L.Celardo

Collaborations:
F. Borgonovi F. Mattiotti (UCSC, Italy), L. Santos (Yeshiva Univ., USA), R. Kaiser (CNRS, France), A. Mendez-Bermudez N. C. Nahum (IFUAP-BUAP).

MBL meeting, 24/01/2022, Mexico City, Mexico

Motivations

- Anderson localization: a beacon to understand disordered systems. Short Range hopping, uncorrelated disorder, closed system.
- Long-range interacting systems cold atomic clouds, ion traps, light harvesting complexes, etc.. Cooperive Sheilding and Correlation induced localization. G. L. Celardo , R. Kaiser, F. Borgonovi PRB 94, 144206 (2016) ;
- Open systems: Mobility edge in the imaginary axis. G. L. C., M. Angeli, R. Kaiser, arXiv:1702.04506.
- Shielding in Many body quantum Systems L.F. Santos, F.Borgonovi and G.L. Celardo, PRL 116, 250402 (2016)
- Experiental Verification, Monroe Group in Maryland. NATURE PHYSICS, VOL 17, JUNe 2021, 742-747

LONG RANGE INTERACTIONS

GENERAL FEATURES OF LONG RANGE INTERACTIONS. WHICH LONG RANGE?

un correl lated

$\gamma_{\text {IS }}$ ARE RANDOM

$$
\gamma_{1,}=\gamma \equiv \operatorname{con} \sin N T S_{0}^{0}
$$

LONG RANGE INTERACTIONS
(i) NON UNIFORM RESPONCE TO DISORDER । COEXISTENCE OF EXTENDED AN LOCALIZED SIGEN MODES.
(ii. EXTENDED:

COOPERATIVE ROBUSTNESS
$W_{C r} \propto N$

localization BAD TRANSPORT

DET and DIT Regimes

LOCALIZED: HYBRID

$$
|\psi(x)|^{2}
$$

ploTeOra 1/N
exponemíal peak $=S R$. mamilionima

SHIELDING Single and many Body

Experimental Relevance of Correlated long range

Cold Atomic Clouds:

Superradiance, Mobility Edge in
the Imaginary Axis

Robin Kaiser (CNRS, France)

CAVITY PHYSICS
J. Feist and F. J. Garcia-Vidal

FIG. 1. Sketch of the model system. A 1D chain of (possibly disordered) quantum emitters with dipole moments \vec{d}_{i} inside a

Biological Systems.

Ion Traps.

Long-Range Interaction Contracdictory features of LR

Ion Traps experiment
1d Many Body Hamiltonian:
$H=B \sum_{k} \sigma_{k}^{2}+J \sum_{i<j} \frac{\sigma_{i}^{x} \sigma_{j}^{x}}{|i-j|^{\alpha}}$
with $0 \leq \alpha \leq 3$.
Breaking of Lieb-Robinson bounds in Ion Trap

Richerme et al., Nature Letter 511,
198 (2014); P. Jurcevic et. al., Nature, 511, 202 (2014).

Theoretical work:
Suppression of the velocity of spreading with the increase of the interaction range α.
M. Kastner, New J. Phys. 17, 063021 (2015)

Cooperative Shielding can help to explain such contradictory features

Localization and long range.

- Levitov, PRL 64, 547 1990: "IT IS KNOWN THAT IN SYSTEMS WITH DIMENSION d WITH $r^{-\alpha}$ INTERACTION, LOCALIZATION CAN EXIST ONLY IF $\alpha>d$. FOR $\alpha \leq d$ A DIVERGING NUMBER OF
RESONANCES
DESTROYS LOCALIZED STATES".
- ANDERSON (1958): More distant sites are not important because the probability of finding one with the right energy increases much more slowly with distance than the interaction decreases

Number of Resonances:

$$
N_{\text {res }}=\frac{V_{k}}{W} N_{k} \propto R^{d-\alpha} \rightarrow \infty \text { for } \alpha<d
$$

RANDOM VS NON RANDOM INTERACTIONS

- Absence of Localization of Vibrational Modes Due to Dipole-Dipole Interaction, L. S. Levitov, Europhys. Lett. 9, 83 (1989); Phys. Rev. Lett. 64, 547 (1990);
- Anderson transitions, F. Evers and A. D. Mirlin, Rev. Mod. Phys. 80, 1355 (2008).
- Transition from localized to extended eigenstates in the ensemble of power-law random banded matrices, A. D. Mirlin, Yan V. Fyodorov, F.-M. Dittes, J. Q., and T. H. Seligman Phys. Rev. E 54, 3221 (1996).
- Kastner, New J. Phys. 17063021 (2015), PRX 3, 031015 (2013). Suppression of information spreading in long range systems (Lieb-Robinson Bounds).
- Anderson localization on a simplex, A Ossipov, Journal of Physics A: Mathematical and Theoretical, Volume 46, (2013) $H=\sum E_{i}^{0}|i\rangle\langle i|-\gamma \sum|i\rangle\langle i|$
PR and all its moments independent of N.
How do we explain such contradiction?

