

XI Escuela de Física Fundamental

Universidad Veracruzana, Xalapa. 28 de Septiembre de 2016

3 lectures: three quarks for Muster Mark!

Lecture 1:

- QCD at the LHC
- Gauge invariance and Feynman rules for QCD

Lecture 2:

- Renormalization and running α_s
- pQCD in e^+e^- -collisions: from partons to hadrons, jets, shape variables

Lecture 3:

- pQCD in lepton-hadron collisions: DIS and parton evolution
- pQCD at the LHC

 \checkmark Overlap with other lectures is unavoidable.

 $\sqrt{}$ As with other things in life, the U and everything:

overlap is good :)

The parton model

- quarks' binding forces that confine them are due to soft gluon exchange
- a hard virtual gluon exchange would break the proton apart! ($Q^* > Q \longleftrightarrow m_p/Q$ and $\alpha_s \to 0$)
- time scale for qq interaction $> 1/m_p$
- off-shell photon can probe the proton with limited lifetime
- photon can probe incoherent quark: "free" quark
- inner structure of the proton probed with off-shell photon is "universal" (wave function of the proton determined by soft-gluon dynamics)
- so simplest way to probe: deeply inelastic scattering (DIS) (what historically led to idea of partons)

The parton model

Look in e⁻ rest frame:

M.E. Tejeda-Yeomans elena.tejeda@fisica.uson.mx Iniciación a la QCD

The parton model

The partor

QUARKS → PARTONS

M.E. Tejeda-Yeomans elena.tejeda@fisica.uson.mx Iniciación a la QCD

⁶/₃₅

Deep Inelastic Scattering (DIS)

Deep inelastic scattering

$$ep \rightarrow eX$$

$$Q^{2} = -q^{2} \qquad x = \frac{Q^{2}}{2p \cdot q}$$
If $Q^{2} < M_{Z}^{2}$ the cross section is dominated by one-photon exchange
$$k_{0}^{\prime} \frac{d\sigma}{d^{3}k^{\prime}} = \frac{1}{k \cdot p} \left(\frac{\alpha}{q^{2}}\right)^{2} L^{\mu\nu}W_{\mu\nu}$$
Leptonic tensor: Hadronic tensor computable QED
$$L^{\mu\nu} = \frac{1}{4} tr[k\gamma^{\mu}k^{\prime}\gamma^{\nu}] = k^{\mu}k^{\prime\nu} + k^{\prime\mu}k^{\nu} - g^{\mu\nu}k \cdot k^{\prime\mu}k^{\nu}$$

D. de Florian, CLASHEP (2015)

X

sum over final states

The parton model and DIS

x-sec for intn of the virtual photon with proton at LO:

$$\sigma_0 = \int_0^1 dx \sum_i e_i^2 f_i(x) \hat{\sigma}_0(\gamma^* q_i \longrightarrow q_i', x) \tag{1}$$

 $f_i(\boldsymbol{x})$ density of quarks of flavour i carrying a fraction \boldsymbol{x} of the proton momentum

 $\hat{\sigma}_0$ into between the photon and a free (massless) quark:

$$\hat{\sigma}_{0} = \frac{1}{flux} \overline{\sum} |M_{0}(\gamma^{*}q \longrightarrow q')|^{2} \frac{d^{2}p'}{(2\pi)^{3}2p'_{0}} (2\pi)^{4} \delta(p'-q-p)$$

$$= \frac{1}{flux} \overline{\sum} |M_{0}|^{2} 2\pi \delta(p'^{2}) \qquad (2)$$

The parton model and DIS

Using p' = xP + q, where P is the proton momentum, we get

$$(p')^2 = 2xP \cdot q + q^2 \equiv 2xP \cdot q - Q^2 \tag{3}$$

"infinite momentum frame" $P^{\mu} \sim (P, 0, 0, P)$ with P >> M.

