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Contenido

Metal-insulator (Anderson) transition
The Anderson model is written as

H =
∑∑∑
i

εi |i〉 〈i|+
∑∑∑
〈ij〉

J |i〉 〈j|

In 1D all states are exponentially localized for any disorder strength W .
In 2D and 3D there is transition from a phase with extended states to a phase with
localized states.

W = 12.0 Wc = 16.5 W = 21.0

Extended states Multifractal states Localized states

Generalized inverse participation ratios

IPRq =

N∑∑∑
n=1

|〈φn|ψα〉|2q ∝ N−Dq(q−1)

Dq = 1 0 < Dq < 1 Dq = 0

P. W. Anderson, Phys. Rev. 109, 1492 (1958).

Images from O. Schenk, M. Bollhöfer, R. A. Römer, SIAM Rev. 50, 91 (2008).
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Many-body localization

Many-body localization (MBL)
The standard model to study MBL

H =

L∑∑∑
k=1

(
SxkS

x
k+1 + SykS

y
k+1 + SzkS

z
k+1

)
+

L∑∑∑
k=1

hkS
z
k

Sx,y,zk = 1
2
σx,y,zk are spin-1/2 operators.

hk are random numbers from an uniform distribution in (−h, h).

The Hamiltonian conserves total spin in z-direction, Sz =
∑
k S

z
k .

We work in the sector with Sz = 0 with dimension N = L!/(L/2)!2.

Level spacing distribution

s = (Eα+1 − Eα)/∆

Poisson

PP(s) = e−s

Wigner-Dyson

PGOE
WD =

π

2
s exp

(
−
π

4
s2
)

We quantify the degree of level repulsion with

η =

∫ s0
0 [P (s)− PGOE

WD (s)]ds∫ s0
0 [PP(s)− PGOE

WD (s)]ds
=

{
1, Poisson.

0, GOE.
0 1 2 3 4 5

h
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Many-body localization

Multifractality at (around) the MBL phase

A single critical point or an extended phase where the eigenstates are multifractal?
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Self-averaging

Generalized inverse participation ratios
ln 〈IPRq〉 vs −Dq(q − 1) lnN
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Self-averaging

Self-averaging

Operational definition

RO =

〈
O2
〉
− 〈O〉2

〈O〉2
∝ N ν ,

{
ν < 0, self-averaging.

ν ≥ 0, lack of self-averaging.
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Multifractality

Generalized dimensions: 1D Fibonacci lattice
Fibonacci sequence

1 A → B
2 B → AB
3 AB
4 BAB
5 ABBAB
6 BABABBAB
7 ABBABBABABBAB

H =
∑
i

ε |i〉 〈i|+
∑
i

Ji |i〉 〈i+ 1|

JA JB JA JA JB JA JB JA JA JB JA JA JB

For the state with energy zero

DFibonacci
q =

1

3(q − 1)lnσ

{
qln[λ(h2)]− ln[λ(h2q)]

}
h = JB/JA

and

σ = (
√

5+1)/2, λ(h) =
1

2h

{
(h+ 1)2 +

[
(h+ 1)4 + 4h2

]1/2} 0 1 2 3 4 5 6 7 8 9 10
h

0
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1

D qFi
bo
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Could we use DFibonacci
q for

many-body systems?

T. Fujiwara, M. Kohmoto, and T. Tokihiro, Phys. Rev. B 40, 7413 (1989).
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Multifractality

DFibonacci
q vs Dspin
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Very good agreement close to hc ≈ 3.75
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Multifractality holds when Dq is a nonlinear function of q

E. J. Torres-Herrera Ergodicity and chaos in many-body systems Online, 2021 9



Summary

Summary

Besides finite size effects, self-averaging is an important property to
consider in theoretical and experimental studies.

Our results are in line with the existence of an intermediate phase
with multifractal states.

Dq for the disordered spin-1/2 agrees very well with DFibonacci
q .

We observed a strong correlation between multifractality and lack of
self-averaging.
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Image by Yang-Zhi Chou and Matthew Foster/Rice University.
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