Introduction to Higgs Physics (2nd Lesson)

J. Lorenzo Diaz-Cruz FCFM-BUAP (Mexico) Escuela deFisica fundamental, Xalapa, 2016

September 27, 2016

(BUAP)

Introduction to Higgs Physics (2 September 27, 2016 1 / 40

(日) (四) (日) (日) (日)

э

- **2** THE Standard Model
- **3** SM Higgs Properties and its detection at LHC
- 4 Higgs Physics Beyond the SM
- **5** Higgs Physics in the far UV

< A 1

The Standard Model (SM)

- Matter is made of quarks and leptons,
- Forces are associated with gauge symmetries,
- Masses arise from spontaneous symmetry breaking (SSB),

ヘロト 不得下 イヨト イヨト

In the SM a Higgs doublet can work (Minimal)

SM Higgs interactions

SM lagrangian for a Higgs doublet $\Phi = (\phi^+, \phi^0)$ includes:

• Gauge ints. \rightarrow Gauge boson masses,

i.e.
$$\mathcal{L}_{HV} = (D^{\mu}\Phi)^{\dagger}(D_{\mu}\Phi)$$

• Yukawa sector \rightarrow fermion masses,

i.e.
$$\mathcal{L}_Y = Y_u Q_L \Phi u_R$$
, etc.

• Higgs potential $V(\Phi) \to SSB$ and Higgs mass,

i.e.
$$V(\Phi) = \lambda (|\Phi|^2 - v^2)^2$$
,

- One unknown parameter λ ,
 - it determines Higgs mass: $m_h \simeq \lambda v$

SM Yukawa lagrangian - 1 family

$$\mathcal{L}_Y = y_d \bar{Q}_L \Phi d_R + y_u \bar{Q}_L \Phi u_R + h.c.$$

•
$$\bar{Q}_L = (\bar{u}_L, \bar{d}_L)$$
, $\Phi = (\phi^+, \phi^0)^T$,

• After SSB:
$$\phi^0 = \frac{1}{\sqrt{2}}(v+h+iG_z)$$

•
$$\bar{Q}_L \Phi = (\bar{u}_L, \bar{d}_L)(\phi^+, \phi^0)^T = \bar{u}_L \phi^+ + \bar{d}_L \phi^0$$

•
$$\bar{Q}_L \Phi d_R = \bar{u}_L d_R \phi^+ + \bar{d}_L d_R \phi^0$$

•
$$y_d \bar{Q}_L \Phi d_R = (\bar{d}_L d_R) y_d \frac{1}{\sqrt{2}} (v + h + iG_z)$$

$$\mathcal{L}_Y = \frac{1}{\sqrt{2}} (y_d v + y_d h) \bar{d}_L d_R + \dots$$
(2)

(1)

 $\rightarrow m_d = \frac{1}{\sqrt{2}} y_d v \quad \text{and} \quad (hdd) = \frac{m_d}{v}$ (BUAP) Introduction to Higgs Physics (2 September 27, 2016 6 / 40

Higgs couplings

Busqueda de efectos directos del Higgs

• Busqueda en LEP2: $e^+e^- \rightarrow Z + h \rightarrow m_h > 115 \text{GeV}$

• Busqueda en Tevatron

(BUAP)

<<p>(日)

A B A B A

Efectos indirectos del boson de Higgs

・ロト ・ 一 ト ・ 三 ト ・ 三 ト

Radiative Constraints on m_h :

SM Higgs Phenomenology

First, one need to study decay modes for a light Higgs:

- $h \to b \overline{b}$,
- $h \to \tau^+ \tau^-$,
- $h \to \gamma \gamma$ (top and W loops) (Ellis, Gaillard, Nanopoulos),
- *h* → *gg* (top loop) (Georgi, Glashow, Machacek, Nanopoulos) *h* → *WW**, *ZZ** (Keung, Marciano)
- $h \to t\bar{t}$

$$B.R.(h \to XX) = \frac{\Gamma(h \to XX)}{\Gamma_{total}}$$
(3)

September 27, 2016

The decay Width?