$$\hat{\sigma}_0(\gamma^* q \longrightarrow q') = \frac{2\pi}{flux} \overline{\sum} |M_0|^2 \frac{1}{2P \cdot q} \delta(x - x_{bj})$$
 (4)

where $x_{bj} = \frac{Q^2}{2P \cdot q}$ is the so-called Bjorken-x variable. Finally:

$$\sigma_0 = \frac{2\pi}{flux} \frac{\overline{\sum} |M_0|^2}{Q^2} \sum_i x_{bj} e_i^2 f_i(x_{bj}) \equiv \frac{2\pi}{flux} \frac{\overline{\sum} |M_0|^2}{Q^2} F_2(x_{bj}) \quad (5)$$

So, measurement of inclusive ep x-sec as function of Q^2 and $P \cdot q$ (= $m_p(E' - E)$ in the proton rest frame) probes the quark momentum distribution inside the proton.

D. de Florian, CLASHEP (2015)

At lowest order

What happens if photon interacts with pointlike particle?

 Quarks are fermions photons, only transverse polarization (Callan-Gross relation)

$$F_L(x, Q^2) = F_2(x, Q^2) - 2xF_1(x, Q^2) = 0!$$

If quarks were scalars $F_1=0$

M.E. Tejeda-Yeomans elena.tejeda@fisica.uson.mx Iniciación a la QCD

D. de Florian, CLASHEP (2015)

Cross section at lowest order: only F₂

$$\frac{d^2\sigma}{dxdQ^2} = \frac{2\pi\alpha^2}{xQ^4} [(1+(1-y)^2)F_2(x) - y^2 F_2(x)]$$

Scaling (Bjorken 1968, SLAC data)

/ 35

D. de Florian, CLASHEP (2015)

Proton structure function (with electron scattering) is

$$F_2^{ep}/x = \frac{4}{9}u(x) + \frac{1}{9}d(x) + \frac{4}{9}\bar{u}(x) + \frac{1}{9}\bar{d}(x) + \frac{1}{9}s(x) + \frac{1}{9}\bar{s}(x) + \frac{4}{9}c(x) + \frac{4}{9}\bar{c}(x)$$

Same applies for neutron but with "neutron parton distributions"

Actually, can relate neutron to proton PDFs using isospin symmetry

 $f_{u/n}(x) = f_{d/p}(x) \equiv d(x)$ $f_{\bar{u}/n}(x) = f_{\bar{d}/p}(x) \equiv \bar{d}(x)$ $f_{d/n}(x) = f_{u/p}(x) \equiv u(x)$ $f_{s/n}(x) = f_{s/p}(x) \equiv s(x)$

(p 🔶 n)

(usually better than % accuracy)

$$F_2^{en}/x = \frac{1}{9}u(x) + \frac{4}{9}d(x) + \frac{1}{9}\bar{u}(x) + \frac{4}{9}\bar{d}(x) + \frac{1}{9}s(x) + \frac{1}{9}\bar{s}(x) + \frac{4}{9}c(x) + \frac{4}{9}\bar{c}(x)$$

In real life one measures deuteron (p+n) structure functions

Parameter space exploration (PDG)

³/35

/35

D. de Florian, CLASHEP (2015)

What does it mean that proton has two up and one down quark?

Valence distributions

$$u_v(x) = u(x) - \bar{u}(x)$$

$$d_v(x) = d(x) - \bar{d}(x)$$
Sum Rules

$$\int_0^1 dx \, u_v(x) = 2$$

$$\int_0^1 dx \, d_v(x) = 1$$

$$\int_0^1 dx \, [u(x) + \bar{u}(x)] = \infty$$

$$s(x) \neq \bar{s}(x)$$

$$\int_0^1 dx \, s_v(x) = 0$$

Notice that number of quarks plus antiquarks can be infinity! Momentum of the proton distributed among components

$$\int_{0}^{1} dx \sum_{q} [x q(x) + x \bar{q}(x)] + \int_{0}^{1} dx x g(x) = 1$$

