Modelos geométricos de segundo orden en la cosmología de universos de tipo membrana

J. Efraín Rojas

Facultad de Física Universidad Veracruzana

XI Escuela de Física Fundamental, Universidad Veracruzana, 27/09/2016

Universidad Veracruzana

1 Teorías de Segundo Orden. Superficies

- 2 Objetos Extendidos \approx Membranas
- Gravedad Tipo Lovelock para membranas
- Gravitación Tipo Brana Geodésica (Modificada)

5 Conclusiones

Introd	${\sf OE} pprox {\sf Branas}$	OE Lovelock	GGB-M	Conclusiones
Teorías de alt	o orden en las deriv	adas		

Evolución de un sistema físico

$$S[q] = \int_{A}^{B} dt \, L(q, \dot{q})$$

 $L = L(q, \dot{q})$: función lagrangiana

Principio de mínima acción: $\delta S = 0 \implies$ ecuaciones de movimiento

Lagrangianos de primer orden, $L = L(q, \dot{q})$

$$\frac{\partial L}{\partial q} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) = 0 \qquad 2^{\circ} \text{ orden}$$

Introd	${\sf OE} pprox {\sf Branas}$	OE Lovelock	GGB-M	Conclusiones
Teorías de al	to orden en las deriv	vadas		

Evolución de un sistema físico

$$S[q] = \int_{A}^{B} dt \, L(q, \dot{q})$$

 $L = L(q, \dot{q})$: función lagrangiana

Principio de mínima acción: $\delta S = 0 \implies$ ecuaciones de movimiento

Lagrangianos de primer orden, $L = L(q, \dot{q})$

$$\frac{\partial L}{\partial q} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) = 0 \qquad 2^{\circ} \text{ orden}$$

Lagrangianos de segundo orden, $L = L(q, \dot{q}, \ddot{q})$

$$\frac{\partial L}{\partial q} - \frac{d}{dt} \left[\frac{\partial L}{\partial \dot{q}} - \frac{d}{dt} \left(\frac{\partial L}{\partial \ddot{q}} \right) \right] = 0 \qquad 4^{\circ} \text{ orden}$$

Renuencia a teorías de alto orden

Teorías no-físicas ... pero surgen (son necesarias) en muchos contextos!

Renuencia a teorías de alto orden

Teorías no-físicas ... pero surgen (son necesarias) en muchos contextos!

Desventajas

- EdM de alto orden en las derivadas
- Propagación de grados de libertad extra
- Inestabilidad en los valores de la energía
- Aparición de "ghosts" a nivel cuántico
- Problemas de unitariedad

Beneficios

- Correciones a ciertas teorías establecidas
- Modelación de efectos observados en la naturaleza
- Gran contenido geométrico
- Aparecen en:
 - Biofísica: Membranas lipídicas.
 Polímeros semiflexibles
 - Teoría de la elasticidad
 - Econofísica. Optimización
 - T de Norma. Electrodinámica. QCD
 - Gravitación. Cosmología

Introd	OE pprox Branas	OE Lovelock	GGB-M	Conclusiones
Suparficias				

Superficie: generalización de un plano, la cual no es necesariamente plana, tal que su curvatura no es necesariamente cero.

Superficies en física teórica

Superficies se utilizan para aproximar sistemas físicos en todas las escalas

- Teoría de cuerdas
- Física nuclear
- Biofísica
- Materia condensada
- Gravitación
- Cosmología

Importancia

Los grados de libertad relevantes estan asociados con la configuración geométrica de la superficie misma

Introd	$OE \approx Branas$	OE Lovelock	GGB-M	Conclusiones
Segundo orden	(contexto euclidiano)			
Biofísica				

Membranas lipídicas. Membranas ambifílicas

Helfrich, Canham, Zhong-Can, Bowick, Deserno, Capovilla, Guven, Rojas

Introd	${\sf OE} pprox {\sf Branas}$	OE Lovelock	GGB-M	Conclusiones
Segundo orden	(contexto euclidiano)			

Membranas lipídicas. Membranas ambifílicas

Helfrich, Canham, Zhong-Can, Bowick, Deserno, Capovilla, Guven, Rojas

Membranas biofísicas

Doblamiento de membranas

Introd	${\sf OE} pprox {\sf Branas}$	OE Lovelock	GGB-M	Conclusiones
Segundo orden (contexto euclidiano)				

