
UNIVERSIDAD VERACRUZANA

Artificial Intelligence Research Institute

Efficient Heuristic Strategies for the Parallel-Machine Scheduling
Problem with Unrelated Machines and Makespan Minimization

Submitted by:

M.A.I. Octavio Ramos-Figueroa

AS THE FULFILLMENT OF REQUIREMENT FOR THE DEGREE OF

Ph.D. in Artificial Intelligence

Advisor:

Dr. Marcela Quiroz-Castellanos

Co-advisor:

Dr. Efrén Mezura-Montes

XALAPA, VERACRUZ, MÉXICO June, 2022.

Acknowledgments

The research project reported in this thesis would not have been possible without the
scientific, personal, and financial support of many people and organizations. Therefore, I
would like to thank:

• The Instituto de Investigaciones en Inteligencia Artificial of the Universidad
Veracruzana (IIIA-UV) for the support during my P.h.D.

• The Consejo Nacional de Ciencia y Tecnología (CONACYT) for the financial support
provided during the completion of this research project.

• My thesis advisor, Dr. Marcela Quiroz Castellanos, for the patience, knowledge,
commitment, and trust throughout these four years in the P.h.D., a fundamental part
to conclude this work in a timely manner.

• My co-advisor, Dr. Efrén Mezura Montes, for all the contributions to this research
work.

• The research group of the IIIA-UV for their attention and pleasant teachings that I
will never forget.

• To Dr. Laura Cruz Reyes for the support and attention during my research stay at the
Instituto Tecnológico de Ciudad Madero, who shared her knowledge and made great
contributions to this work.

• I thank all my colleagues from the Master’s and Ph.D. in Artificial Intelligence for
sharing their experience and knowledge, but above all their friendship. Thank you for
making me feel at home.

• To my friends for their emotional support, advice, and words of encouragement.

• But above all to my family and especially to my mother Maria Amparo Figueroa
Guerrero for her unconditional support, who continues to be fundamental support and
has given me the best teachings in life.

ii

Abstract

Many problems of practical and theoretical importance within the fields of Artificial
Intelligence and Operations Research are combinatorial. Combinatorial optimization
problems consist of finding values for discrete variables that meet certain conditions
and maximize (or minimize) an objective function. Usually, the problems with these
characteristics are easy to define, but often difficult to solve. In such a way that, the solution
process of many of these problems represents a great challenge and currently there is no
algorithm to find the optimal solution efficiently in the worst case. Such problems have been
classified by the scientific community as belonging to the NP-hard class.

This work focuses on NP-hard grouping problems, a special class of combinatorial
problems that, in general, implies to search an efficient distribution of a collection of items
among a set of groups. Due to the difficulty of this type of problem, the specialized literature
contains several algorithms for their solution, mainly metaheuristic algorithms, that can
obtain high-quality approximated solutions in short execution times. The most outstanding
proposals include local searches, swarm intelligence algorithms, and evolutionary algorithms,
highlighting the results obtained by the Grouping Genetic Algorithm (GGA). However,
despite the efforts of the scientific community in the development of new strategies, to date,
there is no algorithm that presents the best performance for all possible situations. This
phenomenon has been in-deep studied and has been described through the No-Free-Lunch
theorem, an impossibility theorem establishing that (1) a general-purpose optimization
strategy is impossible and (2) the only way one solution method can exceed another
is if it uses specific-purpose heuristics designed with knowledge of the problem domain
under consideration. For this reason, the development of high-performance algorithms for
NP-hard problems is an open research field and specialists throughout the world work on the
development of new solution methods. From the specialized literature also emerges that much
of the recent progress in algorithm development has been aided by a better understanding
of the properties of problem instances and the optimization process of the algorithms that
solve them.

The foregoing motivates this research work that addresses the characterization of the
problem Parallel Machine-Scheduling with Unrelated Machines and Makespan Minimization
(R||Cmax) and the optimization process of the GGA. In this way, this work covers (1) the
design of the first GGA for R||Cmax, since, as the best of our knowledge the literature
does not includes another proposal with a GGA for this problem; (2) the development of an
Enhanced GGA (EGGA) based on a systematical study of the optimization process presented
by the heuristic strategies of each GGA component (population initialization, crossover and

iii

iv

mutation operators, and reproduction technique); and (3) the characterization of the R||Cmax

structure and the EGGA algorithmic behavior to identify improvement opportunity niches
and design a Final GGA (FGGA).

The systematical study of each GGA component in isolation allowed generating intelligent
strategies to improve their performance. Likewise, the characterization approach allowed
identifying the properties in the structure of an R||Cmax instance that becomes it difficult.
Finally, it allowed understanding how the R||Cmax properties impact the optimization process
and the final performance of the proposed EGGA. The knowledge gained was used to design
the FGGA.

The experimental results showed the usefulness of the characterization approach
employed, since the improvements implemented from the initial GGA to the FGGA allowed
reaching an improvement rate of about 396%. In such a way that the FGGA exceeds the
effectiveness of the state-of-the-art solution methods by using only 10,000 generations.

The final outcome of this work demonstrates the importance of knowing in-depth the
problem to solve, since such knowledge can be used to improve the performance of the
existing solution algorithms and to design new ones. We expect that the approach shown in
this work will be used as a guide for the study of other grouping problems and for the design
of high-performance solution methods.

Contributions of the thesis work

• Conference talks:

– Ramos-Figueroa, O., & Quiroz-Castellanos, M. (2019). Metaheuristics to solve
grouping problems: A review. Presented at the 16th Esicup meeting.

– Ramos-Figueroa, O., & Quiroz-Castellanos, M. (2020). An Experimental Study
of Grouping Mutation Operators for the Unrelated Parallel-Machine Scheduling
Problem. Presented at the 8th International Workshop on Numerical and
Evolutionary Optimization meeting.

– Ramos-Figueroa, O., & Quiroz-Castellanos, M. (2021, July). A grouping genetic
algorithm for the unrelated parallel-machine scheduling problem. In Proceedings
of the Genetic and Evolutionary Computation Conference Companion (pp.
135-136).

• Book chapters:

– Ramos-Figueroa, O., Quiroz-Castellanos, M., Carmona-Arroyo, G., Vázquez, B.,
& Kharel, R. (2021). Parallel-machine scheduling problem: An experimental study
of instances difficulty and algorithms performance. In Recent Advances of Hybrid
Intelligent Systems Based on Soft Computing (pp. 13-49). Springer, Cham.

• Journal papers:

– Ramos-Figueroa, O., Quiroz-Castellanos, M., Mezura-Montes, E., & Schütze, O.
(2020). Metaheuristics to solve grouping problems: A review and a case study.
Swarm and Evolutionary Computation, 53, 100643. case study. Swarm and
Evolutionary Computation, 53, 100643.

– Ramos-Figueroa, O., Quiroz-Castellanos, M., Mezura-Montes, E., & Kharel, R.
(2021). Variation operators for grouping genetic algorithms: A review. Swarm
and Evolutionary Computation, 60, 100796.

v

Contents

1 Introduction 1

1.1 Background . 1

1.2 Problem statement . 2

1.3 Justification . 4

1.4 Thesis goals . 4

1.4.1 Thesis main goal . 4

1.4.2 Thesis specific goals . 4

1.5 Thesis hypotheses . 5

1.6 Scope and limitations . 5

1.7 Thesis organization . 5

2 Grouping problems 7

2.1 Metaheuristic algorithms in grouping problems 10

2.1.1 Neighborhood searches . 11

2.1.2 Evolutionary algorithms . 13

2.1.3 Swarm intelligence algorithms 17

2.2 Conclusions of the literature review . 20

3 The R||Cmax problem 24

3.1 Solutions methods for R||Cmax . 25

3.2 R||Cmax benchmark of instances . 32

3.3 Analysis of the R||Cmax state-of-the-art algorithm results 33

vi

CONTENTS vii

4 The first GGA to solve the R||Cmax problem 35

4.1 Genetic encoding, fitness function and initial population 36

4.2 Adapted Gene-level crossover operator 37

4.3 Download mutation operator . 38

4.4 Selection and replacement strategies . 40

4.5 Computational Experiments . 41

4.6 Impact analysis of crossover and mutation rate on GGA 42

4.7 Conclusions of the experimental study 43

5 Population initialization strategies 45

5.1 State-of-the-art constructive heuristics for the R||Cmax problem 45

5.2 Constructive heuristics for the R||Cmax problem 46

5.2.1 Lowest . 47

5.2.2 Lowest min . 47

5.2.3 Highest min . 47

5.2.4 Mean min . 47

5.2.5 Diff_fastest min . 48

5.2.6 Random . 48

5.2.7 Random min . 48

5.2.8 Random lowest bound min . 48

5.2.9 Lowest 4g min . 49

5.2.10 Highest 4g min . 49

5.2.11 Diff_fastest 4g min . 49

5.3 Analysis of the R||Cmax constructive heuristics results 49

5.4 Conclusions of the analysis . 53

6 Crossover operators 56

6.1 State-of-the-art of grouping crossover operators 57

6.2 Experimental design for the R||Cmax crossover operators 59

6.2.1 State-of-the-art operators . 60

6.2.2 Strategies to rank the machines 62

6.2.3 Strategies to establish the machine transmission order and the
number of children . 68

6.2.4 Strategies to handle the repeated jobs and machines 81

6.3 GGA with the old and the new crossover operators 83

6.4 Conclusions of the analysis . 85

viii CONTENTS

7 Mutation operators 86

7.1 State-of-the-art grouping mutation operators 86

7.1.1 The Swap operator . 87

7.1.2 The Insertion operator . 87

7.1.3 The Elimination operator . 88

7.1.4 The Merge & Split operator . 88

7.2 Experimental design for the R||Cmax mutation operators 88

7.2.1 State-of-the-art operators . 89

7.2.2 Handled machines and removed jobs 92

7.2.3 Machines selection strategy . 95

7.2.4 Rearrangement heuristics . 95

7.3 GGA with the old and the new mutation operators 101

7.3.1 Comparing the effectiveness of GGA with the old and the new
mutation operators . 101

7.3.2 Comparing the efficiency of GGA with the old and the new
mutation operators . 103

7.4 Conclusions of the analysis . 105

8 Reproduction strategies 107

8.1 State-of-the-art of reproduction techniques 108

8.1.1 Selection mechanisms . 108

8.1.2 Replacement mechanisms . 109

8.2 Experimental design for the R||Cmax reproduction techniques 110

8.2.1 Selection and Replacement Mechanisms 111

8.2.2 Strategies to sort the population 116

8.3 Conclusions of the analysis . 118

9 Study of the R||Cmax optimization process 121

9.1 Approaches for the characterization of COPs 122

9.2 Experimental study of the optimization process of R||Cmax 123

9.2.1 Phase 1: Characterization . 124

9.2.2 Phase 2: Characteristics Refining 130

9.2.3 Phase 3: Study of relations . 133

9.2.4 Phase 4: Explanations of the algorithmic behavior and proposed
improvements . 140

9.3 Conclusions of the characterization . 148

10 Performance analysis of the FGGA for R||Cmax 149

10.1 Components of FGGA . 149

10.2 Evolution of the GGA performance . 150

10.3 FGGA robustness test . 154

10.4 FGGA long-term execution . 156

10.5 Comparing FGGA with state-of-the-art procedures 157

11 Conclusions and future work 161

11.1 Conclusions . 161

11.2 Future work . 165

Bibliography 197

List of Figures

2.1 An example of a grouping problem with ten items distributed among
four groups. 8

2.2 Comparative graph of the number of grouping problems addressed using
each metaheuristic. 21

2.3 Comparative graph of the number of metaheuristics used to address each
grouping problem. 22

2.4 Results threw by google scholar about the terms “metaheuristic" for each
“grouping problem" in Table 1. 22

3.1 Related works for each approach used to design solution methods for
R||Cmax. 30

3.2 Template of a test instance of R||Cmax. 32

4.1 Population initialization strategy . 37

4.2 Adapted Gene-Level Crossover (AGLX) operator 39

4.3 Download mutation operator . 40

4.4 Impact analysis of the parameters: number of individuals selected for
crossover nc and number of mutated solutions nm in the GGA final
performance. 43

5.1 Instance characteristics used by constructive heuristics. 47

5.2 Performance of deterministic heuristics for instances grouped by number
of jobs n. 51

5.3 Performance of non-deterministic heuristics for instances grouped by
number of jobs n. 52

5.4 Performance of deterministic heuristics for instances grouped by number
of machines m. 52

5.5 Performance of non-deterministic heuristics for instances grouped by
number of machines m. 53

x

LIST OF FIGURES xi

5.6 Average quotient q of the instances in each set, grouped according to the
criterion used to generate the values of pij. 54

5.7 Performance of deterministic heuristics with references to the quotient
of the maximum by the minimum processing time (q) of the instances. . 54

5.8 Performance of non-deterministic heuristics with references to the
quotient of the maximum by the minimum processing time (q) of the
instances. 55

6.1 Recombination process of the Random Grouping Crossover (RGX)
operator . 64

6.2 Strategies to rank the machines in parent solutions 66

6.3 Two parent solutions to explain the genetic material transmission process
of the twelve proposed strategies. 68

6.4 Machine transmission strategies that use two parents to generate a child
based on the Random() criterion. 70

6.5 Machine transmission strategies that use two parents to generate a child
based on the Max(Njobs) criterion. 71

6.6 Machine transmission strategies that use two parents to generate a child
based on the Min(Ci) criterion. 73

6.7 Machine transmission strategies that use two parents to generate two
children based on the Random() criterion. 75

6.8 Machine transmission strategies that use two parents to generate two
children based on the Max(Njobs) criterion. 77

6.9 Machine transmission strategies that use two parents to generate two
children based on the Min(Ci) criterion. 79

6.10 Performance comparison of the six operators that generate a child with
the strategies to handle the genetic material Group Elimination and Item
Elimination. 83

7.1 Group-oriented mutation operators adapted for R||Cmax. 91

7.2 Behavior of the mutation operators grouped by the number of handled
machines. 93

7.3 Behavior of the mutation operators grouped by the number of removed
jobs from the handled machines. 93

7.4 Impact analysis of the parameters: number of individuals selected
for crossover nc and number of mutated solutions nm, in the EGGA
performance. 103

9.1 Multiplicity of the lowest processing times of jobs (lowest). 125

9.2 Difference between the processing times of the two fastest machines to
process each job (diff_fastest). 126

9.3 PCA of the twenty characteristics studied. 132

9.4 Scatter plots for the population initialization strategy. 135

9.5 Scatter plots to analyze the way EGGA handles the diversity. 137

9.6 Scatter plots of the EGGA convergence. 138

9.7 Diagram with the relations between the R||Cmax instances, the EGGA
algorithmic behavior, and its final performance. 139

9.8 Graphical comparison of the proposed population initialization strategies
Fastest-lb, Two-fastest, and Two-fastest-lb using the grouping criteria
n, m, and pij. 145

10.1 Graphical comparison of the GGA, EGGA, and FGGA using the
grouping criteria n, m, and pij. 152

10.2 Graphical comparison of the FGGA performance with ten different seeds
based on RPD. 155

10.3 Graphical comparison of the FGGA performance with different values of
the parameter max_gen using the grouping criteria n, m, and pij. . . . 158

List of Tables

2.1 Grouping problems addressed with GGAs. Problem: name of the
problem. Related works: papers that introduce GGAs to solve each
grouping problem. 8

2.2 Grouping problems addressed using neighborhood searches. 13

2.3 Grouping problems addressed using evolutionary algorithms. 17

2.4 Grouping problems addressed using swarm intelligence metaheuristics. . 20

3.1 Main characteristics of the best algorithms of the state of the art of
R||Cmax. 31

3.2 Comparison of the state-of-the-art algorithms Partial, RBS, NVST-IG+,
and HTS using RPD. 34

4.1 Analysis of the average RPD reached by GGA for each instance set: n,
m, pij, and the 1400 instances. 42

5.1 Comparison of the eleven constructive heuristics: Lowest, Lowest min,
Highest min, Mean min, Diff_fastest min, Random, Random min,
Random lowest bound min, Lowest 4g min, Highest 4g min, and
Diff_fastest 4g min using RPD. 50

6.1 Segment-oriented crossover operators. Operator: Name of the operator.
Abbr.: Abbreviation of the operator name. References: Related works. 58

6.2 Group-oriented crossover operators. Operator: Name of the operator.
Abbr.: Abbreviation of the operator name. References: Related works. 58

6.3 Link-oriented crossover operators. Operator: Name of the operator.
Abbr.: Abbreviation of the operator name. References: Related works. 58

6.4 Comparison of the crossover operators: ESX (Exon Shuffle Crossover),
GLX (Gene-Level Crossover), GPX (Greedy Partition Crossover) and
UX (Uniform Crossover) using RPD. 62

xiii

xiv LIST OF TABLES

6.5 Comparison of the crossover operators: Permutation, Average(pi), Njobs,
Ci, Njobs-Ci, and Ci-Njobs using RPD. 67

6.6 Performance comparison of the machine transmission strategies: One
machine Random(), Two machines Random(), One machine Max(Njobs),
Two machines Max(Njobs), One machine Min(Ci), Two machines Min(Ci)
based on the average RPD. 78

6.7 Performance comparison of the machine transmission strategies:
Random(), Random Switch(), Max(Njobs) Fixed, Max(Njobs) Random,
Min(Ci) Fixed, Min(Ci) Random based on the average RPD. 80

6.8 Performance comparison of the genetic material handling technique
item elimination in the machine transmission strategies: IE-One
machine Random(), IE-Two machines Random(), IE-One machine
Max(Njobs), IE-Two machines Max(Njobs), IE-One machine Min(Ci),
IE-Two machines Min(Ci) based on the average RPD. 82

6.9 Performance comparison of the metaheuristic algorithms: EGGA
GE-One machine, EGGA GI-One Machine, EGGA GE-Two machines,
and EGGA GI-Two Machines based on the average RPD. 84

7.1 Comparison of Swap, Insertion, Merge & Split, and Elimination
mutation operators using RPD. 92

7.2 Comparison of handled machines and removed jobs using RPD. 94

7.3 Comparison of mutation operators with Random, Worst, Worst Best,
and Worst Random selection strategies using RPD. 96

7.4 Comparison of mutation operators with the Insertion and Assemble
rearrangement heuristics and also the Download operator, using RPD. 100

7.5 Comparison of the GGA and the EGGA presented in this chapter, using
RPD. 102

7.6 Comparison of the GGA and the EGGA based on time (in seconds). . . 103

7.7 Performance analysis of the GGA with 500 and 4000 generations, and
the EGGA with 500 generations. 104

7.8 Comparison of the GGA and the EGGA based on the generation in
which the best solution in the population is improved. 105

8.1 Comparison of the reproduction techniques: Random-Random,
Random-Parents, and Random-Worst using RPD. 115

8.2 Comparison of the reproduction techniques: Ranking-Random,
Ranking-Parents, and Ranking-Worst using RPD. 116

8.3 Comparison of the reproduction techniques: Tournament-Random,
Tournament-Parents, and Tournament-Worst using RPD. 117

8.4 Comparison of the reproduction techniques: Proportional-Random,
Proportional-Parents, and Proportional-Worst using RPD. 118

LIST OF TABLES xv

8.5 Comparison of the strategies to sort the population: Cmax,
Cmax - Machines(Ci=Cmax), Cmax - Average(Ci), and Cmax -
Machines(Ci=Cmax) - Average(Ci) using RPD. 119

9.1 General characteristics for I. 127

9.2 Descriptive measures. 128

9.3 Final set of indexes for R||Cmax characterization. 131

9.4 Characteristics of the eight groups of instance. pij: processing time
distribution. n: number of jobs. m: number of machines. identifier:
identifier of each collection of instances. 132

9.5 Problem characteristics, final performance measures, and indexes to
analyze the algorithmic behavior of the population initialization strategy. 134

9.6 Problem characteristics, final performance measures, and, indexes to
analyze the way EGGA handles diversity. 136

9.7 Problem characteristics, final performance measures, and indexes to
analyze the way EGGA handles the convergence. 138

9.8 Comparison of EGGA variants with different population initialization
strategies: EGGA Fastest-lb, EGGA Two-fastest, and EGGA
Two-fastest-lb using RPD. 144

9.9 Comparison of EGGA variants with different strategies to handle
diversity using RPD: EGGA Interchange, EGGA 2-Best, EGGA 4-Best,
and EGGA Injection using RPD. 147

10.1 Comparison of GGA, EGGA, and FGGA using RPD. 151

10.2 p-Values of the Wilcoxon test for the initial GGA and the FGGA. . . . 153

10.3 Comparison of the FGGA performance with ten different seeds using
RPD. 154

10.4 Comparison of the FGGA performance with the max_gen values 500,
1000, 2000, and 10000 using RPD. 156

10.5 Comparison of the FGGA performance with the max_gen values 500,
1000, 2000, and 10000 based on the number of instances that it finds a
better solution than CPLEX. 159

10.6 Analysis of the average RPD reached by the state-of-the-art algorithms:
Partial, RBS, NVST-IG+, HTS, and FGGA for the 1400 instances. . . 159

xvi LIST OF TABLES

Chapter 1
Introduction

1.1 Background

Many problems of practical and theoretical importance within the fields of Artificial
Intelligence and Operations Research are combinatorial. The literature includes
Combinatorial Optimization Problems (COPs) in several relevant contexts such as
engineering, science, economics, and everyday life. For this reason, several studies have
been carried out to produce practical and theoretical knowledge that help to solve these
problems efficiently. In general, the COPs involve finding values for discrete variables
to obtain an optimal solution, considering certain constraints and conditions. Thus,
the algorithms that solve this type of problem seek an arrangement, grouping, order,
or selection of discrete objects, usually finite in number, that maximize or minimize an
objective function, respecting the given constraints [1].

Frequently, the COPs are easy to define, but often hard to solve. In such a way that the
solution process required for many of these problems represents a great challenge, and
currently, there is no algorithm to find the optimal solution efficiently for the worst case.
Those problems belong to the NP-hard class, and are considered inherently intractable
from a computational point of view [2].

The state-of-the-art includes a great variety of solution methods designed to solve
NP-hard COPs, highlighting the results obtained by metaheuristics that can reach
high-quality approximate solutions in short execution times. However, it is important
to note that, despite the efforts of the scientific community in the development of new
strategies, to date, no algorithm is the best option for all possible situations [3]. Given
the above, the development of high-performance algorithms for NP-hard problems is
an open field of research, and specialists throughout the world work on the design of
new solution strategies.

This research focuses on a particular class of combinatorial optimization problems,
known as grouping problems. Nowadays, solving such problems has become an
important issue, mainly because many of them occur in the industry, hospitals,
seaports, and many other real-world applications. This work concentrates on the

1

2 CHAPTER 1. INTRODUCTION

Parallel-Machine Scheduling with unrelated machines and makespan minimization, also
known as R||Cmax, which belongs to the class of grouping problems.

The main motivation to carry out this research is related to the characterization of
the problem R||Cmax and the analysis of the algorithmic behavior of metaheuristic
algorithms specially designed to solve this problem. The detail of the R||Cmax problem
will be explained in Chapter 3. In this way, we want to provide useful tools for
developing efficient strategies that incorporate knowledge of the problem-domain in
grouping problems with different constraints and conditions, using solution methods
for R||Cmax as a guide.

In accordance with the specialized literature, the Grouping Genetic Algorithm (GGA)
is one of the most used solution methods to solve this type of problems. The GGA
procedure will be explained in Chapter 4. The state-of-the-art highlights the results of
GGAs with variation operators that modify the solutions in a controlled way, using
different criteria to modify the genetic material of the solutions according to the
properties of the problem to solve. This work seeks to demonstrate how the GGA
performance can improve by incorporating operators designed using knowledge of the
problem-domain. In this way, we expect that the design of GGAs under this approach
can be adapted to solve other grouping problems.

1.2 Problem statement

Grouping problems are known for their high difficulty, in such a way that so many of
them belong to the NP-hard class. It is important to note that, although the central
idea of these problems is to find an efficient distribution of a set of items among a
collection of groups D, there are grouping problems with different characteristics. Thus,
grouping problems can be constant or variable according to the number of groups. In
a constant problem, the number of groups D is known, and the objective is to identify
the efficient distribution of the items among the D groups. Therefore, in variable
problem the number of groups is unknown, and the goal will be to find the most efficient
grouping that optimizes the D value. On the other hand, grouping problems can have
identical and non−identical groups. If the quality of a solution is affected by swapping
all items of two groups, that problem belongs to the non − identical grouping class.
Otherwise, the problem is part of the identical category. Finally, grouping problems
can be order dependent when the quality of the solution depends on the order of the
groups. Consequently, grouping problems without such a dependency belong to the
class no order dependent [4].

The scientific community has shown a great interest in these problems, mainly, because
most of them emerge in real-world problems, like Home Health Care, Facility Location,
Economy of Scale, Cell Formation, Material Cutting, and Stock Portfolio, to mention
some examples.

Although the specialized literature includes several metaheuristic algorithms for
grouping problems, it highlights the popularity of the Grouping Genetic Algorithm
(GGA), related to its promising results and its flexibility to adopt new ideas to

1.2. PROBLEM STATEMENT 3

handle problems with different constraints and conditions. However, despite all the
efforts carried out to develop high performance solution methods, currently, there is no
algorithm that shows the best results for all possible situations. Therefore, this is still
an open research area.

In this sense, the state-of-the-art suggests that one of the key points for the design of
efficient heuristic algorithms is to identify which strategies make an algorithm to show
a better performance and under what conditions they obtain it. Recent works remark
that much of the recent progress in the development of high performance algorithms
has been aided by a better understanding of the properties immersed on the problem
instances, the optimization process of the algorithms that solve them, and their final
performance. Another important fact is that there are still emerging new and more
complex grouping problems. Therefore, it is necessary to generate knowledge of the
problem domain that could help in the solution of future problems.

It is important to note that, although the percentage of studies carried out
to understand how and why the algorithms follow a particular behavior is low,
the specialized literature includes some efforts such as the seminal work of
Quiroz-Castellanos that present an approach to characterize the NP-hard grouping
problem Bin Packing. The information gained from such study was used to design a
high performance GGA using intelligent strategies that incorporates knowledge of the
Bin Packing problem domain [5].

The above motivates this research work that looks for demonstrating that it is possible
to generalize the use of characterization approach of Quiroz-Castellanos to the design
of efficient and robust GGAs for grouping problems with different characteristics.
In this sense, this research project addresses the characterization of the NP-hard
grouping problem Parallel Machine-Scheduling with Unrelated Machines and Makespan
Minimization R||Cmax since, according to the specialized literature review, it has not
been addressed by the GGA. Moreover, the literature reveals that the methods applied
to R||Cmax that have shown the best results have been exact algorithms and local
searches. However, it is important to note that most of the proposals in the literature
are focused on the design of this type of strategies, leaving aside the study of other
metaheuristic algorithms. Finally, the state-of-the-art indicates that, although some
genetic algorithms have been proposed for R||Cmax, none of them have obtained good
results by themselves and have been combined with local searches to improve their
performance. This behavior is caused by the use of an inappropriate representation
scheme to encode and manipulate the solutions. Therefore, we want to demonstrate that
it is possible to design an efficient GGA for R||Cmax by using only traditional operators
(crossover and mutation), without incorporating local search strategies, capable of
competing with the state-of-the-art algorithms. In this sense, this work comprises the
study and design of intelligent strategies of purpose-specific for the GGA operators that
incorporate knowledge of the R||Cmax problem domain, employing exploratory data
analysis techniques to identify and study the problem characteristics that influence its
difficulty and the optimization process followed by the solution methods.

4 CHAPTER 1. INTRODUCTION

1.3 Justification

The design of high-performance metaheuristic algorithms responds to the need of
organizations to be increasingly competitive and efficient since an important number of
vital tasks for their proper functioning involve optimization problems that are difficult
to solve. Many real-world optimization problems belong to the special class NP-hard,
which implies that no efficient algorithms are known to solve them exactly in the
worst-case [6]. Therefore, researchers throughout the world continue working on the
design of high-performance heuristic algorithms. Since the solution to these problems
implies a great challenge, the design of algorithms adapted to specific conditions
and properties is usually the best option. This task has been facilitated through
the implementation of characterization approaches that promote the understanding
of the properties of the study problems and the optimization process presented by their
solution methods.

In this research work, we apply state-of-the-art knowledge about the relationships
between the optimization problem characteristics, the optimization process of the
algorithms that solve them, and their final performance in order to generate
knowledge of the problem Parallel-Machine Scheduling with Unrelated Machines and
Makespan Minimization R||Cmax. Finally, this work shows the importance of using
a characterization approach, by employing the information gained from this study
as a guide in the design of a high-performance GGA with a population initialization
strategy, crossover and mutation operators, as well as the selection and the replacement
mechanisms that use intelligent strategies that incorporate knowledge of the R||Cmax

problem domain.

1.4 Thesis goals

1.4.1 Thesis main goal

Build robust, highly effective heuristic strategies that incorporate knowledge of the
problem domain to solve the NP-hard grouping problem Unrelated Parallel-Machine
Scheduling with Makespan Minimization R||Cmax.

1.4.2 Thesis specific goals

– Adapt the GGA-CGT genetic operators (proposed to solve the Bin Packing
Problem (BPP)) to solve the NP-hard grouping problem R||Cmax and analyze
its potential in this problem.

– Conduct an experimental analysis for the characterization of the grouping problem
R||Cmax and for the study of the algorithmic behavior presented by the heuristic
strategies when solving R||Cmax.

– Identify and implement new heuristic strategies that incorporate knowledge of the
problem domain to solve the grouping problem R||Cmax efficiently.

1.5. THESIS HYPOTHESES 5

– Conduct an experimental study of the optimization process of the implemented
heuristic strategies applied to R||Cmax.

– Develop new intelligent metaheuristic algorithms for R||Cmax that incorporate
knowledge of the problem domain.

1.5 Thesis hypotheses

H1. It is possible to identify the characteristics that impact the difficulty of
the NP-hard grouping problem R||Cmax and understand how they affect the
algorithmic behavior and the final performance of the metaheuristic algorithms
that solve them.

H2 It is possible to improve the performance of metaheuristic algorithms that solve the
NP-hard grouping problem R||Cmax through the incorporation of efficient heuristic
strategies designed using knowledge of the algorithmic optimization process.

1.6 Scope and limitations

1. The characterization approach to identify the properties that impact the difficulty
of the instances will be applied only to the Parallel-Machine Scheduling Problem
with Unrelated Machines and Makespan Minimization R||Cmax.

2. The analysis of the optimization process will be conducted by taking into
consideration the solution strategies designed in this research work and the best
algorithms for R||Cmax relative to an exact method from the state-of-the-art.

3. Given the R||Cmax difficulty, for many instances of the specialized literature,
the optimal solution is not known. Therefore, the comparative analysis of the
performance presented by the state-of-the-art algorithms and the solution methods
designed in this work will be conducted based on the results obtained by two hours
of CPLEX (the high-performance solver of IBM ILOG, based on branch and cut
methods) for each instance.

4. The identified factors could be a subset of the critical factors in the difficulty of an
instance, the algorithm behavior of the solution methods, and their performance.
Since it has been shown that even the most detailed and in-depth analyzes cannot
guarantee the full identification of all possible factors.

1.7 Thesis organization

The document is organized as follows. Chapter 2 presents a brief review of
the combinatorial optimization grouping problems and the state-of-the-art solution
methods. Likewise, Chapter 3 introduces the problem under study, the NP-hard
combinatorial optimization grouping problem parallel-machine scheduling with
unrelated machines and makespan minimization, referred to as R||Cmax and a summary

6 CHAPTER 1. INTRODUCTION

of the results obtained by the best state-of-the-art algorithms. Later, Chapter 4 presents
the first Grouping Genetic Algorithm (GGA) for R||Cmax, highlighting its main features
and strengths over other heuristic algorithms. On the other hand, Chapters 5, 6, 7,
and 8 include a set of experimental studies to analyze and improve the optimization
process of the GGA components: population initialization strategy, crossover operator,
mutation operator, and reproduction technique, respectively. Similarly, Chapter
9 includes the approach, based on exploratory data analysis techniques, used to
characterize the properties of R||Cmax instances and the optimization process of
the GGA proposed based on the knowledge gained from the study of the GGA
components in isolation in Chapters 5, 6, 7, and 8. Subsequently, Chapter 10 shows the
main computational experiments used to analyze different aspects of the performance
presented by the designed GGA for R||Cmax. Thus, this section shows the way the GGA
performance evolved, as well as a set of tests to assess the efficiency and robustness of
the final version of the proposed GGA. Finally, Chapter 11 presents the conclusions
obtained from this research work and the proposed paths of work.

Chapter 2
Grouping problems

Combinatorial optimization is a challenging research area with many real-world
applications. Such applicability has motivated the scientific community to devote
great efforts to generate useful knowledge to solve them. It is well-known that many
combinatorial optimization problems (COPs) have high complexity, in such a way
that in some cases, to date, no algorithm efficiently solves all their possible scenarios.
Problems with the before-mentioned trait belong to the NP-hard class [6]. Over the last
decades, numerous COPs with different characteristics have been identified. Therefore,
the state-of-the-art includes several classifications that organize them according to their
particular properties. One of the most studied COP classes is the well-known grouping
problems class that, in general, implies to search an efficient distribution of a collection
of items among a set of groups [7].

