Introduction to Higgs Physics (3rd Lesson)

J. Lorenzo Diaz-Cruz FCFM-BUAP (Mexico) Escuela de FisicaFundamental, Xalapa, 2016

September 27, 2016

(日) (四) (日) (日) (日)

э

- **2** THE Standard Model
- **3** SM Higgs Properties and its detection at LHC
- 4 Higgs Hysics Beyond the SM
- **5** Higgs Physics in the far UV

< A 1

<ロ> (日) (日) (日) (日) (日)

э

Then what?

(BUAP)

2

What is the nature of EWSB?

Questions:

- Is there only one Higgs doublet that generates the masses of all particles?
- **2** Will we be able to test Higgs couplings with light fermions?
- **3** Are the Higgs couplings diagonal in flavor space?
- Why W-mass << Planck mass? ((Hierarchy problem))

Possible Answers:

- Strongly Interacting -Higgsless world DECEASED!
- Strongly Interacting Composite Higgs pNGB,
- Weakly interacting- SM valid up to Planck Scale,
- Weakly interacting- Multi-Higgs model (SUSY, THDM, etc),

A = A = A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A

Higgs identity: $g_{hXX} = c_X g_{hXX}^{sm}$

In the SM: $c_X = 1$,

(BUAP)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

The Universal Higgs fit - P. Giardino et al., arXiv:1303.3570 [hep-ph]

Under the small deviations approximation:

$$c_X = (1 + \epsilon_X) \tag{1}$$

From a fit to all observables (signal strengths), and assuming no new particles contribute to the loop decays hgg and $h\gamma\gamma$, they get:

- hZZ (hWW): $\epsilon_Z = -0.01 \pm 0.13$ ($\epsilon_W = -0.15 \pm 0.14$),
- *hbb*: $\epsilon_b = -0.19 \pm 0.3$,
- $h\tau\tau: \epsilon_{\tau} = 0 \pm 0.18$
- *htt* (from *hgg*): $\epsilon_t = -0.21 \pm 0.23$

▲■▶ ▲ ■▶ ▲ ■▶ - ■ - のへの

SM Higgs identity: $g_{hXX}^{sm} = \frac{M_X}{v}$

(BUAP)

Introduction to Higgs Physics (3 September 27, 2016 8 / 45

< 一部

Higgs Couplings in 3+1 HDM

・ロト ・四ト ・ヨト ・ヨト

э

Higgs parity: $h\bar{f}f$ or $h\bar{f}\gamma_5 f$?

 $10 \\ 45$

Higgs parity: $h\bar{f}f$ or $h\bar{f}\gamma_5 f$?

September 27, 2016

 $\frac{11}{45}$

Higgs and Flavor Violation Only FC Higgs couplings $(h\bar{f}f)$ or also possible FV $(h\bar{f}_if_j)$?, ex. $h \to \tau \mu$ (Diaz-Cruz and collab.),

Contact: cms-pag-conveners-higgs@cern.ch

2014/07/05

45

Search for lepton flavor violating decays of the Higgs boson

The CMS Collaboration

The Hierachy problem

When an scalar interacts with a heavy fermion M, with $L_Y = y \bar{\Psi} \Psi \phi$, and UV cutoff Λ , the scalar mass gest corrected, i.e.

$$m_h^2 = m_0^2 + \frac{y^2}{16\pi^2} [c_1 \Lambda^2 + c_2 m_0^2 ln \frac{\Lambda}{m} + M^2]$$
(2)

The problem: $m_h = 125 - 126 \text{ GeV}$ but since $\Lambda >> O(1)$ TeV, need a large cancellation.

Some solutions:

- Composite Higgs (as in QCD!),
- Higgs is part of D dim vector field: $A_M = (A_\mu, A_i)$,
- Cancelation between boson-fermion loops (\rightarrow SUSY),
- Accidental cancelacion (Veltman's condition):

$$\lambda = y_t^2 - \frac{1}{8} [3g^2 + g'^2] \tag{3}$$

NO LONGER WORKS!...at the EW scale ($\rightarrow m_h \simeq 200 \text{ GeV}$,)

....BUT WHAT ABOUT AT M_{pl} ?

(BUAP)

BOUL AL M_{pl} Introduction to Higgs Physics (3

Other problems in the SM

- Large/Little hierarchy problem,
- Neutrino masses and flavor problem,
- Strong CP problem,
- Dark Matter,
- Cosmological constant (Dark energy),
- Some deviations from the SM (a few std. dev.), e.g. Δa_{μ} , etc.
- Aesthetical questions,

They all suggest the need for New Physics.

Beyond the SM

- Models with new fermions (4ta family, etc)
- Models with new gauge forces (U(1)', Left-Right, ..)
- Models with extra Higgs multiplets (2HDM, triplets,..)
- Models with Grand Unification (ex. $SU(5), SO(10), E_6,...$)
- Models with new symmetries (SUSY),
- Models with extra dimensions extra.
- etc.

