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First disclaimer:

I This talk is about semiclassics like Gutzwiller’s!!

I Semiclassical methods use the properties of the classical
solutions to approximate quantum mechanical amplitudes

I They fully account for Hilbert-space kinematics, and

they remain valid beyond the breaking time

I They provide a precise way to relate quantum mechanical
phenomena with classical integrability/chaos

I They are applicable within a regime, the semiclassical regime,
where typical actions are larger compared with ~, but

semiclassical methods are asymptotic instead of
non-perturbative in ~
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The transition probability

Everything starts with
the action R[q(t)]

Feynman path integral

q

tin.

fin.

K (fin. ; in.) =
∫
D[q(t)]e

i
~R[q(t)]

P(q(f ), tf ; q(i), ti ) = |K (q(f ), tf ; q(i), ti )|2

Where are the classical paths?, can we use them?
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Crash course on semiclassics (a bit technical)

Start with an action R[q(t)] and the exact path integral

∫
D[q(t)]e

i
~R[q(t)]

i) Classical limit is defined by

δqR[q(t)] = 0 (Hamilton principle!)

ii) Remember the boundary conditions q(ti ) = q(i) , q(tf ) = q(f )

iii) Several solutions qclγ (t) := qclγ (t; q(i), q(f ), tf , ti ).

iv) Expand in zγ(t) = q(t)− qclγ (t) up to second order.

v) Integrate the quantum fluctuations zγ(t).

∫
D[q(t)]e

i
~R[q(t)] '∑

γ

√
Wγe

i
~Rγ+i π

4
µγ



Crash course on semiclassics (a bit technical)

Start with an action R[q(t)] and the exact path integral

∫
D[q(t)]e

i
~R[q(t)]

i) Classical limit is defined by

δqR[q(t)] = 0 (Hamilton principle!)

ii) Remember the boundary conditions q(ti ) = q(i) , q(tf ) = q(f )

iii) Several solutions qclγ (t) := qclγ (t; q(i), q(f ), tf , ti ).

iv) Expand in zγ(t) = q(t)− qclγ (t) up to second order.

v) Integrate the quantum fluctuations zγ(t).

∫
D[q(t)]e

i
~R[q(t)] '∑

γ

√
Wγe

i
~Rγ+i π

4
µγ



Crash course on semiclassics (a bit technical)

Start with an action R[q(t)] and the exact path integral

∫
D[q(t)]e

i
~R[q(t)]

i) Classical limit is defined by

δqR[q(t)] = 0 (Hamilton principle!)

ii) Remember the boundary conditions q(ti ) = q(i) , q(tf ) = q(f )

iii) Several solutions qclγ (t) := qclγ (t; q(i), q(f ), tf , ti ).

iv) Expand in zγ(t) = q(t)− qclγ (t) up to second order.

v) Integrate the quantum fluctuations zγ(t).

∫
D[q(t)]e

i
~R[q(t)] '∑

γ

√
Wγe

i
~Rγ+i π

4
µγ



Crash course on semiclassics (a bit technical)

Start with an action R[q(t)] and the exact path integral

∫
D[q(t)]e

i
~R[q(t)]

i) Classical limit is defined by

δqR[q(t)] = 0 (Hamilton principle!)

ii) Remember the boundary conditions q(ti ) = q(i) , q(tf ) = q(f )

iii) Several solutions qclγ (t) := qclγ (t; q(i), q(f ), tf , ti ).

iv) Expand in zγ(t) = q(t)− qclγ (t) up to second order.

v) Integrate the quantum fluctuations zγ(t).

∫
D[q(t)]e

i
~R[q(t)] '∑

γ

√
Wγe

i
~Rγ+i π

4
µγ



Crash course on semiclassics (a bit technical)

Start with an action R[q(t)] and the exact path integral

∫
D[q(t)]e

i
~R[q(t)]

i) Classical limit is defined by

δqR[q(t)] = 0 (Hamilton principle!)

ii) Remember the boundary conditions q(ti ) = q(i) , q(tf ) = q(f )

iii) Several solutions qclγ (t) := qclγ (t; q(i), q(f ), tf , ti ).

iv) Expand in zγ(t) = q(t)− qclγ (t) up to second order.

v) Integrate the quantum fluctuations zγ(t).

∫
D[q(t)]e

i
~R[q(t)] '∑

γ

√
Wγe

i
~Rγ+i π

4
µγ



Crash course on semiclassics (a bit technical)

Start with an action R[q(t)] and the exact path integral

∫
D[q(t)]e

i
~R[q(t)]

i) Classical limit is defined by

δqR[q(t)] = 0 (Hamilton principle!)

ii) Remember the boundary conditions q(ti ) = q(i) , q(tf ) = q(f )

iii) Several solutions qclγ (t) := qclγ (t; q(i), q(f ), tf , ti ).

iv) Expand in zγ(t) = q(t)− qclγ (t) up to second order.

v) Integrate the quantum fluctuations zγ(t).

∫
D[q(t)]e

i
~R[q(t)] '∑

γ

√
Wγe

i
~Rγ+i π

4
µγ



Crash course on semiclassics (a bit technical)

Start with an action R[q(t)] and the exact path integral

∫
D[q(t)]e

i
~R[q(t)]

i) Classical limit is defined by

δqR[q(t)] = 0 (Hamilton principle!)

ii) Remember the boundary conditions q(ti ) = q(i) , q(tf ) = q(f )

iii) Several solutions qclγ (t) := qclγ (t; q(i), q(f ), tf , ti ).

iv) Expand in zγ(t) = q(t)− qclγ (t) up to second order.

v) Integrate the quantum fluctuations zγ(t).