The grouping problems class includes combinatorial problems of challenging complexity,
in such a way that most of them require a computationally expensive solution process.
The solution of a grouping problem consist of finding an efficient partition of a set
V with n items into a collection of D mutually disjoint subsets (groups) Gi, so that:
V = ∪D

i=1Gi and Gi ∩ Gj = ∅, i ̸= j. In this way, Figure 2.1 shows a set V with
n = 10 items divided into a collection of D = 4 groups. Solution methods for grouping
problems seek for an efficient distribution of the n items into D (1 ≤ D ≤ n) distinct
groups, such that the so-called objective function is minimized or maximized. This
objective function is frequently formulated based on the structure of the groups, as well
as the characteristics of the entire collection of groups. Furthermore, it is important
to remark that all possible groupings are not allowed, since a set of constraints and
conditions must be satisfied. In this order of ideas, some grouping problems are highly
constrained, increasing their difficulty [8]. To facilitate the exploration of the search
space of some grouping problems, metaheuristic algorithms can use cost functions that
do not necessarily correspond to the objective functions of the problems. This action
is helpful to address grouping problems where solutions with different partitions of the
items can produce the same value of the objective function. Thus, the cost function
allows differentiating the quality of two or more solutions that are different, but have
the same value of the objective function. The cost function plays an important role
in the GGA performance, since, generally, the search directions are generated based

7

8 CHAPTER 2. GROUPING PROBLEMS

on the characteristics of the best solutions. Therefore, it is essential to differentiate
their quality. This approach mainly has been used to address the Bin Packing problem.
However, the literature also includes other grouping problems handled in this way, like
Graph Coloring and Task Assignment.

Figure 2.1: An example of a grouping problem with ten items distributed among four groups.

According to the scope of this literature review until 2019, the GGA has been used
to solve forty NP-hard grouping problems, listed in Table 2.1. This chart contains the
name of each grouping problem in the first column and some related works in the second
one. The details of the general properties of most of these problems can be found in
[7].

Table 2.1: Grouping problems addressed with GGAs. Problem: name of the problem.
Related works: papers that introduce GGAs to solve each grouping problem.

Problem Related works
Bin Packing [8, 9, 10, 11, 12, 13, 14, 15, 16, 17]
Blockmodel [18, 19]
Carbon-Aware Distributed Cloud [20]
Care Task Assignment [21]
Cell Formation [22, 23, 24, 25, 26, 27, 28, 29, 30, 31]
Clique Partitioning [32]
Clustering [33, 34, 35, 36, 37, 38, 39]
Cutting Stock [40]
Economy of Scale [8, 41]
Equal Piles [8, 42]
Estimating Discretionary Accruals [43]
Facility Location [44]

Continues in next page.

9

Problem Related works
Vehicle Routing [45, 46]
Feature Selection [47, 48]
Job Shop Scheduling [49, 50]
Graph Coloring [51, 52]
Grouping Partners in Cooperative Learning [45]
Handicapped Person Transportation [53]
Home Healthcare Scheduling [54, 55, 56]
Line Balancing [45, 57]
Material Cutting [58]
Maximally Diverse [59]
Microcell Sectorization [60]
Modular Product Design [45, 61, 62]
Multiple Knapsack [63, 64]
Multiple Travelling Salesperson [65, 66, 67, 68]
Multiprocessor Scheduling [69]
Multivariate Micro-aggregation [70]
Order Batching [45, 71]
Parallel-Machine Scheduling [7]
Pickup and Delivery [72]
Registration Area Planning [73, 74, 75]
Reviewer Group Construction [76]
Stock Portfolio [77, 78, 79, 80, 81, 82, 83]
Supplier Selection [45]
Task Assignment [84, 85, 86, 87]
Team Formation [45, 88]
Timetabling [45, 51, 89]
Transition Path Generation [90, 91]
WiFi Network Deployment [92]

It emerges from Table 9.1 that some grouping problems such as Bin packing, Cell
Formation, Stock Portfolio, and Clustering have many related works. This phenomenon
can occur for two reasons. The first case is that some problems have several variants
with different constraints and conditions, and there are GGAs to address some of them,
such as Cell Formation [22, 25, 28, 29]. The second reason is that a problem has been
addressed by several GGAs with different representation schemes, variation operators,
and reproduction techniques. For example, the GGAs introduced in [9, 11, 15] to solve
the Bin Packing problem.

Given the wide variety of grouping problems, A.H. Kashan et al. introduced a
classification, based on the number of groups, the type of groups, and the dependence
on the groups’ order [4]. To create this classification, they took into consideration that
the objective functions in the majority of the grouping problems are formulated based
on the composition of the groups and the entire array of groups. In this way, the
criterion number of groups allows arranging the problems as constants or variables. If
the number of groups D is known, the problem is constant. Thus, the problem-solution

10 CHAPTER 2. GROUPING PROBLEMS

consists of finding an efficient assignment of the n items among the D given groups.
Conversely, if the value of D is unknown, the problem is variable. Hence, the solution
problem comprises the exploration of suitable groupings to minimize or maximize the
number D of groups needed to allocate all the items n. On the other hand, the criterion
type of groups allows dividing the grouping problem into identical and non− identical
problems. If the quality of a solution is modified, by exchanging all the items of two
groups, that problem belongs to the non − identical grouping class. Otherwise, the
problem is part of the identical category. Finally, the criterion dependence on the
groups’ order arranges the grouping problems into order dependent and not order
dependent. When the solution quality depends on the groups’ order, the problem is
order dependent. Consequently, grouping problems without such dependency belong
to the not order dependent class [4].

During the literature review, we observed that some grouping problems included in
Table 9.1 share a characteristic that, according to the scope of this study, has not been
considered to classify them. That is the dependency on the order of the items in each
group, like Cell Formation [22, 23, 24, 25, 26, 27, 28, 29, 30, 31] and Multiple Travelling
Salesperson [65, 66, 67, 68]. In this class of problems, that we named items order
dependent, the quality of the solutions can be modified when altering the position of
the items within a single group.

It is important to note that some real applications can include problems related to the
grouping of elements that do not meet the definition proposed by Falkenauer [93]. Such
is the case of the lifetime maximization problems in Wireless Sensor Networks (WSNs),
where the elements can belong to more than one group, allowing non-disjoint groups
[94]. Currently, state-of-the-art GGAs cannot address these types of problems because
they use operators designed to work with disjoint groups. In this way, if an item is in
more than one group, it is removed from one of them to avoid non-disjoint groups. For
future works, it could be interesting to study the performance of grouping operators
adapted to solve this kind of problems.

Grouping problems occur in many practical applications, and there is a need for
algorithms that solve them efficiently. The literature includes a great variety of
solution methods, classified into two main groups, known as exact or approximate
approaches. The exact algorithms guarantee to find an optimal solution in finite time by
systematically exploring the search space. However, due to the complexity of NP-hard
problems, the time required to solve them can grow exponentially in the worst case.
Under these conditions, it is necessary to make use of approximate algorithms, also
known as metaheuristic algorithms, which, although they do not guarantee to find the
optimal solution, can obtain high-quality solutions in a considerably short computation
time.

2.1 Metaheuristic algorithms in grouping problems

The specialized literature includes several algorithms designed to solve grouping
problems using different approaches, like traditional mathematical methods, dynamic
programming, simple heuristics, enumerative methods, and metaheuristics. In this

2.1. METAHEURISTIC ALGORITHMS IN GROUPING PROBLEMS 11

research, only the most representative metaheuristics are surveyed, comprising four
neighborhood searches, seven evolutionary algorithms, as well as six swarm intelligence
algorithms. In this way, this section presents the information thrown by google scholar
using as search terms each before-mentioned “metaheuristic" for each "grouping
problem" listed in Table 2.1 up to 2019. Metaheuristic methods have been broadly
used to solve grouping problems, because of their general nature which allows them to
be efficient in different problems without significant changes [95]. It is important to
note that the state-of-the-art also includes hybrid metaheuristics (i.e., solution methods
made up of a metaheuristic that works as the principal search motor and one local
search that works in a second level) [96, 97, 98, 99, 100]. In this review, metaheuristics
in hybrid or memetic algorithms are identified and considered individually. The readers
interested in the development of hybrid metaheuristics are referred to [101] for useful
guidelines.

2.1.1 Neighborhood searches

Neighborhood searches also known as trajectory searches work with a single solution.
In general, the search process of metaheuristics designed using this approach consists
of generating and exploring the neighbors of the current solution. Neighbor solutions
are created using different techniques; for example, modifying the value of one variable
or exchanging two or more elements. Hence, the neighborhood size depends on the
strategy used to generate the neighbors. The performance of neighborhood searches
has been examined by solving different grouping problems. For some problems, it
has been demonstrated that simple local search methods can outperform sophisticated
hybrid methods, producing high-quality solutions in a short time [102, 103]. An
example is the work of Santos et al., where the performance of different neighborhood
searches designed for solving the unrelated Parallel-Machine Scheduling (PMS) problem
with sequence-dependent setup times is investigated, analyzing different neighborhood
structures, diversification and intensification strategies and parameter-tuning challenges
[104]. For this review, four neighborhood metaheuristics are considered: Hill Climbing
(HC) [105], Variable Neighborhood Search (VNS) [106], Simulated Annealing (SA) [107]
and Tabu Search (TS) [108].

The Hill Climbing (HC) algorithm receives its name because it manages an iterative
improvement strategy. In this form, the neighborhood of the current solution is
used to increase (improve) its quality each cycle of the search process. Regularly,
HC starts from an arbitrary solution (current solution). Then, iteratively tests
new candidate solutions in the neighborhood of the current solution and adopts
the new ones if they are better. HC techniques have been very efficient when
they are combined with other approaches like dynamic programming and genetic
algorithms to create hybrid and memetic algorithms. Until now, HC has been used
to address thirteen of the twenty-two grouping problems contemplated in this review
[105, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 100]. For example, Kato
et al. introduced one of the last related works on solving grouping problems using HC
[120]. In this work, the authors present a hybridization of HC with Particle Swarm
Optimization (PSO) to address an extension to the traditional Job Shop Scheduling

12 CHAPTER 2. GROUPING PROBLEMS

(JSS) widely reported in the literature. The performance of the proposed algorithm
was compared against other hybridizations of PSO and different local searches of the
state-of-the-art algorithms, showing better results.

Similarly, Variable Neighborhood Search (VNS) is an iterative improvement search;
however, this method explores increasingly distant neighborhoods, one at the time.
Starting from an initial incumbent solution, a random solution is generated from the
current neighborhood and a local search is applied to get a local optimum. If a new
incumbent solution is found (the local optimum better than the current incumbent
solution), the process is repeated starting with the first neighborhood. Otherwise,
the process is repeated with the next neighborhood (which is typically larger). VNS
has proven its efficiency in several grouping problems, working within cooperative
approaches with exact techniques and as a part of hybrid algorithms combined with
other metaheuristics. Until now, VNS has been adapted to tackle seventeen of the
twenty-two grouping problems contemplated in this review [121, 122, 123, 124, 125,
126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 106, 136]. Among the most recent
efforts to address grouping problems using VNS is the work presented by Santos et al.,
in 2019 [121]. In this study, the authors solve large instances of a new variant of the
Bin Packing (BP) problem with a simple VNS, improving the results of sophisticated
procedures.

On the other hand, Simulated Annealing (SA) takes as inspiration the chemical process
of metal annealing. SA attempts to reduce the probability of becoming stuck in a
local optimum by sometimes accepting neighbors with a lower quality than the current
solution. In this algorithm, if a new solution in the neighborhood is better than the
current solution, it will always replace it. But if the neighbors of the current solution
are worse than the current solution, they are evaluated to decide probabilistically if
a transition to a new solution is made or not. SA has been successfully applied
to numerous grouping problems, and several modifications of the accepting rules
and hybridizations with other metaheuristics have improved the performance of
this algorithm. According to the scope of this review, eighteen of the twenty-two
grouping problems contemplated in this review have been addressed by employing SA
[107, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 133, 148, 149, 150, 151, 152].
In 2019, Leite et al. presented one of the last proposals to solve grouping problems
with SA [146]. In this work, the authors assessed the performances of a fast SA to
solve the Timetabling Problem (TP). They performed an experimental study solving
the 2nd International Timetabling Competition (ITC 2007) benchmark set with SA.
Experimental results indicate that SA improves on one out of twelve instances, and
ranks third among the five best algorithms.

The last neighborhood search contemplated for this review is Tabu Search (TS), which
uses the concept of memory and implements it through simple structures. TS works
as an ordinary descent method that only permits moving to neighbors that improve
the quality of the current solution. However, a short-term memory, known as the tabu
list, stores recently visited solutions (or their attributes) to expand the local search
and escape from local optimums. Thus, the neighborhood of the current solution is
restricted, considering the solutions that do not belong to the tabu list. Over the years,
several developments and refinements of TS have been proposed, including different

2.1. METAHEURISTIC ALGORITHMS IN GROUPING PROBLEMS 13

forms of memories, as well as hybridizations with other techniques. Thanks to these
characteristics, TS has been used to deal favorably with nineteen of the twenty-two
grouping problems contemplated in this survey [153, 154, 155, 108, 156, 157, 158, 159,
160, 161, 162, 163, 164, 165, 118, 96, 166, 167, 168]. One of the last applications of
TS for solving grouping problems is the work presented by Peng et al., who addressed
the Job Shop Scheduling (JSS) problem by combining TS with a genetic algorithm.
Experimental results pointed out that this hybrid procedure has high optimization
performance and practical value in the field of JSS [169].

It is important to note that the state-of-the-art holds other local search metaheuristic
algorithms applied to solve grouping problems, like Greedy Randomized Adaptive
Search Procedure (GRASP) [170, 171] and Iterated Local Search (ILS) [172, 173].
However, this review considers only the most representative, that is, the four already
mentioned. Table 2 indicates the neighborhood algorithms (rows) used to solve each
grouping problem (columns), according to the main research results in the field. Cells
contain related work references, while empty cells indicate that we did not find any
reference in specialized literature about it. Therefore, Tabu Search is the most used
neighborhood search since it has been used to solve nineteen grouping problems. In
contrast, Hill Climbing has been applied to solve thirteen problems only.

Table 2.2: Grouping problems addressed using neighborhood searches.

Metaheuristic

B
P

L
B

A
L
D

V
R

C
F

M
T

S

F
L

J
S
S

T
F

M
P

D

M
M

M
K

C
S

T
P

C
P

M
D

S
S

G
C

P
M

S

O
B

H
H

C

S
P

HC [105] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [100]
VNS [121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [106] [136]
SA [107] [137] [138] [139] [140] [141] [142] [143] [144] [145] [146] [147] [133] [148] [149] [150] [151] [152]
TS [153] [154] [155] [108] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [118] [96] [166] [167] [168]

2.1.2 Evolutionary algorithms

Evolutionary algorithms are stochastic search methods inspired by the natural
biological evolutionary process. These methods simulate some mechanisms of
organic evolution, such as mutation, crossover, and natural selection. Until now,
different evolutionary algorithms have been proposed, which use several variants
of the before-mentioned mechanisms. Evolutionary algorithms used to address
grouping problems, so far, include Genetic Algorithms (GA), Evolution Strategies
(ES), Evolutionary Programming (EP), Genetic Programming (GP), and Differential
Evolution (DE). Over the years, EAs have been widely applied to solve grouping
problems with a good measure of success. An excellent overview of algorithms
performance and current trends in EAs for Clustering Problems (CP) is presented
by Hruschka et al. [174]. This paper discusses key issues on the design of EAs for data
partitioning problems, such as usually adopted representations, evolutionary operators,
and fitness functions.

The Genetic Algorithm (GA) is the most widely known evolutionary algorithm. The
basic GA is very generic, and many aspects can be implemented differently according

14 CHAPTER 2. GROUPING PROBLEMS

to the problem. The process starts generating a random population of solutions.
Then, for a certain number of generations, selected individuals are recombined and
mutated to produce better solutions. First, a selection strategy is used to choose
individuals, considering their fitness value. Next, the crossover operator is applied
to the selected individuals to produce offspring, and these offspring are introduced
to the population, employing a replacement strategy. Finally, some individuals are
selected to be the subject of slight random perturbations through the mutation
operator. The algorithm iterates a predefined number of generations, or until some
stopping criterion, related to the problem or the algorithm performance, is met.
Many variants of GAs have been developed and have been applied to solve a wide
range of grouping problems, including GAs with different schemes for representation
of solutions, selection, crossover, replacement, mutation, etc. This metaheuristic has
shown promising results in solving grouping problems because it can incorporate new
general or specific ideas easily. GAs have been hybridized with many other techniques,
achieving high-quality results. Consequently, it has been used to solve the twenty-two
grouping problems considered in this review [175, 176, 177, 178, 98, 179, 180, 181, 182,
183, 184, 185, 186, 116, 187, 133, 188, 189, 190, 191, 192, 193]. In [175] is presented
one of the last applications of GA solving grouping problems. In this work, Laabadi
et al. used GA to solve the a variant of Bin Packing (BP) problem, finding promising
results. In [179], Zhu and Wu present another recent application of GA to solve grouping
problems. In that work, the authors proposed an improved model for the optimization
of Multiple Traveling Salesperson (MTS) problems with complex topology structure,
the model was solved with the GA, showing excellent results.

Evolution Strategies (ES) paradigm was proposed originally by Rechenberg and
Schwefel to work in continuous spaces, and later it was adapted to the discrete
domain. In general, this evolutionary algorithm begins with a random population
consisting of µ solutions; then, in each generation, the µ parents produce λ descendants
through recombination and mutation, and the selection operator determines the µ
fitter individuals to become the parents of the next generation. Initially, ES was
designed to work with one parent and one child. And later, (µ + λ)-ES and (µ,
λ)-ES extensions were proposed to consider different selection schemes, giving rise to
the self-adaptation of parameter mechanisms that encode strategy parameters directly
onto the chromosome. In this way, (µ, λ)-ES uses a selection mechanism that only
considers the λ newly generated offspring for the next generation, discarding the
parents from the current generation even when they are better than all offspring.
In contrast, (µ + λ)-ES does consider both the offspring and the parents during
the selection process. Nowadays, some efforts have been carried out using ES
to solve eleven of the twenty-two grouping problems contemplated in this survey
[194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204]. In 2018, Wang et al. presented one
of the last studies related to the application of ES to solve grouping problems [199]. In
this work, the authors analyzed the performance of ES in solving 6,000 random classic
instances of a variant of the Team Formation (TF) problem, where ES reached the
state-of-the-art results. Besides, Wang et al. studied the performance of ES addressing
1,556 realistic instances, where ES showed outstanding results.

Evolutionary Programming (EP) is quite similar to ES. Nevertheless, in EP, there is

2.1. METAHEURISTIC ALGORITHMS IN GROUPING PROBLEMS 15

no recombination operator because each individual corresponds to a distinct species;
furthermore, the selection mechanism is different. In general, EP begins with a random
population consisting of µ solutions; then, for a certain number of generations, the µ
parent solutions of the current population are mutated to generate µ children. Next,
parents and children compete in stochastic round-robin tournaments to be parents of
the next generation. According to the state-of-the-art, EP has been used to address six
of the twenty-two grouping problems contemplated in this review: Multiple Traveling
Salesperson (MTS) [205], Cutting Stock (CS) [206], Cell Formation (CF) [207], Job
Shop Scheduling (JSS) [208], Parallel Machine Scheduling (PMS) [209], and Clustering
Problem (CP) [210]. For example, Chiong et al. used EP to solve the CS problem in
[206]. In this work, the authors conducted an experimental study on solving benchmark
problems to assess the performances of EP, getting promising results.

The paradigm of Genetic Programming (GP) adopts a similar search strategy as a
GA for creating computer programs. In GP, the chromosomes of the population are
not solutions as used in GAs, they are algorithms, represented by tree structures,
that, when executed, allow to obtain candidate solutions to the problem at hand.
GP starts with an initial population of randomly generated tree structures, iteratively
evolved using special genetic operations adapted to work with tree structures. First, the
fitness of each chromosome is evaluated, in terms of its performance, on the problem
which it represents. Next, the variation operators are selected probabilistically for
producing offspring, and a replacement strategy is applied to select the chromosomes
for the new population. GP has allowed creating new techniques of solution, going
from single assignment rules to more sophisticated methods like hyper-heuristics and
hybrid metaheuristics. To date, GP has been used to address twelve of the twenty-two
grouping problems contemplated in this review [211, 212, 213, 214, 215, 216, 217, 218,
219, 220, 221, 222]. One of the grouping problems most studied using GP is the Job
Shop Scheduling (JSS) problem [215]. Derived of this, Nguyen et al. summarise existing
studies in this field until 2019 to provide new paths of work. They pointed out that the
use of GP to solve JSS has contributed enough knowledge to the area. Nevertheless,
they observed that there is still a lack of efficient representations of dispatching rules
to enhance the effectiveness of GP to solve JSS.

Besides, Kenneth Price and Rainer Storn introduced the Differential Evolution (DE)
algorithm in 1995. Originally, DE was designed to solve continuous problems.
However, the state-of-the-art includes some adaptations of DE to deal with grouping
problems. Its main characteristic lies in the variation operators since it uses vector
differences to generate new solutions. DE begins generating an initial uniformly
distributed random population of individual vectors. At each generation of the
evolution process, for each vector in the population, also called target vector, mutation
and crossover are applied to produce a trial vector. First, a mutant vector of the
target vector is generated, employing a slight random perturbation. Next, the mutant
vector and its corresponding target vector are recombined to generate a trial vector.
Then, the selection operator compares the fitness of each trial vector to that of
its corresponding target vector to determine which one will be maintained into the
next generation. Due to its success in solving continuous problems, DE has been
extended to solve grouping problems and combined with other metaheuristics in hybrid

16 CHAPTER 2. GROUPING PROBLEMS

methods obtaining effective and competitive results. Until now, DE has been used
to solve thirteen of the twenty-two grouping problems contemplated in this review
[223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235]. In [225], one of the
most recent applications of DE to solve grouping problems is presented, addressing a
real-world application of the Vehicle Routing (VR) problem. The central idea of this
work is to design optimal routes minimizing the emission of direct greenhouse gases (i.e.,
carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). From this study, the
authors found interesting results for the design of routes with these characteristics.

In 1992, Emanuel Falkenauer introduced one of the most popular algorithms to solve
grouping problems, the Grouping Genetic Algorithm (GGA) [93]. In general, this
metaheuristic is an extension of the Genetic Algorithm that incorporates a group-based
representation scheme. Thus, grouping problems are tackled considering the groups as
the unit instead of the elements in each group. Similar to the Genetic Programming
algorithm, variation operators must be adapted to work efficiently with group-based
solutions encoding. GGAs have shown notable performance solving grouping problems;
consequently, it has been employed to address twenty-one of the twenty-two problems
surveyed [16, 236, 237, 238, 239, 65, 240, 49, 88, 241, 70, 64, 40, 242, 89, 59, 243, 37,
244, 56, 83]. In 2019, Singh and Sundar presented one of the most recent related works
on solving grouping problems with Grouping Genetic Algorithms (GGA) [59]. In this
work, the authors compared the performances of a GGA hybridized with a local search
based on a swap strategy against a Tabu Search (TS) and a Variable Neighborhood
Search (VNS) on solving the Maximally Diverse (MD) problem. Experimental results
suggest that GGA reaches better results than TS and VNS, particularly for larger
instances.

Finally, the success of GGAs in solving grouping problems motivated the development
of the Grouping Evolution Strategies (GES). An extension of Evolution Strategies that
incorporates the grouping representation scheme and a grouping mutation operator.
GES is one of the most recent evolutionary algorithms. However, it has already been
used to tackle Assembly Line Design (ALD), Bin Packing (BP), Order Batching (OB),
Clustering Problem (CP), and the Parallel-Machine Scheduling (PMS) problem showing
outstanding results [4, 245, 246, 247]. In 2018, Nejad et at. introduced one of the last
applications of GES to solve a grouping problem [245]. In this work, the authors studied
the performance of GES solving a variant of the ALD problem. They conducted an
experimental study using test instances existing in the literature. Experimental results
indicate that GES reaches the global solution of most problems of the high dimensional
problems.

In the state-of-the-art, it is notable that there are other evolutionary algorithms used to
solve grouping problems, such as Water Wave Optimization [248, 249]. However, this
review considers only the most representative, that is, the seven already mentioned.
Table 3 includes the evolutionary algorithms (rows) used to address each grouping
problem (columns), according to the main research results in the field. Cells contain
related work references. Thus, empty cells indicate that we did not find any reference
in specialized literature about it. As it can be seen, Genetic Algorithms and Grouping
Genetic Algorithms are the most used evolutionary algorithms since they have been
used to solve twenty-two and twenty-one of the grouping problems considered in this

2.1. METAHEURISTIC ALGORITHMS IN GROUPING PROBLEMS 17

survey, respectively. In contrast, Evolutionary Programming and Grouping Evolution
Strategies have been used to tackle only six and five grouping problems, respectively.

Table 2.3: Grouping problems addressed using evolutionary algorithms.

Metaheuristic
B

P

L
B

A
L
D

V
R

C
F

M
T

S

F
L

J
S
S

T
F

M
P

D

M
M

M
K

C
S

T
P

C
P

M
D

S
S

G
C

P
M

S

O
B

H
H

C

S
P

GA [175] [176] [177] [178] [98] [179] [180] [181] [182] [183] [184] [185] [186] [116] [187] [133] [188] [189] [190] [191] [192] [193]
ES [194] [195] [196] [197] [198] [199] [200] [201] [202] [203] [204]
EP [207] [205] [208] [206] [210] [209]
GP [211] [212] [213] [214] [215] [216] [217] [218] [219] [220] [221] [222]
DE [223] [224] [225] [226] [227] [228] [229] [230] [231] [232] [233] [234] [235]
GGA [16] [236] [237] [238] [239] [65] [240] [49] [88] [241] [70] [64] [40] [242] [89] [59] [243] [37] [244] [56] [83]
GES [4] [245] [246] [247] [4]

2.1.3 Swarm intelligence algorithms

Swarm intelligence algorithms emulate the collective self-organized behavior of natural
systems for solving problems. In a swarm intelligence, a population of simple agents
work together to produce computational intelligence. In recent years, these algorithms
have been applied to a wide variety of grouping problems, showing excellent results.
The performance of swarm intelligence strategies has been tested in solving different
problems [250, 251, 252]. An example is the work of Milan et al., where the advantages
and disadvantages of nature-inspired metaheuristics for solving the Load Balancing
(LB) problem are analyzed, identifying the most effective techniques [253]. To date,
different algorithms have been proposed following this approach, including Ant Colony
Optimization (ACO) [254], Particle Swarm Optimization (PSO) [145], Cuckoo Search
(CS) [255], Artificial Bee Colony (ABC) [256] and Firefly Algorithm (FA) [257].

The ability of real ants to find the shortest path between their nest and a source of food
was the inspiration to develop Ant Colony Optimization (ACO). This metaheuristic was
designed to solve discrete problems, specifically for the traveling salesman problem.
ACO encodes a given combinatorial optimization problem instance as a fully connected
graph whose nodes are components of solutions, and edges are connections between
components. A variable called pheromone is associated with each component, which
can be read and modified by each ant. This value serves as a form of memory. At each
iteration of the algorithm, several artificial ants are considered. Each of them builds a
solution to the problem, step by step, adding a feasible solution component, according to
a stochastic mechanism that is biased by the pheromone and heuristic information about
the problem. Next, the pheromone values are updated to make solution components
belonging to good solutions more desirable for ants in future iterations. Many variants
of ACO have been created and applied to a wide range of discrete problems, showing
outstanding results. The aforementioned motivated the use of ACO in twenty of the
twenty-two grouping problems contemplated in this review [258, 259, 260, 261, 95,
262, 263, 264, 265, 266, 267, 254, 268, 269, 188, 270, 271, 272, 273, 274]. One of the
last proposals on solving grouping problems with ACO is presented by Selvakumar
and Guanasekaran, who introduced an enhanced ACO to solve the Load Balancing
(LB) problem [259]. Experimental results indicate that the proposed algorithm has a

18 CHAPTER 2. GROUPING PROBLEMS

significant improvement over traditional algorithms, with respect to average execution
time, average response time, and total cost.

In contrast, Particle Swarm Optimization (PSO) is a metaheuristic created to optimize
continuous search spaces. This metaheuristic was designed using as inspiration the
swarming and flocking behaviors in animals. PSO begins generating a population of
particles with random positions and velocities on the search space. Each particle is a
candidate solution to the problem, defined by three vectors in the d-dimensional search
space: a velocity vector, a position vector, and a memory vector, which helps it in
remembering its fittest known position discovered so far. At each iteration, directed
transformations move each particle in the search space in response to discoveries
obtained from the environment. First, the velocity of the particle is dynamically
adjusted, considering its fittest known position and the position of the best particle
among all the particles in its topological neighborhood. Next, the position of the
particle is updated, adding the velocity vector to the position vector. Finally, the
fitness of the particle is evaluated and, if necessary, the best-discovered locations are
updated. Although PSO is planned to deal with continuous domains, it has also been
adapted to tackle twenty of the twenty-two grouping problems contemplated in this
review [275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 145, 286, 287, 288, 289,
290, 272, 291, 292]. In [277] is presented one of the most recent applications of PSO to
solve grouping problems. In this work, PSO was applied to solve a variant of Assembly
Line Design (ALD) problem. Experimental results suggest that the proposed approach
reached good solutions for all test instances within a short computational time.

In the same way, Xin-She Yang and Suash Deb introduced the Cuckoo Search (CS)
metaheuristic in 2009. They took as inspiration the behavior of some cuckoo species
during the breeding stage, that lay eggs in a host’s nest, removing others’ eggs to
increase the hatching probability of their own eggs. In the optimization context, each
egg in the nest represents a solution, and the cuckoo’s egg represents a new solution.
When generating a new solution (a cuckoo’s egg), a Lévy flight is performed, which
essentially provides a random walk. CS starts generating a population of host nests,
then for a certain number of iterations, new and potentially better solutions replace
solutions in the nests. In each iteration, a new solution is generated, and its quality
is compared with another random old solution in the population. In the case the new
solution is better, it will replace the old solution. Therefore, a fraction of the worst
solutions is replaced by new solutions. According to the scope of the literature review,
fifteen of the twenty-two grouping problems contemplated in this review have been
addressed employing CS [293, 294, 295, 296, 297, 298, 299, 300, 301, 255, 302, 303, 304,
97, 305]. In 2019, Karoum and Elbenani analyzed the performances of CS in solving
the Cell Formation (CF) problem [297]. The results indicate that this metaheuristic is
suitable for addressing this problem since it can reach 32 out of 35 benchmark problems
(91.43%).

Similarly, the collective behavior of honey bees during the search and exploration of
food sources was used by Karaboga in 2005 to develop the Artificial Bee Colony (ABC).
Thus, three types of solutions (employee, onlooker, and explorer) are used to carry out
an efficient search process. According to the state-of-the-art, sixteen of the twenty-two
grouping problems contemplated in this review have been tackled using ABC [306,

2.1. METAHEURISTIC ALGORITHMS IN GROUPING PROBLEMS 19

307, 308, 309, 256, 310, 264, 311, 312, 313, 314, 315, 316, 317, 318, 319]. One of the
most recent works on solving grouping problems using Artificial Bee Colony (ABC) is
presented by Davoodi et al., in 2019. In this work, the authors hybridized ACO with
a Genetic Algorithm (GA) to solve the Vehicle Routing (VR) problem [308]. Results
suggest that the production of the explorer bees is the most relevant factor in the search
process of the proposed metaheuristic for solving VR.

Another swarm intelligence used to solve grouping problems is the Firefly Algorithm
(FA), which is inspired by the social communication of fireflies via luminescent flashes
and their synchronization. In this metaheuristic, a solution is represented by a firefly
with a brightness associated that corresponds to its quality, and each firefly attracts its
partners proportionally to its brightness. FA starts creating a population of fireflies
(solutions) randomly distributed in the search space. Then, for a certain number
of iterations, fireflies will move toward other positions, finding potential candidate
solutions. For each firefly in the population, its brightness is compared with all other
solutions, and its position is updated considering brighter fireflies. To date, FA has
been used to tackle fifteen of the twenty-two grouping problems contemplated in this
review [320, 321, 322, 323, 324, 325, 326, 327, 328, 257, 329, 330, 252, 331, 332]. In
2018, Ezugwu and Akutsan presented one of the last related works on solving grouping
problems applying FA [252]. In this work, the authors addressed a variant of the Parallel
Machine Scheduling (PMS) problem with FA. Experimental results indicate that the
performance of the proposed FA is competitive, fast, and efficient for both small and
large problem instances.

The last swarm intelligence technique considered in this review is the Grouping
Particle Swarm Optimization (GPSO), an extension of the traditional Particle Swarm
Optimization that incorporates the grouping representation scheme, as well as a
grouping variation operator. Until now, only five of the twenty-two grouping problems
contemplated in this review have been addressed using this technique, because it is a
relatively new algorithm [333, 56, 334, 335]. However, it has shown promising results. In
2016, Xu proposed one of the last applications of GPSO on solving grouping problems.
In this work, the author studied the performances of GPSO to solve ten real instances
from the industry and ten more randomly generated of a variant of the Cutting Stock
(CS) problem, showing interesting results.

It is important to remark that the state-of-the-art includes other swarm intelligence
algorithms used to solve grouping problems, like Biogeography-Based Optimization
(BBO), applied to solve Bin Packing and Graph Coloring [336, 337]. However, this
review considers only the most representative, that is, the six already mentioned. Table
4 shows which swarm intelligence algorithms (rows) have been used to tackle each
grouping problem (columns). Cells contain related work references. As can be seen, Ant
Colony Optimization and Particle Swarm Optimization are the most popular swarm
intelligence algorithms since they have been used to tackle twenty grouping problems.
In contrast, only five problems have been addressed employing the Grouping Particle
Swarm Optimization since it is a relatively new metaheuristic.

20 CHAPTER 2. GROUPING PROBLEMS

Table 2.4: Grouping problems addressed using swarm intelligence metaheuristics.

Metaheuristic

B
P

L
B

A
L
D

V
R

C
F

M
T

S

F
L

J
S
S

T
F

M
P

D

M
M

M
K

C
S

T
P

C
P

M
D

S
S

G
C

P
M

S

O
B

H
H

C

S
P

ACO [258] [259] [260] [261] [95] [262] [263] [264] [265] [266] [267] [254] [268] [269] [188] [270] [271] [272] [273] [274]
PSO [275] [276] [277] [278] [279] [280] [281] [282] [283] [284] [285] [145] [286] [287] [288] [289] [290] [272] [291] [292]
CS [293] [294] [295] [296] [297] [298] [299] [300] [301] [255] [302] [303] [304] [97] [305]
ABC [306] [307] [308] [309] [256] [310] [264] [311] [312] [313] [314] [315] [316] [317] [318] [319]
FA [320] [321] [322] [323] [324] [325] [326] [327] [328] [257] [329] [330] [252] [331] [332]
GPSO [333] [335] [334] [333] [56]

2.2 Conclusions of the literature review

As a result of the literature review, seventeen metaheuristics and twenty-two grouping
problems were reviewed, comprising four local search strategies, seven evolutionary
algorithms, and six swarm intelligence algorithms. The study revealed that the
metaheuristic used to solve the largest number of grouping problems is the genetic
algorithm. Figures 2.2 and 2.3 show a graphical comparison of the literature review
summarized in Tables 1-4. Figure 2.2 shows a graphical comparison of the number
of grouping problems (indicated on the horizontal axis) addressed by each algorithm
(depicted on the vertical axis).