Correlation Induced Localization

CORRELATED vs UNCORRELATED

- X. Deng, V.E. Kravtsov, G.V. Shlyapnikov, and L. Santos Phys.Rev. Lett. 120, 110602 (2018).
- Rahul M. Nandkishore and S.L. Sondhi Phys. Rev. X 7, 041021 (2017).
- J. T. Cantin, T. Xu, and R. V. Krems Phys. Rev. B 98, 014204 (2018).
-P. A. Nosov, I. M. Khaymovich, and V. E. Kravtsov Phys. Rev. B 99, 104203 (2019)
-A. Lerose, B. Zunkovic, A. Silva and A. Gambassi, Phys. Rev. B 99, 121112(R) (2019)
-F. Liu, R. Lundgren, P. Titum, G. Pagano, J. Zhang, C. Monroe, and A. V. Gorshkov, Phys. Rev. Lett. 122, 150601 (2019).

Suppression of Long Range for non-random case

All to All Coupling, no Disorder, Correlated vs Uncorrelated

$$
\mathrm{H}=-\gamma \Sigma|\mathrm{i}\rangle\langle\mathrm{j}| \quad \mathrm{H}=-\Sigma \gamma_{\mathrm{i}, \mathrm{j}}|\mathrm{i}\rangle\langle\mathrm{j}|
$$

The Shielding effect

- Let us consider a system:

$$
H=H_{0}+V, \quad \text { with } \quad\left[H_{0}, V\right]=0
$$

with V highly degenerate $V\left|v_{k}\right\rangle=v\left|v_{k}\right\rangle$

- $\left|\psi_{0}\right\rangle=\sum_{k=1}^{g} c_{k}\left|v_{k}\right\rangle$
- V contributes only with global phase

$$
|\psi(t)\rangle=e^{i H t}\left|\psi_{0}\right\rangle=e^{i v t} e^{i H_{0} t}\left|\psi_{0}\right\rangle
$$

We have shielding from $V!!. H_{0}$: emerging Hamiltonian.

- What if $\left[H_{0}, V\right] \neq 0$?
- What if spectrum of V is not degenerate? What is the connection with long range? Is this a cooperative effects? What is the emergent Hamiltonian?

Cooperative Shielding. Single excitation transport.

- 1d Anderson model with long range hopping:

$$
H=D+H_{\mathrm{NN}}+V_{\mathrm{LR}}=\sum_{i} \epsilon_{i}^{0}|i\rangle\langle i|-\Omega \sum_{\langle i, j\rangle}(|j\rangle\langle i|+|i\rangle\langle j|)-\gamma \sum_{i \neq j} \frac{|i\rangle\langle j|}{r_{\mathrm{i}, \mathrm{j}}^{\alpha}}
$$

- ϵ_{j}^{0} : are random energies $[-W / 2,+W / 2] ; r_{i, j}=|i-j|$; long range for $\alpha<1$. $\alpha=0$: all to all.
- $\Omega>0, \gamma>0$: the tunnelling transition amplitude.

G.L.C., R. Kaiser, and F. Borgonovi, PRB 94, 144206 (2016).

Spectrum and Energy Gap: Does shielding survive disorder?

$$
\begin{aligned}
& H=H_{N N}+V_{L R}+D \\
& H=-\Omega \sum_{i}(|i\rangle\langle i+1|+\text { h.c. })-\gamma \sum_{i \neq j}|i\rangle\langle j|+\sum_{i} \epsilon_{i}^{0}|i\rangle\langle i|
\end{aligned}
$$

Cooperative Shielding

Generalization to $\alpha>0$: Shielding and Localization

Cooperative Shielding in many-body.

Experimentally accessible 1d spin $1 / 2$ Hamiltonian:

$$
\begin{align*}
& H=H_{0}+V, \tag{1}\\
& H_{0}=B \sum_{n=1}^{L} \sigma_{n}^{z} \\
& V=\sum_{n<m} \frac{J}{|n-m|^{\alpha}} \sigma_{n}^{x} \sigma_{m}^{x} .
\end{align*}
$$

- $\alpha<1$: long range. $\alpha>1$: short range.

