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†
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The Rabi model is the Dicke Model for a single qubit. 
The Jaynes-Cummings model is the Rabi model under the RWA.
The Tavis-Cummings model is the Dicke under the RWA.

The Rotating Wave 
Approximation is called for 

weaker couplings.

The TC Hamiltonian 
commutes with the 

total number of 
excitations, hence it 

is integrable.

Rotating terms Counter-rotating terms RWA 0

M. Tavis and, F. W. Cummings, PR 170 (2), 379 (1968).
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Ĥ =

X

k�

"
x
kx̂

†
k�x̂k� +

X

k�

"
c
kĉ
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A. V. Kavokin, et al., Microcavities, Series on Semiconductor Science and Technology (Oxford University Press, 2017).
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J. J. Hopfield, Phys. Rev. 112, 
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Employing the pump it is possible to create a finite 
density of excitons that become a quantum gas.

The spectrum 
is similar to 
that of an 
hydrogen 

atom.

MICROCAVITY SEMICONDUCTORS
Bidimensional materials within a microcavity have become in a new route for the study of fundamental properties of 
light-matter interaction, as well as a novel platform to explore properties of quantum gases.



EXCITON-POLARITONS
Microcavity polaritons possess two main features:
• They are good bosons within an extended domain of temperature and 

density thanks to their small masses (of photonic origin).
• Thanks to the interactions between them, they can form quantum 

gases and exhibit condensation, superfluidity and superconductivity.

J. Carusotto and C. Ciuti, Rev. Mod. Phys. 85, 299 (2013).
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Ĥ =
X

k

"
x
kx̂

†
kx̂k +

X

k

"
c
kĉ
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Quantum gases made of exciton-polaritons 
have a correspondencia with those from 
atomic physics in the field of ultra-cold 
atoms in optical lattices. However, they 

constitute a highly out-of-equilibrium 
and strongly interacting effect resulting 
from the balance of optical excitations and 

losses.

Exciton-polariton BEC
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Cold atoms

Microcavity semiconductors

* Systems that attain equilibrium.

* The two-body interaction can be changed easily by 
means of changing the scattering length.

* The quasiparticle limits are well-defined.

* Out-of-equilibrium systems that can be 
approximated as stationary. 

* The two-body interaction cannot be 
changed easily (the resonances are given by 
the binding energy of the semiconductor).

* It is easy to change the light and matter 
content easily (via the detuning).

CORRESPONDENCIA

M. Koschorreck, et al., 
Nature 485, 619 (2012).

R.  P.  A.  Emmanuele,  et  al., 
Nat. Comm. 11, 3589 (2020).

Can we employ what we 
know in atomic physics 

to study solid state 
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POLARONS
The polaron is a quasiparticle. When an electron 
moves in a crystal produces a deformation in the 
crystalline network when it interacts with nearby 
atoms.

R. D. Mattuck, A Guide to Feynman Diagrams in the 
Many-Body Problem (Dover, New York, 1992)

L. D. Landau, Phys. Z. Sowjetunion 3, 644 (1933).



Repulsive polaron

Attractive polaron

The theory of the polaron has been applied before 
to atomic physics.

P. Massignan, et al., Rep. on Prog. in Phys. 2014, 77, 034401.
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atoms.
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GaAs

Pump

Let’s consider a GaAs quantum well 
with excitons of two spins. 
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Repeated Scattering

There is always a 
bound-state in 2D.

g�1 = Re⇧V (EB).

It results in strong interactions 
(Feshbach physics).
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Light couples to the two 
states resulting in three 

branches. 

BOSE-POLARON-POLARITON

Radiative 
decay

Biexciton

G#(k, ⌧) = �hT⌧{ ̂k(⌧) ̂
†
k(0)}i. Ac(!) = �2Im [Gcc(k = 0,!)] .

MABM, A. Camacho-Guardian, and G. M. Bruun, PRB 100, 195301 (2019).



M. Navadeh-Toupchi, et al., PRL 122, 047402 (2019).

“POLARITONIC FESHBACH RESONANCE”

Cross

Self

We obtain Feshbach physics due to the formation of a biexciton.

MABM, A. Camacho-Guardian, and G. M. Bruun, PRB 100, 195301 (2019).



POLARITONIC INTERACTIONS
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Polaritonic Feshbach resonances: 
due to the presence of biexcitons formed 
between polaritons with different spin 
inside a BEC or polaritons.

e

h

Strong polarizan interactions: 
mediated by a bidimensional gas of 
electrons and resulting from the 
presence of a trio resonance.
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and G. M. Bruun, PRB 100, 

195301 (2019). P
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By menas of a diagrammatic many-body theory to describe strong interacting effects between exciton-
polaritones, i.e., strong interactions between dressed photons.

Many-body bipolaritons: resulting 
from the exchange of sound waves in the 
polarity BEC thanks to the Feshbach 
resonance.
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Polaron-polariton BEC: the properties 
of a condensate of exciton-polaritons is 
modified by the presence of a 2D electron 
gas.
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CHAOS IN POLARITON FLUIDS
Recently, it has been pointed out that exciton-polariton systems have broad applications in the field of chaos.

Two species of exciton-polariton fluids with 
different spins can be employed to produce tunable 
(classical) chaotic dynamics.

The microcavity polaritons can be used to study 
quantum chaos, for example as a setup to 
create quantum soft billiards with tunable 
geometric and physical properties. 
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Although this is a quantum system, it opens many questions about 
non-hermitian billiards and how they are quantized.

To this end, we are exploring the behavior of classical soft billiards.
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Although this is a quantum system, it opens many questions about 
non-hermitian billiards and how they are quantized.

To this end, we are exploring the behavior of classical soft billiards.

See Adan González presentation:
Tuesday 25th 13:00 – 13: 20 

Caos en billares de paredes suaves



We employ a finite temperature quantum field theory Empleamosto investigate the strong interactions and 
Feshbach physics. 

We consider the problem of the exciton as that of a mobile impurity.
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