From this plot, one can see that Tabu Search (TS) is the local search used to address
the greatest number of the grouping problems considered in this review since it has
been applied to solve nineteen of the twenty-two problems. In contrast, Hill Climbing
(HC) only has been used to address thirteen problems. Regarding swarm intelligence
algorithms, Figure 2.2 indicates that Ant Colony Optimization (ACO) and Particle
Swarm Optimization (PSO) have been the metaheuristics used to solve the greatest
number of problems, applied to solve twenty of the twenty-two problems considered.
Finally, Figure 2.2 indicates that from the seventeen selected metaheuristics, the
evolutionary algorithms: Genetic Algorithms (GA) and Grouping Genetic Algorithms
(GGA) have been used to solve a wider range of the problems, applied to solve
twenty-two and twenty-one problems, respectively.

On the other hand, the detail of the number of algorithms (horizontal axis) used to
address each grouping problem (vertical axis) is presented in Figure 2.3. From this plot
can be seen that some grouping problems have been investigated using a wide range of
metaheuristic algorithms, including Job Shop Scheduling (JSS) and Clustering Problem
(CP). In contrast, this picture also shows that there are scarce studies to solve problems,
like Modular Product Design (MPD), and Multivariate Microaggregation (MM).

In addition to this, Figure 2.4 includes the number of results thrown by google scholar
about the term “metaheuristic" for each grouping problem listed in Table 1 from 2015 to
2019. This graph suggests that there have been several studies on solving problems like
Bin Packing (BP), Load Balancing (LB), Vehicle Routing (VR), Facility Location (FL),
and Job Shop Scheduling (JSS) using metaheuristics over the last years, highlining the
clear intensification on the study of the Vehicle Routing (VR) problem. In contrast,
Figure 2.4 also shows the least studied grouping problems, including Multivariate

2.2. CONCLUSIONS OF THE LITERATURE REVIEW 21

Microaggregation (MM), Modular Product Design (MPD), Maximally Diverse (MD),
and Stock Portfolio (SP). Such problems can be seen as an opportunity niche since
there are many metaheuristics that have not been used to solve them. So it would be
interesting to know their performance addressing them.

The state-of-the-art suggests that problems with a higher occurrence in real-world
applications are the most studied ones. For example, sixteen metaheuristics have been
used to address the Clustering Problem (CP). This problem has received increasing
attention since it occurs in practical problems as off-line and online search engines,
voice and data mining, pattern recognition, image processing, bioinformatics, machine
learning, and reports analysis [338]. Another grouping problem quite investigated is
the Timetabling Problem (TP), which takes place in nurses schedules, sports schedules,
transportation schedules, university schedules, among many other applications [338].
Finally, as Figure 2.4 indicates, another widely studied grouping problem is Vehicle
Routing (VR), which plays a central role in the fields of physical distribution and
logistics. Over the last years, this problem has been significantly studied. As a result,
nowadays, there are a wide variety of variants of VR, metaheuristics that solve them,
and extensive literature about it [124, 178, 278].

Figure 2.2: Comparative graph of the number of grouping problems addressed using each
metaheuristic.

The literature review also allowed to identify possible directions for the development
of more efficient metaheuristic techniques to solve NP-hard grouping problems. Some
important issues are discussed below.

a) In recent years, some efforts have been carried out by proposing and adopting new
search methods to solve grouping problems; for example, Evolution Strategies (ES)
and Evolutionary Programming (EP) in evolutionary computation, as well as the
Firefly Algorithm (FA) and Cuckoo Search (CS) regarding the swarm intelligence

22 CHAPTER 2. GROUPING PROBLEMS

Figure 2.3: Comparative graph of the number of metaheuristics used to address each grouping
problem.

Figure 2.4: Results threw by google scholar about the terms “metaheuristic" for each
“grouping problem" in Table 1.

2.2. CONCLUSIONS OF THE LITERATURE REVIEW 23

approach. That is, there exists a trend to explore the algorithmic behavior of new
metaheuristics addressing grouping problems. However, none of the metaheuristics
in the state-of-the-art has been analyzed to explain the reasons for good or bad
behavior in different grouping problems instances.

b) The current trend is to focus on solving real-world problems, mainly those
directly affecting the society, such as the case of applications related to health.
Nevertheless, for most of the real-world problems, it is unclear how to select
and integrate the appropriate techniques to solve them and what is the expected
performance of different strategies.

c) The group-based representation scheme can be used to improve the performances
of other metaheuristics that solve grouping problems, besides Genetic Algorithms
(GA). But only Particle Swarm Optimization (PSO) and Evolution Strategies
(ES) have been adapted to deal with this issue. Not much work has been done on
the performance study of these new grouping metaheuristics to different grouping
problems.

d) One of the main challenges in the development of high-performance algorithms for
grouping problems is the design of efficient strategies that work together with the
grouping encoding scheme and the features of the grouping problems instances to
find the optimal groups in fewer function evaluations.

The conclusions obtained from the analysis of the seventeen metaheuristic algorithms
used to address the twenty-two NP-Hard grouping problems gave the guideline to
establish the objectives of this research project. We observed that (1) Grouping
Genetic Algorithms (GGA) is the metaheuristic used to solve the widest range
of grouping problems; (2) the GGA had not been used to address the NP-hard
grouping problem Parallel-machine scheduling with unrelated machines and makepan
minimization (R||Cmax); (3) in recent years some efforts have been made proposing
and adopting new search methods to solve grouping problems. However, there are few
studies on the reason for the good or bad behavior of these proposals.

Therefore, in Chapter 4 we present the first GGA for R||Cmax, Chapters 5, 6, 7,
and 8 include systematical studies to analyze in isolation the algorithmic behavior
of each heuristic strategy used by GGA. That is the population initialization strategy,
crossover, mutation, and reproduction technique. The knowledge gained from these
studies will be used to design an Enhanced GGA (EGGA). In this way, Chapter
9 contains an experimental study to characterize the structure of the R||Cmax

instances and the EGGA algorithmic behavior, looking for possible improvements in
its performance. Thus, the knowledge of the problem domain obtained will be used to
design the Final GGA (FGGA). Finally, Chapter 10 includes a set of tests to analyze
the efficiency and robustness of the FGGA.

Chapter 3
The R||Cmax problem

This chapter introduces the problem under study, the NP-hard combinatorial
optimization grouping problem parallel-machine scheduling with unrelated machines
and makespan minimization, referred to as R||Cmax. In this way, this section includes
a general description of the problem, highlighting its main characteristics and the
mathematical model considered in this research. Moreover, it contains a detailed
description of the benchmark of test instances used to evaluate the performance of
the algorithms developed to solve the R||Cmax problem. Finally, this section presents
a survey of the solution methods for R||Cmax in the specialized literature, standing out
the results obtained by the best state-of-the-art algorithms.

The statement of the classical Parallel-machine scheduling problem can be generalized
as follows. Scheduling a collection of n jobs N ={j1, ..., jn} in a set of m machines
M ={i1, ..., im}, in such a way that each machine i can process one job at the time,
and every job is assigned to exclusively one machine. In this sense, the aim is to find
the schedule that optimizes a certain performance measure [339].

Parallel-machine scheduling is, in fact, a family of problems. The definition of these
problems involves the specification of several parameters, like the resource environment,
job characteristics, optimization criteria, and scheduling environment, among others.
The α|β|γ notation helps to differentiate the problem variants in the specialized
literature [340, 341]. The first variable, α is used to indicate the machine environment
(i.e., a problem with a single machine (◦), identical parallel machines (P), uniform
parallel machines (Q), unrelated parallel machines (R) or an open shop (O)). The
second one, β specifies the job characteristics (i.e., no preemption (◦), limited resources
(res), a precedence relation (rj), and the processing time (pj or pij)). Finally, γ defines
the goal of interest (i.e., the completion time (Ci), the lateness (Lj), the tardiness (Tj),
and the unit penalty (Uj)).

This work focuses on the most general variant of Parallel-machine scheduling problems,
the R||Cmax problem, consisting of unrelated machines, jobs without preemption, and
minimization of the maximum completion time, commonly referred to as makespan.
R||Cmax can be considered an assignment problem since the ordering process of the
jobs in the machines does not affect their performance. Given the above, R||Cmax is

24

3.1. SOLUTIONS METHODS FOR R||CMAX 25

stated as a formulation of Mixed Integer Linear Programming (MILP) as follows [342]:

min Cmax (3.1)
m∑
i=1

xij = 1 ∀j ∈ N (3.2)

n∑
j=1

pij · xij ≤ Cmax ∀i ∈ M (3.3)

xij ∈ {0, 1} ∀j ∈ N , ∀i ∈ M , (3.4)

where Cmax = max(Ci), Ci indicates the completion time that each machine i needs to
process its assigned jobs; pij is the processing time of job j on machine i; and xij = 1
if the job j is assigned to the machine i, otherwise xij = 0.

According to the specialized literature, R||Cmax holds a NP-hard complexity since it
was shown that P ||Cmax, a more simple scheduling problem, belongs to that class [6].
In addition to this, in 1990 Lenstra et al. showed that it is not possible to develop
an algorithm with a better worst-case ratio approximation than 3/2 to solve R||Cmax

unless P = NP [343].

Due to the challenge of solving R||Cmax, the specialized literature includes a wide variety
of solution methods designed under different approaches, covering exact methods,
two-phase algorithms, local searches, evolutionary algorithms, and hybrid algorithms.
The next section presents a summary of the state-of-the-art proposals.

3.1 Solutions methods for R||Cmax

The history of this R||Cmax problem begins in 1974, when Bruno, Coffman, and Sethi
propose the 2R||Cmax problem at the University of Pennsylvania. That is, the problem
addressed in this research project but considering exactly two machines [344]. Moreover,
they present the first deterministic algorithm to solve this problem. Two years later,
Horowitz and Sahni develop the second deterministic and the first approximate method
to solve the same problem 2R||Cmax [345].

It was until 1977 that Ibarra and Kim propose the first heuristics for R||Cmax that are
still widely used up to now, referred to as heuristic A, B, C, and D [346]. The four
heuristics use the assignment heuristic Min() and implement different strategies to sort
the jobs, based on the randomness, the shortest time min(pj) in which each job j can be
processed, and the longest time max(pj) in which each job j can be processed. Given
a job j, Min() calculates the processing time Ci that each machine i would have if it is
assigned the job j, using the equation Ci = Ci + pij. Finally, it identifies the machine
i that can process its assigned jobs plus job j faster than the others. In this way, each
heuristic uses a different strategy to sort the jobs, to later allocates them by applying
the heuristic Min().

26 CHAPTER 3. THE R||CMAX PROBLEM

Three years later, De and Morton perform an analysis of the opportunities and
weaknesses of the algorithms proposed by Ibarra and Kim in [346]. They used the
knowledge gained to introduce three heuristics, referred to as E, F, and G [347]. The
heuristic E uses the average(pj) criterion to sort the jobs and use the assignment
heuristic Min(). On the other hand, the heuristic F calculates the makespan of the
problem to solve with the heuristics B, C, D, and E, introduced by Ibarra and Kim
[346], and selects the heuristic that generates the shortest makespan. Finally, the
heuristic G uses the lower bound βCmax which helps machines fill up in a balanced way
together with the heuristics E and Min().

A similar approach is introduced by Davis and Jaffe in the 1980s, based on the efficiency
of each machine i to process every job j [348]. In this work, they present several solution
methods that work similarly to the heuristics introduced in [346, 347]. These algorithms
have the peculiarity that they use the alternate list Efficiency that saves the efficiency
of each machine i to process each job j, used to establish different criteria to assign
jobs. For example, prohibiting assigning a job to the machine that processes it slowest.

On the other hand, Lawler et al. present a survey of the heuristics developed up to
1982 for R||Cmax [341]. Furthermore, in this work, they introduce a problem relaxation,
stating that a feasible solution can be generated by adding the constraint in Equation
3.5. To solve this relaxation of the problem, the variables where pij> d are eliminated
from the system of equations to subsequently solve the relaxation. If the solution is
infeasible, the value of d is increased; whereas, if the solution is feasible, the value of
d is reduced. The lower possible value of d is identified by means of a binary search,
considering that the value of d found must generate a feasible solution.

n∑
j=1

pijxij ≤ d ∀i ∈ M (3.5)

Another important date for the R||Cmax problem is 1985 because in this year Pots
introduces the first two-phase algorithm, referred to as Linear Programming and
Enumeration (LPE) [349]. In the first phase, LPE generates a partial solution by means
of a relaxation of the original linear programming problem. Subsequently, LPE uses
the second phase to transform the partial solution into a feasible solution (if necessary)
by assigning the remaining jobs, known as fractional jobs, using enumeration methods
like the heuristics A, B, and C, described above.

In 1990 Lenstra et al. propose to use the rounding theorem in two-phases [343]. The
central idea of the authors is to divide jobs and machines based on a certain time
threshold ϵ. In addition, a deadline is assigned to each machine. In this way, the
machines cannot exceed a certain processing time. Additionally, the authors present a
demonstration to reaffirm that no algorithm can solve R||Cmax, in polynomial time.

After six years of the first two-phase heuristics, Hariri and Potts present five new
two-phase heuristics (LP/H) in 1991 [350]. The work includes two types of LP/H,
known as integrated and non-integrated. In a non-integrated two-phase heuristic, the
second phase allocates the fractional jobs using linear programming without taking into
account the first phase’s scheduling; while in the integrated heuristics, the second phase

3.1. SOLUTIONS METHODS FOR R||CMAX 27

bases its decisions on the total processing time assigned to each machine in the first
phase.

The next year, Van de Velde proposes a branch-and-cut algorithm and an iterative local
search, based on a surrogate and dual relaxation of the problem [351]. The relaxation
of the problem consists of replacing the constraint (1) of the original problem with a
constraint that incorporates a vector of Lagrange multipliers [λi=1, ..., λm].

In 1994 Glass et al. conduct a study to design an efficient metaheuristic for R||Cmax,
comparing the performance of a standard GA, the neighborhood-based methods
Descent Algorithm (DA), Tabu Search (TS), and Simulated Annealing (SA), as well as a
memetic algorithm made up of GA and DA, called Genetic Descent (GD). Experimental
results highlight the GD performance [352].

Likewise, Piersma and van Dijk study the Descending Iterative Local Search (DILS)
and Tabu Search (TS) two years later [353]. From this work outstands the way the
neighborhood is generated, based on the efficiency of the machines. The experimental
results show that this criterion (machine’s efficiency) helps to reach better solutions.

One year later, Martello et al. introduce a set of lower bounds based on the Langrangian
relaxation to the R||Cmax problem, proposed by Lawler et al. in 1982 [341]. They use
the generated limits to develop an approximate algorithm and a Branch and Bound
algorithm, providing a good computational performance [354].

In 1998 Srivastava introduces another implementation of the Tabu search (TS) for
R||Cmax, called Modified Tabu Search Heuristic (MTSH) [355]. This algorithm uses
hashing techniques that control the aspiration test (which seeks to remove jobs from
the machines with more processing time Ci to re-assign them to the machines with less
Ci, attempting to reduce the makespan) and tabu restrictions (to avoid movements that
lead to solutions already visited). Experimental results show that MTSH can obtain
quality solutions to problems of practical size.

2002 is one of the most productive years for R||Cmax problem. The literature includes
three papers from this year [356, 357, 358]. First, Mokotoff and Chrétienne introduce a
cut plane scheme to generate an approximate algorithm and a Branch and Bound [356].
The experimental results indicate that the branch and bound algorithm obtains the best
results, showing an efficient performance in most of the case studies. On the other hand,
Serna and Xhafa develop a parallel approximate algorithm that uses a relaxation to
the positive linear problem. This algorithm generates fractional solutions (within the
limits of feasibility). Therefore, it uses a random rounding strategy that transforms
infeasible solutions into feasible ones [357]. Finally, Mokotoff and Jimeno present
three branch-and-cut approaches using a MILP formulation. This work also establishes
partial enumerations considering the integrality of a part of the set of binary variables
by using the characteristics of each problem. The experimental studies showed that this
type of approach has a performance that improved the results of the state-of-the-art
up to that moment [358].

Two years later, Guo et al. perform another effort to analyze the performance of
metaheuristics like SA, TS, and the Squeaky Wheel Optimization (SWO) algorithm.
Furthermore, the authors present improvements to the local searches, TS and SA,
and design a new lower bound, called C2, that uses the smallest and second-smallest

28 CHAPTER 3. THE R||CMAX PROBLEM

processing time for each job. Finally, the knowledge obtained from this study is used
to design a hybrid algorithm formed by SWO and the improved TS, showing significant
results [359].

Another important date for R||Cmax is 2004. In this year, Ghirardi and Potts introduce
an improvement to the Recovering Beam Search (RBS) method, which allows it to
return to previously visited solutions. RBS is a truncated Branch and Bound algorithm
where only the best nodes are selected from each branch. RBS was well received by
the scientific community because it obtains good results in large instances (over 50
machines and 1000 jobs). In addition, in the same year, Pfund et al. present a survey
on the deterministic problem of PMS, concluding that R||Cmax has been relatively little
studied compared to other research areas [360].

The following year, Kumar et al. propose a rounding algorithm using linear algebra and
randomization, based on SchedRound that offers a unified way to address a number
of different goals in job scheduling with unrelated parallel machines [361]. The main
virtue of this approach is that it can be embedded in different search strategies to
improve its performance.

In 2007, Aburas proposes a local search to solve a real-world application of R||Cmax,
showing a good performance by solving a problem involving the fabrication of roof
trusses at a major home building company. In addition, in this year, Gairing et al.
present a formulation of R||Cmax as a generalized flow problem in a bipartite network,
solved with a generic algorithm of minimum cost flow, showing unpromising results
[362].

Another interesting proposal is presented in 2008 [363]. This work presents a set of
grouping techniques, where the basic idea is to reduce the number of jobs as follows.
The data is first rounded in such a way that a constant number of different job profiles
results. Subsequently, jobs with the same profile are merged (grouped) to form new jobs
and reduce the initial number of jobs. Finally, dynamic programming or enumeration
methods are used to build the solutions.

The next year, Lin et al. introduce another two-phase heuristic, called LP/Roundup
[364]. The first phase of LP/Roundup is based on the relaxation of the problem
proposed by Potts in [346]. The fractional jobs are assigned based on the efficiency of
each machine to process every job. In addition to this, LP/Roundup uses a procedure to
reduce the makespan of the generated solution by rearranging the jobs on the different
machines.

Another productive year for the R||Cmax problem is 2010 since four papers are presented
this year. First, Fanjul-Peyro and Ruiz propose a benchmark with the 1,400 instances,
used in this work, described in detail in Section 3.2. Furthermore, they present the
results obtained by two hours of ILOG CPLEX (version 11.0) for the 1400 instances,
solving about 34% of the instances optimally. Finally, they develop a set of simple
algorithms, based on iterative greedy search algorithms (IG) and two neighborhood
models giving rise to the algorithm NVST-IG+, which showed a highly competitive
performance, that exceeded even the best state-of-the-art algorithms in most of the
1400 instances studied [342].

3.1. SOLUTIONS METHODS FOR R||CMAX 29

On the other hand, Sivasankaran et al. present a two-stage heuristic. This heuristic
uses the first stage to generate a complete solution by assigning each job j to the fastest
machine i to process it. Thus, in the second phase, it tries to improve the solution by
performing interchanges between the jobs of each machine [365]. Furthermore, they
present another work with a comparison between the local search SA and randomized
Adaptive Search Procedure (GRASP). The experimental results indicate that SA
performs better than GRASP [366].

Finally, the last related work of 2010 presents a Variable Neighborhood Descent (VND).
This algorithm avoids stalling at local optima by incorporating neighborhoods of
different sizes and incorporating a second objective (measuring the processing efficiency
of each job j on each machine i) used to guide the search. VND showed a competitive
performance on solving the test instances used [367].

The next year, Fanjul-Peyro and Ruiz present another interesting work, that consists of
a set of methods to reduce the size of instances [368]. The main idea of these methods
is to reduce the number of machines that can process a job based on their efficiency.
Thus, for example, given a problem of 100 jobs and 10 machines, for each job j, the k
machines with the shortest time required to process j are selected. They incorporate
these reduction methods into different algorithms and assessed them using the 1400
instances proposed by themselves [342], showing a highly competitive performance that
outperformed the best state-of-the-art algorithms in most of the study cases.

On the other hand, in 2011 Lin et al. present one of the few proposals related to the
application of Genetic Algorithms (GA) to solve the problem R||Cmax. In this work,
the authors improve the standard GA by incorporating the job-based representation
scheme and symbols and variation operators that work with this type of encoding. This
algorithm shows highly competitive results on randomly generated test instances [369].

Finally, in 2015, Sels et al. present the last work related to R||Cmax. They introduce
two metaheuristics, a GA and a TS, hybridized with a Branch and Bound procedure
and a local search algorithm [96]. The algorithms are tested in the 1400 test instances
of Fanjul-Peyro and Ruiz. The experimental results indicate that the hybridization of
the GA with the branch and bound algorithm has highly competitive results, exceeding
the best state-of-the-art algorithms in some studied cases.

Given the complexity of R||Cmax, several solution methods have been proposed
throughout history under different approaches. Figure 3.1 includes a plot that allows
graphically observing the number of related works presented for each approach. The
x−axis represents each approach, while the y−axis indicates the number of related
works found in the specialized literature.

As can be seen in Figure 3.1, the largest number of works are related to two-phase
methods [343, 349, 361, 364, 370, 371, 372, 357] and local searches [352, 96, 352, 353, 359,
352, 359, 373, 367, 353, 373, 351, 342, 365] with eight and fourteen papers, respectively.
The state-of-the-art also includes four works related to deterministic heuristics [345,
346, 347, 348] and five for exact methods [96, 354, 356, 358, 374]. Finally, the approaches
with fewer proposals are evolutionary algorithms [96, 352, 375] and hybrid algorithms
[352, 96] with three and two related works, respectively.

30 CHAPTER 3. THE R||CMAX PROBLEM

Figure 3.1: Related works for each approach used to design solution methods for R||Cmax.

Table 3.1 shows the main characteristics of the best state-of-the-art algorithms for
R||Cmax, including the Partial enumeration, the Recovering Beam Search (RBS),
the Iterative Greedy local search (NVST-IG+), and the Hybrid Tabu Search (HTS)
[96]. The first column indicates the aspect analyzed from each work, covering the
Approach, Author, Hybridization, R||Cmax heuristics, Search strategies, Strategies to
modify a solution, Strategies to lead the search, lb (lower bound), Stop criterion, Test
instance characteristics, and Performance measure. Therefore, the remaining columns
contain the before-mentioned information for the four examined algorithms, Partial,
RBS, NVST-IG+, and HTS, respectively. Next, we describe each of the analyzed
characteristics.

– Approach: Name of the examined algorithm.

– Author: Name of the authors of the algorithm.

– Hybridization: Algorithms combined with another search strategy and the name
of such search method.

– R||Cmax heuristics: This row remarks the approaches using R||Cmax problem
domain strategies.

– Search strategies: Lists of the general search methods of each examined algorithm.

– Strategies to modify a solution: Methods used by the algorithms to generate,
manipulate, and alter the solutions.

– Strategies to lead the search: Methods used to control how the solutions are
modified.

– lb: Remarks the approaches using a lower bound to guide the search in the solution
space and to fathom partial solutions that cannot lead to optimal ones.

– Stop criterion: Indicates the criterion used to finish the search.

– Test instance characteristics: Enumerates the general characteristics of the
benchmark used to evaluate the performance of the examined algorithms.

– Performance measure: Depicts the measures used to estimate the performance of
the algorithms.

3.1. SOLUTIONS METHODS FOR R||CMAX 31

Table 3.1: Main characteristics of the best algorithms of the state of the art of R||Cmax.

Approach Partial [358] RBS [374] NVST-IG+ [346] HTS [96]

Author Mokotoff and
Jimeno

Ghirardi and
Potts

Fanjul-Peyro
and Ruiz Sels et al.

Hybridization B&B

R||Cmax

Heuristics X X X X

Search strategies Partial solution
Rounding phase

Constructive heuristic
Filtering
Node evaluation
Recovering step

Constructive heuristic
Variable neighborhood search
Machine selection
Jobs selection

Constructive hueristic
Tabu list
Branch and bound strategies

Strategies to modify
a solution B&B strategies Pseudo-dominance conditions

Truncated branch and bound

Insertion
Interchange
Restricted Local Search
NSP and VIR

Swap
Branch and bound strategies

Strategies to lead
the search R1 R1

R2

R3

R4

R1

R2

R3

R4

R5

R6

R7

lb X X X

Stop criterion 60 seg 15 seg 15 seg

Test instance
characteristics

pij: U(10, 100)
m: from 3 to 20
n: from 10 to 50

pij: U(10, 100), U(10, 1000),
and MacsCorr
m: from 10 to 50
n: from 100 to 1000

pij: U(1, 100), U(10, 100),
U(100, 120), U(100, 200),
JobsCorr, and MacsCorr
m: 10, 20, 30, 40, and 50
n: 100, 200, 500, and 1000

pij: U(1, 100), U(10, 100),
U(100, 120), U(100, 200),
JobsCorr, and MacsCorr
m: 10, 20, 30, 40, and 50
n: 100, 200, 500, and 1000

Performance
measure RPD to CPLEX RPD to LB RPD to CPLEX RPD to CPLEX

Additionally, for a clearer format of Table 3.1, we named the strategies used to control
the search as R1, R2, R3, R4, R5, R6, and R7. In this way, the strategy R1 controls
the search process using a lower bound. On the other hand, the strategies R2 and R3

regulate the movements of the jobs. Thus, R2 only accepts the operations (insertion
and interchange) performed over the jobs when the resulted processing time Ci in the
affected machines is equal to or lower than the current makespan, and R3 only accepts
a job movement if the sum of the processing time Ci in the affected machines will be
better after the job movement. On the other hand, the strategy R4 validates that from
the intervened machines, one has low quality (with Ci close or equal to Cmax) and the
other one not. In the same order of ideas, the strategies R5 and R6 make sure that the
selected jobs belong to distinct machines and that at least one of the chosen jobs has
a different processing time on the other machine, respectively. Finally, the strategy R7

validates that at least one of the intervened machines has a Ci = Cmax.

From Table 3.1 can be seen that the only hybridized heuristic is HTS which incorporates
a Branch and Bound (B&B) method. Likewise, it indicates that the Partial, RBS, and
HTS algorithms share some characteristics, such as the fact that they use branching and
bound strategies; therefore, they control the search process only using a lower bound.
On the other hand, NVST-IG+ and HTS use similar heuristics to control how to modify
the solutions, including the operations incorporated and the criteria used to accept or
reject a job movement. Regarding the stop criterion, all the examined algorithms use
time, except for RBS, which, being an exact algorithm, cannot stop until its search
ends. Likewise, this table shows that the test instances used to evaluate the Partial

32 CHAPTER 3. THE R||CMAX PROBLEM

and RBS algorithm performance are different, while NVST-IG+ and HTS used the
same benchmark with more varied characteristics. Finally, this table allows observing
that the measure used to evaluate the performance of all the algorithms examined is
the Relative Percentage Deviation RPD to CPLEX, except RBS, assessed with the
RPD to a lower bound.

3.2 R||Cmax benchmark of instances

The general structure of a R||Cmax test instance can be defined using a matrix of size
(m× n). Figure 3.2 shows a template of an R||Cmax instance. The |M | columns from
i1 to im represent the available machines, and the rows indicate the |N | jobs from j1
to jn to assign. Therefore, each cell in the matrix contains the processing time pij that
machine i needs to process job j.

Machines

J
o
b
s

N
M

i
1

i2 im...

j
1

...p
11

p
21

p
m1

j
2

...p
12

p
22

p
m2

...

...

...

...

...

jn ...p
1n
p
2n

p
mn

Figure 3.2: Template of a test instance of R||Cmax.

As the review of the specialized literature related to R||Cmax presented in Section
3.1 indicates, in the first related works, each author generated their test instances (i.e.,
Martello et al. [354], Mokotoff and Jimeno [356, 358] or Ghirardi and Potts [374]). None
of those instances are publicly available, nor their best-known solutions. Nevertheless,
it is well-known that have been studied instances with pij values generated with a
uniform distribution in intervals like U(1, 100) and U(10, 100), as well as with job and
machine correlated (JobsCorr and MacsCorr). That is, short (long) processing times
pij of jobs for all machines and slow (fast) machines for all jobs, respectively.

It was until 2010 that Fanjul-Peyro and Ruiz introduced a collection of 1400 test
instances available publicly at http://soa.iti.es and also used in this work [342].
This benchmark groups the 1400 instances into seven classes concerning the criteria
employed to generate the processing times pij in each instance. Its characteristics are
the following. The first five groups includes instances with values of pij uniformly
distributed in the intervals U(1, 100) U(10, 100), U(100, 120), U(100, 200), and
U(1000, 1100), respectively; while the sixth and seventh groups include instances
with correlated jobs (JobsCorr) and correlated machines (MacsCorr), respectively.
Each class (sub-set) holds ten instances for each of the twenty possible combinations
generated with m = 10, 20, 30, 40, 50 and n = 100, 200, 500, 1000. Thus, the size of
the smaller instances is 100× 10, and the size of the larger ones is 1000× 50.

3.3. ANALYSIS OF THE R||CMAX STATE-OF-THE-ART ALGORITHM RESULTS 33

3.3 Analysis of the R||Cmax state-of-the-art algorithm
results

In this section, we compare the results presented in the specialized literature for the best
algorithms for the R||Cmax problem. For this review, we consider the best two-phase
algorithm, Partial enumeration of Mokotoff and Jimeno [358]; the best exact method,
Recovering Beam Search (RBS) of Ghirardi and Potts [374]; the best local search
Iterative Greedy local search of Fanjul-Peyro and Ruiz, referred to as NVST-IG+ [342];
and the best hybrid method, the Hybrid Tabu Search of Sels et al., referred to as
HTS [96]. Table 3.1 contains more details on the procedure for each solution method
considered.

The results of the four state-of-the-art algorithm Partial algorithm, RBS, and
NVST-IG+ are taken from the paper of Sels et al. [96]. In this work, they present
a comparative performance of the four algorithms on solving the benchmark of 1,400
test instances introduced by Fanjul-Peyro in 2010, described in 3.2. This study is based
on time, using a stopping criterion of 15 sec. However, given the characteristics of the
Partial enumeration and the RBS procedures, they used more CPU time on average.
It is important to note that they do not consider the remaining results presented by
Fanjul-Peyro and Ruiz (2011) [342] because they are obtained by parallel algorithms
run on a cluster of dual processors. Similarly, these results are not considered in this
work, since they are outside the scope of study.

The performance of the state-of-the-art solution method is assessed based on the average
Relative Percentage Deviation (RPD). Given an instance i, the RPD is defined as
Equation 3.6, where Cmax(i) depicts the Cmax value found by the assessed solution
method and C∗

max(i) represents the best Cmax found using two hours of the commercial
solver CPLEX. Thus, RPD indicates the deviation from the evaluated solution method
to CPLEX.

RPD =
Cmax(i)− C∗

max(i)

C∗
max(i)

(3.6)

Table 3.2 contains the experimental results. This table presents the average RPD values
reached by each solution method distributed in groups of instances sorted according
to the distribution of their processing times pij and the complete benchmark (1400
instances). The first and second columns indicate the criteria used to group the test
instances: pij and the 1400 instances. Therefore, the remaining columns contain the
average RPD obtained by each approach for every group of instances, highlighting in
bold the best values. It is important to note that the results presented in 3.2 are divided
by 100 for the purposes of this research project.

34 CHAPTER 3. THE R||CMAX PROBLEM

Table 3.2: Comparison of the state-of-the-art algorithms Partial, RBS, NVST-IG+, and HTS
using RPD.

Instance Set Partial RBS NVST-IG+ HTS

U(1, 100) 0.0288 0.0203 0.0134 0.0183
U(10, 100) 0.0131 0.0187 0.0075 0.0151
U(100, 120) 0.0033 0.0013 0.0004 0.0000
U(100, 200) 0.0105 0.0081 0.0032 0.0008
U(1000, 1100) 0.0023 0.0018 0.0002 -0.0001
JobsCorr 0.0234 0.0035 0.0048 -0.0053
MacsCorr 0.0094 0.0236 0.0055 0.0038

1400 instances 0.0130 0.0110 0.0050 0.0047

From Table 3.2 emerged that the best state-of-the-art algorithm for R||Cmax is the
HTS proposed by Sels et al. with an average RPD of 0.47 for the 1400 instances,
followed by the NVST-IG+ of Fanjul-Peyro and Ruiz with an average deviation to
CPLEX of 0.50. In contrast, the heuristics with the lowest performance were the
Partial algorithm of Mokotoff and Jimeno and the RBS of Ghirardi and Potts with
RPD values of 1.30 and 1.10, respectively. Finally, Table 3.2 allows observing that the
sets of instances that seem to be the most difficult are U(1, 100) and U(10, 100) since
they represent a greater difficulty for state-of-the-art algorithms, being NVST-IG+ the
algorithm with the best results. On the other hand, HTS presents the best results in
the rest of the sets. However, we consider that this comparison is not appropriate since
HTS was programmed and run in a programming language and computer equipment
with different characteristics, respectively, from the remaining assessed algorithms. In
this order of ideas, we believe that using the number of evaluations of the objective
function is the fairest way to compare the algorithms’ performance. Thus, we can avoid
the execution time impact caused by the programming language and the computer
equipment characteristics. Finally, we consider that only comparing the algorithms’
performance based on the average RPD for the 1400 instances or the instance sets
grouped according to the processing times distribution is not suitable since not all the
instances have the same weight. Therefore, in the following sections, we incorporate
other criteria such as the number of machines m and the number of jobs n in the
instances to compare the algorithmic behavior of the proposed strategies more fairly.
From these observations arise the following research questions: (1) What will make the
difference in the difficulty of the instances and the behavior of the algorithms?; (2) Is
it possible to design a competitive GGA for R||Cmax by incorporating knowledge of the
problem domain? The following chapters present a series of experimental studies that
seek to answer such research questions.