- Schroedinger equation: $H|\psi>=i\frac{d}{dt}|\psi>$
- The Hamiltonian for an unstable particle at rest: $H = M i\frac{\Gamma}{2}$,

•
$$\psi(t) = \psi(0)e^{-iHt} = \psi(0)e^{-iMt}e^{-\Gamma t/2}$$

•
$$|\psi|^2 = |\psi(0)|^2 e^{-\Gamma t}$$

 $\frac{12}{40}$

SM Higgs decay into fermion pairs

For the decay:
$$h(p) \to f(p_1)\bar{f}(p_2)$$

$$M(h \to f\bar{f}) = \frac{-igm_f}{2m_W}\bar{u}(p_1)(1)v(p_2),$$
(4)

Kinematics:

- Energy-momentum conservation: $p = p_1 + p_2$,
- In rest frame of Higgs: $p = (m_h, 0)$,

•
$$p^2 = m_h^2, \, p_1^2 = m_f^2 = p_2^2,$$

•
$$p.p_1 = m_h E_1, \ p.p_2 = m_h E_2, \ 2p_1.p_2 = m_h^2 - 2m_f^2,$$

September 27, 2016

SM Higgs decay into fermion pairs

$$d\Gamma(h \to f\bar{f}) = \frac{1}{8\pi^2 m_h} |M(h \to f\bar{f})|^2 d_2(PS)$$
(5)

Then,

$$\Gamma(h \to f\bar{f}) = N_c \frac{g^2}{32\pi} \frac{m_f^2}{m_W^2} [1 - 4\frac{m_f^2}{m_h^2}]^{3/2}$$
(6)

where:

- $N_c = 3 (1)$ for quarks (leptons),
- The exponent 3/2 signals that the Higgs is an SCALAR (would be 1/2 if it were a pseudoscalar),

•
$$m_f = m_f(Q^2)$$
 (RGE), ex. $m_b(M_Z) \simeq 3.5$ GeV,

September 27, 2016

Higgs Decay widths

$$\Gamma(h \to f\bar{f}) = N_c \frac{g^2}{32\pi} \frac{m_f^2}{m_W^2} [1 - 4\frac{m_f^2}{m_h^2}]^{3/2}$$
(7)

$$\Gamma(h \to gg) = \frac{\alpha_s^2 g^2 m_h^3}{128\pi^3 m_W^2} |I_g(r_x)|^2$$
(8)

$$\Gamma(h \to \gamma\gamma) = \frac{\alpha^2 g^2 m_h^3}{1024\pi^3 m_W^2} |I_\gamma(r_x)|^2$$
(9)

$$\Gamma(h \to WW^*) = \frac{3g^4 m_h}{512\pi^3} F_{3b}(m_W/m_h)$$
(10)

September 27, 2016

where $r_x = 4m_x^2/m_h^2$, and analogous expression can be written for: $\Gamma(h \to \gamma Z)$ and $\Gamma(h \to ZZ^*)$

Tarea: 2) Estimate: $BR(h \to \tau \tau)$,

(BUAP)

Higgs B.R.'s

 $\frac{16}{40}$

(BUAP)

Higgs production at $pp/p\bar{p}$ colliders (LHC/Tevatron)

$$\sigma_{had} = \sum_{ij} \int f_i(x_1, Q^2) f_i(x_2, Q^2) dx_1 dx_2 \,\hat{\sigma}_{parton}$$
(11)
$$\sigma_{gg} = \int f_g(x_1, Q^2) f_g(x_2, Q^2) dy \, \frac{\pi^2 \Gamma(h \to gg)}{8m_h^2}$$
(12)

September 27, 2016

(BUAP)

Introduction to Higgs Physics (2

Higgs cross sections

(BUAP)

Introduction to Higgs Physics (2

 $\frac{18}{40}$

Higgs cross sections \rightarrow No. ef events

Search for the boson (H) of the EW symmetry breaking

SM H boson production cross sections times observable decay branching ratios at 7 TeV

(BUAP)