M.E. Tejeda-Yeomans elena.tejeda@fisica.uson.mx Iniciación a la QCD

Parton evolution

Go beyond LO parton-model and add real-emissions Real-emission corrections to the Born level process:

The first diagram is proportional to $1/(p-k)^2 = 1/(2pk)$, which diverges when k is emitted parallel to p:

$$p \cdot k = p^0 k^0 (1 - \cos \theta) \longrightarrow 0 \quad \text{when} \quad \cos \theta \longrightarrow 1$$
 (7)

The second diagram is also divergent, if k is emitted parallel to p': harmless! summing over all possible final states for inclusiveness coll div cancelled in final-state q self-energy corrections

Parton evolution: gauge fixing + parametrization

The amplitude for the only diagram carrying the initial-state singularity is:

$$M_{g} = ig \lambda_{ij}^{a} \overline{u}(p') \Gamma \frac{\not p - \not k}{(p-k)^{2}} \hat{\epsilon}(k) u(p)$$
(8)

Squaring the most singular part of the amplitude, and summing over colours and spins, we get:

$$\sum_{g} |M_{g}|^{2} = g \underbrace{\sum_{a}^{N \times C_{F}}}_{a} \operatorname{tr}(\lambda^{a} \lambda^{a}) \times \frac{1}{t^{2}} \times \sum_{e} \operatorname{tr}[p' \Gamma(p - k) \notin p \notin^{*}(p - k) \Gamma^{\dagger}]$$
with $t = (p - k)^{2} = -k_{t}^{2}/(1 - z).$
(9)

Parton evolution: AP splitting functions

So the one-gluon emission process factorizes in the collinear limit into the Born process times a factor which is independent of the beams nature! If we add the gluon phase-space:

$$[dk] \equiv \frac{d^3k}{(2\pi)^3 2k^0} = \frac{dk_{\parallel}}{k^0} \frac{d\phi}{2\pi} \frac{1}{8\pi^2} \frac{dk_b ot^2}{2} = \frac{dz}{1-z} \frac{1}{16\pi^2} dk_{\perp}^2 \quad (10)$$

we get

$$\overline{\sum} |M_g|^2 [dk] = \frac{dk_{\perp}^2}{k_{\perp}^2} dz \left(\frac{\alpha_s}{2\pi}\right) P_{qq}(z) \overline{\sum} |M_0|^2 \qquad (11)$$

where

$$P_{qq}(z) = C_F \frac{1+z^2}{1-z}$$
(12)

is the so-called Altarelli-Parisi splitting function for the $q \rightarrow q$ transition (z is the momentum fraction of the original quark taken away by the quark after gluon emission).

Parton evolution: correction to parton-model x-sec

Ready to calculate the corrections to the LO parton-model x-sec:

$$\sigma_{g} = \int dx \ f(x) \frac{1}{flux} \int dz \frac{dk_{\perp}^{2}}{k_{\perp}^{2}} \left(\frac{\alpha_{s}}{2\pi}\right) P_{qq}(z) \overline{\sum} |M_{0}|^{2} 2\pi \delta(p'^{2})$$
(13)
$$Jsing \ (p'^{2}) = (p-k+q)^{2} \sim (zp+q)^{2} = (xzP+q)^{2} \text{ and}$$

$$\delta(p'^{2}) = \frac{1}{2P+q} \frac{1}{z} \delta\left(x - \frac{x_{bj}}{z}\right) = \frac{x_{bj}}{z} \delta(\left(x - \frac{x_{bj}}{z}\right)$$
(14)

So finally,

$$\sigma_{g} = \frac{2\pi}{flux} \left(\frac{\overline{\sigma}|M_{0}|^{2}}{Q^{2}}\right) \sum_{i} e_{i}^{2} x_{bj} \frac{\alpha_{s}}{2\pi} \int \frac{dk_{\perp}^{2}}{k_{\perp}^{2}} \int \frac{dz}{z} P_{qq}(z) f_{i}\left(\frac{x}{z}\right)$$
(15)