(BUAP)

A modern view of Physics BSM

Physics BSM incorporates Extra Dimensions,

 Fermionic XDx^µ → Z^M = (x^µ, Q, Q̄) : Supersymmetry
 Bosonic XD-

$$x^{\mu} \to X^M = (X^{\mu}, X^i)$$
: Large Extra Dimensions,

• Curved XD $x^{\mu} \to X^{M} = (X^{\mu}, X^{i})$: Randall-Sundrum

AdS/CFT duality means XD \rightarrow Strong Ints.

Supersymmetry (SUSY)

Why is SUSY attractive? It is a new symmetry that relates fermions and bosons,

- Offers the possibility to stabilize the Higgs mass and EWSB,
- Improves Unification and o.k. with proton decay,
- Favors a light Higgs boson, in agreement with EWPT (and LHC?), i.e. $m_h \leq 160$ GeV,
- New sources of flavor and CP violation may help to get the right BAU,
- LSP is stable and a possible Dark matter candidate.

Gauge Coupling Unification

The MSSM

The minimal extension of the SM consistent with SUSY, is based on:

- SM Gauge Group (\rightarrow gauge bosons and gauginos),
- 3 families of fermions and sfermions,
- Two Higgs doublets $(H_u \text{ and } H_d)$,
- Soft-breaking of SUSY (Hidden sector),
- R-parity distinguish SM and their superpartners \rightarrow LSP is stable and DM candidate.

The MSSM particle content

	SM	Superpartners		
SM	W^{\pm}, Z, γ	Wino,Zino, Photino		
Bosons	gluon	gluino		
	Higgs bosons	Higgsinos		
SM	quarks	squarks		
Fermions	leptons	sleptons		
	neutrinos	$\operatorname{sneutrinos}$		

Mixing of gauginos and Higgsinos \rightarrow Charginos (χ_i^{\pm} , i = 1, 2) and Neutralinos (χ_j^0 , j = 1, 4),

Gravitino is also part of the spectrum.

The parameters of the MSSM

In addition to SM parameters, the MSSM includes $\mathrm{O}(100)$ new ones:

- Scalar masses (Sleptons, squarks, Higgs),
- Gaugino masses $(\tilde{M}_G, \tilde{M}_W, \tilde{M}_B)$,
- Trilinear terms $(A_{\tilde{f}} \text{ for squarks and sleptons}),$
- From Higgs sector: $\tan \beta = v_2/v_1$ and μ ,
- The masses of superpartners have important implications for EWSB,
- Spectrum of superpartners depends on mechanism of SUSY breaking,

Susy Spectrum

 $\frac{22}{45}$

MSSM Higgs Potential

At tree-level MSSM Higgs sector is a 2HDM of type-II, i.e. it contains two Higgs doublets, with Potential:

Lagrangian. The F terms contribute

$$V_F = \mu^2 (H_u^{0*} H_u^0 + H_d^{0*} H_d^0)$$

The D terms contribute

$$V_D = \frac{g^2 + g'^2}{8} (H_u^{0*} H_u^0 - H_d^{0*} H_d^0)^2$$

The soft SUSY breaking terms contribute

$$V_{soft} = M_{Hu}^2 H_u^{0*} H_u^0 + M_{Hd}^2 H_d^{0*} H_d^0 - (B\mu H_u^0 H_d^0 + h.c.)$$

The MSSM Higgs spectrum

- CP-even neutral Higgs bosons h^0, H^0 , at tree-level $m_h < m_Z$,
- CP-odd neutral Higgs A^0 with $m_H^2 = m_A^2 + m_Z^2 \sin^2 2\beta$,
- Charged Higgs H^{\pm} , with $m_{H^+}^2 = m_A^2 + m_W^2$,
- Masses and mixing angles fixed with: m_A and $tan\beta = v_2/v_1$,
- When $m_A \leq \tilde{m}$, Higgs search uses SM techniques.
- But H^0, A^0, H^{\pm} may decay into SUSY modes; LHC search gets more complicated!,

The MSSM Higgs mass

Radiative effects of Stop-top loops can make: $m_h > m_Z$

$$m_h^2 = m_Z^2 \left[1 + \frac{3m_t^2}{2\pi^2 m_Z^2} log(\frac{m_{stop}}{m_t})\right]$$
(4)

But to get $m_h = 125$ GeV, with SM-like couplings, need:

- Large superpartner masses O(1) TeV,
- Only a few superpartners could be at the reach of LHC,
- Split SUSY? High Scale SUSY?
- O(1) or large $tan\beta$ allowed,
- Large $tan\beta \rightarrow$ enhanced production of H + bb at LHC,

MSSM Higgs mass (Giudice and Strumia)

SPLIT SUSY

Introduction to Higgs Physics (3

 $\frac{26}{45}$

MSSM Higgs couplings:

$$\begin{array}{ll} \bullet \ (hVV): & \frac{2m_V^2}{v}\cos(\beta-\alpha), \quad v^2=v_1^2+v_2^2, \\ \bullet \ (huu): & \frac{m_u}{v}(\frac{\cos\alpha}{\sin\beta}), \\ \bullet \ (hdd): & \frac{m_d}{v}(\frac{\sin\alpha}{\cos\beta}), \\ \bullet \ (hll): & \frac{m_l}{v}(\frac{\sin\alpha}{\cos\beta}), \\ \bullet \ (hhh): & \simeq \lambda v, \quad \lambda=\frac{g^2+{g'}^2}{8}, \\ \bullet \ (hhhh): & \simeq \lambda. \end{array}$$

Similar expressions hold for H^0, A^0 and H^{\pm} .