Membranas lipídicas. Membranas ambifílicas

Helfrich, Canham, Zhong-Can, Bowick, Deserno, Capovilla, Guven, Rojas

Membranas biofísicas

- Doblamiento de membranas
- Moléculas fosfolípidas

Introd	$OE \approx Branas$	OE Lovelock	GGB-M	Conclusiones
Segundo orden (contexto euclidiano)				

Membranas lipídicas. Membranas ambifílicas

Helfrich, Canham, Zhong-Can, Bowick, Deserno, Capovilla, Guven, Rojas

Membranas biofísicas

- Doblamiento de membranas
- Moléculas fosfolípidas
- Membranas biofísicas

Membranas lipídicas. Membranas ambifílicas

Helfrich, Canham, Zhong-Can, Bowick, Deserno, Capovilla, Guven, Rojas

Membranas biofísicas

- Doblamiento de membranas
- Moléculas fosfolípidas
- Membranas biofísicas
- Vesículas a escalas mesoscópicas

ntrod	${\sf OE} pprox {\sf Branas}$	OE Lovelock	GGB-M	Conclusione
Películ	as de jabón (superfic	cies mínimas)		
	$S[X^{\mu}] = \sigma$	$\int d^2 u \sqrt{g} \qquad \Longrightarrow \qquad$	$\nabla^2 X^\mu = 0$	
_		a 1		

 $\sigma \ \ {\rm tensión \ superficial}, \quad g = {\rm det}(g_{ab}), \quad \nabla^2 = g^{ab} \nabla_a \nabla_b \ {\rm operador \ laplaciano}$

Introd	${\sf OE} pprox {\sf Branas}$	OE Lovelock	GGB-M	Conclusione
Pelícu	ulas de jabón (superfic	ies mínimas)		
	$S[X^{\mu}] = \sigma$	$\int d^2 u \sqrt{g} \qquad \Longrightarrow \qquad$	$\nabla^2 X^\mu = 0$	

 $\sigma \ \ {\rm tensión \ superficial}, \quad g = {\rm det}(g_{ab}), \quad \nabla^2 = g^{ab} \nabla_a \nabla_b \ {\rm operador \ laplaciano}$

Vesículas. Energía libre de Helfrich-Canham

$$S[X] = \frac{\kappa}{2} \int d^2 u \sqrt{g} K^2 + \beta \int d^2 u \sqrt{g} K + \sigma \int d^2 u \sqrt{g} - \frac{P}{3} \int d^2 u \sqrt{g} \vec{n} \cdot \vec{X}$$

Introd	${\sf OE} pprox {\sf Branas}$	OE Lov	elock	GGB-M	Conclusione
Pelíc	ulas de jabón (su	perficies mínima	s)		
	$S[X^{\mu}]$	$= \sigma \int d^2 u \sqrt{g}$	\Rightarrow	$\nabla^2 X^\mu = 0$	
σ ten	sión superficial,	$g = \det(g_{ab}), \nabla$	$^{2} = g^{ab} \nabla_{a}$	$ abla_b$ operador lap	laciano
	the state of the second second				12.13

Ecuación de forma. Configuraciones de equilibrio

$$\kappa \left[-\nabla^2 K - \frac{K}{2} \left(K^2 - 2\mathcal{R} \right) \right] + \beta \mathcal{R} + \sigma K - P = 0, \qquad \qquad K = \vec{n} \cdot \nabla^2 \vec{X}$$

Introd	OE pprox Branas	OE Lovelock	GGB-M	Conclusiones
Segundo orden (contexto relativista)				

Relatividad General

Análisis variacional. Primeros instantes. Aceleración tardía.

Relatividad General

Análisis variacional. Primeros instantes. Aceleración tardía.

Gravitación pura

 Relatividad General. Agujeros negros

source: Smithsonian Magazine, April, 2008

Relatividad General

Análisis variacional. Primeros instantes. Aceleración tardía.

Gravitación pura

- Relatividad General. Agujeros negros
- Primeros instantes del Universo

Relatividad General

Análisis variacional. Primeros instantes. Aceleración tardía.