Parton evolution: parton density and RGE

Inclusion of the $\mathcal{O}(\alpha_s)$ correction is equivalent to a contribution to the parton density:

$$f_i(x) \longrightarrow f_i(x) + \frac{\alpha_s}{2\pi} \int_{\mu_0^2}^{Q^2} \frac{dk_\perp^2}{k_\perp^2} \int_x^1 \frac{dz}{z} P_{qq}(z) f_i\left(\frac{x}{z}\right)$$
(16)

The renormalized parton density:

$$f(x, Q^2) = f(x, \mu^2) + \log\left(\frac{Q^2}{\mu^2}\right) \frac{\alpha_s}{2\pi} \int_x^1 \frac{dz}{z} P_{qq}(z) f\left(\frac{x}{z}\right) \quad (17)$$

Parton evolution: parton density and RGE

RGE condition:

$$\frac{df(x,Q^2)}{d\ln\mu^2} = \mu^2 \frac{df(x,\mu^2)}{d\mu^2} - \frac{\alpha_s}{2\pi} \int_x^1 \frac{dz}{z} P_{qq}(z) f\left(\frac{x}{z}\right) \equiv 0 \quad (18)$$

and then

$$\mu^2 \frac{df(x,\mu^2)}{d\mu^2} = \frac{\alpha_s}{2\pi} \int_x^1 \frac{dz}{z} P_{qq}(z) f\left(\frac{x}{z},\mu^2\right)$$
(19)

This equation is the DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) equation In analogy to $R_{e^+e^-}$ where RGE induces resummation of leading logs, here the DGLAP equation resums full tower of leading logarithms of Q^2 .

Parton evolution: parton density evolution

 $\mathcal{O}(\alpha_s)$ parton evolution equation for the density of the *i*th quark flavour:

$$\frac{df_q(x,t)}{dt} = \frac{\alpha_s}{2\pi} \int_x^1 \frac{dz}{z} \left[P_{qq}(z) f_i\left(\frac{x}{z},t\right) + P_{qg}(z) f_g\left(\frac{x}{z},t\right) \right]$$
(20)

 $\mathcal{O}(\alpha_s)$ parton evolution equation for the density of gluons:

$$\frac{df_g(x,t)}{dt} = \frac{\alpha_s}{2\pi} \int_x^1 \frac{dz}{z} \left[P_{gq}(z) \sum_{i=q,\overline{q}} f_i\left(\frac{x}{z},t\right) + P_{gg}(z) f_g\left(\frac{x}{z},t\right) \right]$$
(21)

with

$$P_{qg} = \frac{1}{2} \left[z^2 + (1-z)^2 \right]$$

$$P_{gq}(z) = P_{qq}(1-z) = C_F \frac{1+(1-z)^2}{z}$$

$$P_{gg}(z) = 2C_A \left[\frac{1-z}{z} + \frac{z}{1-z} + z(1-z) \right]$$

(22

M.E. Tejeda-Yeomans elena.tejeda@fisica.uson.mx Iniciación a la QCD

Parton evolution: valence/singlet densities

Define moments of an arbitrary function g(x) as:

$$g_n = \int_0^1 \frac{dx}{x} x^n g(x) \tag{23}$$

Evol eqns turn into ordinary linear differential equations:

$$\frac{df_i^{(n)}}{dt} = \frac{\alpha_s}{2\pi} [P_{qq}^{(n)} f_i^{(n)} + P_{qg}^{(n)} f_g^{(n)}]$$
(24)
$$\frac{df_g^{(n)}}{dt} = \frac{\alpha_s}{2\pi} [P_{gg}^{(n)} f_g^{(n)} + P_{gq}^{(n)} f_i^{(n)}]$$
(25)