Chapter 4
The first GGA to solve the R||Cmax

problem

This chapter presents the first GGA for the NP-hard combinatorial optimization
grouping problem R||Cmax. In this way, it includes an overview of the GGA procedure,
highlighting its main features and strengths over other heuristic algorithms. In addition,
this section describes the heuristics of each GGA component, including the population
initialization strategy, the crossover and mutation operators, and the reproduction
technique. Finally, it includes the experimental results obtained by GGA when solving
the R||Cmax problem.

According to Ramos-Figueroa et al. [7], the Grouping Genetic Algorithm (GGA) is one
of the most used metaheuristic algorithms to solve grouping problems. Such popularity
is related to its promising results and its flexibility to adopt new ideas to handle the
constraints and conditions of the problem to solve. The GGA is an extension to the
standard GA; then, they have similar procedures. The GGA procedure starts with
the generation of the initial population, generally in a random way. Next, selection
strategies and variation operators, mainly crossover and mutation, are used iteratively
to try to find better solutions. Each iteration represents a generation that starts
utilizing a selection strategy to pick some individuals of the populations, based on their
fitness values. Therefore, the genetic material of the selected individuals is recombined
by the crossover operator to generate offspring. Subsequently, the offspring are added
to the population using a replacement strategy. Finally, some individuals, chosen with
a selection strategy, are slightly modified with the mutation operator. In this way,
the GGA iterates performing the before-mentioned procedure until a stopping criterion
(e.g., the maximum number of generations, the maximum search time, convergence of
solutions, or finding an optimal solution) is met.

One of the main features of the GGA is the group-based scheme that it uses to encode
and manage solutions in the search space. According to Falkenauer, this is a more
natural way of representing solutions to grouping problems [93]. Besides, it helps to
reduce the size of the search space since it produces fewer isomorphic solutions than a
traditional encoding. In this encoding, each gene represents a group that contains the

35

36 CHAPTER 4. THE FIRST GGA TO SOLVE THE R||CMAX PROBLEM

collection of elements that correspond to it. Therefore, the length of a solution is equal
to the number of groups that it includes.

Another important aspect to consider when developing a GGA is the design of variation
operators, like crossover and mutation, that must work at the group-level. With this
feature, operators can perform procedures in a more controlled way, determining which
groups and elements vary according to the constraints and objectives of the problem to
solve. The crossover uses two or more solutions of the current population to recombine
their genetic material, creating offspring with new characteristics. This operator is
used to give GGA the ability to converge on the most promising areas identified during
the search. One of the advantages of crossover operators for group-based encoding is
that they can use the quality of the groups to determine how the parents transmit the
genetic material to the children to perform a more controlled search. On the other
hand, the mutation operator provides to GGA the ability to explore new areas of the
search space, producing small modifications to the genetic material of some solutions.
This procedure is helpful for a GGA, mainly to address highly constrained grouping
problems, where there are large possibilities of converging to local optimums since these
slight alterations generate solutions in other regions of the search space that can help
to avoid premature convergence.

The next sections describe the elements of the first GGA for R||Cmax, the object of study
in this work [7], including the population initialization strategy, the variation operators,
selection and replacement strategies, as well as the problem-domain heuristics. It is
important to note that this algorithm is an adaptation of the state-of-the-art Grouping
Genetic Algorithm with Controlled Genes Transmission (GGA-CGT) introduced by
Quiroz-Castellanos et al. to solve the Bin Packing problem [11]. Therefore, the details
of the original heuristic procedures can be consulted in such work.

4.1 Genetic encoding, fitness function and initial
population

The proposed GGA uses the group-based representation scheme to encode and
manipulate solutions, where each machine i is a gene (or group) Gi that will include
a set of jobs. Therefore, all solutions have the same number of genes, equal to the
number of machines m. The quality of each machine i is equal to the time it takes to
process its assigned jobs, denoted as Ci. Thus, the quality of a solution Cmax is equal
to the Ci value of the machine with the longest processing time. The initial population
is generated randomly by running the Random min strategy that consists of applying
the well-known Min() heuristic, introduced by Ibarra and Kim [346], on random jobs
permutations. Recalling from Chapter 3, for each job j, Min() calculates the equation
Ci=Ci + pij for all the machines, where pij indicates the time that machine i needs to
process job j. In this way, Min() assigns job j to machine i that generates the lowest
Ci value.

Figure 4.1 describes the procedure followed by the population initialization strategy.
To give a comprehensive description, Figure 4.1a includes an example instance I

4.2. ADAPTED GENE-LEVEL CROSSOVER OPERATOR 37

represented as a matrix with m=4 machines depicted by the columns and n=10 jobs
represented by the rows. Thus, the example starts from a permutation (Figure 4.1b) of
the ten jobs {j9, j5, j2, j6, j3, j8, j4, j7, j1, j10}, used to generate the partial solution,
shown in Figure 4.1c. The construction of the partial solution can be calculated from
the first nine jobs in the permutation {j9, j5, j2, j6, j3, j8, j4, j7, j1} and the instance
I using the heuristic Min(). To exemplify how this heuristic Min() works, Figure 4.1d
shows a complete solution, resulted from the assignment of the last job in the permuted
list (i.e., j10) to the solution. Therefore, following the Min() procedure, the processing
time Ci of each machine plus the time that they require to process job j10 results in
the following way: C1 = 26+ 8, C2 = 25+ 20, C3 = 20+ 18, and C4 = 10+ 28. In this
manner, Min() assigned job j10 to machine i1 since it generated the lowest Ci value.
It is important to note that if two or more machines produce the same Ci value, this
allocation heuristic assigns the job in turn to the machine i that appears first from i1 to
im. Therefore, Figure 4.1d also represents a solution chromosome with a length equal
to the number of machines m, where each machine represents a gene. Finally, Figure
4.1d also shows the fitness value of the generated solution that is equal to the longest
processing time Ci, in this case, the C1=34, outlined in bold.

a) Test Instance

28

16 15 6 25

10 10 16 18

18 15 6 10

15 10 16 20

20 12 5 16

29 20 5 19

11 19 3 3

12 10 10 20

20 12 7

N
M

j9

j8

j5
j6

j4

j7

j3

j2

i3i2i1
j1

i4

8 20 18 28j10

Machines

Jobs

Ci

j1, j2

i1

26

j5, j6, j8

i3i2 i4

c) Partial solution

d) Complete solution

b) Permutation: j9, j5, j2, j6, j3, j8, j4, j7, j1, j10

Machines

Jobs

Ci

j1, j2, j10

i1

34

j5, j6, j8

i3i2 i4

Cmax

Figure 4.1: Population initialization strategy

4.2 Adapted Gene-level crossover operator

The GGA uses the Adapted Gene-Level Crossover (AGLX) operator, a variant of the
GLX operator proposed by Quiroz-Castellanos et al. [11], that produces two offspring
by using two parents. During the genetic material transmission process, this operator
considers the genes in increasing order concerning the Ci values. Thus, it transmits
first the machines that process their jobs fastest and then the slowest ones. In this
way, the first child starts inheriting the fastest machine from the first parent, next the
fastest machine from the second parent, then the second-fastest machine from the first

38 CHAPTER 4. THE FIRST GGA TO SOLVE THE R||CMAX PROBLEM

parent, and so on. It is important to note that, before transmitting each machine i,
this crossover operator verifies that it has not already been transmitted by the other
parent. Otherwise, the machine is discarded. Similarly, the second child receives genes
alternately from both parents, but it starts with the fastest machine from the second
parent. Finally, to avoid infeasible solutions, this crossover operator removes the jobs
that appear twice from the machine with the higher Ci value. Finally, AGLX re-inserts
the jobs missed during the transmission process using the assignment heuristic Min().

Figure 4.2 describes the process of the AGLX operator with an example that contains
two parent solutions for the test instance of Figure 4.1a with four machines (groups).
The ten jobs, from j1 to j10, are distributed among the four machines, from i1 to i4, and
the time that each machine i requires to process its assigned jobs from C1 to C4 is stored
in vector Ci. Figure 4.2a depicts the transmission process. Therefore, it shows the two
parents with their groups in increasing order, which indicates the gene transmission
sequence, i.e., from best (Lowest Ci) to worst (Highest Ci). Figure 4.2b indicates
the way the repeated genetic material is handled. Thus, it contains the two solutions
produced during the transmission process, which only keep machine i of the parent
in which it appears first according to the gene transmission sequence. Furthermore,
this figure includes the repeated jobs, highlighted in bold, that must be removed from
the machine with the highest processing time Ci. Lastly, this figure shows a list with
the missed jobs (MJ) during the transmission process. Figure 4.2c contains the partial
solution resulting from the transmission process without the repeating genetic material,
as well as a permutation of the jobs in MJ . Finally, Figure 4.2d shows the complete
solutions resulting from the assignment of the missed jobs with the heuristic Min().

4.3 Download mutation operator

The GGA includes the Download mutation operator that uses two phases to modify
two genes in each solution. In the first stage, called download, the operator clusters the
genes (machines) between two sets (W and O). In this way, W includes the machines
with a processing time (Ci) equal to the makespan (Cmax), while O holds the ones
with an assigned processing time (Ci) lower than the makespan (Cmax). Next, from
each set (W and O), one machine (w and o) is randomly selected, and their jobs
are released. Subsequently, in the second stage, the released jobs are redistributed
between the selected machines (w and o) with the heuristic Best(). For each job j,
Best() calculates the equations Cw = Cw + pwj and Co = Co + poj, where Cw and Co

represent the assigned processing time of machines w and o, respectively, and pwj and
poj the processing time required by machines w and o to process job j. In this way,
Best() assigns j to the machine that generates the lowest Ci value. The main difference
between the reassignment heuristics Min() and Best() is that Min() re-inserts the jobs
considering all the machines, while Best() re-inserts them by considering only the two
selected machines o and w.

Figure 4.3 describes the mutation process of the Download operator with an example
that contains an initial solution for the instance presented in Figure 4.1a with four
genes (groups). The ten jobs, from j1 to j10, are distributed among four groups, from

4.3. DOWNLOAD MUTATION OPERATOR 39

Given two parent solutions for the test instance of Figure 1a, the Adapted Gene-level crossover

operator (AGLX) proposed by Ramos-Figueroa et al. [2] works as follows:

a) Transmission

process

c) Partial

solution

Permutation

Permutation
i1
j5
29

i3i2 i4

i1

0

i2
j7, j9

i4i3

j7, j9

i4

i2

i3

i1
j5, j9
57

i2

i3

j1, j2, j10

i1

34

i4

d) Offspring

i3i2 i4i1

i3 i4i2i1

b) Repeated

genetic

material MJ

MJ

j7, j9

i4i2 i1
j5, j9
57

i3

j7, j9

i4 i2 i3 i1
j5, j9
57

Machines

Jobs

Ci

Machines
Jobs

Ci

First

Parent

Second

Parent

First

Child

Second .

Child

Machines

Jobs

Ci

Machines

Jobs

Ci

First

Child

Second

Child

Machines

Jobs

Ci

Machines

Jobs

Ci

Machines
Jobs

Ci

Machines

Jobs

Ci

First

Child

Second

Child

Figure 4.2: Adapted Gene-Level Crossover (AGLX) operator

i1 to i4, and the time that each group i requires to process its assigned jobs from C1 to
C4 is stored in vector Ci. Figure 4.3a shows the result of clustering the machines with
processing time Ci equal to the makespan Cmax in the set W={i1} and the remaining
machines in set O={i2, i3, i4}. Figure 4.3b indicates the machines w=i1 and o=i4,
outlined in bold, randomly selected from the sets W and O, respectively. Figure
4.3c contains the solution with the selected machines to be altered, outlined in bold,
downloaded by releasing their jobs and placing them in the box of released jobs RJ .
Finally, Figure 4.3d has a permutation of the jobs in RJ and the result of reinserting
them with the allocation heuristic Best(). The calculation of the processing time Ci of
each machine i, as well as the operations performed by the allocation heuristic Best() to
assign the released jobs, can be calculated by using the example instance I presented in
Figure 4.1a. As this example indicates, the quality of the mutated solution is better than
that of the initial solution, demonstrating the effectiveness of the Download mutation
operator.

40 CHAPTER 4. THE FIRST GGA TO SOLVE THE R||CMAX PROBLEM

Given the following potential solution for the test instance of Figure 1a:

The Download mutation operator proposed by Ramos-Figueroa et al. [2] works as

follows:

Solution

j7, j9

i4i3i2

j1, j2, j10

i1

34

Machines

Jobs

Ci

W

i1

O

i2, i3, i4
a) Machines

in the sets

 and W O

b) Selecting

machines

and w o

j5, j6, j8

i3i2

j1, j2, j10

i1

34

w

i4

o

c) Download RJ

i4i3i2i1

0

Permutation

i4i3i2

j1, j10

i1

24

d) Reinsertion

Machines

Jobs

Ci

Machines

Jobs

Ci

Machines

Jobs

Ci

Figure 4.3: Download mutation operator

4.4 Selection and replacement strategies

The GGA employs an adaptation of the controlled reproduction technique proposed
by Quiroz-Castellanos et al. [11], which uses an elitist approach together with two
inverted rankings to give all the solutions a chance to contribute to the next generation
but forcing the survival of the best solutions. The replacement strategy preserves the
population diversity and the best solutions by replacing duplicated fitness individuals
and the worst fitness solutions with new offspring.

At each generation, GGA ranks the individuals in the population P from best to worst
according to their fitness. Additionally, if there are solutions with repeated fitness,
only one solution is ranked, and the others are placed at the end of the ordered list.
Subsequently, GGA distributes the solutions in P , ranked according to the ordered list
among the sets G, R, and B. The set G includes the best nc solutions, where nc is
a parameter to be configured that determines the number of individuals selected for
the crossover process at each generation. On the other hand, the set R contains the
solutions in the population P without the best nc/2 solutions. Finally, the set B holds
the best |B| individuals, called elite solutions, that receive special treatment since they
have the best characteristics of the population. Therefore, |B| is another parameter to
be configured. Given this hierarchical structure of the solution, nc/2 parent solutions
are randomly taken from the set G and the remaining nc/2 parents are randomly picked
up from the solutions in the set R. In this way, each pair of parents is created with a

4.5. COMPUTATIONAL EXPERIMENTS 41

parent selected from the set G and the other one from the set R. Hence, it is necessary
to validate that parent pairs do not have the same solution since some solutions can be
selected more than once. After applying the crossover operator to each pair of parents,
the new individuals are incorporated into the population P in the following way. Half
of the generated children replaces the parents selected from the set R and the remaining
offspring replaces first the solutions with repeated fitness and then those with worse
fitness. The detail of this reproduction technique can be consulted in [11].

Once the replacement strategy is applied, the population is ranked with the same
ranking strategy, i.e., from best to worst and placing solutions with repeated fitness at
the end, to later select the best nm solutions for mutation, where nm is a parameter to be
configured that determines the number of mutated solutions at each generation. When
applying the mutation operator, if a solution belongs to the elite group B, the solution
is first cloned, and it is later mutated. The clones can be entered into the population,
replacing first the solutions with repeated fitness and then those with worse fitness.
This strategy aims to preserve the individuals with the best characteristics to take
advantage of the search directions they provide for a greater number of generations. A
more detailed description of this reproduction technique can be found in [11].

4.5 Computational Experiments

This section presents the experimental design proposed to analyze the performance
of the GGA presented in this section to solve the R||Cmax problem, an adaptation
of the state-of-the-art GGA-CGT designed to solve the Bin Packing problem [11]. It
is important to note that, for this study, the heuristic used to generate the initial
population in GGA-CGT, as well as the mutation and crossover operators, were adapted
to solve the problem R||Cmax. Conversely, the remaining mechanisms and operators, as
well as the parameter settings, were not modified. The configuration used is as follows:
Population size |P | = 100; number of individuals selected for the crossover nc = 20;
number of individuals selected for the mutation nm = 83; elite population size |B| =
20; and, maximal number of generations max_gen = 500.

The performance assessment of GGA involves solving the benchmark of 1,400 test
instances introduced by Fanjul-Peyro in 2010, described in 3.2. Likewise, we analyze
its performance by measuring its average Relative Percentage Deviation (RPD) to
CPLEX, presented in Equation 3.6. Table 4.1 contains the experimental results. For
a comprehensive analysis, we distributed the RPD values reached by the GGAs in
groups of instances sorted according to the number of jobs n, the number of machines
m, the distribution of the processing times pij of the instances, and the complete
benchmark (1400 instances). The first and second columns indicate the criteria used
to group the test instances: n, m, pij, and the 1400 instances. On the other hand,
the third column contains the average RPD obtained by GGA for the four grouping
criteria. It is important to note that from this study, we will use these extended
tables to analyze in-deep the algorithmic behavior of the algorithms and the conditions
in which they show high or low performance. This table format represents the first
step toward the characterization of the R||Cmax problem optimization process since it

42 CHAPTER 4. THE FIRST GGA TO SOLVE THE R||CMAX PROBLEM

Table 4.1: Analysis of the average RPD reached by GGA for each instance set: n, m, pij,
and the 1400 instances.

Instance Set GGA

n

100 0.0659
200 0.0655
500 0.0657
1000 0.0688

m

10 0.0683
20 0.0683
30 0.0683
40 0.0683
50 0.0683

pij

U(1, 100) 0.1027
U(10, 100) 0.1119
U(100, 120) 0.0256
U(100, 200) 0.0829
U(1000, 1100) 0.0121
JobsCorr 0.0586
MacsCorr 0.0955

1400 Instances 0.0699

provides meaningful information to understand how the characteristics of the instances,
like the number of machines m and the number of jobs n, impact the performance of
the algorithms that solve them.

From Table 4.1 can be observed that GGA did not show an outstanding performance
since the average RPD obtained for the state-of-the-art HTS for the 1400 instances
(See Table 3.2) is about fourteen times lower than the RPD obtained by the proposed
GGA. Additionally, Table 4.1 suggests that the GGA performance improves as the
number of jobs decreases; while the number of machines does not have a clear impact.
Finally, these experimental results suggest that, like in the state-of-the-art algorithms,
instances with processing times in the ranges U(1, 100), U(10, 100), and with correlated
machines MacsCorre represent a bigger challenge for the GGA; while instances in the
ranges U(100, 120) and U(1000, 1100) are easier.

4.6 Impact analysis of crossover and mutation rate on
GGA

This section presents an experimental study to analyze how each variation operator
(crossover and mutation) impacts the GGA performance. In this sense, we conducted
a set of tests that considers three different values for the number of individuals selected
for the crossover process (nc) and the number of solutions to be mutated (nm), both

4.7. CONCLUSIONS OF THE EXPERIMENTAL STUDY 43

with the following values: 20, 40, and 60. In this way, we run the GGA with the
nine configurations (Conf) generated from all possible combinations of these three
parameters: Conf1: nc = 20, nm = 20, Conf2: nc = 20, nm = 40, ... Conf9: nc = 60,
nm = 60. Figure 4.4 has a bar graph with the results obtained from this study, where
each bar represents one of the nine configurations grouped according to the number of
mutated solutions nm, and each pattern indicates the number of selected individuals
for the crossover process nc: squares = 20, waves= 40, and circles= 60. As Figure
4.4 indicates, the GGA performance tends to improve (lower RPD) as the number of
individuals considered for the crossover and mutation processes increases. Moreover,
this figure suggests that the crossover operator shows a higher impact on the GGA
performance. This behavior is different from the one presented by the GGA-CGT,
where the mutation operator has the most significant positive impact on the final
performance of this algorithm. The conclusions obtained from this study suggest the
review and re-structuration of the mutation operator procedure. Chapter 7 presents a
systematical experimental design to explore different strategies that intervene during
the mutation process. Thus, we will identify and select the strategies that positively
contribute to the mutation operator procedure to improve its performance.

Impact of the parameter nm in the GGA performance

20 40 60

nm

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

R
P
D

nc

20

40

60

Figure 4.4: Impact analysis of the parameters: number of individuals selected for crossover
nc and number of mutated solutions nm in the GGA final performance.

4.7 Conclusions of the experimental study

In this chapter, we introduced the first GGA to solve the Parallel-Machine Scheduling
variant that considers unrelated machines, jobs with non-preemptions, and makespan
minimization (R||Cmax). Our proposal was designed based on the trends identified
during the literature review. That is, using a more natural or intuitive way to
represent the potential solutions to the R||Cmax problem (group-based) as well as
variation operators designed to work together with the grouping encoding efficiently.

44 CHAPTER 4. THE FIRST GGA TO SOLVE THE R||CMAX PROBLEM

Experimental results indicated that, although the proposed GGA showed promising
results for R||Cmax, these are not enough to compete with state-of-the-art algorithms.
In this order of ideas, the best state-of-the-art algorithm, HTS, is about fourteen times
better than GGA since they solve the 1400 instances with average RPD values of
0.0047 and 0.0699, respectively (see Table 3.2). Moreover, the impact analysis of
the parameters revealed that the mutation operator is not contributing much to the
search. The knowledge gained from this research phase motivates the development
of the following sections, where we will analyze if it is possible to improve the GGA
performance without the need to add a local search as the best state-of-the-art heuristics
do. Therefore, in the following sections, we will explore different heuristic strategies,
seeking to identify the appropriate ones for each stage of the evolutionary process.

Chapter 5
Population initialization strategies

This chapter addresses the study of different heuristics to construct solutions for
the Parallel-machine scheduling problem with unrelated machines and makespan
minimization R||Cmax. Recalling from Chapter 3, R||Cmax holds hard complexity;
consequently, the state-of-the-art includes methods designed to solve it under different
approaches, such as deterministic heuristics [345, 346, 347, 348], exact methods
[96, 354, 356, 358, 374], two-phase algorithms or rounding methods [343, 349, 361, 364,
370, 371, 372, 357], local searches [352, 96, 352, 353, 359, 352, 359, 373, 367, 353, 373,
351, 342, 365], evolutionary algorithms[96, 352, 375], and hybrid algorithms [352, 96].
As with most search algorithms, the starting point for a GGA is the construction of the
initial population. Many times this component is not given the necessary importance.
However, its role is very relevant, since, in some problems, the quality and other
characteristics of the initial solutions have a great impact on the final performance
of a solution method. In this chapter, we analyze the algorithmic behavior of eleven
simple heuristics to generate solutions, five deterministic, and six non-deterministic.
The knowledge gained from this study is used as a starting point for the characterization
of the R||Cmax problem and the optimization process of the GGA components.

5.1 State-of-the-art constructive heuristics for the
R||Cmax problem

According to the scope of the literature review, the earliest efforts to solve R||Cmax

were devoted to the design of simple solution methods, mainly constructive heuristics.
The first work related to the design of constructive heuristics was presented in 1977
by Ibarra et al.. In this work, the authors introduced five well-known heuristics that
use different criteria to establish the scheduling order of the jobs, but they share in
common that they use the allocation heuristic Min() to control the scheduling of each
job. From that work, we consider three heuristics, referred in this study as Lowest min,
Highest min, and Random min. Three years later, De and Morton studied the strengths
and weaknesses of the heuristics proposed by Ibarra et al.; as a result, they introduced
three constructive algorithms that incorporate new strategies to establish the way the

45

46 CHAPTER 5. POPULATION INITIALIZATION STRATEGIES

jobs are assigned to the machines, including a new strategy to sort the jobs and a
lower bound [347]. In this chapter, we also consider one of these heuristic algorithms,
referred to as Mean min. Finally, the last constructive heuristic found in the specialized
literature that we also use in this work is Lowest, introduced by Fanjul-Peyro and Ruiz
in 2010 to generate the initial solution of different neighborhood searches [342]. As
can be seen, the state-of-the-art of constructive heuristics for R||Cmax is not too large.
However, some of them are still widely used for the construction of the initial solutions
of different methods. The following sections present a study to analyze the performance
of the heuristic strategies of the state-of-the-art indicated in this review, together with
other heuristics proposed in this work.

5.2 Constructive heuristics for the R||Cmax problem

In deterministic algorithms, given a particular input, the same output is always
produced, passing through the same sequence of states. Algorithms with these
characteristics are far functional so that they can be run on real devices (e.g., machines,
computers, robots, etc.) efficiently. This study comprises four classical deterministic
algorithms: Lowest [342], Lowest min [346], Highest min [346], Mean min [347], and
one deterministic heuristic proposed in this work, referred to as Diff_fastest min. In
contrast, non-deterministic algorithms can generate different outputs on different runs,
even for the same input. In most cases, such behavior is related to the use of random
number generators. Algorithms with these characteristics are far recurrent to address
complex problems, with large and hard search spaces. In this work, we analyze the
algorithmic behavior of six non-deterministic constructive heuristics, one taken from
the specialized literature known as Random min [346], and five more introduced in this
work, called: Random, Random lowest bound min, Lowest 4g min, Highest 4g min,
and Diff_fastest 4g min. Most of them use the scheduling strategy Min() heuristic,
introduced by Ibarra and Kim [346]. Recalling from Chapter 3, the heuristic Min()
allocates each job j to the machine i that produces the lowest value of Ci = Ci + pij,
where Ci is the time demanded by the machine i to process all its assigned jobs, and
pij is the time demanded by machine i to process job j. However, some of these
constructive heuristics differ in the strategy they use to sort the jobs. Figure 5.1
contains an instance example with n = 8 jobs and m = 4 machines, as well as the
detail of four properties used to classify the jobs before schedule them: 1) lowest, the
processing time pij required by the fastest machine i to process job j; 2) highest, the
processing time pij required by the slowest machine i to process job j; 3) mean, the
average processing time required by all the machines in M = {i1, ..., im} to process job
j; and 4) diff_fastest, the difference between the two fastest machines to process job j.
The following paragraphs contain the description of the eleven constructive heuristics
considered in this chapter.

5.2. CONSTRUCTIVE HEURISTICS FOR THE R||CMAX PROBLEM 47

j
1

i
1

i
2

i
3

imN

M

j
2

j
3

j
4

j
5

j
6

j
7

j
n

20 15 10 12

10 12 16 18

18 15 11 10

15 17 16 11

20 12 15 16

10 20 11 19

11 19 20 13

12 10 18 20

lowest

10

10

10

11

12

10

11

10

highest

20

18

18

17

20

20

20

20

mean

14.25

14

13.5

14.75

15.75

15

15.75

15

diff_fastest

2

2

1

4

3

1

2

2

Figure 5.1: Instance characteristics used by constructive heuristics.

5.2.1 Lowest

This method is the simplest since it does not use a strategy to arrange the jobs. Instead,
it schedules the jobs directly considering the property lowest, described in Equation
5.1, without any other criteria. As Figure 5.1 indicates, this property refers to the
minimum time min(pij) required to process the job j.

lowest pij = min(pj) (5.1)

5.2.2 Lowest min

Unlike Lowest, the heuristic Lowest min uses instance property lowest, described in
Equation 5.1, to sort the jobs in non-increasing order. Thus, the heuristic Lowest min
allocates the sorted jobs with the Min() heuristic.

5.2.3 Highest min

Similar to Lowest min, Highest min allocates the jobs in non-increasing order, but based
on the property highest, using the Min() heuristic. As can be seen from Figure 5.1 and
Equation 5.2, the property highest refers to the maximum processing time max(pij)
required by the slowest machine i to process job j.

highest pij = max(pj) (5.2)

5.2.4 Mean min

In this algorithm, jobs are scheduled employing the Min() heuristic, in non-increasing
order, according to the instance property mean. From Figure 5.1 and Equation 5.3
can be seen that this characteristic refers to the average processing time average(pij)
of each job j.

mean pij = average(pj) (5.3)

48 CHAPTER 5. POPULATION INITIALIZATION STRATEGIES

5.2.5 Diff_fastest min

Finally, we propose a deterministic heuristic called: Diff_fastest min. This
algorithm considers the jobs in non-increasing order according to the instance property
diff_fastest, described in Equation 5.4, to schedule them using the Min() heuristic.
Figure 5.1 shows the result of extracting the characteristic diff_fastest from an instance
example. As can be seen, it consists of identifying the two machines (ia and ib) that
require the lowest time pij to process job j, to then calculate the absolute value of the
difference between the processing times of these machines abs(piaj − pibj).

diff_fastest pij = abs(piaj-pibj) (5.4)

5.2.6 Random

In this non-deterministic heuristic, jobs are allocated randomly on machines without
considering other criteria. Thus, this heuristic uses the function random() that
generates a number randomly with a uniform distribution between 1 and the number
of machines m to determine the location of each job. The main benefit of the Random
heuristic relies on its applicability to problems that need too much diversity since it
can generate solutions with different characteristics. In contrast, effectiveness is the
principal drawback of this heuristic since it cannot control the quality of the solutions.
Therefore, it generates high-quality and low-quality solutions.

5.2.7 Random min

Unlike Random, the Random min heuristic combines randomness and knowledge of the
problem domain to generate the solutions as follows. First, it selects each job using
the function random() that generates a random number with a uniform distribution
between 1 and the number of jobs n. Then, it allocates the selected job with the
well-known Min() heuristic. In this way, the Random min heuristic iteratively performs
this procedure until all the jobs are assigned.

5.2.8 Random lowest bound min

The Random lowest min bound heuristic is an extension to the Random min heuristic
that incorporates the use of the lower bound lb. As Equation 5.5 indicates, lb consists
of summing the processing times pij required by the fastest machines to process every
job j and dividing the result by the number of available machines m. In this order of
ideas, the Random lowest min bound procedure is as follows. For each job j selected
with the random() function that uses a uniform distribution, this strategy attempts
to assign j to machine i that processes it in the lowest time pij, i.e., using the lowest
property, considering the following rule. If Ci + pij <= lb, job j is assigned to the
fastest machine i. Otherwise, job j remains unassigned. Ci represents the time that
machine i needs to process its assigned jobs. Finally, the Random lowest min bound
heuristic allocates the unassigned jobs with the Min() heuristic.

5.3. ANALYSIS OF THE R||CMAX CONSTRUCTIVE HEURISTICS RESULTS 49

lb =

∑n
j=1 min(pij)

n
(5.5)

5.2.9 Lowest 4g min

This heuristic is an extension of the deterministic constructive heuristic Lowest min.
Therefore, the constructive process of Lowest 4g min also starts ordering the jobs in
non-increasing order based on the instance characteristic lowest, described in Equation
5.1; nevertheless, it does not assign the jobs immediately. Instead, it distributes them
into four groups, from G1 to G4 with the same number of jobs equal to n/4, preserving
the order of the jobs during group construction. Subsequently, the jobs in each group
are permuted, modifying their order. Finally, the jobs are allocated with the Min()
heuristic, following the order of the groups: G1, G2, G3, and G4.

5.2.10 Highest 4g min

Like Lowest 4g min, Highest 4g min is an extension of the deterministic constructive
heuristic Highest min. Hence, it starts arranging the jobs in non-increasing order based
on the instance characteristic highest, described in Equation 5.2. Next, it distributes
the jobs into four groups, from G1 to G4 in equal parts of size n/4, preserving their
order during group construction. Subsequently, the jobs of each group are permuted
with a uniform distribution, changing their order. Finally, the jobs are allocated with
the Min() heuristic following the order of the groups: G1, G2, G3, and G4.

5.2.11 Diff_fastest 4g min

Besides the heuristics Lowest 4g min and Highest 4g min, we also used the approach
based on four groups with the instance property diff_fastest, described in Equation
5.4. As can be inferred, in this heuristic, jobs are first arranged in non-increasing order
based on the subtraction of the processing time pij required by the two fastest machines
(ia and ib) for processing each job j. Next, the Diff_fastest 4g min process continues as
that of the heuristics Lowest 4g min and Highest 4g min. That is, distributing the jobs
into four groups, permuting them, and finally assigning them with the Min() heuristic.

5.3 Analysis of the R||Cmax constructive heuristics
results

This section includes the experimental results for the eleven studied constructive
heuristics. The experimental design consists of evaluating the final performance of
the eleven constructive heuristics described above to understand their optimization
process when solving R||Cmax. To achieve this goal, we proposed an experimental
design that consists of assessing the eleven constructive heuristics as follows. First,

50 CHAPTER 5. POPULATION INITIALIZATION STRATEGIES

each constructive heuristic is applied to the 1400 instances. Next, the performance
of each constructive heuristic is calculated based on the measure RPD, presented in
Equation 3.6. Finally, for a comprehensive analysis, the performance of the eleven
constructive heuristics is compared with the 1400 instances grouped with four criteria,
the number of jobs n, the number of machines m, the distribution of the processing
times pij, and the 1400 instances together. It is important to note that, for a fair
comparison, the same seed is used for the eleven constructive heuristics.

Table 5.1 presents the experimental results. The first two columns indicate the criteria
used to group the instances, i.e., n, m, pij, and the complete benchmark. Thus, the
remaining columns contain the average RPD obtained by each constructive heuristic
for each grouping criterion, highlighting in bold the best results.

Table 5.1: Comparison of the eleven constructive heuristics: Lowest, Lowest min, Highest
min, Mean min, Diff_fastest min, Random, Random min, Random lowest bound min, Lowest
4g min, Highest 4g min, and Diff_fastest 4g min using RPD.