Gravitación pura

- Relatividad General. Agujeros negros
- Primeros instantes del Universo
- Aceleración actual del Universo

Relatividad General

Análisis variacional. Primeros instantes. Aceleración tardía.

Gravitación pura

- Relatividad General. Agujeros negros
- Primeros instantes del Universo
- Aceleración actual del Universo
- Materia oscura. Energía oscura

Relatividad General pura

$$S[g_{\mu\nu}] = \frac{1}{2\kappa} \int d^4x \sqrt{-g}R + S_{\text{mat}} \quad \Longrightarrow \quad G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2}R g_{\mu\nu} = \kappa T_{\mu\nu}$$

•
$$R = g^{\mu\nu}R_{\mu\nu} = g^{\mu\nu}g^{\alpha\beta}R_{\mu\alpha\nu\beta}$$
 escalar de curvatura
• $R_{\mu\alpha\nu\beta} = \frac{1}{2} \left(\partial_{\mu}\partial_{\nu}g_{\alpha\beta} + \partial_{\alpha}\partial_{\beta}g_{\mu\nu} - \partial_{\mu}\partial_{\beta}g_{\alpha\nu} - \partial_{\alpha}\partial_{\nu}g_{\mu\beta}\right)$ tensor de Riemann
• $T_{\mu\nu} = -\frac{1}{\kappa}\frac{\delta S_{\text{mat}}}{\delta g^{\mu\nu}}$ tensor de energía-momento

10 ecuaciones de movimiento en g_{μν}; EDP no lineales.

Ampliamente estudiada en:

- Cosmología: clásica y cuántica
- Modelamiento de estrellas
- Teoría de agujeros negros
- Relatividad numérica
- Soluciones exactas a las ecuaciones de Einstein

Teorías modificadas. Teorías f(R)

$$S[g_{\mu\nu}] = \frac{1}{2\kappa} \int d^4x \sqrt{-g} f(R) + S_{\text{mat}}$$
$$f(R) = \dots + \frac{\alpha_2}{R^2} + \frac{\alpha_1}{R} - 2\Lambda + \frac{R}{\beta_1} + \frac{R^2}{\beta^2} + \dots$$

Ecuaciones de movimiento

$$f'(R)R_{\mu\nu} - \frac{1}{2}f(R)g_{\mu\nu} - \nabla_{\mu}\nabla_{\nu}f'(R) - g_{\mu\nu}\Box f'(R) = \kappa T_{\mu\nu}$$

Tratan de explicar fenómenos:

- Cosmología: clásica y cuántica
- Alternativas para cuantizar la gravedad, R^2
- Expansión acelerada del Universo, R^{-1} , $\ln R$
- Teorías escalares-tensoriales, RG + BD
- Materia oscura. Energía oscura.
- Teorías altamente complejas!

Universos de tipo membrana

Universo 3-dimensional visible esta sobre una membrana 4-dimensional flotando en un espacio con más dimensiones

(V. Rubakov, A. Vilenkin, N. Arkani-Hamed, Lisa Randall, R Sundrum, G Gabadadze, G Dvali, M Porrati)

Universos de tipo membrana

Universo 3-dimensional visible esta sobre una membrana 4-dimensional flotando en un espacio con más dimensiones

(V. Rubakov, A. Vilenkin, N. Arkani-Hamed, Lisa Randall, R Sundrum, G Gabadadze, G Dvali, M Porrati)

Cosmología de tipo membrana

● Universo ≈ membrana flotando en un espacio de fondo con más dimensiones

Universos de tipo membrana

Universo 3-dimensional visible esta sobre una membrana 4-dimensional flotando en un espacio con más dimensiones

(V. Rubakov, A. Vilenkin, N. Arkani-Hamed, Lisa Randall, R Sundrum, G Gabadadze, G Dvali, M Porrati)

- Universo ≈ membrana flotando en un espacio de fondo con más dimensiones
- Universo ≈ membrana flotando en un espacio de fondo con más dimensiones

Universos de tipo membrana

Universo 3-dimensional visible esta sobre una membrana 4-dimensional flotando en un espacio con más dimensiones

(V. Rubakov, A. Vilenkin, N. Arkani-Hamed, Lisa Randall, R Sundrum, G Gabadadze, G Dvali, M Porrati)