Introduction to Higgs Physics (2

 $\frac{19}{40}$

Higgs cross sections \rightarrow No. ef events

- Total Production cross section $\sigma * Br = \sigma(pp \rightarrow h + X) \times BR(h \rightarrow YY)$
- Need to look for interesting modes,
- No. of events = $\sigma * Br * I.L.$
- Integrated Luminosity= No. of colisions per unit area,
- ex. With $IL(LHC) = 13 fb^{-1} = 13 \times 10^3 pb^{-1}$ and $\sigma(pp \rightarrow h \rightarrow \gamma \gamma) = 4 \times 10^{-2}$ pb for $m_h = \simeq 125$ GeV $\rightarrow 520$ Events!
- Signal vs Background: only a fraction of those 500's events will be detected,

Higgs cross sections

(BUAP)

Introduction to Higgs Physics (2

 $\frac{23}{40}$

Introduction to Higgs Physics (2

The Higgs-dependence day

(BUAP)

Introduction to Higgs Physics (2

The Higgs-dependence day

September 27, 2016

 $\frac{27}{40}$

To get a feeling for the number of events, and of the background-subtracted distributions (example ATLAS)

	Signal	WW	$WZ/ZZ/W\gamma$	tī	tW/tb/tqb	Z/γ^* + jets	W + jets	Total Bkg.	Obs.
H+0-jet	45 ± 9	242 ± 32	26 ± 4	16 ± 2	11 ± 2	4 ± 3	34 ± 17	334 ± 28	423
H+1-jet	18 ± 6	40 ± 22	10 ± 2	37 ± 13	13 ± 7	2 ± 1	11 ± 6	114 ± 18	141

Updated: ATLAS-CONF-2012-158

CERN, 20-Nov-2012 P Jenni (CERN)

LHC experiments and results

80

40

September 27, 2016

Introduction to Higgs Physics (2

Higgs search- CMS -ZZ Channel

September 27, 2016

30 / 40

Introduction to Higgs Physics (2

DO YOU BELIEVE?

Nature asked leading theoretical physicists whether they thought the Large Hadron Collider would find the Higgs particle predicted by the standard model of particle physics.

Tom Kibble, Imperial College London; Steven Weinberg, University of Texas at Austin; Sheldon Glashow and Lisa Randall, Harvard University, Cambridge, Massachusetts; Frank Wilczek, Massachusetts Institute of Technology, Cambridge; John Ellis, CERN, Geneva, Switzerland; David Gross, Kavii Institute for Theoretical Physics, Santa Barbara, California.

Introduction to Higgs Physics (2

September 27, 2016

Mexican hat and BEH mechanism

Introduction to Higgs Physics (2

September 27, 2016

Then what?

(BUAP)

Introduction to Higgs Physics

Higgs identity: $g_{hXX} = c_X g_{hXX}^{sm}$

In the SM: $c_X = 1$,

Introduction to Higgs Physics (2

September 27, 2016

SM Higgs identity: $g_{hXX}^{sm} = \frac{M_X}{v}$

(BUAP)

Introduction to Higgs Physics (2

Higgs Couplings in 3+1 HDM (JLDC)

The Universal Higgs fit - P. Giardino et al., arXiv:1303.3570 [hep-ph]

Under the small deviations approximation:

$$c_X = (1 + \epsilon_X) \tag{13}$$

From a fit to all observables (signal strengths), and assuming no new particles contribute to the loop decays hgg and $h\gamma\gamma$, they get:

- hZZ (hWW): $\epsilon_Z = -0.01 \pm 0.13$ ($\epsilon_W = -0.15 \pm 0.14$),
- *hbb*: $\epsilon_b = -0.19 \pm 0.3$,
- $h\tau\tau$: $\epsilon_{\tau} = 0 \pm 0.18$
- *htt* (from *hgg*): $\epsilon_t = -0.21 \pm 0.23$

September 27, 2016

4. Higgs Physics Beyond the SM

(BUAP)

Introduction to Higgs Physics (2

5. Higgs Physics on the far UV

(BUAP)

Introduction to Higgs Physics (2

September 27, 2016