Instance Set

L
ow

es
t

L
ow

es
t

m
in

H
ig

h
es

t
m

in

M
ea

n
m

in

D
iff

_
fa

st
es

t
m

in

R
a
n
d
o
m

R
a
n
d
o
m

m
in

R
a
n
d
o
m

lo
w

es
t

b
o
u
n
d

m
in

L
ow

es
t

4
g

m
in

H
ig

h
es

t
4
g

m
in

D
iff

_
fa

st
es

t
4
g

m
in

n 100 0.549 0.186 0.172 0.184 0.176 0.493 0.171 0.337 0.132 0.148 0.167
200 0.515 0.173 0.167 0.176 0.174 0.478 0.165 0.284 0.134 0.151 0.164
500 0.45 0.142 0.138 0.143 0.15 0.464 0.139 0.221 0.12 0.132 0.141
1000 0.41 0.133 0.13 0.134 0.144 0.456 0.131 0.187 0.12 0.127 0.134

m 10 0.326 0.136 0.14 0.146 0.153 0.412 0.14 0.129 0.124 0.135 0.144
20 0.44 0.158 0.155 0.162 0.164 0.462 0.154 0.225 0.131 0.145 0.155
30 0.491 0.151 0.142 0.152 0.149 0.487 0.142 0.268 0.115 0.129 0.14
40 0.549 0.164 0.149 0.16 0.158 0.5 0.15 0.312 0.122 0.135 0.15
50 0.601 0.183 0.173 0.177 0.18 0.504 0.171 0.352 0.14 0.154 0.169

pij U(1, 100) 0.406 0.3 0.307 0.326 0.313 0.919 0.303 0.647 0.196 0.299 0.3
U(10, 100) 0.38 0.243 0.223 0.244 0.238 0.801 0.222 0.425 0.202 0.219 0.217
U(100, 120) 0.512 0.061 0.06 0.063 0.061 0.114 0.06 0.054 0.06 0.06 0.06
U(100, 200) 0.377 0.139 0.136 0.142 0.138 0.373 0.136 0.136 0.134 0.136 0.134
U(1000, 1100) 0.387 0.034 0.035 0.035 0.034 0.059 0.034 0.023 0.034 0.034 0.034
Jobscorre 0.541 0.148 0.148 0.15 0.152 0.337 0.153 0.138 0.076 0.076 0.153
Macscorre 0.765 0.184 0.153 0.155 0.19 0.708 0.153 0.377 0.183 0.153 0.163

1400 instances 0.481 0.158 0.152 0.159 0.160 0.473 0.151 0.257 0.126 0.139 0.151

Block one of Table 5.1 suggests that the number of jobs n in an instance gives some
information related to its difficulty. As can be seen in this block, most constructive
heuristics reached a better average RPD in the instances with the greatest number
of jobs (n=1000), while as the number of jobs n decreases, their RPD values grow.
To in-depth analyze this behavior, we generated box plot graphs to analyze how the

5.3. ANALYSIS OF THE R||CMAX CONSTRUCTIVE HEURISTICS RESULTS 51

number of jobs n impacts the algorithmic behavior of the eleven constructive heuristics.
Figures 5.2 and 5.3 contain the generated box plot graphs for the deterministic and
non-deterministic heuristics, respectively. The x−axis indicates the number of jobs
n, and the y−axis depicts the RPD. The box plots in Figures 5.2 and 5.3 allow
reiterating that from the eleven heuristics studied, only the random heuristic does not
present the behavior mentioned above (if the number of jobs n decreases, the difficulty
of an instance also increases).

Figure 5.2: Performance of deterministic heuristics for instances grouped by number of jobs
n.

On the other hand, the second block of Table 5.1 suggests that the number of machines
m has a contrary impact on the difficulty of the instances. That is, most constructive
heuristics get the best average RPD by solving instances with the lowest number of
machines (m=10), and such average increases as the number of machines m grows.
To analyze this behavior, we generated box plot graphs that show how the number of
machines m influences the optimization process of the eleven constructive heuristics.
Figures 5.4 and 5.5 contain the generated box plot graphs for the deterministic and
non-deterministic heuristics, respectively. The x−axis indicates the number of machines
m, and the y−axis depicts the RPD. From these plots can be observed that the eleven
heuristics studied present the above-mentioned behavior. However, it is less marked in
heuristics like Lowest 4g min, Highest 4g min, and Diff_fastest 4g min.

Similarly, from the third block of Table 5.1 can be inferred that the constructive
heuristics generate solutions with a lower RPD when solving instances where the
quotient q of the maximum max(pij) by the minimum min(pij) processing time is
less. Figure 5.6 indicates the average quotient of the instances of each set concerning
the distribution of the processing times. As can be seen in this plot, the set U(1000,
1100) contains the instances with the lowest q, while the ones with the highest q are in
the set U(1, 100). To analyze this behavior in deep, we created 2D dispersion graphs

52 CHAPTER 5. POPULATION INITIALIZATION STRATEGIES

Figure 5.3: Performance of non-deterministic heuristics for instances grouped by number of
jobs n.

Figure 5.4: Performance of deterministic heuristics for instances grouped by number of
machines m.

that show how the quotient q of the instances impacts the optimization process of the
eleven constructive heuristics. Figures 5.7 and 5.8 contain the generated dispersion
graphs for the deterministic and non-deterministic heuristics, respectively. The x−axis
indicates the quotient q of the instances, and the y−axis depicts the RPD. From Figure
5.7 can be seen that the deterministic constructive heuristics reach better results in

5.4. CONCLUSIONS OF THE ANALYSIS 53

Figure 5.5: Performance of non-deterministic heuristics for instances grouped by number of
machines m.

instances where the processing time distribution is between 1000 and 1100 (i.e., where
q = 1.1). A possible reason is that the processing times pij are quite similar since the
highest processing time is only 1.1 times greater than the lowest one. Besides, these
plots show how the performance of constructive heuristics decreases as the value of q
increases. That is, the heuristics reach the worst performance in instances where the
processing time distribution is from 1 to 100 since the highest processing time can be
100 times greater than the lowest one. Similarly, Figure 5.8 suggests that q impacts on
the performance of non-deterministic constructive heuristics, such that the higher the
value of q, the greater the difficulty of the instance.

Finally, the last block of Table 5.1 indicates that the constructive heuristic with the
best performance is Lowest 4g min, followed by the other two variants that used the
proposed approach that arrange the jobs based on four groups. Highest 4g min and
Diff_fastest 4g min. It is important to note that although Lowest 4g min showed the
best performance, we are going to keep the Random min heuristic as the population
initialization strategy of the GGA since it allows generating good solutions with greater
diversity.

5.4 Conclusions of the analysis

In this chapter, we presented a study to analyze the algorithmic behavior of eleven
constructive heuristics, five taken from the state-of-the-art and six more introduced in
this work. We evaluated the performance of each constructive heuristic on solving the
1400 R||Cmax test instances. Subsequently, we conducted an investigation, based on
exploratory data analysis techniques, looking for the characteristics that make difficult

54 CHAPTER 5. POPULATION INITIALIZATION STRATEGIES

Figure 5.6: Average quotient q of the instances in each set, grouped according to the criterion
used to generate the values of pij.

0 50 100

 q

0

0.2

0.4

0.6

0.8

1

 R
P

D

 Lowest

0 50 100

 q

0

0.2

0.4

0.6

0.8

1

 R
P

D

 Lowest min

0 50 100

 q

0

0.2

0.4

0.6

0.8

1

 R
P

D

 Highest min

0 50 100

 q

0

0.2

0.4

0.6

0.8

1

 R
P

D

 Mean min

0 50 100

 q

0

0.2

0.4

0.6

0.8

1

 R
P

D

 Diff fastest min

Figure 5.7: Performance of deterministic heuristics with references to the quotient of the
maximum by the minimum processing time (q) of the instances.

an R||Cmax instance for a constructive heuristic. The graphical and tabular analysis
allowed observing how the number of machines m and jobs n of the instances, as well

5.4. CONCLUSIONS OF THE ANALYSIS 55

0 50 100

 q

0

0.2

0.4

0.6

0.8

1

 R
P

D

 Random

0 50 100

 q

0

0.2

0.4

0.6

0.8

1

 R
P

D

 Random min

0 50 100

 q

0

0.2

0.4

0.6

0.8

1

 R
P

D

 Random bound min

0 50 100

 q

0

0.2

0.4

0.6

0.8

1

 R
P

D

 Lowest 4g min

0 50 100

 q

0

0.2

0.4

0.6

0.8

1

 R
P

D

 Highest 4g min

0 50 100

 q

0

0.2

0.4

0.6

0.8

1

 R
P

D

 Distance 4g min

Figure 5.8: Performance of non-deterministic heuristics with references to the quotient of the
maximum by the minimum processing time (q) of the instances.

as the quotient q of their processing times pij, can impact the performance of the
constructive heuristics. In this way, we observed that an instance represents a higher
challenge for a constructive heuristic as the number of jobs n decreases, the number of
machines m grows, and the quotients q increases. This study allowed us to have the first
step towards the characterization of the R||Cmax problem and the optimization process
of its solution methods, which will be taken up in the following chapters. Concerning
the overall performance of the constructive heuristics, the experimental results revealed
that the constructive heuristic with the best results is Lowest 4g min. However, we
will use the Random min constructive heuristic as the GGA population initialization
strategy since it is simple and generates solutions close to the best known with different
characteristics. This behavior is important because it will allow the GGA to start with
good quality solutions without leading to premature convergence in most of the test
instances. In the following chapters, we will analyze the optimization process of the
rest of the GGA components in order to create a specific-purpose GGA for R||Cmax,
making use of the knowledge gained from each study conducted.

Chapter 6
Crossover operators

One of the features that differentiate the genetic algorithms from other search methods
is the crossover operator, used to recombine the genetic material of two or more solutions
in order to create solutions with new characteristics. The performance of a crossover
operator can vary according to the properties of the problem to solve. Therefore, it is
important to perform an experimental study to identify the operator that best suits
to the search space of the addressed problem. To facilitate this goal, it is essential
to know the state-of-the-art crossover operators designed to solve grouping problems,
the special class of combinatorial optimization problems to which belongs the R||Cmax

problem, since their procedures can be used as a design guide.

This chapter presents an experimental study to characterize the algorithmic behavior
of crossover operators for R||Cmax. The study covers a review of the state-of-the-art
crossover operators for grouping problems, highlighting their main heuristic strategies
and their applicability in grouping problems with different characteristics. Additionally,
this section includes an examination of the optimization process of the most outstanding
crossover operators in the specialized literature to solve grouping problems, adapted
to solve R||Cmax. Finally, this section presents an experimental design to analyze how
the different aspects that intervene during the crossover process impact on its final
performance, like the way the machines are arranged in parents and how they are
transmitted to offspring, the number of generated children, and the repeated genetic
material handling. In this way, we analyze the algorithmic behavior of thirty-two
crossover operators, including the state-of-the-art operators and the crossover operators
generated from the systematical experimental study. The information gathered gives
an overview of the options that exist. Therefore, it will be used as inspiration to design
a specific-purpose crossover operator for R||Cmax. The designed crossover operator was
incorporated into the GGA presented in Chapter 4, giving rise to the first Enhanced
GGA (EGGA). Experimental results indicated that the EGGA performance had a
slight improvement rate of about 17%.

56

6.1. STATE-OF-THE-ART OF GROUPING CROSSOVER OPERATORS 57

6.1 State-of-the-art of grouping crossover operators

The crossover operator is the most used variation operator (operators applied to the
population to generate solutions with new characteristics) to design GGAs since all the
GGAs designed to solve grouping problems incorporate this operator. Therefore, at
present, there are several grouping crossover operator variants. The importance of this
operator lies on its procedure since it is in charge of establishing the search directions
according to the different constraints and conditions of the problem to solve. During
this research stage, we conducted a detailed review of the state-of-the-art crossover
operators for GGAs that solve grouping problems. We found out that there was a gap
in the specialized literature since there are crossover operators that have different names
but use the same procedure to recombine the genetic material of the solutions. In the
same way, we found cases where two crossover operators with different names perform
the same procedure. The foregoing may be related to the fact that the properties and
restrictions of each problem make it necessary to adjust the procedure of the crossover
operators to avoid generating infeasible solutions, which resulted in those confusions.

The above motivated the meticulous analysis of each state-of-the-art crossover
operator designed to solve grouping problems, which allowed classifying them by
making a generalization of their procedure. We proposed three taxonomies, called
variation-degree, solutions encoding, and parameter setting-level. The details of the
compiled information and the proposed taxonomies can be found in [376].

Tables 6.1, 6.2, and 6.3 present the variation-degree taxonomy. The columns of
these tables hold general information about the crossover operators found in the
state-of-the-art, including their names, abbreviations used in this work, and references
to related works. This taxonomy is based on the variation-degree (i.e., the way in which
parents transmit the genetic material to their children, whether based on segments,
groups, or items) that the crossover operators cause to the solutions. Thus, it sorts them
according to three criteria, called segment-oriented, group-oriented, and item-oriented
crossover operators.

In accordance with this study, the state-of-the-art contains five segment-oriented
crossover operators, so-called 1PX (One-point Crossover), 2PX (Two-points Crossover),
3PX (Three-points Crossover), 4PX (Four-points Crossover), and MPX (Multi-point
Crossover). Usually, these operators use two solutions (sol1 and sol2) of the current
population as parents (P1 and P2) to generate one (C) or two (C1 and C2) children
(offspring). The general procedure of segment-oriented crossover operators is randomly
picking out k crossing points to divide parent solutions into k + 1 segments of genes,
which defines x crossing segments (cs). After this segmentation, different strategies
determine the transmission order of the cs created. It is important to note that the
genetic material transmission processes used by the five segment-oriented crossover
operators can generate infeasible solutions. Therefore, it is necessary to incorporate
problem-domain heuristics to transform them into feasible ones. Table 6.1 contains
the general information of the five segment-oriented crossover operators found in the
state-of-the-art.

58 CHAPTER 6. CROSSOVER OPERATORS

Table 6.1: Segment-oriented crossover operators. Operator: Name of the operator.
Abbr.: Abbreviation of the operator name. References: Related works.

Operator Abbr. References
One-point 1PX [22, 29, 15, 54, 55, 56, 45, 21, 39]
Two-points 2PX [23, 24, 25, 26, 27, 28, 8, 10, 12, 45, 61, 62, 51,

89, 41, 88, 72, 49, 76, 43, 73, 74, 60, 53, 66,
67, 33, 34, 37, 36, 35, 92, 70, 90, 377, 30, 378,
379, 380, 381, 71, 46, 86, 20, 48, 83, 38, 18]

Three-points 3PX [44, 77, 78, 79, 80, 91, 81, 82]
Four-points 4PX [378, 379, 47]
Multi-points MPX [31]

Unlike the operators that work at the segment-level, most group-oriented crossover
operators perform the transmission of the genetic material considering the particular
characteristics of every group, according to the used encoding. This behavior is
remarkable since it allows performing a more controlled mating process. According to
this review, to date, the state-of-the-art contains eight variation operators designed with
this approach. Table 6.2 includes the general information of the eight group-oriented
crossover operators found in the state-of-the-art.

Table 6.2: Group-oriented crossover operators. Operator: Name of the operator. Abbr.:
Abbreviation of the operator name. References: Related works.

Operator Abbr. References
Uniform UX [15, 64, 85]
Exon shuffling ESX [10, 14, 17]
Gene-level GLX [11, 16, 7, 84, 87]
Greddy partition GPX [13, 63, 52, 69, 65, 59, 19, 75, 50, 32]
Lowest index max LIMX [15, 52]
Lowest index first LIFX [52]
Multi-chromosomal MX [9]
Distance preserving DPX [68]

Finally, the state-of-the-art also holds link-oriented crossover operators, designed to
work directly with the links of the linear linkage encoding. According to this review,
the specialized literature only includes two link-oriented operators: UX (Uniform
Crossover) and MUX (Modified uniform Crossover). Table 6.3 shows the general
information of the two link-oriented crossover operators found in the state-of-the-art.

Table 6.3: Link-oriented crossover operators. Operator: Name of the operator. Abbr.:
Abbreviation of the operator name. References: Related works.

Operator Abbr. References
Uniform UX [15]

6.2. EXPERIMENTAL DESIGN FOR THE R||CMAX CROSSOVER OPERATORS 59

Modified uniform MUX [15]

It is important to note that the related works considered in this literature review include
GGAs with different representation schemes. Therefore, not all the identified crossover
operators apply to this work. The following section presents an experimental study of
state-of-the-art crossover operators that have shown promising results and that apply
for the GGA with the group-based representation scheme.

6.2 Experimental design for the R||Cmax crossover
operators

This section includes the experimental design proposed to analyze how the aspects
that intervene during the recombination process of the crossover operators impact their
performance. The main objective of this study is to identify the heuristic strategies
that positively impact the performance of grouping crossover operators on solving
the problem R||Cmax, to design an efficient grouping crossover that improves the
performance of the GGA presented in Chapter 4. The experimental design consists
of five phases that consider: (1) the performance analysis of the state-of-the-art
crossover operators, (2) strategies to sort the genes of parent solutions, (3) heuristics
to establish the gene transmission order and the number of children, (4) strategies to
handle the repeated genetic material, and (5) a study to analyze the utility of the
proposed operator. It is important to note that, to establish the order used to analyze
the crossover operator aspects, we gave priority to the general elements such as the
rearrangement and the process of gene transmission. Thus, we leave the more fine
factors for the end, such as repeated genetic material.

The performance evaluation of each crossover operator is conducted as follows. First,
a population of 100 individuals is randomly generated with the selected constructive
heuristic from the previous chapter, i.e. Random min. Next, the assessed crossover
operator is applied to the population for 500 generations. In each generation, the 100
solutions are used as parents to generate offspring, forming pairs of parents randomly.
In this way, the children of each generation replace their parents, i.e., we use the
generational replacement.

Subsequently, the operators are compared as follows. First, each crossover operator
is applied to the 1400 instances. Later, the performance of each crossover operator
is calculated based on the measure RPD, presented in Equation 3.6. Finally, for a
comprehensive analysis, the performance of the crossover operators is compared with
the 1400 instances grouped with four criteria: the number of jobs n, the number
of machines m, the distribution of the processing times pij, and the 1400 instances
together. It is important to note that, for a fair comparison, the same seed is used
for all the crossover operators. The experimental results are presented in tables, where
the first two columns indicate the criteria used to group the instances, i.e., n, m, pij,
and the complete benchmark. Thus, the remaining columns contain the average RPD

60 CHAPTER 6. CROSSOVER OPERATORS

obtained by each crossover operator for each grouping criterion, highlighting in bold
the best results.

The following sections describe the procedure of the operators studied in each phase,
contain a comparison of their performance, and highlight the characteristics that show
a positive impact on solving the R||Cmax problem.

6.2.1 State-of-the-art operators

Before starting with the design of the new operator, we analyzed the performance of
some state-of-the-art crossover operators to get an overview of what could be achieved
with existing operators. The literature review indicates that the most used and
best-performing approaches have been the group-based operators since they control
the genetic material transmission process, taking advantage of the characteristics and
properties of the groups. Given the above, this section only considers group-based
operators for the group-based representation scheme, covering Exon Shuffle Crossover
(ESX), Gene-Level Crossover (GLX), Greedy Partition Crossover (GPX), and Uniform
Crossover (UX). For a fair comparison, during the crossover processes, the machines
with at least one repeated job are eliminated, as this is the most common approach to
handle the repeated genetic material based on the scope of the literature review. The
specific procedure of each operator adapted to solve the problem R||Cmax is described
below.

The ESX operator uses two parents P1 and P2 to generate a child C. Their crossover
process begins by joining the machines of the two parents, to later sort them from best
to worst based on the processing time that they need to process their assigned jobs Ci

(i.e., from lowest to highest Ci). As a result, a list of ordered machines ML is created,
where each machine is twice, once for each parent. In this way, the child is constructed
as follows. The child C begins by receiving the best of all machines. Then, the second
machine is reviewed, which is transmitted as long as it is not repeated, and it does have
no repeated jobs (i.e., a job that is part of one of the previously transmitted machines).
Generally, this process ends with infeasible solutions with some empty machines and
some missed jobs. Said solutions are transformed into feasible ones using the Min()
assignment heuristic, which places each missed job into the machine that affects the
solution’s makespan to a lesser extent.

Unlike ESX, the GLX operator uses two parents P1 and P2 to generate two children
C1 and C2. Its crossover process begins by sorting both parents’ machines from best to
worst based on the time they need to process their assigned jobs Ci (that is, from lowest
to highest Ci). In this way, children are created considering the arranged machines of
the two parents in parallel. That is, first, the best machine of the first parent P1

is compared with the best machine of the second parent P2; then, the comparison is
performed with the second-best machine of each parent, and so on. In this way, the
process is repeated to compare all the machines in parallel. During the genetic material
transmission process, GLX can take two paths. First, if the compared machines have
different values of Ci, both children C1 and C2 receive first the machine with the lowest
Ci and then the other one. On the other hand, if both machines have the same Ci

6.2. EXPERIMENTAL DESIGN FOR THE R||CMAX CROSSOVER OPERATORS 61

vales, the first child C1 receives first the machine of the first parent P1 and then the
machine of the second parent P2, while the second child C2 first receives the machine
from the second parent P2 and then the machine from the first parent P1. This process
of transmitting genetic material can also end with incomplete solutions, with some
empty machines and some missed jobs. Therefore, like in the ESX operator, the missed
jobs are re-inserted using the Min() allocation heuristic.

Like GLX, the GPX operator uses two parents P1 and P2 to generate two children C1

and C2, its crossover process begins by classifying the machines of both parents from
best to worst based on the processing time that they need to process their assigned
jobs, and consider the ordered machines of the two parents in parallel. That is, it first
considers the best machine from the first parent P1 and the best machine from the
second parent P2, then it considers the second-best machine from each parent, and so
on. The main difference between GLX and GPX lies in their gene transmission process,
since GPX uses two probability vectors, one for building each child. Thus, to generate
the first child C1, GPX uses a probability p generated with a uniform distribution for
each pair of arranged machines. If p ≤ 0.5, C1 receives the machine from the first parent
P1. Otherwise, C1 receives the machine from the second parent P2. It is important to
note that before transmitting each machine, GPX verifies that it is not repeated and
that it does not have repeated jobs. Otherwise, the machine is discarded. The second
child C2 is created using the same process, but with a different vector of probabilities.
Like ESX and GLX, GPX produces infeasible solutions. Therefore, it uses the Min()
allocation heuristic to re-insert jobs missed during the genetic material transmission
process.

Finally, the UX operator also uses two parents P1 and P2 to generate two children C1

and C2. This is one of the simplest since it does not use any type of bias to control
the crossover process. UX considers the machines of the two parents P1 and P1 always
in the same order, i.e., from i1, to im. Thus, for each pair of machines (one for each
parent), it generates a random probability p with a uniform distribution. If p ≤ 0.5,
the first child C1 receives the machine from the first parent P1 and the second child
C2 receives the machine from the second parent P2. Otherwise, the roles are inverted.
Therefore, the first child C1 receives the machine from the second parent P2 and the
second child C2 receives the machine from the first parent P1. The solutions resulting
from this process may be feasible. Therefore, it is necessary to use the Min() allocation
heuristic to transform infeasible solutions into feasible ones. Table 8.1 shows the RPD
values reached from the four state-of-the-art crossover operators considered to CPLEX.

As can be observed in Table 8.1, the crossover operator with the best performance
on solving the problem R||Cmax is ESX, which discards the randomness to exploit a
bit of information about the solutions, i.e., the quality of the groups (the time that
each machine i requires to process its assigned jobs Ci). Table 8.1 suggests that ESX
reaches the best performance, even grouping the instances with the four different criteria
considered. However, this table also highlights that the performance of the operators
GLX, GPX, and UX is very close, and that all of them are quite far from CPLEX. The
information gained from this study validates the necessity of developing a crossover
operator with knowledge of the R||Cmax problem-domain, that reaches high-quality
results. The following sections include the proposed operators for each aspect of the

62 CHAPTER 6. CROSSOVER OPERATORS

Table 6.4: Comparison of the crossover operators: ESX (Exon Shuffle Crossover), GLX
(Gene-Level Crossover), GPX (Greedy Partition Crossover) and UX (Uniform Crossover)
using RPD.

Instance ESX GLX GPX UX

n 100 0.155 0.170 0.204 0.220
200 0.142 0.167 0.198 0.206
500 0.132 0.157 0.187 0.186
1000 0.153 0.181 0.210 0.234

m 10 0.153 0.180 0.215 0.232
20 0.152 0.178 0.214 0.229
30 0.152 0.176 0.213 0.226
40 0.152 0.175 0.211 0.223
50 0.153 0.173 0.210 0.221

pij U(1, 100) 0.277 0.398 0.476 0.606
U(10, 100) 0.160 0.292 0.306 0.385
U(100, 120) 0.070 0.051 0.073 0.054
U(100, 200) 0.162 0.161 0.185 0.182
U(1000, 1100) 0.038 0.026 0.038 0.027
jobsCorre 0.210 0.157 0.181 0.155
MachCorre 0.147 0.176 0.249 0.206

1400 instances 0.152 0.180 0.216 0.231

recombination process studied, and the results gained from each of them.

6.2.2 Strategies to rank the machines

One of the main benefits of group-level crossover operators is their capacity to
distinguish between groups according to their quality. This particularity has motivated
its implementation in several problems, showing promising results, which can be
observed in the related works listed in Tables 6.1, 6.2, and 6.3. Given this premise
and the knowledge gained from the experimental study of the state-of-the-art crossover
operator performance, this and the following phases of the study are focused on
identifying different aspects that intervene during the recombination process of grouping
crossover operators. Thus, we will analyze how these aspects impact on the algorithmic
behavior of the recombination process of a group-based crossover operator, to identify
those that positively impact on its final performance. As a consequence, the gained
knowledge will be used as a guide to design a specific-purpose crossover operator for
R||Cmax.

The design of the new grouping crossover operator starts from a simple and mostly
random initial operator, called Random Grouping Crossover (RGX), to avoid all kinds
of bias. Like most crossover operators, RGX generates two children C1 and C2 by

6.2. EXPERIMENTAL DESIGN FOR THE R||CMAX CROSSOVER OPERATORS 63

recombining the genetic material of two parents P1 and P2, as follows. First, it performs
a permutation of the machines of each parent, to later transmit the machines to the
children alternately, considering the arrangements generated by the permutations. That
is, the first child C1 receives the first machine from the first parent P1, then the first
machine from the second parent P2, later the second machine from the first parent P1,
and so on, until it collects all machines from both parents. The second child C2 is
created similarly, but its creation process starts with the first machine of the second
parent P2, then the first one from the first parent P1, and so on. It is important to note
that duplicated machines are discarded, i.e., when RGX tries to transmit a machine
from parent to child, it first verifies that the child has not yet received that machine
from the other parent. Furthermore, before transmitting a machine, RGX validates
that none of its jobs has already been transmitted with another machine. Otherwise,
the machine is also discarded. Finally, the jobs missed during the transmission process
are re-inserted using the assignment heuristic Min().

Figure 6.1 shows the recombination process followed by the RGX operator to generate
two children from two parents. In the example, each parent has five machines and the
machines have one or more jobs assigned. Additionally, each solution has a vector Ci,
used to indicate the time that each machine i requires to process its assigned jobs.
The processing time Ci of each machine can be calculated with the example instance
I, where each column represents a machine i from i1 to i5 and each row depicts a job j
from j1 to j10. In this way, each cell contains the processing time pij that the machine i
requires to process the job j. Thus, Figure 6.1a shows the result of applying a random
permutation to the order of the machines of each parent. Figure 6.1b contains the result
of transmitting the permuted machines from parents to children alternately, discarding
the repeated genetic material. Figure 6.1c includes the generated offspring with the
repeated jobs that lead to removing a machine highlighted in red. Furthermore, this
figure contains the missed jobs MJ during the genes transmission process of each child.
Figure 6.1d presents the partial solutions (children) with the five machines and their
respective assigned jobs, as well as a permutation of the missed jobs MJ of each child.
Finally, Figure 6.1e shows the final solutions (children) resulting from the assignment
of the missed jobs MJ to the partial solutions using the Min() allocation heuristic.

The first aspect to analyze about the crossover process is the arrangement that the
machines have in the parents before conducting the genetic material transmission. In
this order of ideas, this section presents different strategies to organize the solution
machines to study the profits of considering the machines in a different order from i1,
i2,. . . ,im. In this fashion, this phase of the experimental study focuses on exploring
different criteria to organize the machines in parents. We analyze the performance of
six strategies to rank the machines, called Permutation (the one of RGX), Average(pi),
Njobs, Ci, Njobs - Ci, and Ci-Njobs.

Figure 6.2 describes the process of each strategy with an example that contains two
parent solutions for the test instance I with five machines (groups) and ten jobs. Thus,
each parent contains the ten jobs, from j1 to j10, distributed among the five machines,
from i1 to i5, and the time that each machine i requires for processing its assigned
jobs from C1 to C5 is stored in vector Ci. Thus, Figure 6.2a shows the two parent
solutions with their machines ranked with a permutation generated with a uniform

64 CHAPTER 6. CROSSOVER OPERATORS

The Random Grouping Crossover (RGX) operator works as follows:

Permutation

Partial

solution

Offspring

Genetic

material

transmision

Repeated

genetic

material

Test Instance I

28

16 15 6 25

10 10 16 18

18 15 6 10

15 10 16 20

20 12 5 16

29 20 5 19

11 19 3 3

12 10 10 20

20 12 7

n
m

j9

j8

j5
j6

j4

j7

j3

j2

i3i2i1
j1

i4

8 20 18 28j10

5

8

1

12

6

29

23

10

27

i5

2

Given two parent solutions, and a test instance I:

j7, j9

i5

i3

i3

i4
j5

19

i2

i5

j2, j10

i4

46

i1

j1

i1

16

i2

Machines

Jobs

Ci

Machines

Jobs

Ci

First

Parent

Second

Parent

j7, j9

i5

i3

i3

i4
j5

19

j3, j4

i2

i5

j2, j10

i4

46

i1

j1

i1

16

i2

Machines

Jobs

Ci

Machines

Jobs

Ci

First

Parent

Second

Parent

j3, j4

i2

i5

i5

i2

i4

i3

i3

i4

i1

i1

Machines

Jobs

Ci

Machines

Jobs

Ci

First

Child

Second

Child

i5 i2 i3
j1

i1i4

j3, j4

i2 i5 i4
j1

i1i3Machines

Jobs

Ci

Machines

Jobs

Ci

MIFirst

Child

MISecond

Child

i5
j3, j4

i2 i3 i4i1Machines

Jobs

Ci

i5
j3, j4

i2 i3 i4
j5

19

i1Machines

Jobs

Ci

PermutationFirst

Child

PermutationSecond

Child

i5

i5

j3, j4

i2

j3, j4, j10

i2

i4

i4
j5

19

i1

i1 i3

i3Machines

Jobs

Ci

Machines

Jobs

Ci

First

Child

Second

Child

Figure 6.1: Recombination process of the Random Grouping Crossover (RGX) operator

6.2. EXPERIMENTAL DESIGN FOR THE R||CMAX CROSSOVER OPERATORS 65

distribution. This rank strategy is the one used for the initial RGX that allows ranking
the machines with an approach completely random. Similarly, Figure 6.2b includes
the parent solutions with their machines ranked with the Average(pi) strategy, which
consists of calculating the average processing time required by each machine i to process
the n jobs of the instance I, to later ranking the machines from smallest to largest based
on such average. In this way, each pair of parents selected to generate offspring always
gives preference to the fastest machine, that is, the machine that on average could
process the n jobs faster by itself. Likewise, it saves the slowest machine for last.
Therefore, the machines in all the parents are always arranged in the same way before
performing the transmission process. On the other hand, this study considers two rank
strategies based on one criterion related to the current status of the machines, called
Njobs and Ci. Figure 6.2c contains the parent solutions with their machines ranked
according to the number of jobs assigned Njobs to each machine, from highest to lowest.
It is important to note that, if two or more machines have the same number of jobs, they
are ranked in non-decreasing order according to their index, i.e., i1, i2, ..., im. Similarly,
6.2d includes the parent solutions with their machines ranked with a strategy Ci, that
ranks the machines of parents in non-decreasing order based on their Ci values, giving
preference to machines with less processing time. Like in the strategy Njobs, if two or
more machines have the same processing time pij, they are ranked in non-decreasing
order according to their index i.

Finally, we study the performance of two strategies that arrange the machines based
on two criteria: Njobs-Ci and Ci-Njobs. Figure 6.2e shows the machines in the parent
solutions ranked according to the number of jobs. Unlike the Njobs strategy, in this case,
the machines with the same number of jobs are sorted based on the second criterion,
the processing time of the machines Ci. In this way, this strategy first gives preference
to the machines with the highest number of jobs and selects the machine with the
lowest Ci among two machines with the same number of jobs. In contrast, the strategy
Ci-Njobs, first arranges the machines based on the processing time (from lowest to
highest Ci value), and if there is a tie, it uses the number of jobs Njobs of the machines
as tiebreaker, placing first the machine with the highest number of jobs. Figure 6.2f
includes the parent solutions with their machines ranked with this strategy.