- Universo ≈ membrana flotando en un espacio de fondo con más dimensiones
- Universo ≈ membrana flotando en un espacio de fondo con más dimensiones
- Multiversos

Universos de tipo membrana

Universo 3-dimensional visible esta sobre una membrana 4-dimensional flotando en un espacio con más dimensiones

(V. Rubakov, A. Vilenkin, N. Arkani-Hamed, Lisa Randall, R Sundrum, G Gabadadze, G Dvali, M Porrati)

- Universo ≈ membrana flotando en un espacio de fondo con más dimensiones
- Universo ≈ membrana flotando en un espacio de fondo con más dimensiones
- Multiversos
- Origen del Universo. Aceleración tardía del Universos. Materia oscura. Energía oscura.

Universos de tipo membrana

Universo 3-dimensional visible esta sobre una membrana 4-dimensional flotando en un espacio con más dimensiones

(V. Rubakov, A. Vilenkin, N. Arkani-Hamed, Lisa Randall, R Sundrum, G Gabadadze, G Dvali, M Porrati)

- Universo ≈ membrana flotando en un espacio de fondo con más dimensiones
- Universo ≈ membrana flotando en un espacio de fondo con más dimensiones
- Multiversos
- Origen del Universo. Aceleración tardía del Universos. Materia oscura. Energía oscura.
- Teorías geométricas de branas. Galileones Horndeski.

The action	$3\pi \Box \pi - \frac{1}{\Lambda^3} (\partial_\mu \pi \partial^\mu \pi) \Box \pi - \frac{2}{M_P} \pi T$
Is obtained ta	aking the \ast decoupling limit \ast ($M_P \rightarrow \infty$
_	$\begin{array}{llllllllllllllllllllllllllllllllllll$
/ It can be	obtained from the (5D) « Hamiltonian » constraint
Where or To obtain	$\begin{split} R &= K^2 - K_{\mu\nu}^2 \\ \text{esubstitutes the israel junction condition} \\ K &= \frac{1}{6M_{(0)}^3} \left(T + M_P^2 R\right) \\ \frac{3}{r_c}K - K^2 + K_{\mu\nu}^2 &= \frac{T}{M_P^2} \end{split}$
A last sub	stitution $K_{\mu\nu} = \frac{r_c}{M_P} \partial_{\mu} \partial_{\nu} \pi$
Yields th	e e.o.m. for π deduced from above action :
	$\Box \pi - \frac{1}{3\Lambda^3} \left[(\Box \pi)^2 - \pi_{;\mu\nu} \pi^{;\mu\nu} \right] = \frac{T}{3M_P} $
Ø	second order e.o.m. The first « Galileon » (\Rightarrow No « Boulware-Deser » ghost, c.p., Rombouts, 2005)

Teoría unificada de branas

- GR: Teoría de la Relatividad General
- D: Modelo extensible de Dirac para el electrón
- RS: Teoría de Randall-Sundrum
- CH DGP: Teorías de Collins-Holdoms, Dvali-Gabadadze-Porrati
- DG: Teoría de Davidson-Gurwich
- RT: Teoría de Regge-Teitelboim

N-dimensional spacetime background

Brane

String

Particle

×1

Introd	OE pprox Branas	OE Lovelock	GGB-M	Conclusiones
Acción efe	ectiva			

La acción efectiva más general para estudiar la dinámica de un OE

$$S[X] = \int_m d^{p+1}x \sqrt{-g} L(g_{ab}, K_{ab})$$

B. Carter, A. Vilenkin, R. Capovilla, J. Guven

Formas fundamentales (métrica y curvatura extrínseca sobre m)

$$g_{ab} := e_a \cdot e_b$$

$$K_{ab} := -n \cdot \nabla_a \nabla_b X$$

- X funciones de inmersión
- w volumen de mundo

Importante

- Acción geométrica de segundo orden en X
- Simetría: Invariancia bajo reparametrizaciones de la trayectoria

Introd	${\sf OE} pprox {\sf Branas}$	OE Lovelock	GGB-M	Conclusiones
Acción efectiv	/a			