∫
D[q(t)]e

i
~R[q(t)] '∑

γ

√
Wγe

i
~Rγ+i π

4
µγ



Can we use semiclassical methods to describe/understand the
statistical properties of eigenfunctions in systems with chaotic

classical limit?

If we are talking about statistical properties
we need an ensemble!!



Can we use semiclassical methods to describe/understand the
statistical properties of eigenfunctions in systems with chaotic

classical limit?

If we are talking about statistical properties
we need an ensemble!!



Regular and irregular wavefunctions

A quantum system is a generator of energies and

states

Regular

Irregular, Quasi-Random



Regular and irregular wavefunctions

A quantum system is a generator of energies and

states

Regular

Irregular, Quasi-Random



Regular and irregular wavefunctions

A quantum system is a generator of energies and

states

Regular

Irregular, Quasi-Random



Defining ensembles of states

Quantum systems that generate ensembles of states

(Ĥ0 + V̂ )|ψE (V )〉 = E |ψE (V )〉

I Fix E and change V (→ disorder average, different systems)

I Fix V and change E (→ energy average, same system)

OR...

I Performing a measurement (preparation postulate)
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Irregular eigenstates as gaussian random fields

The far-reaching observation:
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r =ReΨ/
√
〈|Ψ|2〉
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e−r2π−1/2 P (r)

Random Wave Model
Berry, 1977

Universal Gaussian fluctuations, microscopic covariance

P[ψ(~r)] = Z−1e − 1
2

∫
d~rd~r ′ψ∗(~r)R−1(~r ,~r ′)ψ(~r ′)

R(~r , ~r ′) = ψ∗(~r)ψ(~r ′)

some ancient history JDU and friends JPA02, PRE04, PRL04, EJP07, PRL08, PRB08,...
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Morphology of eigenfunctions: a complicated observable

Universal spatial correlations of critical points
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Intermezzo

The power of the RWM comes from combining universal Gaussian
statistics (due to classical chaos) with system-dependent

covariance matrix

This is a general recipe to construct a RWM!

I Define a classical limit

I Identify chaotic regime

I Eigenstates as realizations of a Gaussian random field

I Gaussian fixed by its covarianve matrix

I Covariance matrix from microscopic two-point correlation

I The semiclassical two-point correlation may also be universal!

Let’s go Many-Body!!
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Going Many-Body

Second disclaimer (a quantum-chaologist in many-body land)

Many-Body Quantum Chaos for systems with mean field
→ unanbiguous definition of quantum chaos

I Many-Body semiclassics now a well stablished

I Interfering MF’s in Fock space

I Berry-Tabor and Gutzwiller trace formulae

I Fermions

I Coherent enhancement over Truncated Wigner

I Saturation and un-scrambling around criticallity

I eλt/N as quantum-classical parameter
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A Random Wave Model in bosonic Fock space

Let us try to follow the recipe in Fock space!

Ĥ =
∑

ij

hij b̂
†
i b̂j +

∑

ijkl

vijkl b̂
†
i b̂
†
j b̂k b̂l

I Classical limit: the (usual, eh Luis?) mean field N →∞
I Chaotic regime: hopping (h) ' interactions (v)
I Eigenstates as realizations of a random field

|ψ(RWM)
E 〉 =

∑

n

c
(n)
E |n〉 with {c(n)E }n∈F random

I Fix the ensemble by its covarianve matrix

R(m,n, Ẽ ) =
∑

E

W (E − Ẽ )〈m|ψE 〉〈ψE |n〉

I What is the semiclassical limit of R(m,n, Ẽ )??

Let’s start from the begining...
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W (E − Ẽ )〈m|ψE 〉〈ψE |n〉

I What is the semiclassical limit of R(m,n, Ẽ )??
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Ĥ =
∑

ij

hij b̂
†
i b̂j +

∑

ijkl

vijkl b̂
†
i b̂
†
j b̂k b̂l

I Classical limit: the (usual, eh Luis?) mean field N →∞
I Chaotic regime: hopping (h) ' interactions (v)
I Eigenstates as realizations of a random field

|ψ(RWM)
E 〉 =

∑

n

c
(n)
E |n〉 with {c(n)E }n∈F random

I Fix the ensemble by its covarianve matrix

R(m,n, Ẽ ) =
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Checking gaussian fluctuations for real

Do the expansion coefficients look as a multivariate Gaussian?
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The two-point correlation

Enter semiclassics: Two-point correlators in Fock space

R(m− n,m + n, Ẽ )
=∫ 2π

0 dθ1 . . . dθLδ
[
Ẽ − H(b̂i →

√
mie

iθi )
]

e2in·θ

Quantum eigenstates of many-body chaotic systems
ARE NOT

uncorrelated random vectors!!!
RWM is not RMT!!
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The two point correlation

Let’s crank some serious numbers
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we have a powerful statistical theory of many-body eigenfunctions
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I am here to ask you guys to give me...
nice observables to calculate!!!

Please do not say ”expectation values”... we have ETH for that!
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