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I- The model of the three well
boson system
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The quantum Hamiltonian and their semi-classical limit

The model is a variation of the known bosonic Hubbard model with N
bosons (K. W. Wilsmann, L. H. Ymai, A. P. Tonel, J. Links, and A.
Foerster, Comm. Phys. 1 (2018).)

H =
U

N

(
N̂1 − N̂2 + N̂3

)2
︸ ︷︷ ︸
Interaction boson term

External field interaction term︷ ︸︸ ︷
+ε
(
N̂3 − N̂1

)

+
J√
2

(
a†1a2 + a†2a1

)
+

J√
2

(
a†2a3 + a†3a2

)
︸ ︷︷ ︸

Tunneling boson term

(1)

In the base {|N1,N2,N3〉} the matrix representation is diagonalizable,
obtaining the eigen-energies and their eigenvectors.
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The quantum Hamiltonian and their semi-classical limit

The classical limit is obtained taking N →∞ from the association

aj →
√
Nj exp(iφj), a†j →

√
Nj exp(−iφj) (2)

In the classical variables (Ni , φi ), we obtain the classical Hamiltonian

H =
U

N
(N1 − N2 + N3)2 + ε (N3 − N1)

+ J
(√

2N1N2 cos(φ2 − φ1) +
√

2N3N2 cos(φ2 − φ3)
)

+ L(N1 + N2 + N3 − N) (3)

The search for quantum phase transition in the parameter space
(U, J, ε) is realized from the properties of the classical minimal energy
configurations.
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The quantum Hamiltonian and their semi-classical limit

Classical minimal energy configurations satisfy the equilibrium
conditions

∂H
∂Ni

=
∂H
∂φi

= 0 (4)

Quantum phase transitions are associated in this model with
bifurcations of the classical minimal energy equilibrium points.

The minimal energy coordinates Ni (U, J, ε) behaves as a typical order
parameters.

We compare the classical minimal energy variable, with the respective
quantum ground state energy and quantum ground state mean value
〈N̂i 〉

Erick Ramon Castro Mora (CBPF Ph.D) Erick Castro February 07, 2021 6 / 21



II- The integrable cases
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The case U = 0

We have three possible stationary points in this case, considering
ε > 0 we have (For the quantum case we use N = 20)
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The case U = 0

The coordinates Ni the minimal energy point, and the quantum mean
value 〈Ni 〉 are (i = 1, 2, 3)
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The case J = 0

We have five possible stationary points in this case, considering ε > 0
we have (For the quantum case we use N = 60)
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Note as in U/ε = 1/4, we have explicitly a bifurcation.

In U/ε = 1/4 we have a second order phase transition with U = ε/4
the critical line.
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The case J = 0

The minimal energy coordinates Ni and the ground state quantum
mean values 〈Ni 〉 are
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In particular, always we have that N3 = 〈N̂3〉 = 0

As the states |N1,N2,N3〉 are the eigenstates of the system, the
values of 〈N̂i 〉 are non-negative integers.

In U/ε = 1/4 we have a discontinuity in the the derivative of Ni .
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The case ε = 0

In this case, we use N = 20. There are a symmetry between the wells
1 and 3.

We have 5 equilibrium points
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In U/J = −0.5, we have a second order phase transition.

We have for U/J < −0.5 two minimal energy points with the same
energy.

This is an expression of a doubly degenerated ground state for
U/J < −0.5.
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The case ε = 0

For the ground state, the system behaves effectively as a two well
system, where the wells 1 and 3 behaves as an unique well {13}.
The degeneration is caused by the two well symmetry 2↔ {13}
We only have coincidence with the semi classical limit considering a
tiny non-zero value of ε.
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The case ε = 0

With this tiny external field the well 1 and 3 still behaves as an
unique well {13}.
But the symmetry between the wells 1 and 3 is explicitly broken.
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Figure: ε = 0.005

This suggests that the system is extremely sensitive to the presence of
tiny external field ε in this regime.
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II- The non-integrable cases
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The non-integrable cases

In the general problem, the classical equilibrium points are associated
with the roots of a seventh degree polynomial.

Therefore, there are at most seven equilibrium points.

Figure: Here U < 0

In the left figure, the red and purple regions are different phases!
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The non-integrable cases

In particular, we can analyze the behavior close the integrable cases
(close of ε = 0).
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The non-integrable cases

Close of J = 0.
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The non-integrable cases

Close of U = 0.
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Perspectives

We characterize the stationary properties of the semi classical system,
finding legitimate quantum phase transitions points in the limit
N →∞.

The semi classical approximations explain very well many quantum
ground state properties.

We intend to study the classical and quantum dynamics using a
quantum chaos perspective.
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