La acción efectiva más general para estudiar la dinámica de un OE

$$S[X] = \int_m d^{p+1}x \sqrt{-g} \left\{ \mu + \alpha K^2 + \beta \left(K^2 - K_{ab} K^{ab} \right) + \cdots \right\}$$

Barrabes, Boisseau, Sakellarious, B. Carter, R. Gregory, P. Letelier, A. Larsen

Formas fundamentales (métrica y curvatura extrínseca sobre m)

$$g_{ab} := e_a \cdot e_b$$

$$K_{ab} := -n \cdot \nabla_a \nabla_b X$$

- X funciones de inmersión
- w volumen de mundo

Importante

- Acción geométrica de segundo orden en X
- Simetría: Invariancia bajo reparametrizaciones de la trayectoria

Introd	${\sf OE} pprox {\sf Branas}$	OE Lovelock	GGB-M	Conclusiones
Gravedad de tip	oo Lovelock para bran	as		

$$S[X] = \int_{m} d^{p+1}x \sqrt{-g} \sum_{n=0}^{t} \alpha_{n} L_{n}(g_{ab}, K_{ab})$$
$$L_{n}(g_{ab}, K_{ab}) = \delta^{a_{1}a_{2}a_{3}\cdots a_{n}}_{b_{1}b_{2}b_{3}\cdots b_{n}} K^{b_{1}}a_{1}K^{b_{2}}a_{2}\cdots K^{b_{n}}a_{n}$$
$$a, b = 0, 1, \dots, p$$

R Reilly (1973), C de Rham, Tolley, Deffayet, M Trodden, Cruz, Rojas (2012)

Gravedad de tipo Lovelock para branas

$$S[X] = \int_{m} d^{p+1}x \sqrt{-g} \sum_{n=0}^{t} \alpha_{n} L_{n}(g_{ab}, K_{ab})$$
$$L_{n}(g_{ab}, K_{ab}) = \delta^{a_{1}a_{2}a_{3}\cdots a_{n}}_{b_{1}b_{2}b_{3}\cdots b_{n}} K^{b_{1}}a_{1}K^{b_{2}}a_{2}\cdots K^{b_{n}}a_{n}$$
$$a, b = 0, 1, \dots, p$$

$$S[X] = \int_{m} d^{p+1}x \sqrt{-g} \sum_{n=0}^{t} \alpha_{n} L_{n}(g_{ab}, K_{ab})$$
$$L_{n}(g_{ab}, K_{ab}) = \delta^{a_{1}a_{2}a_{3}\cdots a_{n}}_{b_{1}b_{2}b_{3}\cdots b_{n}} K^{b_{1}}a_{1}K^{b_{2}}a_{2}\cdots K^{b_{n}}a_{n}$$
$$a, b = 0, 1, \dots, p$$

$$S[X] = \int_{m} d^{p+1}x \sqrt{-g} \sum_{n=0}^{t} \alpha_{n} L_{n}(g_{ab}, K_{ab})$$
$$L_{n}(g_{ab}, K_{ab}) = \delta^{a_{1}a_{2}a_{3}\cdots a_{n}}_{b_{1}b_{2}b_{3}\cdots b_{n}} K^{b_{1}}{}_{a_{1}}K^{b_{2}}{}_{a_{2}}\cdots K^{b_{n}}{}_{a_{n}}{}_{a, b = 0, 1, \dots, p}$$

$$S[X] = \int_{m} d^{p+1}x \sqrt{-g} \sum_{n=0}^{t} \alpha_{n}L_{n}(g_{ab}, K_{ab})$$
$$L_{n}(g_{ab}, K_{ab}) = \delta^{a_{1}a_{2}a_{3}\cdots a_{n}}_{b_{1}b_{2}b_{3}\cdots b_{n}} K^{b_{1}}a_{1}K^{b_{2}}a_{2}\cdots K^{b_{n}}a_{n}$$
$$a, b = 0, 1, \dots, p$$

$$S[X] = \int_{m} d^{p+1}x \sqrt{-g} \sum_{n=0}^{t} \alpha_{n}L_{n}(g_{ab}, K_{ab})$$
$$L_{n}(g_{ab}, K_{ab}) = \delta^{a_{1}a_{2}a_{3}\cdots a_{n}}_{b_{1}b_{2}b_{3}\cdots b_{n}} K^{b_{1}}a_{1}K^{b_{2}}a_{2}\cdots K^{b_{n}}a_{n}$$
$$a, b = 0, 1, \dots, p$$

