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Outline

We show that multifractal states could exist in a region before the many-
body localization transition.

©

Multifractal states at the metal-insulator (Anderson) transition.

o Localization in interacting systems: Many-body localization (MBL).
o Self-averaging around the MBL transition.
°

Multifractality: From the 1D Fibonacci lattice to many-body systems.
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Metal-insulator (Anderson) transition

The Anderson model is written as

H =3 e li) (il + 3 T 1) (il
i (3)
g, are independent and uniform random numbers in (—

EE)
2 2

b

@ In 1D all states are exponentially localized for any disorder strength W.

@ In 2D and 3D there is transition from a phase with extended states to a phase with
localized states.

P. W. Anderson, Phys. Rev. 109, 1492 (1958).
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P. W. Anderson, Phys. Rev. 109, 1492 (1958).
Images from O. Schenk, M. Bollhdfer, R. A. Rémer, SIAM Rev. -50,.91 (2008):
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Many-body localization

Many-body localization (MBL)

The standard model to study MBL

L L
H=3" (SESEq +SUSY,y +SiSia) + 3 hieSE
k=1 k=1

SpvE = %aZ’y’Z are spin-1/2 operators.

hj are random numbers from an uniform distribution in (—h, h).
The Hamiltonian conserves total spin in z-direction, S* =37, S?.
We work in the sector with §% = 0 with dimension N = L!/(L/2)!%.
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Level spacing distribution
s = (Eat1 — Ea)/A

Poisson Wigner-Dyson

i i
Po(s)=e¢* PRE = oo (-757)

We quantify the degree of level repulsion with

n=

~ o, GOE.

5 O[P(s) — PGOE(s)]ds _JL Poisson.
Jo° [Pe(s) — PRE(s)]ds
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Many-body localization (MBL)

The standard model to study MBL
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Many-body localization

Multifractality at (around) the MBL phase

A single critical point or an extended phase where the eigenstates are multifractal?
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Finite size effects Finite times

We address self-averaging
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Self-averaging

Generalized inverse participation ratios

In §1qu)

In(IPR,)

In(IPR,))

In (IPR;) vs — Dy(qg—1)In N

O We average, (---), over states and
disorder realizations.
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@ Small ensembles lead to larger

fluctuations.

@ h <1, independence on number of
samples.

§ @ h > 1, fluctuations increase with system
1 " size.
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Lack of self-averaging?
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Self-averaging
Self-averaging
Operational definition

Ro =

<02> - (0)2 v v < 0, self-averaging.
AV S ,
(0)?

v > 0, lack of self-averaging.

Strong lack of self-averaging around h. =~ 3.75
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Multifractality

Generalized dimensions: 1D Fibonacci lattice

Fibonacci sequence

1 A->B H =Y cli)(il+Y Jili) (i +1]
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Could we use Dfbenacci for
many-body systems?

T. Fujiwara, M. Kohmoto, and T. Tokihiro, Phys. Rev. B 40, 7413 (1989).
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Multifractality

DFibonacci VS Dspin
q q
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Multifractality holds when Dy is a nonlinear function of g
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Summary

Summary

o Besides finite size effects, self-averaging is an important property to
consider in theoretical and experimental studies.

o Our results are in line with the existence of an intermediate phase
with multifractal states.

o D, for the disordered spin-1/2 agrees very well with Dgibma“i.

o We observed a strong correlation between multifractality and lack of
self-averaging.

Image by Yang-Zhi Chou and Matthew Foster/Rice University.
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