Universal correlations in many-body systems:
the Random Wave Model in Fock space
An ongoing project by

Juan-Diego Urbina, Remy Dubertrand and Klaus Richter
(Regensburg-Northumbria-Regensburg)

MB systems Mexico 2021



First disclaimer:

» This talk is about semiclassics like Gutzwiller’s!!



First disclaimer:

» This talk is about semiclassics like Gutzwiller’s!!

» Semiclassical methods use the properties of the classical
solutions to approximate quantum mechanical amplitudes



First disclaimer:

» This talk is about semiclassics like Gutzwiller’s!!

» Semiclassical methods use the properties of the classical
solutions to approximate quantum mechanical amplitudes

» They fully account for Hilbert-space kinematics, and



First disclaimer:

» This talk is about semiclassics like Gutzwiller’s!!

» Semiclassical methods use the properties of the classical
solutions to approximate quantum mechanical amplitudes

» They fully account for Hilbert-space kinematics, and

they remain valid beyond the breaking time



First disclaimer:

This talk is about semiclassics like Gutzwiller's!!

Semiclassical methods use the properties of the classical
solutions to approximate quantum mechanical amplitudes

They fully account for Hilbert-space kinematics, and
they remain valid beyond the breaking time

They provide a precise way to relate quantum mechanical
phenomena with classical integrability /chaos



First disclaimer:

This talk is about semiclassics like Gutzwiller's!!

Semiclassical methods use the properties of the classical
solutions to approximate quantum mechanical amplitudes

They fully account for Hilbert-space kinematics, and
they remain valid beyond the breaking time

They provide a precise way to relate quantum mechanical
phenomena with classical integrability /chaos

They are applicable within a regime, the semiclassical regime,
where typical actions are larger compared with A, but



First disclaimer:

This talk is about semiclassics like Gutzwiller's!!

Semiclassical methods use the properties of the classical
solutions to approximate quantum mechanical amplitudes

They fully account for Hilbert-space kinematics, and
they remain valid beyond the breaking time

They provide a precise way to relate quantum mechanical
phenomena with classical integrability /chaos

They are applicable within a regime, the semiclassical regime,
where typical actions are larger compared with A, but

semiclassical methods are asymptotic instead of
non-perturbative in A
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quantum(S)
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quantum(N)
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classical()+corrections(1/N)

Interference is missing
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Non-perturbative!
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The transition probability
Feynman path integral

q
fin.

Everything starts with ,
the action R[g(t)] K(fin. ; in.) = [ D[q(t)]erRla(®)]

P, te; gD ;) = |K(q\D), tr; g1, 1)|2

Where are the classical paths?, can we use them?
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> 1930's
» Starts from WKB
» Only short times

John H. van Vleck

> 1970's

» Starts from Feynman

» Short and large times 1

Martin Gutzwiller
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Crash course on semiclassics (a bit technical)

Start with an action R[q(t)] and the exact path integral

[ Dlq(t ]eh Rla(1)]

i) Classical limit is defined by
dqR[q(t)] = 0 (Hamilton principle!)

ii) Remember the boundary conditions g(t;) = q') , q(tr) = q(f)

)
iii) Several solutions qul(t) = qi;l(t; gD, gt t).
iv) Expand in z,(t) = q(t) — q%l(t) up to second order.
)

v) Integrate the quantum fluctuations z,(t).

J Dlg(t)]erRla®] ~ \/7ehR7+’4M
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If we are talking about statistical properties
we need an ensemble!!
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Universal Fluctuations
Classical limit with complex dynamics

Universality of spatial correlations

F[(F)] = Classical Background + Quantum Fluctuations
1  h(k(E)d)
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Irregular eigenstates as gaussian random fields

The far-reaching observation:

*T *1/2 clP

r _Reqf/./ TGl

Random Wave Model
Berry, 1977

Universal Gaussian fluctuations, microscopic covariance
Plw(r)] = 2 le —3 [ dFdPy* (ARTI(FF )W (F)
R(EF) = FF)

some ancient history JDU and friends JPA02. PREO0O4 PRLO4. EJPO7. PRLO8 PRBOS. ...
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Universal spatial correlations of critical points

g(R) = pen(Apcn(F+ R)

Experiment: Stockmann group, Marburg

Theory: JDU and M. Dennis
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This is a general recipe to construct a RWM!