EdM, segundo orden en X

$$J^{ab}_{(n)}K_{ab} = L_{n+1} = 0$$

•
$$J_0^{ab} = g^{ab}$$

• $J_1^{ab} = g^{ab}K - K^{ab} = g^{ab}L_1 - K^{ab}$
• $J_2^{ab} = G^{ab} = \mathcal{R}^{ab} - \frac{1}{2}g^{ab}\mathcal{R}$
• $J_3^{ab} = g^{ab}L_3 - 3\mathcal{R}K^{ab} + 6KK^a{}_cK^{cb} - 6K^a{}_cK^c{}_dK^{db}$

 J_n^{ab} tensor tipo Lovelock para OE; conservado, $\nabla_a J_n^{ab} = 0.$

Utilidad

- Cosmología en dimensiones extra
- Pariente de RG
- Galileones
- Modelos extensibles para el electrón (Dirac)
- Desarrollos en Geometría Diferencial. Teoría M.
- Conexión con membranas lipídicas. Correcciones a la energía libre de Helfrich

Introd	OE pprox Branas	OE Lovelock	GGB-M	Conclusiones
Gravitación ti	po brana geodés	ica		

Regge-Teitelboim (1975), inspirados por el modelo de Dirac-Nambu-Goto para cuerdas relativistas imaginaron a nuestro espacio-tiempo 4-dimensional como el volumen de mundo de una brana 3-dimensional flotando en un espacio-tiempo de tipo Minkowski (Gravedad de tipo brana geodésica)

Gravitación tipo brana geodésica

Regge-Teitelboim (1975), inspirados por el modelo de Dirac-Nambu-Goto para cuerdas relativistas imaginaron a nuestro espacio-tiempo 4-dimensional como el volumen de mundo de una brana 3-dimensional flotando en un espacio-tiempo de tipo Minkowski (Gravedad de tipo brana geodésica)

La teoría intentó establecerse como una alternativa matemática viable hacia la unificación de la mecánica cuántica con la teoría de Einstein pero ...

Davidson & Karasik (2003); Cordero, Molgado & Rojas hamiltoniano cuadrático!

Modelo de RT

El modelo de Regge-Teitelboim

$$S[X] = \int_{m} d^{4}x \sqrt{-g} \left(\alpha' \mathcal{R} + \Lambda \right)$$

Las ecuaciones de movimiento

$$T^{ab}K_{ab} = 0$$

•
$$T^{ab} = \alpha G^{ab} + \Lambda g^{ab}$$
 tensor de stress intrínseco
• $G_{ab} = \mathcal{R}_{ab} - \frac{1}{2}\mathcal{R}g_{ab}$ tensor de Einstein

Modelo de RT

El modelo de Regge-Teitelboim

$$S[X] = \int_{m} d^{4}x \sqrt{-g} \left(\alpha' \mathcal{R} + \Lambda \right) + S_{\text{mat}}$$

Las ecuaciones de movimiento (materia)

$$T^{ab}K_{ab} = \mathbf{F}$$

•
$$T^{ab} = \alpha G^{ab} + \Lambda g^{ab}$$
 tensor de stress intrínseco
• $G_{ab} = \mathcal{R}_{ab} - \frac{1}{2}\mathcal{R}g_{ab}$ tensor de Einstein

Geometría FRW		

3-brana Σ flotando en Minkowski, métrica inducida, $ds^2=N^2d\tau^2+a^2d\Omega_3^2$ con $N=\sqrt{\dot{t}^2-\dot{a}^2}$

Cordero, Molgado & Rojas

Geometría del volumen de mundo $\equiv {\sf FRW}$ con un Lagrangiano

$$L(a, \dot{a}, \ddot{a}, \dot{t}, \ddot{t}) = \frac{a\dot{t}}{N^3} \left(a\ddot{a}\dot{t} - a\ddot{t}\dot{a} + N^2\dot{t} \right) - Na^3H^2$$
$$= -\frac{a\dot{a}^2}{N} + aN(1 - a^2H^2) + \frac{d}{d\tau} \left(\frac{a^2\dot{a}}{N} \right)$$