Once the six strategies to order the groups were designed, we incorporated them into
the initial RGX operator, giving rise to six crossover operators identified with their
arrangement strategy: Permutation, Average(pi), Njobs, Ci, Njobs-Ci, and Ci-Njobs.
Thus, each one of these variants starts its recombination process by arranging the
machines of the parents in question, based on one of the six studied strategies.
Subsequently, they proceed with the gene transmission process of RGX, described
above. The suitability of the six proposed strategies was evaluated employing the
proposed experimental design. That is, generating 100 solutions with the Min()
heuristic, using the same seed, recombining the genetic material of the 100 solutions in
each generation, utilizing elitist replacement, and employing 500 generations. Likewise,
we compare the performance of the six variants based on their RPD to CPLEX. Table
6.5 shows the experimental results of this phase. The first two columns indicate the
criteria used to group the instances, i.e., n, m, pij, and the 1400 instances together.
Thus, the remaining columns contain the average RPD obtained by each crossover

66 CHAPTER 6. CROSSOVER OPERATORS

Given two parent solutions, and a test instance I:

The six strategies to rank the machines in the parent solutions work as follows:

Test Instance I

28

16 15

10 10

18 15

15 10

20 12

29 20

11 19

12 10

20

n
m

j9

j8

j5
j6

j4

j7

j3

j2

i2i1
j1

8 20

6

16

6

16

5

5

3

10

12

i3

18

25

18

10

20

16

19

3

20

7

i4

28j10

5

8

1

12

6

29

23

10

27

i5

2

j1, j3, j10

i5
j5, j6, j8

i3i2
j2

i4

18

j7, j9

i1

29

i4
j6, j9
23

i5i1 i2 i3

Permutation

Ci

Njobs-Ci

Average(pi)

Njobs

Ci-Njobs

Machines

Jobs

Ci

Machines

Jobs

Ci

First

Parent

Second

Parent

Machines

Jobs

Ci

j4

i2
j2

i4

18

j7, j9

i1

29

i3 i5

First

Parent
Machines

Jobs

Ci

i5 i3 i4
j6, j9
23

i1 i2

Second

Parent

Average

machines 16.7

i1 i2 i3

12.3

i5i4 Sorted

machines 16.7

i1i2

9.7

i3 i5 i4

j1, j3, j10

i5i3 i2
j2

i4

18

j7, j9

i1

29

First

Parent

Machines

Jobs

Ci

i3 i5 i2 i4
j6, j9
23

i1

Second

Parent

Machines

Jobs

Ci

i1 i3 i4

j6, j9

23

i2 i5Machines

Jobs

Ci

Second

Parent

Machines

Jobs

Ci

j1, j3, j10

i5i3
j4

i2
j2

i4

18

j7, j9

i1

29

First

Parent

j1, j3, j10

i5
j5, j6, j8

i3i2
j2

i4

18

j7, j9

i1

29

First

Parent

Machines

Jobs

Ci

i2i3 i5i4

j6, j9

23

i1

Second

Parent

Machines

Jobs

Ci

j1, j3, j10

i5 i3
j4

i2
j2

i4

18

j7, j9

i1

29

First

Parent

Machines

Jobs

Ci

i2i3 i5i4

j6, j9

23

i1

Second

Parent

Machines

Jobs

Ci

j1, j3, j10

i5
j5, j6, j8

i3i2
j7, j9

i1

29

j2

i4

18

First

Parent
Machines

Jobs

Ci

i2i3 i5i4
j6, j9
23

i1

Second

Parent

Machines

Jobs

Ci

Figure 6.2: Strategies to rank the machines in parent solutions

operator for each grouping criterion, highlighting in bold the best results.

As Table 6.5 indicates, the best variants are Ci and Ci-Njobs, obtaining better results
even for all the grouping criteria. It is important to note that given this behavior, we
studied the optimization process of the two variants Ci and Ci-Njobs in the following
phases of the experimental study. However, to give a better structure to the next
sections of the document, only the results of the variant Ci-Njobs will be presented

6.2. EXPERIMENTAL DESIGN FOR THE R||CMAX CROSSOVER OPERATORS 67

Table 6.5: Comparison of the crossover operators: Permutation, Average(pi), Njobs, Ci,
Njobs-Ci, and Ci-Njobs using RPD.

Instance Set Permutation Average(Pi) Ci Njobs Ci-Njobs Njobs-Ci

n 100 0.191 0.259 0.166 0.333 0.165 0.192
200 0.216 0.258 0.191 0.308 0.192 0.210
500 0.192 0.208 0.182 0.248 0.182 0.200
1000 0.183 0.188 0.178 0.226 0.178 0.201

m 10 0.190 0.200 0.183 0.261 0.183 0.212
20 0.201 0.233 0.184 0.290 0.183 0.212
30 0.186 0.223 0.168 0.263 0.168 0.185
40 0.191 0.231 0.173 0.278 0.173 0.184
50 0.210 0.254 0.188 0.300 0.189 0.211

pij U(1, 100) 0.456 0.591 0.394 0.701 0.392 0.455
U(10, 100) 0.323 0.390 0.290 0.440 0.291 0.325
U(100, 120) 0.053 0.055 0.051 0.081 0.051 0.057
U(100, 200) 0.166 0.176 0.161 0.212 0.161 0.170
U(1000, 1100) 0.027 0.028 0.026 0.043 0.026 0.029
JobCorre 0.155 0.151 0.158 0.224 0.157 0.159
MacCorre 0.188 0.208 0.175 0.250 0.176 0.212

1400 instances 0.196 0.228 0.179 0.279 0.179 0.201

68 CHAPTER 6. CROSSOVER OPERATORS

since it showed better results in the subsequent phases.

6.2.3 Strategies to establish the machine transmission order
and the number of children

After identifying the best option to sort the machines of the parent solutions, we explore
different ways of conducting the genetic material transmission from parents to offspring
and the number of children to generate from a pair of parents. In this way, we present
twelve new crossover operators. All of them start with the strategy to rank the machines
Ci - Njobs, but they differ in the scheme used to perform the transmission of the
genes. Six operators generate a child from two parents, referred to as One machine
Min(Ci), Two machines Min(Ci), One machine Max(Njobs), Two machines Max(Njobs),
One machine Random(), and Two machines Random(). Additionally, we introduce
six operators that generate two children from two parents, named Max(Njobs) Fixed,
Max(Njobs) Random, Min(Ci) Fixed, Min(Ci) Random(), and Random Switch().

Figure 6.3 shows two potential parent solutions to an instance I with five machines
from i1 to i5 and ten jobs from j1 to j10. Each parent contains the ten jobs distributed
among the five machines and a vector Ci to keep track of the processing time allocated
to each machine i. Additionally, the figure shows the machines of the two parents ranked
according to the strategy Ci-Njobs, which first arranges the machines in non-decreasing
order according to their processing time Ci and then rearranges the machines tied in
time according to the number of jobs assigned to them, giving priority to those with
the highest number of jobs. Finally, this figure includes a set of arrows to indicate that
the arranged machines will be compared in parallel. That is, the first machine i5 of
the first parent against the first machine i3 of the second parent, the second machine
i2 of the first parent against the second machine i5 from the second parent, and so on.
In this way, the transmission order of each pair of machines will be determined by the
decision criterion used by each of the twelve strategies studied.

Two parent solutions with their vectors arranged using the Strategy Ci-Njobs, and the instance I that they solve.

Test Instance I

28

16 15

10 10

18 15

15 10

20 12

29 20

11 19

12 10

20

n
m

j9

j8

j5
j6

j4

j7

j3

j2

i2i1
j1

8 20

6

16

6

16

5

5

3

10

12

i3

18

25

18

10

20

16

19

3

20

7

i4

28j10

5

8

1

12

6

29

23

10

27

i5

2

j1, j3, j10

i5
j5, j6, j8

i3i2
j2

i4

18

j7, j9

i1

29

i4
j6
16

i5 i1i2i3

Machines

Jobs

Ci

Machines

Jobs

Ci

First

Parent

Second

Parent

Figure 6.3: Two parent solutions to explain the genetic material transmission process of the
twelve proposed strategies.

Figure 6.4 shows the procedures of the two strategies that two parents use to generate a

6.2. EXPERIMENTAL DESIGN FOR THE R||CMAX CROSSOVER OPERATORS 69

child based on the Random() criterion. Figure 6.4a contains the result of transmitting
the machines from the two parents P1 and P2 (described in Figure 6.3) to a child C with
the gene transmission strategy One Machine Random(). For each pair of machines, this
strategy uses a random probability p generated with a uniform distribution to determine
which of the two parent machines should be transmitted to the child. Figure 6.4a shows
an example that includes the two parents with their machines ranked using the strategy
Ci-Njobs, a set of arrows indicating the pairs of machines compared in parallel, and a
random probability value p for each of those pairs. Given this information, the strategy
One Machine Random() builds the child C as follows. The p value of each machine
pair determines whether the child receives the machine either from the first parent
P1 or the one from the second parent P2. If p ≤ 0.5 the child receives the machine
from the first parent P1, otherwise, it receives the machine from the second parent
P2. During the transmission process, the child receives the machines according to the
random probabilities, discarding the repeated machines that appear in second place
and the ones with at least a repeated job (highlighted in red). Usually, the result
of this process is an infeasible child without some jobs (placed in the MJ box) and
machines missed during the transmission process. Thus, it is necessary to use the
Min() assignment heuristic to transform the child into a feasible one by re-inserting the
missed jobs.

Like One Machine Random(), the Two Machines Random() strategy uses a random
probability p generated with a uniform distribution to establish the transmission order
of each machine pair. However, this strategy transmits the machines of both parents
p1 and p2 to the child C. Figure 6.4b shows an example that includes the two parents
with their machines ranked with the Ci-Njobs strategy, a set of arrows indicating the
pairs of machines, and a probability p for each of those pairs. Thus, the strategy
Two Machines Random() procedure to generate a child is as follows. The random
probabilities determine which machine of each pair is transmitted first. If p ≤ 0.5
the child C receives the machine from the first parent P1 and then the one from the
second parent P2. Otherwise, the transmission order of the machines is reversed. In
this sense, the child C receives the machines in the order generated by the random
probabilities, deleting the repeated machines that appear in second place and the ones
with at least a repeated job (highlighted in red). Frequently, this process generates an
infeasible child without some jobs (placed in the MJ box) and machines missed during
the recombination process. Thus, the missed jobs are re-inserted with the assignment
heuristic Min().

Additionally, we studied two machine transmission strategies that use two parents P1

and P2 to generate a child C according to the Max(Njobs) criterion, called One Machine
Max(Njobs) and Two Machine Max(Njobs). For each pair of machines, these strategies
give priority to the machine with the highest number of jobs. Figure 6.5 contains
the detail of the procedures of these strategies. Figure 6.5a shows the resulting child of
transmitting the machines from the two parents (described in Figure 6.3) to a child with
the One Machine Max(Njobs) gene transmission strategy. The example contains two
parents P1 and P2 with their machines ranked with the Ci-Njobs strategy, a set of arrows
indicating the pairs of machines, and some probability p values for pairs of machines
with the same number of jobs. Given the above, the One Machine Max(Njobs) strategy

70 CHAPTER 6. CROSSOVER OPERATORS

i5i3 i4 i2 i1

j2

i4

18

j5, j6, j8

i3

20

i2

10

j7, j9

i1

29

j1, j3, j10

i5

7

p=0.1 p=0.9p=0.4 p=0.7 p=0.2

Machines
Jobs

Ci

Machines
Jobs

Ci

First

Parent

Second

Parent

i4
j1, j3, j10

i5

7

i2

10

j7, j9

i1

29

Machines
Jobs

Ci

MJ
j2, j5, j8Child

i5i3 i4 i2 i1

j4

i2

10

j7, j9

i1

29

j1, j3, j10

i5

7

j2

i4

18

j5, j6, j8

i3

20

p=0.1 p=0.9p=0.4 p=0.7 p=0.2

Machines

Jobs

Ci

Machines

Jobs

Ci

i4
j1, j3, j10

i5

7

i2

10

j7, j9

i1

29

MJ
j2, j5, j8

Child

Machines

Jobs

Ci

First

Parent

Second

Parent

a) One Machine

Random()

b) Two Machines

Random()

Given the two parent solutions and the instance I of Figure 6.3, the gene transmission process of the

strategies that generate a child from two parents with the Random() criterion works as follows.

Figure 6.4: Machine transmission strategies that use two parents to generate a child based
on the Random() criterion.

works as follows. For each pair of machines, this strategy only transmits the machine
with the highest number of jobs (outlined in blue) to the child C. If both machines
have the same number of jobs (the two machines are outlined in blue), this strategy
generates a random probability value p with a uniform distribution to determine which
of the machines is transmitted to the child C. If p ≤ 0.5 the child receives the machine
from the first parent P1, otherwise, it receives the machine from the second parent
P2. Furthermore, before transmitting each machine, One Machine Max(Njobs) verifies
that it has not been transmitted by the other parent yet. Otherwise, it is discarded.
Likewise, machines with one or more repeated jobs (highlighted in red) are discarded.
Usually, the resulted child is infeasible since some jobs, placed in the box MJ , can
be missed during the transmission process. Hence, it is necessary to use the Min()
assignment heuristic to re-insert them into the child solution.

Similar to One Machine Max(Njobs), the Two Machines Max(Njobs) strategy gives
priority to the machine with the highest number of jobs. However, this strategy
transmits the machines of both parents P1 and P2 to the child C. Figure 6.5b presents
an example that consists of two parents P1 and P2 with their machines ranked with the
Ci-Njobs strategy, a set of arrows indicating the pairs of machines, and some probability

6.2. EXPERIMENTAL DESIGN FOR THE R||CMAX CROSSOVER OPERATORS 71

values p for the pairs of machines tied with the same number of jobs. Thus, the Two
Machines Max(Njobs) strategy to generate a child C works as follows. For each pair
of machines, this strategy first transmits the machine with the highest number of jobs
(outlined in blue) to the child C, and later the other one. If both machines have the
same number of jobs (the two machines are outlined in blue), this strategy generates a
random probability value p with a uniform distribution to determine the transmission
order. If p ≤ 0.5, the child C receives first the machine from the first parent P1 and
later the one of the second parent P2; otherwise, the transmission order of the machines
is reversed. Moreover, in order to avoid repeated genetic material, Two Machines
Max(Njobs) checks that the machine to transmit has not been inherited by the other
parent yet. Otherwise, it is discarded. Alike, it discards the machines with one or more
repeated jobs (highlighted in red). Usually, the generated child is infeasible since some
jobs, placed in the box MJ , can be missed during the transmission process. Hence, it
is necessary to use the Min() assignment heuristic to re-insert them into the solution.

MJ
j5, j6

j7, j9j4

i2

10

i5

i5

7

i3

j2

i4

18

i4
j6

i3

20

i2

i1

29

i1

p=0.6 p=0.3

i1i5
j2, j10

i3

Machines

Jobs

Ci

Machines

Jobs

Ci

Machines

Jobs

Ci
Child

First

Parent

Second

Parent

j7, j9j4

i2

10

i5

i5

7

i3

j2

i4

18

i4

i3

20

i2

i1

29

i1
j6

p=0.6 p=0.3

Machines

Jobs

Ci

Machines

Jobs

Ci

First

Parent

Second

Parent

MJ
j5, j8, j9

i4
j6

i2

10

i5i3Machines

Jobs

Ci
Child

a) One machine

Max(Njobs)

b) Two machines

Max(Njobs)

Given the two parent solutions and the instance I of Figure 6.3, the gene transmission process of the

strategies that generate a child from two parents with the Max(Njobs) criterion works as follows.

Figure 6.5: Machine transmission strategies that use two parents to generate a child based
on the Max(Njobs) criterion.

Finally, we studied two machine transmission strategies that use two parents P1 and P2

to generate a child C according to the Min(Ci) criterion, referred to as One Machine
Min(Ci) and Two Machine Min(Ci). For each pair of machines, these strategies give

72 CHAPTER 6. CROSSOVER OPERATORS

priority to the machine that requires the shortest time to process its jobs. Figure 6.6
contains the detail of the procedures of these strategies. Figure 6.6a shows the resulting
child C of transmitting the machines from the two parents P1and P2 (described in
Figure 6.3) to a child C with the One Machine Min(Ci) gene transmission strategy.
The example contains two parents P1 and P2 with their machines ranked with the
Ci-Njobs strategy, a set of arrows indicating the pairs of machines, and some probability
p values for the pairs of machines with the processing time. Given the above, the One
Machine Min(Ci) strategy works as follows. For each pair of machines, this strategy only
transmits the machine with the shortest processing time (outlined in blue) to the child
C. If both machines have the same processing time (the two machines are outlined in
blue), this strategy generates a random probability value p with a uniform distribution
to determine which of the machines is transmitted to the child C. If p ≤ 0.5 the child
C receives the machine from the first parent P1, otherwise, it receives the machine from
the second parent P2. Furthermore, before transmitting each machine, One Machine
Min(Ci) verifies that it has not been transmitted by the other parent yet. Otherwise,
it is discarded. Likewise, machines with one or more repeated jobs (highlighted in red)
are discarded. Usually, the resulted child is infeasible since some jobs, placed in the
box MJ , can be missed during the transmission process. Hence, it is necessary to use
the assignment heuristic Min() to re-insert them into the solution.

Like One Machine Min(Ci), the Two Machines Min(Ci) strategy gives priority to
the machine with the shortest processing time. However, this strategy transmits the
machines of both parents P1 and P2 to the child C. Figure 6.6b presents an example
that consist of two parents with their machines ranked with the Ci-Njobs strategy, a
set of arrows indicating the pairs of machines, and some probability values p for the
pairs of machines tied with the same number of jobs. Thus, the Two Machines Min(Ci)
strategy generates a child C as follows. For each pair of machines, this strategy first
transmits the machine with the shortest processing time (outlined in blue) to the child
C, and later the other one. If both machines have the same number of jobs (the two
machines are outlined in blue), this strategy generates a random probability value p
with a uniform distribution to determine the transmission order. If p ≤ 0.5 the child
C receives first the machine from the first parent P1 and later the one of the second
parent P2; otherwise, the transmission order of the machines is reversed. Moreover,
in order to avoid repeated genetic material, Two Machines Min(Ci) checks that the
machine to transmit has not been inherited by the other parent yet. Otherwise, it is
discarded. Alike, it discards the machines with one or more repeated jobs (highlighted
in red). Usually, the generated child is infeasible since some jobs, placed in the box
MJ , can be missed during the transmission process. Hence, it is necessary to use the
Min() assignment heuristic to re-insert them into the solution.

On the other hand, we also designed six machine transmission strategies that use two
parents P1 and P2 to generate two children C1 and C2. Figure 6.7 shows the procedures
of the first two strategies that use the Random() criterion to create two children C1

and C2 from two parents P1 and P2, called Random() and Random Switch(). Figure
6.7a contains the result of transmitting the machines from the two parents to each child
with the Random() gene transmission strategy. For each pair of machines, this strategy
uses a random probability p generated with a uniform distribution to determine which

6.2. EXPERIMENTAL DESIGN FOR THE R||CMAX CROSSOVER OPERATORS 73

i3

j4

i2

i5

i5
j2

i4

18

i4
j6

16

i3

i2

j7, j9

i1

i1

p=0.4 p=0.7

Machines

Jobs

Ci

Machines

Jobs

Ci

First

Parent

Second

Parent

j1, j3, j10

i5

7

i2

10

i4
j6 j7, j9

i1

29

MJ
j2, j6, j8

Machines

Jobs

Ci
Child

i2

i5

i5

i3

j2

i4

18

i4
j6

16

i3

i2

j7, j9

i1

i1

p=0.4 p=0.7

MJ
j2, j5, j8

i4
j6 j7, j9

i1

29

j1, j3, j10

i5

7

i2

10

Machines

Jobs

Ci

Machines

Jobs

Ci

Machines

Jobs

Ci

First

Parent

Second

Parent

Child

a) One Machine

Min(Ci)

b) Two Machines

Min(Ci)

Given the two parent solutions and the instance I of Figure 6.3, the gene transmission process of the

strategies that generate a child from two parents with the Min(Ci) criterion works as follows.

Figure 6.6: Machine transmission strategies that use two parents to generate a child based
on the Min(Ci) criterion.

of the two machines should be transmitted first to each child. Figure 6.7a shows an
example that includes the two parents ranked with the strategy Ci-Njobs, a set of arrows
indicating the pairs of machines compared in parallel, and a random probability value
p for each of those pairs. Given this information, the Random() strategy builds the
children as follows. The p value of each machine pair determines the transmission
order of the machines in the following way. If p ≤ 0.5 the first child C1 first receives the
machine from the first parent P1 and later the machine of the second parent P2, while
the second child C2 receives first the machine from the second parent P2 and later the
one from the first parent P1. Otherwise, the first child C1 first receives the machine
from the second parent P2 and later the machine from the first parent P1, while the
second child C2 first receives the machine from the first parent P1 and later the one
from the second parent P2. During the transmission process, the children receive the
machines according to the random probabilities, discarding the repeated machines that
appear in second place and the ones with at least a repeated job (highlighted in red).
Usually, the results of this process are two infeasible children without some jobs (placed
in the box of misses jobs MJ) and machines missed during the transmission process.
Thus, it is necessary to use the Min() assignment heuristic to transform the children

74 CHAPTER 6. CROSSOVER OPERATORS

into feasible ones by re-inserting the missed jobs.

Similar to Random(), the Random Switch() strategy uses a random probability p
generated with a uniform distribution to establishes the transmission order of each
machine pair. However, this strategy only transmits one of the machines to the children.
Figure 6.7b shows an example that includes the two parents P1 and P2 with their
machines ranked with the Ci-Njobs strategy, a set of arrows indicating the pairs of
machines, and a probability p for each of those pairs. Thus, the strategy Random
Switch() procedure to generate a child is as follows. The random probabilities determine
which machine of each pair is transmitted to each child. If p ≤ 0.5 the first child C1

receives the machine from the first parent C1 and the second child C2 receives the
machine from the second parent P2. Otherwise, the transmission order of the machines
is reversed, i.e., the first child C1 receives the machine from the second parent P2

and the second child C2 receives the machine from the first parent P1. Therefore,
the children receive the machines in the order established by the random probabilities,
discarding the repeated machines that appear in second place and the ones with at least
a repeated job (highlighted in red). Frequently, this process generates infeasible children
without some jobs (placed in the box of missed jobs MJ) and machines missed during
the recombination process. Thus, the missed jobs are re-inserted with the assignment
heuristic Min().

Additionally, we designed two machine transmission strategies that use two parents to
generate two children according to the Max(Njobs) criterion, called Max(Njobs) Fixed
and Max(Njobs) Random. For each pair of machines, these strategies give priority to
the machine with the highest number of jobs. Figure 6.8 contains the detail of the
procedures of these strategies. Figure 6.8a shows the resulting children of transmitting
the machines from the two parents with the Max(Njobs) Fixed machine transmission
strategy. The example contains two parents P1 and P2 with their machines ranked
with the Ci-Njobs strategy, a set of arrows indicating the pairs of machines, and some
probability p values for pairs of machines with the same number of jobs. Given the
above, the Max(Njobs) Fixed strategy works as follows. For each pair of machines,
this strategy first transmits the machine with the highest number of jobs (outlined
in blue) to both children C1 and C2, and later the other one. If both machines have
the same number of jobs (the two machines are outlined in blue), the first child C1

first receives the machine from the first parent P1 and later the machine of the second
parent P2, while the second child C2 first receives the machine from the second parent
P2 and later the one from the first parent P1. Furthermore, before transmitting each
machine, Max(Njobs) Fixed verifies that it has not been transmitted by the other parent
yet. Otherwise, it is discarded. Likewise, machines with one or more repeated jobs
(highlighted in red) are discarded. Usually, the resulted children are infeasible since
some jobs can be missed during the transmission process (placed in the box of missed
jobs MJ). Hence, it is necessary to use the Min() assignment heuristic to re-insert
them into the solution.

Like Max(Njobs) Fixed, the Max(Njobs) Random strategy gives priority to the machine
with the highest number of jobs. However, this strategy incorporates randomness to
establishes the order of transmission of the machine pairs with the same number of
jobs. Figure 6.8b presents an example that consist of two parents P1 and P2 with

6.2. EXPERIMENTAL DESIGN FOR THE R||CMAX CROSSOVER OPERATORS 75

Random

Random

Switch

i5

j1, j2

10

Machines

Jobs

Ci

j10

25

i1

j7, j8, j9

26

i2

j5, j6

20

i4

j3, j4

20

i3

j2, j7j8, j9 j5, j6j3, j4j1, j10

22 27212010

Machines

Jobs

Ci

i1 i2 i4i5i3

Second

Parent

First

Parent

p=0.3 p=0.8 p=0.7 p=0.2 p=0.6

i5

j1, j2

10

j5, j6

20

i4

j5, j6

20

i4

j2, j7

22

i2

Machines

Jobs

Ci j3, j4, j7

MJ

j8, j9

MJ

First

Child

j1, j10

10

Machines

Jobs

Ci

i1

j8, j9

20

i3

Second

Child

j10

25

i1

j3, j4

20

i3

Second

Parent

First

Parent

i5

j1, j2

10

Machines

Jobs

Ci

j10

25

i1

j7, j8, j9

26

i2

j5, j6

20

i4

j3, j4

20

i3

j2, j7j8, j9 j5, j6j3, j4j1, j10

22 27212010

Machines

Jobs

Ci

i1 i2 i4i5i3

p=0.1 p=0.4 p=0.9 p=0.2 p=0.7

j2, j7

22

i2

j5, j6

27

i4i5

j1, j2

10

j5, j6

20

i4

Machines

Jobs

Ci j7, j8

MJ

j3, j4

MJ

First

Child

j1, j10

10

Machines

Jobs

Ci

i1

j8, j9

20

i3

Second

Child

j10

25

i1

j3, j4

20

i3

Given the two parent solutions and the instance I of Figure 6.3, the gene transmission process of the

strategies that generate two children from two parents with the Random() criterion works as follows.

Figure 6.7: Machine transmission strategies that use two parents to generate two children
based on the Random() criterion.

their machines ranked with the Ci-Njobs strategy, a set of arrows indicating the pairs
of machines, and some probability values p for the pairs of machines with the same
number of jobs. Thus, the Max(Njobs) Fixed strategy procedure to generate a child is
as follows. For each pair of machines, this strategy first transmits the machine with
the highest number of jobs (outlined in blue) to both children C1 and C2, and later
the other one. If both machines have the same number of jobs (the two machines are
outlined in blue), Max(Njobs) Fixed generates a random probability p with a uniform
distribution to establish the order of transmission of the machines. If p ≤ 0.5 the first
child C1 first receives the machine from the first parent P1 and later the machine of the
second parent P2, while the second child C2 first receives the machine from the second

76 CHAPTER 6. CROSSOVER OPERATORS

parent P2 and later the one from the first parent P1. Otherwise, the transmission order
of the machines is reversed, i.e., the first child C1 first receives the machine from the
second parent P2 and later the machine from the first parent P1, while the second child
C2 first receives the machine from the first parent P1 and later the one from the second
parent P2. Moreover, in order to avoid repeated genetic material, Max(Njobs) Random
checks that the machine to transmit has not been inherited by the other parent yet.
Otherwise, it is discarded. Alike, it discards the machines with one or more repeated
jobs (highlighted in red). Usually, the generated children are infeasible since some jobs
(placed in the box of missed jobs MJ) can be missed during the transmission process.
Hence, it is necessary to use the assignment heuristic Min() to re-insert them into the
solution.

Finally, we designed two machine transmission strategies that use two parents to
generate two children according to the Min(Ci) criterion, called Min(Ci) Fixed and
Min(Ci) Random. For each pair of machines, these strategies give priority to the
machine that requires the shortest time to process its jobs. Figure 6.9 contains the
detail of the procedures of these strategies. Figure 6.9a shows the resulting children
of transmitting the machines from the two parents (described in Figure 6.3) with the
Min(Ci) Fixed transmission strategy. The example contains two parents with their
machines ranked with the Ci-Njobs strategy, a set of arrows indicating the pairs of
machines, and some probability p values for the pairs of machines with the processing
time. Given the above, the Min(Ci) Fixed strategy works as follows. For each pair of
machines, this strategy first transmits the machine with the shortest processing time
(outlined in blue) to both children, and later the other one. If both machines have
the same processing time (the two machines are outlined in blue), the first child first
receives the machine from the first parent and later the machine from the second parent,
while the second child first receives the machine from the second parent and later the
one from the first parent. Furthermore, before transmitting each machine, Min(Ci)
Fixed verifies that it has not been transmitted by the other parent yet. Otherwise, it
is discarded. Likewise, machines with one or more repeated jobs (highlighted in red)
are discarded. Usually, the resulted children are infeasible since some jobs (placed in
the box of missed jobs MJ) can be missed during the transmission process. Hence, it
is necessary to use the assignment heuristic Min() to re-insert them into the solution.

Like Min(Ci) Fixed, the Min(Ci) Random strategy gives priority to the machine with
the shortest processing time. However, this strategy incorporates randomness to
establishes the order of transmission of the machine pairs with the same processing
time. Figure 6.9b presents an example that consist of two parents with their machines
ranked with the Ci-Njobs strategy, a set of arrows indicating the pairs of machines, and
some probability values p for the pairs of machines with the same processing time. Thus,
the Min(Ci) Random strategy procedure to generate two children is as follows. For each
pair of machines, this strategy first transmits the machine with the shortest processing
time (outlined in blue) to both children, and later the other one. If both machines have
the same processing time (the two machines are outlined in blue), Min(Ci) Random
generates a random probability p with a uniform distribution to establish the order
of transmission of the machines. If p ≤ 0.5 the first child first receives the machine
from the first parent and later the machine of the second parent, while the second

6.2. EXPERIMENTAL DESIGN FOR THE R||CMAX CROSSOVER OPERATORS 77

i5

j1, j2

10

j5, j6

20

i4

j5, j6

20

i4

j3, j4

20

i3

j2, j7

22

i2

Machines

Jobs

Ci j7, j8, j9

MJ First

Child

j8, j9j1, j10

2010

Machines

Jobs

Ci

i1 i3

Second

Child

i5

j1, j2

10

Machines

Jobs

Ci

j10

25

i1

j10

25

i1

j7, j8, j9

26

i2

j5, j6

20

i4

j3, j4

20

i3

j2, j7j8, j9 j5, j6j3, j4j1, j10

22 27212010

Machines

Jobs

Ci

i1 i2 i4i5i3

Second

Parent

First

Parent

j3, j4

21

i5

i5

j1, j2

10

j5, j6

20

i4

j5, j6

20

i4

j3, j4

20

i3

j2, j7

22

i2

Machines

Jobs

Ci j3, j4, j7

MJ

j8, j9

MJ

First

Child
j8, j9

j1, j10

20

10

Machines

Jobs

Ci

i1

i3

Second

Child

i5

j1, j2

10

Machines

Jobs

Ci

j10

25

i1

j10

25

i1

j7, j8, j9

26

i2

j5, j6

20

i4

j3, j4

20

i3

j2, j7j8, j9 j5, j6j3, j4j1, j10

22 27212010

Machines

Jobs

Ci

i1 i2 i4i5i3

Second

Parent

First

Parent

Max(Njobs)

Fixed

Max(Njobs)

Random

Given the two parent solutions and the instance I of Figure 6.3, the gene transmission process of the

strategies that generate two children from two parents with the Max(Njobs) criterion works as follows.

Figure 6.8: Machine transmission strategies that use two parents to generate two children
based on the Max(Njobs) criterion.

child first receives the machine from the second parent and later the one from the first
parent. Otherwise, the transmission order of the machines is reversed, i.e., the first
child first receives the machine from the second parent and later the machine from the
first parent, while the second child first receives the machine from the first parent and
later the one from the second parent. Moreover, in order to avoid repeated genetic
material, Min(Ci) Random checks that the machine to transmit has not been inherited
by the other parent yet. Otherwise, it is discarded. Alike, it discards the machines
with one or more repeated jobs (highlighted in red). Usually, the generated children
are infeasible since some jobs (placed in the box of missed jobs MJ) can be missed

78 CHAPTER 6. CROSSOVER OPERATORS

Table 6.6: Performance comparison of the machine transmission strategies: One machine
Random(), Two machines Random(), One machine Max(Njobs), Two machines Max(Njobs),
One machine Min(Ci), Two machines Min(Ci) based on the average RPD.

One Two One Two One Two
machine machines machine machines machine machines

Instance Set Random Random Max(njobs) Max(njobs) Min(Ci) Min(Ci)

n 100 0.170 0.210 0.159 0.213 0.121 0.201
200 0.168 0.203 0.156 0.205 0.121 0.195
500 0.157 0.191 0.148 0.193 0.119 0.184
1000 0.181 0.215 0.168 0.221 0.129 0.206

m 10 0.180 0.221 0.169 0.225 0.128 0.212
20 0.178 0.220 0.167 0.224 0.128 0.212
30 0.176 0.218 0.166 0.221 0.127 0.210
40 0.174 0.217 0.164 0.220 0.126 0.209
50 0.173 0.215 0.162 0.218 0.125 0.207

pij U(1, 100) 0.396 0.490 0.369 0.522 0.224 0.465
U(10, 100) 0.291 0.324 0.250 0.321 0.184 0.296
U(100, 120) 0.051 0.072 0.050 0.073 0.047 0.072
U(100, 200) 0.161 0.189 0.150 0.189 0.132 0.185
U(1000, 1100) 0.026 0.039 0.026 0.039 0.027 0.038
JobsCorre 0.159 0.183 0.162 0.187 0.147 0.180
MacsCorre 0.176 0.253 0.182 0.251 0.143 0.253

1400 instances 0.180 0.221 0.170 0.226 0.129 0.213

during the transmission process. Hence, it is necessary to use the Min() assignment
heuristic to re-insert them into the solution.

Once the twelve strategies to establish the transmission order of the machine were
designed, we incorporate them into the crossover operator under design, giving rise to
twelve crossover operators. Each operator is identified by the transmission strategy
that they use as One Machine Random(), Two Machines Random(), One Machine
Max(Njobs), Two Machines Max(Njobs), Machine Min(Ci), Two Machines Min(Ci),
Random(), Random Switch(), Max(Njobs) Fixed, Max(Njobs) Random, Min(Ci) Fixed,
and Min(Ci) Random. Thus, each operator starts its recombination process by
arranging the machines of the parents in question, based on arrangement strategy
Ci-Njobs. Subsequently, they proceed with one of the machine transmission process
strategies. Like in the previous two phases, the suitability of the strategies studied
was evaluated by generating 100 solutions with the heuristic Min(), using the same
seed, recombining the genetic material of the 100 solutions in each generation, utilizing
elitist replacement, and employing 500 generations. In the same way, we compare the
performance of the twelve operators based on their RPD to CPLEX. Tables 6.6 and 6.7
show the experimental results of this phase. The first two columns indicate the criteria
used to group the instances, i.e., n, m, pij, and the 1400 instances together. Thus, the
remaining columns contain the average RPD obtained by each crossover operator for
each grouping criterion, highlighting in bold the best results.