Define a classical limit

Identify chaotic regime

Eigenstates as realizations of a Gaussian random field
Gaussian fixed by its covarianve matrix

Covariance matrix from microscopic two-point correlation

The semiclassical two-point correlation may also be universal!
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Second disclaimer (a quantum-chaologist in many-body land)
Many-Body Quantum Chaos for systems with mean field
— unanbiguous definition of quantum chaos

Many-Body semiclassics now a well stablished
Interfering MF's in Fock space

Berry-Tabor and Gutzwiller trace formulae
Fermions

Coherent enhancement over Truncated Wigner

Saturation and un-scrambling around criticallity

vVvVvvyVvYVvyyypy

e /N as quantum-classical parameter
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A Random Wave Model in bosonic Fock space

Let us try to follow the recipe in Fock space!

A= hblbj + > viub! bl by by
ij ijkl

v

Classical limit: the (usual, eh Luis?) mean field N — oo
Chaotic regime: hopping (h) =~ interactions (v)
> Eigenstates as realizations of a random field

\wERWM Zc(") with {c,(:-")}ne]: random

v

> Fix the ensemble by its covarianve matrix

R(m,n, E) = W(E — E){m[vg)(veln)
E

» What is the semiclassical limit of R(m,n, £)??
Let's start from the begining...
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The dirt old Gaussian we all know and love....
NOT ENOUGH!
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Checking gaussian fluctuations for real

Do the expansion coefficients look as a multivariate Gaussian?

(o1 R) = (o) ([ 12) + 20 (i) 2 722

Checking the Gaussian character for the off diagonal correlators Checking the Gaussian character for the off diagonal correlators
Bose Hubbard N=25, L=5. Average aver 100 samples.

Bose Hubbard N=25, L=5. Full: 100 samples. Dashed: 200 samples.

0.08

0.0

(rescaled) Correlators
g
i

RGN RN 3
: 8] w2
Fock space m Fock space m

The dirt old Gaussian we all know and love....
but in all directions!!
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Enter semiclassics: Two-point correlators in Fock space
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The two point correlation

Let's crank some serious numbers

Fock basis state n

o

Fock basis state m
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Fock basis state n

This is where we are:

Fock basis state m

0.5

0.4

0.3

Fock basis state n

Fock basis state m



This is where we are:
we have a powerful statistical theory of many-body eigenfunctions
in chaotic systems
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we have a powerful statistical theory of many-body eigenfunctions
in chaotic systems
it provides universal results beyond Random Matrix Theory
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in chaotic systems
it provides universal results beyond Random Matrix Theory
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we have a powerful statistical theory of many-body eigenfunctions
in chaotic systems
it provides universal results beyond Random Matrix Theory
(but still compatible with ETH)
I am here to ask you guys to give me...

0.5 0.5
0.4 0.4
< 0.3 < 0.3
[} Q
© ©
k7 0.2 k7] 0.2
@2 2
& @
8 0.1 8 0.1
x 4
[5] (53
& 0 b 0
-01 -0.1
0.2 0.2

Fock basis state m Fock basis state m



This is where we are:
we have a powerful statistical theory of many-body eigenfunctions
in chaotic systems
it provides universal results beyond Random Matrix Theory
(but still compatible with ETH)
I am here to ask you guys to give me...
nice observables to calculate!!!
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This is where we are:
we have a powerful statistical theory of many-body eigenfunctions
in chaotic systems
it provides universal results beyond Random Matrix Theory
(but still compatible with ETH)
I am here to ask you guys to give me...
nice observables to calculate!!!
Please do not say "expectation values”... we have ETH for that!
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