Ecuación de movimiento

$$\frac{d}{d\tau} \left(\frac{\dot{a}}{\dot{t}} \right) = -\frac{N^2}{a^2 \dot{t}} \frac{\dot{t}^2 - 3N^2 a^2 H^2}{3\dot{t}^2 - N^2 a^2 H^2}$$

 ${\rm con}\; H^2 = \Lambda/3\alpha$

Introd	${ m OE} pprox { m Branas}$	OE Lovelock	GGB-M	Conclusiones

Aproximación hamiltoniana (Ostrogradski)

$$P_t = -\frac{a^2 \dot{a} \dot{t}}{N^3} \qquad P_a = \frac{a^2 \dot{t}^2}{N^3}$$
$$p_t = \frac{a \dot{t}}{N^3} \left[\dot{a}^2 + N^2 \left(1 - a^2 H^2 \right) \right] =: \Omega \qquad p_a = \left(\frac{\dot{a}}{\dot{t}} \right) \Omega$$

Ecuación de Friedman

$$N^2 + \dot{a}^2 = \gamma N^2 a^2 H^2$$

 $\gamma~$ satisface la ecuación cúbica $\gamma(\gamma-1)^2=\Omega^2/a^8H^6$

Constricciones de primera y segunda clase

Ansatz $\Psi(au,a)=arphi(a)e^{-i\Omega au}$
$\hat{\mathcal{F}}_1\Psi=0$ and $\hat{\mathcal{F}}_2\Psi=0$
Ecuación tipo WDW $\left[-rac{d^2}{da^2}+U(a) ight]arphi(a)=0$
donde

OF Lovelock

GGB-M

Conclusiones

Introd

 $OE \simeq Branas$

Introd

U(a) admite una barrera de potencial si ΩH ≤ 2/(3√3).
 Características de la barrera a₁ < a < a₂. Para ΩH ≪ 1 los puntos de retorno

$$a_1 \simeq \Omega$$
 $a_2 \simeq H^{-1} \left(1 - \frac{1}{2} \Omega H \right)$

Distancias grandes,

$$U(a \gg \Omega) \simeq 4a^2(1 - H\Omega - H^2a^2)$$

Distancias cortas

$$U(a \ll \Omega) \simeq -\Omega^2 - 3\Omega^4 a^{2/3} + 4a^2$$

Condiciones de frontera (A. Davidson). Función de onda, WKB

$$arphi_{\mathsf{HH}}\left(a_{\mathsf{L}} < a < a_{\mathsf{R}}
ight) \simeq \mp rac{1}{\sqrt{U}} \exp\left[\pm \int_{a_{\mathsf{L}}}^{a} \sqrt{U} da'
ight]$$

Introd	OE pprox Branas	OE Lovelock	GGB-M	Conclusiones
Modelo de	RT modificado			

El modelo de Regge-Teitelboim modificado

$$S[X] = \int_{m} d^{4}\xi \sqrt{-g} \left(\alpha' \mathcal{R} + \beta K - \Lambda \right)$$

Cordero, Cruz, Molgado, Rojas

Las ecuaciones de movimiento

$$T^{ab}K_{ab} = 0$$

• $T^{ab} = \alpha G^{ab} + \beta S^{ab} + \Lambda g^{ab}$ tensor de stress intrínseco • $G_{ab} = \mathcal{R}_{ab} - \frac{1}{2}\mathcal{R} g_{ab}$ tensor de Einstein • $S_{ab} = K_{ab} - K g_{ab}$ tensor conservado

Introd	OE pprox Branas	OE Lovelock	GGB-M	Conclusiones
Geometría FRV	V. Análisis clásico			

3-brana Σ flotando en Minkowski, métrica inducida, $ds^2 = N^2 d\tau^2 + a^2 d\Omega_3^2$.