Heavy Higgses at LHC

Introduction to Higgs Physics (3

Composite PGB Higgs

Introduction to Higgs Physics (3

Composite Higgs (A. Pomarol, ICHEP12)

The light Higgs can be a kind of pion from a new strong sector

The spectrum of the new strong sector could be:

Higgs mass and new physics (A. Pomarol, ICHEP12)

Higgs mass range

45

LHC tests of the SM:

(BUAP)

Introduction to Higgs Physics (3

 $\frac{32}{45}$

Implications for Dark Matter

 $\frac{33}{45}$

В

Observed

MSSM Higgs and Dark matter

For heavy sfermions the DM relic density is:

$$\Omega_X h^2 = C_X \left(\frac{m_X}{TeV}\right)^2 \tag{5}$$

- For DM X = pure Bino, no aceptable solution,
- For DM $X = \tilde{H}$ pure Higgsino, $C_{\tilde{H}} = 0.09$ and an aceptable solution is obtained for $1 < M_{\tilde{H}} < 1.2$ TeV,
- For DM $X = \tilde{W}$ pure Wino, $C_{\tilde{H}} = 0.02$ and an aceptable solution is otained for $2 < M_{\tilde{W}} < 2.5$ TeV,

In such case detection at LHC may be harder,

LSP Composition

Introduction to Higgs Physics (3

Holographic Dark matter

- Composite Higgs can have a "baryon" partner,
- This composite state can be (Holographic) Dark matter (J.L. Diaz-Cruz, PRL81, 2008),
- Deviations from SM Higgs properties can show evidence of dark matter,

The Higgs and the roots of Physics Was it premature to rule our Veltman condition?

A special Value of λ at M_{planck} ?

ML '86

downward flow of RG trajectories \Rightarrow IR QFP \Rightarrow random λ flows to $m_{\rm H} > 150 \ GeV$ $\Rightarrow m_{\rm H} \simeq 126 \ GeV$ flows to tiny values at $M_{\rm Planck}...$

Holthausen, ML Lim (2011) Different conceivable special conditions:

- Vacuum stability $\lambda(M_{pl}) = 0$ [7–12]
- vanishing of the beta function of λ $\beta_{\lambda}(M_{pl}) = 0$ [9, 10]
- \bullet the Veltman condition [13–15] ${\rm Str} {\cal M}^2~=~0,$

$$\begin{split} \delta m^2 &= \frac{\Lambda^2}{32\pi^2 v^2} \mathrm{Str} \mathcal{M}^2 \\ &= \frac{1}{32\pi^2} \left(\frac{9}{4} g_2^2 + \frac{3}{4} g_1^2 + 6\lambda - 6\lambda_t^2 \right) \Lambda^2 \end{split}$$

• vanishing anomalous dimension of the Higgs mass parameter $\gamma_m(M_{pl})=0,\ m(M_{pl})\neq 0$

M. Lindner, MPIK (BUAP) SCALARS 2013, Warsaw Introduction to Higgs Physics (3

Hows does the Higgs potential looks at higher energies?

From JR Espinosa et al.

(BUAP)

Introduction to Higgs Physics (3

39 / 45

Higgs mood

Introduction to Higgs Physics (3

Why I believed in the Higgs and BSM

Is the Higgs something natural? I would say, yes.

Spin and Isospin:

T / S	0	1/2	1	3/2	2
0	?	Neutrinos-R	gluon	?	?
1/2	Higgs	electron	?	?	?
		quarks			
1	?	?	W, Z	?	?

$$Q_{em} = T_3 + Y \tag{6}$$

September 27, 2016

(Where have all the large representations gone?)

(BUAP)

Conclusions.

- LHC is already giving great results,
- Evidence for a SM-like Higgs with $m_h = 125 \text{ GeV}$,
- No evidence at LHC, so far, of new phyics,
- Still possible to find evidence of Dark matter,
- Tests of Higgs couplings at LHC could show deviations from SM (3+1 HDM),
- FCNC decays of Higgs/top could also provide another window into PBSM,
- If no signal of BSM physics shows up at LHC, then what? Super-split SUSY

ber 27, 2016

Fronteras del micro y macro cosmos

Ademas, podemos agregar una "Frontera Conceptual" (JLDC),

(BUAP)

"This could be heave or this could be hell .."

Introduction to Higgs Physics (3

Interesting times!

(BUAP)

Introduction to Higgs Physics

September 27, 2016

99(45 45