6.2. EXPERIMENTAL DESIGN FOR THE R||CMAX CROSSOVER OPERATORS 79

i5

j1, j2

10

j5, j6

20

i4

j5, j6

20

i4

j3, j4

20

i3

j2, j7

22

i2

Machines

Jobs

Ci j7, j8, j9, j10

MJ First

Child

j8, j9j1, j10

2010

Machines

Jobs

Ci

i1 i3

Second

Child

i5

j1, j2

10

Machines

Jobs

Ci

j10

25

i1

j7, j8, j9

26

i2

j5, j6

20

i4

j3, j4

20

i3

j2, j7j8, j9 j5, j6j3, j4j1, j10

22 27212010

Machines

Jobs

Ci

i1 i2 i4i5i3

Second

Parent

First

Parent

i5

j1, j2

10

j5, j6

20

i4

j5, j6

20

i4

j3, j4

20

i3

j2, j7

22

i2

Machines

Jobs

Ci j3, j4, j7

MJ

j8, j9

MJ

First

Child
j8, j9

j1, j10

20

10

Machines

Jobs

Ci

i1

i3

Second

Child

i5

j1, j2

10

Machines

Jobs

Ci

j10

25

i1

j10

25

i1

j7, j8, j9

26

i2

j5, j6

20

i4

j3, j4

20

i3

j2, j7j8, j9 j5, j6j3, j4j1, j10

22 27212010

Machines

Jobs

Ci

i1 i2 i4i5i3

Second

Parent

First

Parent

p=0.3 p

Min(Ci)

Fixed

Min(Ci)

Random

j3, j4

MJ

Given the two parent solutions and the instance I of Figure 6.3, the gene transmission process of the

strategies that generate two children from two parents with the Min(Ci) criterion works as follows.

Figure 6.9: Machine transmission strategies that use two parents to generate two children
based on the Min(Ci) criterion.

80 CHAPTER 6. CROSSOVER OPERATORS

Table 6.7: Performance comparison of the machine transmission strategies: Random(),
Random Switch(), Max(Njobs) Fixed, Max(Njobs) Random, Min(Ci) Fixed, Min(Ci) Random
based on the average RPD.

Min Ci Min Ci) Max njobs Max njobs Random Random
Instance Set Fixed Random Fixed Random Switch

n 100 0.206 0.170 0.213 0.213 0.201 0.202
200 0.200 0.168 0.205 0.206 0.197 0.196
500 0.189 0.157 0.192 0.193 0.188 0.186
1000 0.212 0.181 0.222 0.222 0.206 0.207

m 10 0.217 0.180 0.227 0.227 0.212 0.213
20 0.216 0.178 0.226 0.226 0.212 0.212
30 0.215 0.176 0.221 0.222 0.210 0.211
40 0.213 0.174 0.220 0.220 0.209 0.210
50 0.211 0.172 0.218 0.218 0.207 0.208

pij U(1, 100) 0.475 0.395 0.530 0.527 0.448 0.465
U(10, 100) 0.322 0.292 0.329 0.330 0.309 0.303
U(100, 120) 0.070 0.051 0.071 0.071 0.073 0.072
U(100, 200) 0.186 0.160 0.185 0.186 0.185 0.185
U(1000, 1100) 0.033 0.026 0.034 0.034 0.038 0.038
JobsCorre 0.184 0.160 0.191 0.191 0.185 0.181
MacsCorre 0.251 0.176 0.252 0.253 0.252 0.251

1400 instances 0.217 0.180 0.227 0.227 0.213 0.214

6.2. EXPERIMENTAL DESIGN FOR THE R||CMAX CROSSOVER OPERATORS 81

From Tables 6.6 and 6.7 can be observed that the operators that only generate one
child obtained better results than those that generate two children. Moreover, Tables
6.6 indicates that the six operators obtained similar results. Therefore, all of them will
be considered in the next experimental phase.

6.2.4 Strategies to handle the repeated jobs and machines

The last aspect related to the crossover process to be studied is the way the repeated
genetic material is handled. As in the last stage, the operators that only generate
one child obtained better results than those that generate two children, in this stage,
we analyze the performance of the operators: One machine Random(), Two machines
Random(), One machine Max(Njobs), Two machines Max(Njobs), One machine Min(Ci),
Two machines Min(Ci), by replacing their strategy to handle the repeated genetic
material Group Elimination (GE) by the Item Elimination (IE) strategy in order to
identify the best option.

Instead of deleting all jobs in a machine with at least one repeating job, the Item
elimination strategy removes only the repeated job. We incorporate them into the
crossover operator under design, giving rise to six crossover operators. Each operator
is identified by the transmission strategy that they use and the technique to handle the
repeated genetic material as IE-One machine Random(), IE-Two machines Random(),
IE-One machine Max(Njobs), IE-Two machines Max(Njobs), IE-One machine Min(Ci),
IE-Two machines Min(Ci). Thus, each operator starts its recombination process by
arranging the machines of the parents in question, based on arrangement strategy
Ci-Njobs. Subsequently, they proceed with one of the machine transmission process
strategies. Finally, the six operators use the Item Elimination strategy. As in the
previous phases, the suitability of the strategies studied was evaluated by generating
100 solutions with the heuristic Random min(), using the same seed, recombining the
genetic material of the 100 solutions in each generation, utilizing elitist replacement,
and employing 500 generations. In the same way, we compare the performance of the
six operators based on their RPD to CPLEX. Table 6.8 shows the experimental results
of this phase.

The study revealed that for each criterion used to transmit the machines, i.e., Random,
Max(njobs), and Min(Ci), the variants that transmit only one machine work better
with the Group Elimination genetic material handling technique. On the contrary,
the variants that transmit both machines get better results with the Item Elimination
technique. To analyze this phenomenon, we generate a graph with the average RPD
reached by the six operators that generate a child in their two variants, i.e., one
with Group Elimination technique and the other one with Item Elimination technique.
Figure 6.10 shows the graph obtained, where the x−axis represents each operator, while
the y−axis indicates the average RPD obtained by each operator. Each pair of blue
and orange bars indicates an operator, the blue bars depict the operators with the Item
Elimination technique, and the orange bar the operator with the Group Elimination
technique. This graph reiterates that the operators that transmit the two machines
to the children and use the item elimination handling technique have better results,
highlighting the results achieved by the operator IE-Two Machines Min(Ci). However,

82 CHAPTER 6. CROSSOVER OPERATORS

Table 6.8: Performance comparison of the genetic material handling technique item
elimination in the machine transmission strategies: IE-One machine Random(), IE-Two
machines Random(), IE-One machine Max(Njobs), IE-Two machines Max(Njobs), IE-One
machine Min(Ci), IE-Two machines Min(Ci) based on the average RPD.

IE-One IE-Two IE-One IE-Two IE-One IE-Two
machine machines machine machines machine machines

Instance Set Random Random Max(njobs) Max(njobs) Min(Ci) Min(Ci)

n 100 0.208 0.170 0.155 0.170 0.168 0.114
200 0.207 0.167 0.154 0.165 0.165 0.113
500 0.198 0.165 0.149 0.160 0.161 0.112
1000 0.232 0.159 0.168 0.160 0.157 0.122

m 10 0.230 0.173 0.169 0.172 0.170 0.120
20 0.226 0.175 0.166 0.174 0.171 0.119
30 0.222 0.177 0.164 0.175 0.173 0.118
40 0.217 0.179 0.162 0.178 0.176 0.117
50 0.213 0.181 0.160 0.179 0.178 0.116

pij U(1, 100) 0.550 0.245 0.359 0.270 0.247 0.208
U(10, 100) 0.389 0.159 0.235 0.148 0.156 0.175
U(100, 120) 0.059 0.078 0.055 0.077 0.076 0.043
U(100, 200) 0.190 0.189 0.148 0.184 0.186 0.121
U(1000, 1100) 0.029 0.041 0.029 0.041 0.040 0.026
JobsCorre 0.174 0.219 0.173 0.217 0.215 0.150
MacsCorre 0.216 0.312 0.191 0.295 0.297 0.125

1400 instances 0.230 0.178 0.170 0.176 0.174 0.121

6.3. GGA WITH THE OLD AND THE NEW CROSSOVER OPERATORS 83

to get a bigger picture, in the next section we will look at the performance of four
operators, the top two with the item elimination strategy and the top two with the
group elimination strategy.

Figure 6.10: Performance comparison of the six operators that generate a child with the
strategies to handle the genetic material Group Elimination and Item Elimination.

6.3 GGA with the old and the new crossover
operators

In order to identify the most appropriate operator for the GGA presented in Chapter
4, at this stage we test the four variants that showed the best results in the two
previous experimental studies, i.e., One machine Min(Ci) and Two machines Min (Ci)
with the two techniques for handling constraints: Group Elimination (GE) and Item
Elimination (IG). In this way, we analyze the performance of the GGA by replacing
the old crossover operator with each of the four aforementioned operators, given rise
to four new Enhanced GGAs (EGGAs). As all variants use the Min(Ci) criterion to
transmit the machines, each EGGA variant is identified considering only the number of
machines and the initials of the technique to handle the repeated genetic material that
it uses as EGGA GE-One machine, EGGA IE-One machine, EGGA GE-Two machine,
and EGGA IE-Two machine. For a fair comparison, the four EGGA variants were run
with the parametrization described in Section: 4.5. Population size |P | = 100; number
of individuals selected for the crossover nc = 20; number of individuals selected for the
mutation nm = 83; elite population size |B| = 20; and, maximal number of generations
max_gen = 500. Likewise, we compare the performance of the EGGAs based on their
RPD to CPLEX. Table 6.9 shows the experimental results of this phase. The first two
columns indicate the criteria used to group the instances, i.e., n, m, pij, and the 1400

84 CHAPTER 6. CROSSOVER OPERATORS

Table 6.9: Performance comparison of the metaheuristic algorithms: EGGA GE-One
machine, EGGA GI-One Machine, EGGA GE-Two machines, and EGGA GI-Two Machines
based on the average RPD.

EGGA EGGA EGGA EGGA
IE-One GI-One IE-Two GI-Two

Instance Set machine machine machines machines

n 100 0.098 0.099 0.055 0.099
200 0.099 0.101 0.055 0.101
500 0.101 0.102 0.055 0.102
1000 0.111 0.114 0.056 0.114

m 10 0.109 0.111 0.056 0.111
20 0.107 0.108 0.056 0.108
30 0.105 0.106 0.056 0.106
40 0.104 0.104 0.057 0.104
50 0.102 0.102 0.057 0.102

pij U(1, 100) 0.206 0.210 0.076 0.210
U(10, 100) 0.191 0.203 0.076 0.203
U(100, 120) 0.035 0.036 0.023 0.036
U(100, 200) 0.117 0.122 0.071 0.122
U(1000, 1100) 0.016 0.015 0.011 0.015
JobsCorr 0.083 0.083 0.062 0.083
MacsCorr 0.122 0.111 0.084 0.111

1400 instances 0.110 0.112 0.058 0.112

instances together. Thus, the remaining columns contain the average RPD obtained
by each crossover operator for each grouping criterion, highlighting in bold the best
results.

From Table 6.9 can be observed that neither the machines nor the jobs impact the
difficulty of the instances, but the criteria used to generate the processing times pij of
the instances do. Thus, instances with generated processing times in the ranges U(1,
100), U(10, 100) and with correlated machines MacsCorr represent the biggest solution
challenge. In addition, this table indicates that the crossover operator that provides
the best performance is IE-Two machines. Therefore, it will be the operator of the
current version of the EGGA. Finally, the results in Table 6.9 showed that this study
allowed an improvement rate of about 17%. It is important to highlight that, although
the results achieved by the EGGA with the new crossover operator are still far from the
best state-of-the-art algorithms, this study allowed knowing in detail the optimization
process of the crossover operator for the problem R||Cmax. Such knowledge of the
problem domain will be of great use in the following stages of this research project.

6.4. CONCLUSIONS OF THE ANALYSIS 85

6.4 Conclusions of the analysis

In this chapter, we analyzed the performance of the most representative state-of-the-art
crossover operators to solve grouping problems that affect the solutions at the
group-level. Furthermore, we studied different aspects that intervene during the
crossover process, such as the arrangement of the machines in parents, the criteria
to establish the machine transmission order, the suitability of generating one or two
children, and two strategies to handle the repeated genetic material. We proposed
a systematical experimental design based on phases. We started from a completely
random crossover operator. In each stage, we proposed different crossover operators to
study every aspect mentioned above to try to understand their algorithmic behavior.
The knowledge gained from each phase was used to design a specific-purpose crossover
operator for R||Cmax, referred to as IE-Two machines. The designed crossover operator
was incorporated into the GGA presented in Chapter 4, given rise to the Enhanced GGA
(EGGA). The experimental results showed that the systematical experimental study
presented in this chapter allowed an improvement rate of about 17%. It is important to
note that although this operator did not significantly improve the obtained results, it
allowed understanding in detail the way in which the different processes that are part
of a crossover operator can impact its performance. In this way, we concluded that the
most suitable crossover operator for the problem R||Cmax should organize the parent
machines based on their processing times Ci, rearranging the tied machines according
to the number of jobs assigned to them Njobs. During the transmission, both parents
must transmit their machines, always giving priority to the one with the lowest Ci and,
if necessary, breaking the tie randomly. Finally, the operator must handle the repeated
genetic material with the Item Elimination strategy and must generate only one child.
In the next chapter, we will analyze the optimization process of the mutation operator
with a systematical experimental study similar to the one presented in this chapter in
order to create a specific-purpose grouping mutation operator for R||Cmax.

Chapter 7
Mutation operators

After the crossover, the mutation operator is the second most used variation operator
in the GGA. Commonly, mutation operators promote the exploration of the search
space by slightly altering the solution genetic material. Usually, the mutation behavior
is useful for a GGA when it is converging to a local optimum since it provides the
capacity to redirect the search to other areas of the search space. Therefore, one of
the main challenges during the design of an efficient GGA is the development of an
efficient mutation operator. According to Quiroz-Castellanos et al., the performance
of the GGA-CGT, the base of the GGA introduced in this work, is mainly related
to the mutation operator, which alone is capable of finding quality solutions. Section
4.6 includes an experimental study with different parameter configurations, that allows
observing how the performance of the GGA case study of this work is mainly related
to the crossover operator, while the mutation operator has a low impact.

The above motivates this work that aims to study the performance of different grouping
mutation operators to identify the strategies that they use and that positively impact
their performance. In this order of ideas, this chapter presents an experimental design
based on phases. In each stage, different strategies are explored to steady how they can
affect the performance of a mutation operator. The best strategies will be employed
to design a new operator to incorporate it into the GGA in order to improve its
performance when solving R||Cmax. The information gathered gave an overview of the
options that exist and served as an inspiration to design a specific-purpose mutation
operator for R||Cmax. The designed mutation operator was incorporated into the GGA
presented in Chapter 4, achieving an improvement rate of about 52%.

7.1 State-of-the-art grouping mutation operators

Mutation is a genetic operator generally used to control population diversity during
the GGA search process. The mutation operators for the GGA are called grouping
mutation operators since they work at the group-level. That is, they select g groups
using some criterion (such as selecting the best, the worst, or random groups), to
slightly modify them employing different operations. According to the scope of the

86

7.1. STATE-OF-THE-ART GROUPING MUTATION OPERATORS 87

literature review, the state-of-the-art holds seven mutation operators designed for GGAs
in addition to the Download operator. Three of them, the Swap, the Insertion, and the
Item Elimination, perform small alterations in the solutions with operations directly
applied to some items of the selected groups. In contrast, the remaining operators,
called Elimination, Creation, Merge & Split, and Reordering, promote more severe
disturbances in solutions since they perform operations involving all the items of the
selected groups [376].

The seven mutation operators have been used to solve a wide variety of grouping
problems with different conditions and constraints. Due to these differences, mutation
operators must be adapted to the characteristics of the problem to be solved. As a
result, grouping mutation operators can differ in the criteria they use to select the
jobs and machines involved in the mutation operations, the strategies employed to
handle the jobs and the selected machines, and the problem-domain heuristics included.
The following sections consider the general procedure of four state-of-the-art grouping
mutation operators: Swap, Insertion, Elimination, and Merge & Split. They were
chosen because this study contemplates the best state-of-the-art mutation operators
that are suitable for the R||Cmax problem, and those unsuitable mutation operators and
also those which have not shown a competitive performance were discarded. However,
in [376] interested readers can find a more detailed description of the seven mutation
operators, as well as a compilation of the mutation operators applied to different
grouping problems and the parameter setting approach they use. It is important to
note that, besides the Download operator, none of the four mutations described below
have been used to solve the R||Cmax grouping problem. The above motivates this
experimental study, whose main objective is to explore the performance of the most
used mutation operators now to solve R||Cmax.

7.1.1 The Swap operator

The Swap operator selects two groups, to later pick k items from each selected group
and exchange the items from one group to another. Due to its way of working, it can be
adapted and used to solve grouping problems with different constraints and conditions.
Thanks to this feature, the Swap operator has been used to solve classic problems like
Bin Packing [85] as well as new problems such as Maximally Diverse [59].

7.1.2 The Insertion operator

Similar to the Swap operator, the Insertion operator selects two groups, to later pick k
items from one selected group, and insert them to the other group. This operator has
been used to solve from classic problems such as Graph Coloring [52] to newer problems
such as Group Stock Portfolio [83], covering problems with different constraints and
conditions [54].

88 CHAPTER 7. MUTATION OPERATORS

7.1.3 The Elimination operator

The Elimination operator chooses g groups to remove them, release their items, and
re-insert them by applying problem-domain heuristics, for example, the heuristic Min()
used by the GGA for R||Cmax (see Chapter 4). According to the scope of the literature
review, this is the most used mutation operator to solve grouping problems because
it has shown promising results, mainly in classic problems like Bin Packing [11], Cell
Formation [25], Multiple Knapsack [64], and Timetabling [51].

7.1.4 The Merge & Split operator

The Merge & Split, also known as Division and Combination operator, works in two
phases. In the first stage, it selects two groups and transforms them into a single one.
Then, in the second stage, it picks a group to distribute its items between two distinct
groups. Merge & Split has been used to solve grouping problems like Cell Formation
[26] and Multivariate Micro-aggregation [70].

7.2 Experimental design for the R||Cmax mutation
operators

This section presents the experimental design proposed to analyze the way different
elements involved in the mutation process can impact on the performance of grouping
mutation operators. The objective of this work is to design an efficient grouping
mutation operator that includes the best features identified during the experimentation,
to later incorporate it into the GGA presented in Chapter 4 and create the second
Enhanced GGA (EGGA). The experimental design consists of four phases. The
first stage covers the analysis of the state-of-the-art grouping mutation operators to
determine which one has the best performance for R||Cmax. The second phase comprises
an exploratory analysis to observe the influence of the number of machines and jobs
involved in the mutation operations. The third phase includes the assessment of
different machine selection strategies, including biased, random, and mixed approaches.
Finally, the fourth phase studies the contribution of distinct rearrangement heuristics
based on insertion and swap operations. The main objective of these strategies is to
reorganize some jobs of the solutions, applying more complex and expensive processes.
Although they involve a computational cost, they are very important when the mutation
operator by itself is unable to avoid a local optimum. It is important to note that, to
establish the order used to analyze the mutation operator aspects, we gave priority to
the general elements like the number of genes to mutate and the way they are selected.
Thus, we let the more fine factors for the end, such as the rearrangement of the jobs.
The information collected is used to design an efficient grouping mutation operator for
R||Cmax.

To analyze the performance of each operator, we generate a population of 100
individuals with the Random min() heuristic, to later mutate them for 500 generations.

7.2. EXPERIMENTAL DESIGN FOR THE R||CMAX MUTATION OPERATORS 89

For a fair comparison, we use the same seed for each operator. The experiments were
conducted as follows. First, each mutation operator is applied to the 1,400 test instances
introduced by Fanjul-Peyro in 2010. Later, the performance of each mutation operator
is calculated based on the RPD measure, presented in Equation 3.6. Finally, for a
comprehensive analysis, the performance of the mutation operators is compared with
the 1400 instances grouped with four criteria: the number of jobs n, the number
of machines m, the distribution of the processing times pij, and the 1400 instances
together. The experimental results are presented in tables, where the first two columns
indicate the criteria used to group the instances, i.e., n, m, pij, and the complete
benchmark. Thus, the remaining columns contain the average RPD obtained by each
mutation operator for each grouping criterion, highlighting in bold the best results.

The following sections (1) describe the procedure of the operators studied in each phase,
(2) contain a comparison of their performance, and (3) highlight the characteristics that
show a positive impact on solving the R||Cmax problem.

7.2.1 State-of-the-art operators

This experiment aims to study the optimization process of the state-of-the-art grouping
mutation operators in the problem R||Cmax. This study comprises four operators:
Swap, Insertion, Elimination, and Merge & Split. Figure 7.1 presents the procedure
of the four mutation operators adapted to work with the constraints and conditions of
the R||Cmax problem.

The Swap operator selects two jobs jA and jB from two different machines iA and iB to
interchange them. Both jobs and machines are selected randomly. Figure 7.1a explains
the mutation process of the Swap operator adapted to solve the R||Cmax problem with
an example in which jobs jA = j1 and jB = j7, selected from machines iA = i1 and
iB = i4, respectively, are exchanged. In this way, in the initial individual (Solution),
machines iA and iB outlined in bold, and the jobs in bold jA and jB depict the machines
and the selected jobs, respectively; and the final individual (Mutation) shows the jobs
in their new position.

Similarly, the Insertion operator chooses one job jA from one machine iA to insert it
into another machine iB. In this case, the machines and the jobs are selected randomly.
Figure 7.1b describes the mutation process of the Insertion operator implemented to
solve the R||Cmax problem with an example, where job jA = j7, selected from machine
iA = i4, is inserted into machine iB = i1. For a clear explanation, the example outlines
in bold the selected machines iA and iB and highlights the inserted item in bold jA
in the initial individual (Solution). Thus, the final individual (Mutation) shows the
picked job jA in its new position.

On the other hand, the Elimination operator randomly selects two machines iA and iB
and although it does not eliminate them due to the characteristics of the problem, it
releases all their jobs to later permute them and re-insert them with the Min() heuristic.
Figure 7.1c explains the mutation process of the Elimination operator adapted to solve
the R||Cmax problem with an example, where the machines outlined in bold iA = i3
and iB = i4 depict the machines selected to remove their jobs j3, j5, j6, j7 and j8,

90 CHAPTER 7. MUTATION OPERATORS

highlighted in bold from the initial individual (Solution). The Incomplete Solution
shows the chromosome without the released items, placed in the box RJ . Lastly,
the box Permutation represents the jobs in RJ reordered randomly, and the final
solution Mutation depicts the chromosome generated by assigning the jobs in the box
Permutation by using the problem-domain Min() heuristic.
Finally, like Elimination, the Merge & Split operator selects two machines iA and iB in
a random way, and even it cannot join them, it extracts their jobs and merges them in
the set iA ∪ iB. Next, it simulates the split part by re-inserting the released jobs among
the two selected machines iA and iB using the described-above Best() heuristic. Figure
7.1d includes the mutation process of the Merge & Split operator with an example
that contains an initial individual (Solution) with the two selected machines iA and
iB outlined in bold and the released jobs j3, j5, j6, j7, and j8 highlighted in bold.
Besides, the example contains the Incomplete Solution without the jobs in iA ∪ iB,
placed in a box with the same name (iA ∪ iB). Lastly, this figure includes the final
solution Mutation that depicts the chromosome resulted from the allocation of the jobs
in Permutation (a box with the jobs in iA ∪ iB reordered randomly) by applying the
problem-domain Best() heuristic.
Table 7.1 shows the results obtained in the experiment. For a comprehensive study, the
performance of the operators was analyzed considering the four criteria described in
the experimental design, i.e., the number of jobs n, the number of machines m, and the
distribution of the instances processing times pij. In this way, the first column indicates
the criterion used to study the performance of the operators, the second one contains
the classes covered for each grouping criterion, and the following columns represent
the average RPD (Relative Percentage Deviation) achieved by each operator: Swap,
Insertion, Merge & Split, and Elimination. The last row of the table shows the average
RPD of each operator for the 1,400 test instances. From Table 7.1 it can be observed
that the Elimination operator excelled in all the criteria used to distribute the instances.
It is important to note that the four operators had a similar performance since their
average RPD differs only by hundredths.
Moreover, it is remarkable that the Download mutation operator procedure of the
GGA presented in Chapter 4 is quite similar to the state-of-the-art Merge & Split
mutation operator, since although the operations merge & split cannot be applied to
groups explicitly; due to the characteristics and conditions of the problem, they can be
emulated by considering the jobs. In this way, the first stage of the Download mutation
operator represents the combination of the groups, where the jobs of the two selected
machines are released and placed in a single set. Similarly, the second stage depicts the
split operation, where the jobs are redistributed among the selected machines. Finally,
it is also important to mention that the only difference between the Merge & Split
operator and the Elimination operator (the two operators with the best performance)
is the job reassignment strategy they work with, since Merge & Split re-inserts the jobs
only on the two selected machines, while the Elimination operator tries to re-insert the
jobs on all the machines.
Derived from these results, the following stages of this experimental study contain the
analysis of different aspects involved in the mutation operator with the reassignment
heuristic that consider all the machines, such as the number of machines to handle,

7.2. EXPERIMENTAL DESIGN FOR THE R||CMAX MUTATION OPERATORS 91

Given a test instance of || with n=9 jobs from

to and =4 machines from to where each cell

indicates the processing time that each machine

requires to process every job , as well as a solution

where each gene represents a machine i that contains

its assigned jobs and the processing time that it needs

to process such jobs:

The four group-oriented mutation operators work as follows:

a) Swap

Solution

Machines

Jobs

Ci 35 29 29 39

i1 i2 i3 i4

j1, j9 j2, j4 j5, j8 j3, j6, j7

b) Insertion

c) Elimination

d) Merge & Split

Test Instance

15

20 15 10 12

10 12 16 18

18 15 11 10

15 17 16 11

20 12 15 16

10 20 11 19

11 19 20 13

12 10 18 20

20 12 11

N
M

j9

j8

j5
j6

j4

j7

j3

j2

i3i2i1
j1

i4

R

m i4

Cmax j1
j9 i1

ij

Ci

i

j

Solution

Mutation
26 29 29 38

i1 i2 i3 i4

j7, j9 j2, j4 j5, j8 j1, j3, j6

i iB

35 29 29 39

i1 i2 i3 i4

j2, j4 j5, j8 , j9j1 j3, j6, j7

Machines

Jobs

Ci

Machines

Jobs

Ci

Solution

Mutation

iA

35 29 29 39

i1 i2 i3 i4

j1, j9 j2, j4 j5, j8

46 29 29 26

i1 i2 i3 i4

j3, j6j2, j4 j5, j8j1, j7, j9

iB

j3, j6,j7

Machines

Jobs

Ci

Machines

Jobs

Ci

RJ

Permutation

Solution

Incomplete

 Solution

Mutation

35 29

i1 i2 i3 i4

j1, j9 j2, j4

35 39 26 23

i1 i2 i3 i4

j5, j6j1, j9 j3, j7j2, j4, j8

iB

35 29 29 39

i1 i2 i3 i4

j1, j9 j2,j4

iA

 , j5 j8 , , j7j3 j6

Machines

Jobs

Ci

Machines

Jobs

Ci

Machines

Jobs

Ci

Solution

Incomplete

 Solution

Mutation
Permutation

35 29

i1 i2 i3 i4

j1, j9 j2, j4

35 29 44 23

i1 i2 i3 i4

j5, j6, j8j1, j9 j3, j7j2, j4

iA iB

iB

35 29 29 39

i1 i2 i3 i4

j1, j9 j2,j4

iA

 , j5 j8 , , j7j3 j6

Machines

Jobs

Ci

Machines

Jobs

Ci

Machines

Jobs

Ci

Figure 7.1: Group-oriented mutation operators adapted for R||Cmax.

92 CHAPTER 7. MUTATION OPERATORS

the number of jobs to remove, the machine selection strategy, and the rearrangement
heuristics.

Table 7.1: Comparison of Swap, Insertion, Merge & Split, and Elimination mutation
operators using RPD.

Instance Swap Insertion Merge & Split Elimination
set

n 100 0.1213 0.1219 0.1071 0.0804
200 0.1408 0.1432 0.1353 0.1154
500 0.1365 0.1371 0.1372 0.1281
1000 0.1380 0.1381 0.1387 0.1350

m 10 0.1291 0.1290 0.1291 0.1178
20 0.1391 0.1402 0.1344 0.1229
30 0.1256 0.1252 0.1220 0.1074
40 0.1310 0.1331 0.1270 0.1084
50 0.1460 0.1478 0.1353 0.1172

Pij U(1, 100) 0.2802 0.2740 0.2632 0.2107
U(10, 100) 0.2080 0.2060 0.2039 0.1802
U(100, 120) 0.0417 0.0438 0.0408 0.0384
U(100, 200) 0.1230 0.1248 0.1198 0.1164
U(1000, 1100) 0.0218 0.0230 0.0214 0.0201
JobsCorr 0.1259 0.1307 0.1194 0.1049
MacsCorr 0.1385 0.1432 0.1384 0.1326

1400 instances 0.1341 0.1351 0.1296 0.1147

7.2.2 Handled machines and removed jobs

After observing that the four operators of the state-of-the-art showed quite similar
performance and that the Elimination operator slightly excelled, the second phase of
the experimental study focused on analyzing how the number of handled machines and
removed jobs impact on the performance of the mutation operator. To analyze this
phenomenon, we explored thirty-five variants of the operator. This study consists of
evaluating the suitability of removing 1, 2, 3, 4, 6, 8, and 10 jobs from 2, 4, 6, 8, and
10 different machines, where each combination of removed jobs and managed machines
results in an operator. For a fair comparison, all the operators use randomness to select
the machines and the jobs that intervene in their mutation process. Thus, each operator
releases k jobs from g machines and then re-insert them with the Min() heuristic. As in
the first phase, for each operator, 100 individuals were generated and mutated during
500 generations using the same seed.

Table 7.2 shows the experimental results of the thirty-five variants of the mutation
operator. The first column indicates the number of machines that each operator
manages, the second one represents the number of jobs removed from each of the

7.2. EXPERIMENTAL DESIGN FOR THE R||CMAX MUTATION OPERATORS 93

handled machines, and the last column contains the average RPD of each operator for
the 1,400 test instances.

It appears from Table 7.2 that the operators that release only one job from each machine
perform better than those that release more and that the best option is to consider
only two machines. Moreover, to graphically observe the behavior of the thirty-five
designed operators, the 1,400 instances were grouped into twenty groups concerning
each combination of jobs (100, 200, 500, and 1000) and machines (10, 20, 30, 40, and
50) to calculate the average RPD of each group and analyze the impact of each operator
in more detail, e.g., the group where m = 10 and n = 100, the group where m = 10
and n = 200, and so on. Figures 7.2 and 7.3 contain two representative graphs of the
behavior presented by the thirty-five mutation operator variants, which allow observing
the impact of the two evaluated features, i.e., the number of machines to be handled
and the number of jobs to be removed from each machine.

Handled machines

R
P

D

Instances with 200 jobs and 30 machines

0 2 4 6 8 10

0.15

0.1

0.05

0

Figure 7.2: Behavior of the mutation operators grouped by the number of handled machines.

Removed jobs

R
P

D

0 2 4 6 8 10

0.15

0.1

0.05

0

Instances with 500 jobs and 20 machines

Figure 7.3: Behavior of the mutation operators grouped by the number of removed jobs from
the handled machines.

Figure 7.2 exhibits the behavior of the operators, grouped according to the number of
machines that they handle for all instances with 200 jobs and 30 machines. The x−axis
of this figure indicates the number of machines handled, and the y−axis contains the

94 CHAPTER 7. MUTATION OPERATORS

Table 7.2: Comparison of handled machines and removed jobs using RPD.

Handled machines Removed jobs RPD

1 0.091437
2 0.094475
3 0.097644

2 4 0.100010
6 0.102259
8 0.103456
10 0.103984

1 0.093067
2 0.100647
3 0.104505

4 4 0.107246
6 0.109475
8 0.111302
10 0.111263

1 0.095776
2 0.105834
3 0.109519

6 4 0.111925
6 0.114454
8 0.115151
10 0.115754

1 0.09889
2 0.109016
3 0.112681

8 4 0.114861
6 0.116797
8 0.117525
10 0.117800

1 0.102228
2 0.110804
3 0.114677

10 4 0.116184
6 0.117627
8 0.118031
10 0.117819

7.2. EXPERIMENTAL DESIGN FOR THE R||CMAX MUTATION OPERATORS 95

average RPD reached for each operator. On the other hand, Figure 7.3 groups the
operators according to the number of jobs removed from each machine in instances
with 500 jobs and 20 machines. The x−axis contains the operators grouped according
to the number of jobs that they remove, and the y−axis contains the average RPD
reached for each operator. In this way, Figure 7.2 suggests that the performance of
the operators improves as the number of handled machines decreases, while Figure 7.3
shows that the operators removing fewer jobs have better performance. In this way,
the analysis indicates that those operators handling a fewer number of machines and
releasing fewer jobs are more suitable.

7.2.3 Machines selection strategy

Once identified that the variant that considers two machines and releasing one job from
each machine has the best performance, in this stage we evaluate the performance of
four machine selection strategies: Random, Worst, Worst Best, and Worst Random,
so as to analyze how they affect the performance of the mutation operators. Given a
solution to be mutated, these strategies work as follows. The Random strategy chooses
the two machines precisely at random. The Worst strategy selects the two machines
with the worst Ci values (i.e., those machines with the highest loads). The Worst Best
strategy picks the worst and the best machine (i.e., the machines with the highest and
the lowest Ci values). If there are several machines with the lowest or highest load, as
a first step, they are identified to later use a uniform distribution to select one of them
randomly. Finally, the Worst Random strategy divides the machines into two groups
(W and O), in such a way that W contains the machines with Ci = Cmax and O the
remaining machines. Next, it randomly selects the machines w and o from sets W and
O, respectively. It is important to note that for each machine selection strategy, the
two released jobs are selected randomly and later re-inserted using the Min() heuristic.