Ecuación tipo Friedmann

$$-\frac{E}{a^4} = \frac{(\dot{a}^2 + k)^{1/2}}{a} \left[\frac{(\dot{a}^2 + k)}{a^2} - (\bar{\Lambda} + \bar{\rho}) \right] + 3\bar{\beta} \frac{(\dot{a}^2 + k)}{a^2}$$

Análisis clásico

$$\dot{a}^2 + U(a, E) = 0$$

donde

$$\begin{split} \frac{U(a,E)}{H_0^2} &= -\Omega_{k,0} - \frac{a^2}{9} \left\{ 2 \left[\Omega_{\beta,0}^2 + 3 \left(\Omega_{\Lambda,0} + \frac{\Omega_{m,0}}{a^3} \right) \right]^{1/2} \times \right. \\ & \left. F \left[\frac{1}{3} F^{-1} \left(\frac{\Omega_{\beta,0} \left[\Omega_{\beta,0}^2 + \frac{9}{2} \left(\Omega_{\Lambda,0} + \frac{\Omega_{m,0}}{a^3} \right) \right] - \frac{27\Omega_{dr}}{2a^4}}{\left[\Omega_{\beta,0}^2 + 3 \left(\Omega_{\Lambda,0} + \frac{\Omega_{m,0}}{a^3} \right) \right]^{3/2}} \right) \right] - \Omega_{\beta,0} \right\}^2 \end{split}$$

con $F(x) = \cosh x, \cos x$. Parámetros densidad de energía, $\Omega_k, \Omega_\Lambda, \Omega_m, \Omega_\beta, \Omega_{dr}$

En términos del parámetro de Hubble

$$\left(\frac{H^2}{H_0^2} - \frac{\Omega_k}{a^2}\right)^{1/2} \left(\frac{H^2}{H_0^2} - \frac{\Omega_k}{a^2} - \frac{\Omega_m}{a^3} - \Omega_\Lambda\right) + \Omega_\beta \left(\frac{H^2}{H_0^2} - \frac{\Omega_k}{a^2}\right) = \frac{\Omega_{dr}}{a^4}$$

Condición de normalización

 $(1 - \Omega_{k,0})^{1/2}(1 - \Omega_{k,0} - \Omega_{m,0} - \Omega_{\Lambda,0}) + \Omega_{\beta,0}(1 - \Omega_{k,0}) = \Omega_{dr}$

Introd	OE pprox Branas	OE Lovelock	GGB-M	Conclusiones
Conovión o				

El caso $\Omega_{dr} = 0$

$$H^2 + \frac{k}{a^2} + 3\bar{\beta}\sqrt{H^2 + \frac{k}{a^2}} = \bar{\Lambda} + \bar{\rho}$$

Ecuación similar a la expresión que describe las ramas no auto-aceleradas y auto-aceleradas de la teoría de Dvali-Gabadadze-Porrati.

Se tiene una constante cosmológica efectiva

$$\Lambda_{\rm eff} = \Lambda - 3\beta \sqrt{H^2 + \frac{k}{a^2}}$$

El parámetro β

eta juega el papel de r_c^{-1}

Teoría unificada de branas (propuesta)

- GR: Relatividad General
- D: Modelo extensible de Dirac para el electrón
- RS: Teoría de Randall-Sundrum
- CH DGP: Teoría de Collins-Holdoms, Dvali-Gabadadze-Porrati
- DG: Teoría de Davidson-Gurwich
- LBG: Teoría de branas de tipo Lovelock

Conclusiones

- Teorías de segundo orden son de utilidad en muchos contextos
- El concepto de brana es útil para modelar sistemas físicos interesantes a nivel euclidiano y relativista
- Amplio rango de aplicaciones. Teoría de cuerdas, Membranas lipídicas, Econofísica, Electrodinámica, RG
- Teorías de tipo Lovelock producen escenarios cosmológicos con aceleración tardía

Trabajo en progreso. Intereses

- Cuantización de lagrangianos dependiendo linealmente de la aceleración
- La aproximación Ostrogradski-Hamilton resulta ser de utilidad para cuantizar canónicamente a este tipo de teorías
- Principales aplicaciones en cosmología de universos en dimensiones extra
- Teorías de tipo Lovelock para branas. Universos que exhiben un comportamiento acelerado tardío
- Aproximación de tipo Born-Infeld a la teoría de Lovelock para universos de tipo membrana
- Incorporación de fondos curvos con interés físico
- Análisis de estabilidad de estos modelos geométricos
- Galileones. Teorías de campos escalares de segundo orden. Modos normales de movimiento.