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Horndeski theories

Horndeski theory

@ Modify gravity theory.
@ Scalar-tensor theory.
@ Non-minimal kinetic scalar field.




Horndeski theories

Modify gravity theory

As we know GR enjoys the following main properties

Einstein equations

Gl = 5 e

@ |s invariant under diffeomorphisms
V,.G" =0
@ Possesses second order and symmetric EOM
829#!/()()

ox?
@ The spacetime is four-dimensional
@ Only one field enters in the purely gravitational description

of the theory, the metric field, g,.,.(x)



Horndeski theories

In order to describe new gravitational phenomena through
modifications of GR, we need to relax at least one of the
previous features. Many examples of modified theories are
known today:

@ Higher dimensional theories as Lovelock

@ Higher derivative theories

@ Massive gravity theories, bigravity, f(R)-gravity...

@ Brans-Dicke theory



Horndeski theories

Let us describe gravity with one extra degree of freedom

S[guuv Qbu ¢] = / <¢R - WE;ZS)
Here the gravity sector is described by g,,, and ¢(x). The
matter field are coupled only with the metric tensor.

Now we can ask ourself, which is the most general
scalar-tensor theory which yields second order equations of
motion, for both, the metric and the scalar field?

This question was answered by Horndeski 40 years ago.

V, Vi — V<¢)) X + Smlg. v,



Horndeski theories

v p Vo 4 Y v .
Lu = ki(p, @)tV VadRE, — 2kt (6, )OIV Vad V" VsV Va0
+  ka(9, p)OhEVadVIORET + ..

@ Here p = V,¢V*¢ is the standard kinetic term of the scalar
field.



Horndeski theories

Was proven that this Lagrangian is equivalent to the Lagrangian
coming from covariantized Galileons

L= K(¢,p) = Ga(¢,p)0¢ + Ga(¢, )R + Ga,p(6, p)[(D0)? — (V. V1 0)?]

+ G5(0, )G V6 — 2 [(06)° ~ 3T0(V, V1) + (VuV0)],

@ Now commun sectors of the theory can be recognized
easily, Brans-Dicke theory, K-essence, GR, etc.

In particular our interest is focused on the theory described by
the following term

Gs(0,p) G V*V” 9
which gives us non minimally kinetic coupled scalar fields

G V"oV’
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Why second order theories?

For the free particle we have:
1 . 2

pr:§mx2—v = pr:p—erV.
Legendre transform

Figure: Energy of particle
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Ghost states...

Figure: Energy of particle



The model

Towards odd parity perturbations

@ The model
@ Equations of motion
@ Odd-parity perturbations




The model

The model

The action we are working with take the form

Stg o1 = [ x5 [ (R—20)— }(ag" — BG")V,.6% .0 - V(0)
We have:

E..=G. +/Agu —klaT,, +0,,] =0,

ane V(o)
V. (ag"'V,¢ — GV, $) — do =0,



The model

For simplicity
1 o, 1
Taw = VitV = 50uVadV ¢ = —gu V(9),
1 1 a
@;w = EVH¢VV¢R - 2va¢v(u¢Ry)a - Va(bvﬁd)'qll«al/ﬂ + EGHVVQ¢V ¢

— (VuV9)(VuVa) + (VuVu¢)O¢
]
+  Guw —%(D¢)2+va¢w¢>ﬂaﬁ + E(V"‘V%)(Vavm)]
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The perturbed metric

ds?® = —A(r)df? + B(r)dr?
dz?

LA

+ (1 — kz?)(dy + ki dt + kodr + k3dz)?|

@ ¢ = ¢o(r) +ed(t,r,2)



The model

Considering the Einstein field equations only at first order in e,

we find that
doo [ a® B (1AGC 1 C? 5
t_ o : 1 o) =
E; K 2 ABC <2 2 —|—4 C kB — Cr0r | 1% | + O(e°) =0,
dog Jé; 1AC, 1C? 1<ACr+CAr)

El=— — = el @
2T Ty {QB BZC<2A+4C 2 A Or ) 0z
+0O(?) =0,
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BUT!

2 [g{1+§g(dj‘)) }(1 222 (azkzarkw}
+ 2 {1+§g(dc‘,ﬁ“)z}u—kz2>(ark1—ark2>} o,
EL = a% [C i {1 - g—g (015;0)2} (1 — k22)?(Dzk1 — Brks)}
v 2 -%{”g(djo) }(1 2)(0rks — atkz)} —o,
g ? {c 2{1 +§% (djo)z}(azkgarkg)]

+ 2 c\f{ (dd’(’) }(3tk3—3zk1)]_0~




The model

The important thing is...
C? o1 [A 1 a0
VB Vor [C\/;P)ar
° 0=0C\/4Pu 2Y2(9,k — Oyks),
o P(f)(i) =1+ % <%) .

The mathematical methods courses are useful!
— Q=Q(r,t)D(2)

1 ag} C.,

P
-k 5, {(1sz2) oz | =
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The master equation

v(r, 1) = [CPy] 2 t)
@ Fourier decomposition: ¥ = [ W, e“!dt

22w, A 3 /dc\? 1 d?C 3 /dP_y\?
HY,, = — +< + ( ) +—( ())
)

orz " \"cPy, T4cz\ar) T2cdr? T 4Pz \Tar

1 d?PL, 1 dC dP., 5
- ww = \Uu.u
27)(,) dr+2 + 2073(,) dr* dr* Weff
A
= — BI’*; + Vluw = ngf\uwy
2 Py, 2



The model

The spectrum

/dr*(\llw)*?’-[\l!w = /dr* [| DV, 2 +Vs |V, [?] — (W, DV.,) | Boundary

where D = ;2 + Sand

ds

Vo=V + - 82 2

S ar* (2)
_ 1.dc 1 9P find

If we choose S = 3¢ G= + 25 g » We fin

A
Vs = .
s=7 CP)




Application to BHs

The solution

For spherically symmetric spacetimes

v/ aBk
2 A zarctan( s r) 30+ BA
A(r):%Jr&VaBk(ZJ—rg/\) r _%Jr:é—/f/\k’
d
an B(r) — az((a—,B/\)I’z—i-Z,Bk)z
()= (o N2(ar® 1 5RPA(D
@ C(r)=r,

® a+BA<0.



Application to BHs

Slowly-rotating objects

o k1 = w(r).
Then the frame dragging function satisfies

2 K
0 V%B{1+§B(ﬁ%>}(«—m%;yui:o

ar

Solving we have
The GR case

C
Mﬂ:q+$.




Application to BHs

Thank you for your attention!
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