Spectrum of V

The case $\alpha=0$:

$$
V=J \sum_{n<m} \sigma_{n}^{x} \sigma_{m}^{x}=\frac{J M_{x}^{2}}{2}-\frac{J L}{2} \quad \text { where } \quad M_{x}=\sum_{n} \sigma_{n}^{x}
$$

$V_{b}=J(L / 2-b)^{2} / 2-J L / 2, \quad$ where $\quad b=0,1, \ldots L / 2$

Light-cones

Initial State:

$$
\left|\psi_{0}\right\rangle=|\uparrow, \uparrow, . ., \downarrow, . ., \uparrow, \uparrow\rangle_{x}
$$

a) $B=0.5, \alpha=3$ light-cone;
b) $B=0.5, \alpha=0$ localization without disorder;
c) $B=0.5, \alpha=0.5$

Invariant Subspaces

$$
\mathrm{H}=\mathrm{H}_{\mathrm{ext} \text { Field }}+\mathrm{V}
$$

External Field: $\sigma_{z}=\sigma_{x}^{+}+\sigma_{x}^{-}$

$$
\begin{aligned}
& B \hat{i}_{\downarrow}
\end{aligned}
$$

$P_{\text {leak }} \propto(W / J)^{2} / L$ for random field and no NN interaction

Experimental Verification

Observation of Domain Wall Confinement and Dynamics in a Quantum Simulator, Monroe Group, Maryland, USA. CONNECTION WITH QUARK CONFINAMENT.

Cooperative Shielding in many-body.

Experimentally accessible spin 1/2 Hamiltonian:

$$
\begin{align*}
& H=H_{0}+V, \tag{2}\\
& H_{0}=\sum_{n=1}^{L-1} J_{z} \sigma_{n}^{z} \sigma_{n+1}^{z}, \\
& V=\sum_{n<m} \frac{J}{|n-m|^{\alpha}} \sigma_{n}^{x} \sigma_{m}^{x} .
\end{align*}
$$

- $\alpha<1$: long range. $\alpha>1$: short range.

NN+ LONG RANGE

Shielding

Invariant Subspaces II

$$
\mathrm{H}=\mathrm{H}_{\mathrm{NN}}+\mathrm{V}
$$

$\mathrm{NN}: \sigma_{\mathrm{n}}^{\mathrm{z}} \sigma_{\mathrm{n}+1}^{\mathrm{z}}=\sigma_{\mathrm{n}}^{+} \sigma_{\mathrm{n}+1}^{-}+\sigma_{\mathrm{n}}^{-} \sigma_{\mathrm{n}+1}^{+}+\sigma_{\mathrm{n}}^{+} \sigma_{\mathrm{n}+1}^{+}+\sigma_{\mathrm{n}}^{-} \sigma_{\mathrm{n}+1}^{-}$
$P_{\text {leak }} \propto\left(J_{z} / J\right)^{2} / L$ for NN interaction only.

(Cooperative) Zeno Dynamics

- QZE: Observation freeze dynamics in invariant subspaces.

$$
\text { For } \alpha=0 H_{\text {eff }}=H_{Z}!
$$

Zeno Fidelity:

$$
\left.F(t)=\left|\langle\Psi(0)| e^{i H_{z} t} e^{-i H t}\right| \Psi(0)\right\rangle\left.\right|^{2}
$$

As K increases, eigensubspace of $H_{\text {meas }}$ becomes invariant.

- Zeno Hamiltonian: in our case: $H=H_{0}+V_{L R}, V_{L R} \leftarrow H_{\text {meas }}$.

$$
\begin{aligned}
H_{Z} & =\sum_{b}\left[P_{b} H_{0} P_{b}+V_{b} P_{b}\right]= \\
& =\operatorname{diag}\left(H_{0}\right)+\sum_{b} V_{b} P_{p}
\end{aligned}
$$

where P_{b} are the projectors on the eigensubspace of V corresponding to the eigenvalues V_{b}.

Fidelity decay slows down with $\mathrm{N}!$

Classical vs Quantum Shielding

Questions:

- Is it a classical or quantum effect?
- Is the energy gap essential?
- What if we rescale the long range term $\left(J / N^{1-\alpha}\right)$?
- Classical case...continuum spin of modulus one.

Conclusions and Perspectives

1. Cooperative Shielding and Correlation Induced localization
2. Mobility Edge in the Imaginary axis.
3. Cooperative shielding in Many Body Systems.

Cooperative Shielding: A Guiding principle in closed and open quantum systems with long range interactions