Take valence (V(x, t)) and singlet $(\Sigma(x, t))$ densities:

$$V(x) = \sum_{i} f_{i}(x) - \sum_{\overline{i}} f_{\overline{i}}(x)$$
(26)
$$\Sigma(x) = \sum_{i} f_{i}(x) + \sum_{\overline{i}} f_{\overline{i}}(x)$$
(27)

D. de Florian, CLASHEP (2015)

Scaling violations are:

- Positive at small x (more partons with smaller energy)
- Slightly negative at large x

Main effect of increase in Q^2 is shift of partons from larger to smaller x

D. de Florian, CLASHEP (2015)

D. de Florian, CLASHEP (2015)

pQCD vocabulary: LO-NLO-NNLO-...

Improved (factorized) Parton Model

$$\sigma(ep \to eX) = \int_0^1 dz \sum_{i=q,\bar{q},g} f_i(z,\mu_F^2) \ \hat{\sigma}^{\text{hard}}(ei \to eX)$$

LO Leading Order: Born partonic cross-section + LO evolution of pdfs $F_2(x,Q^2) = \sum_q e_q^2 x f_q(x,Q^2)$

D. de Florian, CLASHEP (2015)

Factorization Formula

non-perturbative parton distributions

perturbative partonic cross-section

Partonic cross-section: expansion in $\alpha_s(\mu_R^2) \ll 1$

$$d\hat{\sigma} = \alpha_s^n d\hat{\sigma}^{(0)} + \alpha_s^{n+1} d\hat{\sigma}^{(1)} + \dots$$

Expression relies on factorization theorem : HT, mass corrections, etc. not trivial

Need precision for both perturbative and non-perturbative components!

Why do we keep QCDing?

Physics@Colliders cannot be done with quantitative seriousness without pQCD beyond LO but also QCD is at the heart of everything!

QCD reviews in PDG

Figure 9.3: Summary of measurements of α_s as a function of the energy scale Q. The respective degree of QCD perturbation theory used in the extraction of α_s is indicated in brackets (NLO: next-to-leading order; NNLO: next-to-next-to leading order; res. NNLO: NNLO matched with resummed next-to-leading logs; N³LO: next-to-NNLO).

35

QCD reviews in PDG

 $^{1}/_{35}$

Higgs at hadron colliders

/ 35

Invitación

9TH CERN LATIN-AMERICAN SCHOOL OF HIGH-ENERGY PHYSICS

San Juan del Rio, Mexico, 8–21 March 2017 Deadline for applications: 11 November 2016 http://cern.ch/PhysicSchool/CLASHEP

Invitación

Scientific Programme

Heavy-Ion Physics A. Ayala, UNAM, *Mexico* Higgs Physics L. Da Rold, CAB, CONICET/IB, *Argentina*

Field Theory and the E-W Standard Model C. Garcia-Canal, UNLP, *Argentina*

Special lecture on gravitational waves G. Gonzalez, Louisiana State U., *USA*

Probability and Statistics C. Maña, CIEMAT, Spain

QCD M. Mangano, CERN Physics Beyond the Standard Model M. Mondragon, UNAM, *Mexico*

Flavour Physics and CP violation A. Pich, IFIC (U. Valencia - CSIC), Spain

Cosmology R. Rosenfeld, IFT-UNESP/ICTP-SAIFR/LIneA, *Brazil*

Neutrino Physics F. Sanchez, IFAE/BIST, Spain

Facilities in Latin America R. Shellard, CBPF, *Brazil*

LHC experiments and latest results P. Sphicas, CERN and U. of Athens, Greece

Gracias

Maria Elena Tejeda-Yeomans Cuerpo Académico de Partículas y Cosmología Universidad de Sonora

> elena.tejeda@fisica.uson.mx unidusu@gmail.com

Twitter: @apeirofilica Facebook: MaElena Tejeda-Yeomans Wordpress: particuleando.com