Table 7.3 shows the experimental results of the operators with the four machine selection
strategies. As can be seen, this table has the same structure as Table 7.1. That is,
it clusters the instances according to the number of jobs n, the number of machines
m, the distribution of the processing times pij of the instances, and the 1,400 test
instances together. Therefore, the first column indicates the criterion used to study
the performance of the operators, the second one contains the classes covered for each
grouping criterion, and the following columns represent the average RPD (Relative
Percentage Deviation) achieved by the operators with each machine selection strategy:
Random, Worst, Worst Best, and Worst Random. The experimental results in Table
7.3 suggest that the most suitable machine selection strategy is Worst Random, with
an average RPD of 0.0674 since the other approaches (Random, Worst, and Worst
Best) reached higher RPD averages of 0.0913, 0.0875, and 0.0912, respectively.

7.2.4 Rearrangement heuristics

After identifying the machine selection strategy that provides the best performance
to the mutation operator, we noted that there are high possibilities that the genetic

96 CHAPTER 7. MUTATION OPERATORS

Table 7.3: Comparison of mutation operators with Random, Worst, Worst Best, and Worst
Random selection strategies using RPD.

Instance Worst Worst
set Random Worst Best Random

n 100 0.0605 0.0577 0.0618 0.0296
200 0.0848 0.0797 0.0832 0.0533
500 0.1030 0.0987 0.1028 0.0827
1000 0.1175 0.1147 0.1178 0.1046

m 10 0.0873 0.0857 0.0894 0.0718
20 0.0978 0.0942 0.0977 0.0752
30 0.0842 0.0824 0.0854 0.0635
40 0.0908 0.0853 0.0885 0.0631
50 0.0963 0.0900 0.0951 0.0634

Pij U(1, 100) 0.1430 0.1470 0.1522 0.1146
U(10, 100) 0.1321 0.1319 0.1362 0.1003
U(100, 120) 0.0351 0.0309 0.0329 0.0244
U(100, 200) 0.1017 0.0939 0.0970 0.0740
U(1000, 1100) 0.0182 0.0155 0.0171 0.0123
JobsCorr 0.0909 0.0820 0.0810 0.0576
MacsCorr 0.1179 0.1112 0.1220 0.0888

1400 instances 0.0913 0.0875 0.0912 0.0674

material of many solutions does not undergo any alteration during the mutation process.
Such a phenomenon can occur because it is likely that the two released jobs can be
re-inserted to the same machine to which they belonged. In order to analyze the
above, we evaluated the success rate (i.e., the number of the alterations in the genetic
material divided by the mutation attempts) of the mutation operator with the best
properties identified in the two previous stages. The experimental results revealed that
only about the 42% of the mutation attempts are successful. The above motivates this
stage of the experimental study that consists in evaluating the utility of incorporating
two rearrangement heuristics, called Insertion and Assemble, to increase the operator’s
success rate and improve its performance. These heuristics are only used if, after
releasing and re-inserting the jobs, the genetic material of the mutated solution has not
been altered. It is important to note that at this stage we tested the performance of
different variants based on insertion and interchange operations, but we only kept the
rearrangement heuristics that showed the best results.

The Insertion rearrangement heuristic seeks to reduce the number of jobs in one of
the two selected machines by trying to insert each of their jobs into the other ones.
Algorithm 1 has the Insertion procedure. We denote S

′ = Insertion(S, jsm, sm, i) the
solution derived from S by inserting job jsm (jw or jo) from the selected machine sm (w
or o) into machine i. As can be seen, this heuristic goes through the jobs jw and jo of
the machines w and o selected with the machine selection strategy Worst Random (line

7.2. EXPERIMENTAL DESIGN FOR THE R||CMAX MUTATION OPERATORS 97

1). Thus, for each pair of jobs (jw and jo), this algorithm traverses the m machines
(line 2). In this way, for each machine i, different from machine w and o (line 3 and
line 9), it tries to insert job jw of the worst machine w (line 3) and then job jo from
the other machine o (line 7) following two conditions, denoted as Cnd_1 and Cnd_2.
Cnd_1(S, jsm, sm, i) (line 4 and line 10) allows verifying that the mutated solution (S ′)
will have equal or better quality than the initial solution (S). In this way, Cnd_1 checks
out that the sum of the processing time resulted from the insertion in the intervened
machines i and sm (w or o) will be less than or equal to the sum of their processing
times without performing the insertion. Hence, for each job jw, Cnd_1(S, jw, w, i)
returns TRUE if Cw − pwjw +Ci + pijw ≤ Cw +Ci, where Cw and Ci represent the time
that machines w and i require to process their assigned jobs, respectively; while pwjw

and pijw depict the processing time that machines w and i require to process job jw,
respectively. Otherwise, it returns FALSE. In the same way, for each job jo, Cnd_1(S,
jo, o, i) returns TRUE if Co− pojo +Ci+ pijo ≤ Co+Ci, where Co and Ci represent the
time that machines o and i require to process their assigned jobs, respectively; while
pojo and pijo depict the processing time that machines o and i require to process job jo,
respectively. Otherwise, it returns FALSE.
On the other hand, Cnd_2(S, jsm, sm, i) (line 4 and line 10) checks out that the
mutated solution (S ′) will have equal or better quality than the initial solution (S).
Cnd_2 verifies that the processing time Ci of machine i with the new job, either jw
or jo, will be less than or equal to the current makespan Cmax. Therefore, for each
job jw, Cnd_2(S, jw, w, i) returns TRUE if Ci + pijw ≤ Cmax. Otherwise, it returns
FALSE. Similarly, for each job jo, Cnd_2(S, jo, o, i) returns TRUE if Ci+pijo ≤ Cmax.
Otherwise, it returns FALSE.
In this way, the Insertion(S, jsm, sm , i) function (lines 5 and 11) is applied to S if
and only if a job j (jw or jo) satisfies the two conditions (Cnd_1 and Cnd_2). The
rearrangement process ends once an insertion is performed (lines 6 and 12) but, if none
of the jobs satisfied the two conditions, the mutated solution would remain with its
genetic material without any modification.
On the other hand, the Assemble rearrangement heuristic uses two functions. The
first one is the Insertion(S, jsm, sm, i) that works similarly to the before-mentioned
rearrangement heuristic. Additionally, it incorporates a second function called
Interchange that seeks to exchange each job of the selected machines with each job
of the other machines in an attempt to reduce the processing time of the selected
machines. Algorithm 2 contains the procedure of the Assemble rearrangement heuristic.
We denote as S

′ = Interchange(S, jsm, sm, ji, i) the solution derived from S by
exchanging job jsm (jw and jo) from the selected machine sm (w or o) with each job
ji in machine i. Like the Insertion rearrangement heuristic, Assemble loops through
jobs jw and jo of machines w and o selected with the Worst Random machine selection
strategy (line 1). Thus, for each pair of jobs (jw and jo), this algorithm goes through
the m machines (line 2). In this fashion, first, it tries to insert jobs jw of the worst
machine w and jo of the other machine o into every machine i different from machines
w and o (line 3 and line 9) according to the two conditions described in Algorithm 1:
Cnd_1 and Cnd_2 (line 4 and line 10). Next, it attempts to interchange the same jobs
jw and jo with each job ji in every machine i (line 15) different from machine w and o

98 CHAPTER 7. MUTATION OPERATORS

Algorithm 1 Insertion rearrangement heuristic
Input: A solution S and two machines w and o.
Output: A mutated solution S

′ .
1: for all job jw ∈ w & jo ∈ o do
2: for machine i in S do
3: if i != w then
4: if Cnd_1(S, jw, w, i) and Cnd_2(S, jw, w, i) then
5: S

′ = Insertion (S, jw, w, i);
6: end process;
7: end if
8: end if
9: if i != o then

10: if Cnd_1(S, jo, o, i) and Cnd_2(S, jo, o, i) then
11: S

′ = Insertion (S, jo, o, i);
12: end process;
13: end if
14: end if
15: end for
16: end for

(line 16 and line 22), validating two conditions: Cnd_3 and Cnd_4 (line 17 and line
23).

Cnd_3(S, jsm, sm, ji, i) (line 17 and line 23) allows verifying that the mutated
solution (S ′) will have equal or better quality than the initial solution (S). In this
way, Cnd_3 checks out that the processing time resulted from the exchange in the
intervened machines i and sm (w or o) will be less than or equal to the sum of their
processing times without swapping their jobs. Hence, for each job jw, Cnd_3(S, jw,
w, ji, i) returns TRUE if (Cw − pwjw + pwji) + (Ci − piji + pijw) ≤ Cw + Ci, where Cw

and Ci represent the time that machines w and i require to process their assigned jobs,
respectively; pwjw and piji depict the processing time that machines w and i require
to process jobs jw and ji, respectively; and pwji and pijw indicate the processing time
that machines w and i require to process jobs ji and jw, respectively. Otherwise, it
returns FALSE. In the same way, for each job jo, Cnd_3(S, jo, o, ji, i) returns TRUE
if (Co−pojo +poji)+(Ci−piji +pijo) ≤ Co+Ci, where Co and Ci represent the time that
machines o and i require to process their assigned jobs, respectively; pojo and piji depict
the processing time that machines o and i require to process jobs jo and ji, respectively;
and poji and pijo indicate the processing time that machines o and i require to process
jobs ji and jo, respectively. Otherwise, it returns FALSE.

On the other hand, the condition Cnd_4(S, jsm, sm, ji, i) (line 17 and line 23) validates
that the processing time resulted from the interchange in the intervened machines i
and sm (w or o) will be less than or equal to the current makespan (Cmax) of the
initial solution S. Hence, for each job jw, Cnd_4(S, jw, w, ji, i) returns TRUE if
(Cw − pwjw + pwji ≤ Cmax) and (Ci− piji + pijw ≤ Cmax). Otherwise, it returns FALSE.
Similarly, for each job jo, Cnd_4(S, jo, o, ji, i) returns TRUE if (Co − pojo + poji ≤

7.2. EXPERIMENTAL DESIGN FOR THE R||CMAX MUTATION OPERATORS 99

Cmax) and (Ci − piji + pijo ≤ Cmax). Otherwise, it returns FALSE.
The Assemble process ends once an operation, either the insertion or the interchange,
is accomplished (lines 6, 12, 19, and 25). If none of the jobs met the conditions, the
mutated solution remains with its genetic material without any modification.

Algorithm 2 Assemble rearrangement heuristic
Input: A solution S and two machines w and o.
Output: A mutated solution S

′ .
1: for all job jw ∈ w & jo ∈ o do
2: for machine i in S do
3: if i != w then
4: if Cnd_1(S, jw, w, i) and Cnd_2(S, jw, w, i) then
5: S

′ = Insertion (S, jw, w, i);
6: end process;
7: end if
8: end if
9: if i != o then

10: if Cnd_1(S, jo, o, i) and Cnd_2(S, jo, o, i) then
11: S

′ = Insertion (S, jo, o, i);
12: end process;
13: end if
14: end if
15: for job ji in i do
16: if i != w then
17: if Cnd_3(S, jw, w, ji, i) and Cnd_4(S, jw, w, ji, i) then
18: S

′ = Interchange (S, jw, w, ji, i);
19: end process;
20: end if
21: end if
22: if i != o then
23: if Cnd_3(S, jo, o, ji, i) and Cnd_4(S, jo, o, ji, i) then
24: S

′ = Interchange (S, jo, o, ji, i);
25: end process;
26: end if
27: end if
28: end for
29: end for
30: end for

In this way, two variants of the operator with the best characteristics identified in
the two previous stages (i.e., removing one job from two machines selected with the
Worst Random strategy and re-inserting such jobs with the Min() heuristic) were
created, one for each rearrangement heuristic presented in this section: Insertion and
Assemble. The performance of the two variants, referred to as Insertion and Assemble,
was evaluated using the experimental approach mentioned above, i.e., starting from
an initial population of 100 individuals that are subsequently mutated during 500

100 CHAPTER 7. MUTATION OPERATORS

generations and using the same seed. Table 7.4 holds the experimental results obtained
by the two mutation operators generated in this phase. Additionally, Table 7.4 includes
the performance of the Download mutation operator, the original GGA operator
introduced in Section 4.6, to compare the degree of improvement provided by the
variants of the operator proposed in this section. For a comprehensive analysis, the
performance of the operators was analyzed by clustering the instances with the criteria
used in the previous stages: number of jobs n, number of machines m, distribution
of processing times pij, and the 1400 instances together. Thus, each column shows
the performance of each assessed operator for the different criteria used to group the
instances.

As it can be observed in Table 7.4, the best variant is that with the Assemble
rearrangement heuristic , which for each pair of jobs first tries the insertion and
then the interchange. The variants with the Insertion and Assemble rearrangement
heuristics reached an average RPD of 0.0552 and 0.0395, respectively. However, it is
important to note that the two versions of the mutation operators presented in this
section outperformed the original Download mutation operator of the GGA studied,
that reached an average RPD of 0.1139, as well as the four state-of-the-art operators,
which had an average RPD above 0.1.

Table 7.4: Comparison of mutation operators with the Insertion and Assemble rearrangement
heuristics and also the Download operator, using RPD.

Instance
set Insertion Assemble Download

n 100 0.0306 0.0185 0.0730
200 0.0480 0.0280 0.1125
500 0.0631 0.0441 0.1328
1000 0.0793 0.0671 0.1383

m 10 0.0612 0.0416 0.1261
20 0.0617 0.0429 0.1258
30 0.0497 0.0366 0.1076
40 0.0507 0.0376 0.1054
50 0.0528 0.0382 0.1048

Pij U(1, 100) 0.0523 0.0407 0.2307
U(10, 100) 0.0538 0.0331 0.1862
U(100, 120) 0.0286 0.0176 0.0358
U(100, 200) 0.0750 0.0362 0.1072
U(1000, 1100) 0.0150 0.0100 0.0182
JobsCorr 0.0664 0.0654 0.0892
MacsCorr 0.0952 0.0728 0.1304

1400 instances 0.0552 0.0394 0.1139

7.3. GGA WITH THE OLD AND THE NEW MUTATION OPERATORS 101

7.3 GGA with the old and the new mutation
operators

Given the knowledge gained from the experimental study, we propose a mutation
operator called 2-Items Reinsertion. This operator randomly chooses two jobs from
two different machines selected with the Worst Random strategy to release them and
later re-insert them with the Min() allocation heuristic. Furthermore, it employs the
Assemble rearrangement heuristic, based on insertion and interchange operations. The
rearrangement process is only applied if, after releasing and re-inserting the jobs, the
genetic material of the mutated solution has not been modified.

To assess the 2-Items Reinsertion mutation operator performance, we run two variants
of the GGA for R||Cmax. The GGA introduced in Chapter 4 that uses the Download
operator and the EGGA resulted from the incorporation of the 2-Items Reinsertion
mutation into GGA, instead of the Download operator. Both GGAs are evaluated over
the 1400 benchmark instances. To promote a fair comparison, the effectiveness and
efficiency of both GGA were compared by using the same parameter configuration.
Population size |P | = 100; number of individuals selected for the crossover nc = 20;
number of individuals selected for the mutation nm = 83; elite population size |B| =
20; and, maximal number of generations max_gen = 500. In this way, we analyze the
strengths and weaknesses of the 2-Items Reinsertion mutation operator, distinguishing
the quality of the solutions found by each GGA variant, their search time, as well
as their ability to escape from local optima. For a fair comparison, both algorithms
were programmed in the Rust language and were compiled using Visual Studio in the
64-bit mode. The experiments were performed on a computer with an Intel Core i5
(3.10 GHz), and 16 GB in RAM. Finally, for each instance, a single execution of the
algorithms were run, with the same initial seed for the random number generation.

7.3.1 Comparing the effectiveness of GGA with the old and the
new mutation operators

To measure the effectiveness of the designed 2-Items Reinsertion mutation operator, we
applied the two GGA variants to the 1400 test instances and measured the improvement
degree in the quality of the solutions found by each algorithm based on the RPD.
Table 7.5 contains the experimental results. The first and second columns indicate the
criteria used to group the test instances, based on the number of jobs n, the number
of machines m, the processing time distribution pij, and the 1400 instances together.
On the other hand, the remaining columns contain the average RPD obtained by
each metaheuristic algorithm for the four grouping criteria, highlighting in bold the
metaheuristic algorithm with the lowest average RPD for each set.

From Table 7.5 can be observed that the EGGA showed a better performance than
GGA using any criteria to group the test instances. Furthermore, it is worth noting
that the EGGA reaches an average RPD considerably lower than the initial GGA by
solving the 1,400 test instances, with 0.028 and 0.059, respectively.

102 CHAPTER 7. MUTATION OPERATORS

Table 7.5: Comparison of the GGA and the EGGA presented in this chapter, using RPD.

Instance set GGA EGGA

n 100 0.0659 0.0176
200 0.0655 0.0224
500 0.0657 0.0291
1000 0.0688 0.0441

m 10 0.0683 0.0220
20 0.0683 0.0306
30 0.0683 0.0275
40 0.0683 0.0308
50 0.0683 0.0306

Pij U(1, 100) 0.1027 0.0465
U(10, 100) 0.1119 0.0361
U(100, 120) 0.0256 0.0092
U(100, 200) 0.0829 0.0229
U(1000, 1100) 0.0121 0.0036
JobsCorr 0.0586 0.0380
MacsCorr 0.0955 0.0419

1400 instances 0.0699 0.0283

Finally, in order to graphically show the suitability of the designed mutation operator,
the experimental study presented in Section 4.6 was repeated, but this time for the
impact analysis of crossover and mutation rates on the EGGA. In this way, the EGGA
was run with the same nine configurations, i.e., Conf1: nc = 20, nm = 20, Conf2:
nc = 20, nm = 40, ... Conf9: nc = 60, nm = 60. Figure 7.4 presents a bar
graph with the obtained results from this study, where each bar depicts one of the
nine configurations grouped according to the number of mutated solutions (nm), and
each pattern indicates the number of selected individuals for the crossover process
(nc): squares = 20, waves= 40, and circles= 60. As Figure 7.4 indicates, the EGGA
performance is mainly related to the number of individuals considered for the mutation
processes nm, as the performance of the EGGA improves (lower RPD) as the number
of mutated solutions increases. Similarly, as the number of selected individuals for
the crossover process nc increases, the GGA performance improves, but to a lesser
degree. The behavior mentioned above shows the suitability of the 2-Items Reinsertion
mutation, which is the operator with the biggest impact on EGGA final performance
and improves it considerably. Thus, the EGGA behavior is quite similar to the one
presented by the GGA-CGT [11], where the mutation operator has the greatest positive
impact on the final performance of this algorithm.

7.3. GGA WITH THE OLD AND THE NEW MUTATION OPERATORS 103

Impact of the parameter nm in the EGGA performance

20 40 60

nm

nc

20

40

60

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

R
P

D

Figure 7.4: Impact analysis of the parameters: number of individuals selected for crossover
nc and number of mutated solutions nm, in the EGGA performance.

7.3.2 Comparing the efficiency of GGA with the old and the
new mutation operators

After analyzing the effectiveness of the EGGA, we evaluate the implications associated
with the computational time of using the 2-Items Reinsertion mutation operator. Table
7.6 includes the experimental results. Like Table 7.5, the first and second columns
describe the characteristics used to cluster the instances: the number of jobs n and
machines m, the processing time distribution pij, and the 1400 instances together.
The following columns contain the average time in seconds obtained by the GGA and
the EGGA for each instance set, respectively, highlighting in bold the metaheuristic
algorithm with the lowest computational cost for each set.

Table 7.6: Comparison of the GGA and the EGGA based on time (in seconds).

Instance GGA EGGA

n 100 1.2 5.71
200 1.2 5.68
500 1.24 5.49
1000 1.36 9.44

m 10 1.26 8.71
20 1.24 7.66
30 1.21 6.94
40 1.19 6.33
50 1.17 5.79

Pij U(1, 100) 1.25 34.09
U(10, 100) 1.25 14.04
U(100, 120) 1.25 2.52
U(100, 200) 1.25 2.88
U(1000, 1100) 1.25 2.71
JobsCorr 1.25 1.50
MacsCorr 1.25 1.69

1400 instances 1.25 8.49

104 CHAPTER 7. MUTATION OPERATORS

From Table 7.6 can be concluded that the 2-Items Reinsertion mutation operator
causes the EGGA to be much slower. Said computational cost is closely related
to the Assemble rearrangement strategy, incorporated to avoid, as far as possible,
getting stuck in a local optima. This effect is mainly observed in those instances
with processing times generated in the ranges U(1, 100) and U(10, 100), where the
average times increased from 1.25 to 34.09 and 14.04 seconds, respectively. Although
the computational cost of the Assemble rearrangement strategy is high, it is also too
useful, since the properties and characteristics of the addressed problem make the
mutation operator by itself incapable of avoiding local optima. Table 7.6 also indicates
that the EGGA is approximately eight times slower than the initial GGA. Therefore, to
make a fair comparison and show the usefulness of the Assemble heuristic, we execute
the original GGA increasing the number of generations eight times, that is, 8 * 500 =
4000 generations. Table 7.7 includes the experimental results.

Table 7.7: Performance analysis of the GGA with 500 and 4000 generations, and the EGGA
with 500 generations.

Instance GGA (500 gen) GGA (4000 gen) EGGA (500 gen)

n 100 0.0659 0.0571 0.0176
200 0.0655 0.0564 0.0224
500 0.0657 0.0559 0.0291
1000 0.0688 0.0600 0.0441

m 10 0.0683 0.0592 0.0220
20 0.0683 0.0592 0.0306
30 0.0683 0.0590 0.0275
40 0.0683 0.0588 0.0308
50 0.0683 0.0585 0.0306

Pij U(1, 100) 0.1027 0.0934 0.0465
U(10, 100) 0.1119 0.0979 0.0361
U(100, 120) 0.0256 0.0215 0.0092
U(100, 200) 0.0829 0.0719 0.0229
U(1000, 1100) 0.0121 0.0101 0.0036
JobsCorr 0.0586 0.0458 0.0380
MacsCorr 0.0955 0.0812 0.0419

1400 instances 0.699 0.0603 0.0283

Table 7.7 allows observing that the GGA cannot reach the EGGA performance, not
even increasing the number of generations eight times to make a fair comparison with
respect to search time. This behavior can be related to the explorations and exploitation
capabilities of the initial GGA, which cause it to stagnate in local optima. To review
such algorithmic behavior, we analyzed the average generation in which the GGA and
the EGGA find the best solution for each test instance. Both algorithms were executed
using the same parameter configuration, proposed in [7]. Table 7.8 has the experimental
results, highlighting in bold the metaheuristic algorithm that avoids getting stuck in

7.4. CONCLUSIONS OF THE ANALYSIS 105

local optima for more generations on average for each set.

Table 7.8: Comparison of the GGA and the EGGA based on the generation in which the
best solution in the population is improved.

Instance GGA EGGA

n 100 9.27 358.34
200 8.00 369.31
500 8.00 380.83
1000 17.09 362.54

m 10 16.35 358.46
20 13.69 359.06
30 11.79 359.78
40 11.05 360.96
50 10.01 362.20

Pij U(1, 100) 64.80 218.56
U(10, 100) 8.00 305.34
U(100, 120) 8.00 360.44
U(100, 200) 8.00 391.96
U(1000, 1100) 8.00 390.13
JobsCorr 8.00 474.82
MacsCorr 8.00 392.95

1400 instances 16.11 362.03

From Table 7.8 can be observed that GGA gets quickly trapped in local optima,
in generation 16 on average, while the EGGA shows a better ability to deal with
the landscape characteristics of the R||Cmax search space, finding its best solutions
in generation 362 on average. In this way, Table 7.8 remarks the importance of
incorporating the 2-Items Reinsertion mutation operator because even requiring a high
computational cost, it provides the EGGA a better exploration capability during the
search process.

7.4 Conclusions of the analysis

The main goal of this chapter was to promote the design of intelligent operators for
GGAs as a more suitable way to obtain high-performance GGAs that incorporate
knowledge of the problem-domain. In this order of ideas, we presented a systematic
experimental examination to gain insights into the importance of each phase involved
in the mutation operator of a GGA designed to solve the Parallel-machine scheduling
problem with unrelated machines and makespan minimization (R||Cmax), analyzing
whether different strategies actually contribute to the performance of the operator.
The overall procedure of a grouping mutation operator for R||Cmax comprises: (1)
selecting one or more machines; (2) selecting one or more jobs from each of the selected

106 CHAPTER 7. MUTATION OPERATORS

machines; and (3) re-inserting the selected jobs in some of the machines. In order to
learn about each of these three algorithmic components, this work covered the analysis
of each component in isolation by evaluating different strategies to deal with it. In
this way, the study covered the evaluation of four state-of-the-art grouping mutation
operators, thirty-five operators with different numbers of machines and jobs handled,
four machine selection strategies, and two rearrangement heuristics for the re-insertion
of the selected jobs. The experimental results suggested that the mutation operator
with the best performance (1) selects two machines, one of the machines with the worst
Ci value and one random machine; (2) selects one random job from each of the selected
machines; and (3) re-inserts the selected jobs in two stages, first, for each job, each
machine is checked in an attempt to insert the job in the machine with the lowest
Ci value, second, if the first stage conduces to the original solution, a rearrangement
heuristic is applied attempting to reduce the processing time of the selected machines
by trying to insert one of their jobs into the other machines or to exchange one of their
jobs with one job of the other machines. The knowledge gained from the systematic
study was used to design a new grouping mutation operator, called 2-Items Reinsertion,
which was incorporated into the GGA introduced in Chapter 4 (replacing the original
mutation operator) to solve 1,400 benchmark instances, showing significant differences
with an improvement rate of 52%. These results underline the importance of evaluating
the performance of the different components of the GGA operators. The study of the
final performance obtained by the Enhanced GGA (EGGA) for the R||Cmax problem
remarked the utility of the designed 2-Items Reinsertion operator because even requiring
a high computational cost, it also allows reaching solutions that the initial GGA could
not achieve even with more search time due to its fast stagnation in local optima.
However, the experimental results also indicate that there still are benchmark instances
that show a high degree of difficulty; for such instances, the included strategies in the
EGGA do not appear to lead to better solutions. As a result, the EGGA is still getting
stuck in local optima, although not as soon as the GGA. In the following chapter, we
will employ a study similar to the one presented in this chapter to analyze and improve
the reproduction technique in order to provide EGGA the capacity to obtain better
solutions.

Chapter 8
Reproduction strategies

One of the fundamentals of genetic algorithms is the principle of natural selection
proposed by Darwin. Therefore, the reproduction technique implemented, which
consists of selection and replacement mechanisms, has a high impact on its performance.
These mechanisms always go hand in hand with the variation operators (generally,
crossover and mutation), since the selection picks the individuals for the crossover and
mutation process; while the replacement establishes how the offspring and mutated
solutions are incorporated into the population [382].

In this chapter, we introduce and analyze the performance of different reproduction
techniques that include both random and biased strategies in order to identify the best
option for the studied GGA. To achieve this goal, we propose an experimental study
consisting of two phases. The first stage includes an exploratory analysis of selection
and replacement mechanisms, taken from the state-of-the-art; while the second one
contains a study of the way in which the strategies to sort the population impact on
the performance of a reproduction technique.

It is important to highlight that the selection and replacement mechanisms studied in
this chapter are focused on the crossover operator, since as observed in the Chapter
6, the way in which the solutions are selected, cloned, and mutated together with the
proposed specific-purpose mutation operator for R||Cmax has shown a stable algorithmic
behavior.

The knowledge gained from this study will be used to get a performance overview
of the strategies that can be incorporated into a reproduction technique. The
information collected will be used as a guide to design a purpose-built reproduction
technique for R||Cmax. Finally, this chapter presents the last version of the Enhanced
GGA (EGGA). This algorithm includes the evolutionary scheme of the initial GGA,
presented in Chapter 4, but it uses the population initialization strategy: Random
min (presented in Chapter 5), the crossover operator: IE-Two machines (introduced
in Chapter 6), mutation operator: 2-Items Reinsertion (introduced in Chapter 7), and
the reproduction technique designed based on the knowledge generated from the study
presented in this section.

107

108 CHAPTER 8. REPRODUCTION STRATEGIES

8.1 State-of-the-art of reproduction techniques

The reproduction technique is another important GGA component. In its simplest
version, the solutions used by the crossover and mutation operators, as well as the
way in which the offspring generated are introduced to the population, are randomly
selected. However, this variant is not so frequent, because it is not capable of efficiently
controlling the selection pressure, which determines the way in which the individuals in
the population converge. The selective pressure is considered one of the critical factors
in the design of a GGA since it is responsible for establishing how much priority is
given to solutions with the best characteristics to be selected. It is important to note
that, at one extreme, high selection pressure can stall the search in a local optimum;
while at the other side, a low selection pressure can slow the convergence more than
necessary to find the optimal solution [383].

An efficient reproduction technique should promote the generation of solutions with
better characteristics as the search process progress. The literature includes approaches
that consider the best solution, the worst, and mixed approaches. However, the used
approach depends on the constraints and characteristics of the problem to solve. To
determine the suitability of a solution to be selected, the reproduction technique uses
the evaluation function of the problem to differentiate among the individuals according
to their fitness. In this way, the selection and replacement of individuals can be carried
out in a more controlled way, providing a balanced selection pressure. In this order of
ideas, an efficient selection pressure must adequately control the convergence to avoid
stagnation in local optima, and at the same time, it must preserve the diversity of
the population to avoid premature convergence. To achieve the expected behavior of
the algorithm, it is necessary to know in depth the problem, since depending on the
properties of the search space, it will be necessary to implement a different technique.
Hence, the main challenge in the design of a high-performance reproduction technique
is to identify the set of strategies that helps to maintain a trade-off of exploration
and exploitation of the search space and configure them with the suitable selection
pressure [382]. Next, the most representative state-of-the-art selection and replacement
mechanisms used to design reproduction techniques of genetic algorithms are described.

8.1.1 Selection mechanisms

The specialized literature includes different selection mechanisms that can be
incorporated into a genetic algorithm according to the conditions and characteristics
of the problem to solve. In this work, we only consider the most representative ones,
including Random selection, Ranking selection, Tournament selection, and Proportional
selection (or Roulette).

Random selection is the simplest. It uses a probability p generated with a uniform
distribution to choose the parents used to generate the offspring of each generation. In
this selection mechanism, all the individuals have the same probability of being selected
as parents. Therefore, on average, it is the most disruptive selection strategy in terms
of breaking genetic codes, as it can combine high- and low-quality solutions. In this

8.1. STATE-OF-THE-ART OF REPRODUCTION TECHNIQUES 109

sense, a random selection mechanism can be useful in situations where it is necessary
to add a lot of diversity [382].

Unlike the random selection, in the Ranking selection, each individual of the population
is ranked according to its fitness. In this way, this strategy has better control of the
selection process since it picks the solution based on their quality. Once the population
has been ordered, the Ranking selection uses a criterion to determine which parents
are chosen, like the best solutions, a combination of best and worst solutions, and a
combination of best and random solutions, to mention some examples. This criterion
can be adapted according to the conditions and characteristics of the problem. Given
its behavior, this strategy is useful in situations where the variance of the quality of
the solutions is low [382].

On the other hand, the Tournament selection combines randomness with a bit of bias.
To select each parent, this mechanism celebrates a competition among k randomly
selected individuals, using a uniform distribution. Subsequently, it ranks the k
individuals according to their fitness. Finally, it selects the best solution and adds it to
the pool of parents. Such competition is repeated until the pool of parents necessary to
generate the offspring of the next generation is accomplished. It should be noted that
k is a parameter to configure (usually, equal to 2), which promotes a higher selection
pressure as its value increases [384].

Finally, the Proportional selection uses as a principle a linear search through a roulette
wheel loaded in proportion to the fitness values of each individual. Thus, each individual
has a probability of being selected relative to its fitness, which is equal to its fitness
divided by the sum of the fitness of all individuals in the current population. This
is how each individual is assigned a piece of the roulette wheel, proportional to its
fitness. Once the roulette is created, it is spun to randomly select a parent. Each
spin, the individual under the wheel marker is selected. It is important to note that
this is a mechanism with moderately strong selection pressure since the selection of the
individuals with the best fitness is not guaranteed, but they have higher probabilities
of being selected than those of the worst fitness. Given this behavior, this mechanism
can be noisy, since its operation depends on the variance of fitness in the population. If
the quality difference between the best and the worst solutions is very large, it is likely
that premature convergence will occur, since the best solutions have a high probability
of being selected more than once. On the other hand, if the quality of solutions is very
similar, the probability that each individual is selected will be similar, which makes the
process a practically random selection [384].

8.1.2 Replacement mechanisms

Unlike selection strategies, replacement strategies are simpler. Among the most used
approaches are Random replacement, Worst replacement, and Parent replacement. As
its name indicates, the Random replacement uses a probability p, generated with a
uniform distribution, to select the individual of the current population to replace by one
of the offspring. On the other hand, the Worst replacement, first sorts the population
according to the fitness, to later replace the solutions with the worst fitness. Finally,

110 CHAPTER 8. REPRODUCTION STRATEGIES

the Parent replacement strategy substitutes the individuals of the population used as
parents with its offspring [382].

8.2 Experimental design for the R||Cmax reproduction
techniques

This section includes the proposed experimental design to analyze how different aspects
that take part in the reproduction technique impact on its performance. The main
objective of this study is to identify those components that positively impact solving
the problem R||Cmax, to design an efficient reproduction technique that improves the
performance of the EGGA. As indicated in previous sections, this work focuses on
studying the way in which the solutions that intervene during the crossover process are
selected and replaced. Therefore, the selection and replacement of the solutions used
for the mutation process are maintained as in the initial GGA. That is, the best nm

solutions are selected and mutated. Also, if the solution belongs to the elite group,
first, it is cloned, the clone replaces one of the worst solutions, and then it is mutated.

The experimental design is divided into two phases. The first stage covers the analysis
of the state-of-the-art selection and replacement strategies for genetic algorithms to
determine which combination (selection-replacement) has the best performance for
R||Cmax. On the other hand, the second phase comprises an exploratory analysis to
examine the influence of strategies implemented to sort the population before applying
the selection and replacement. The information collected is used to design an efficient
reproduction technique for R||Cmax.

As in this chapter, we analyze the optimization process of the last GGA component, the
algorithm resulted from this study will be the last Enhanced GGA (EGGA). Therefore,
the performance of each reproduction technique is assessed on the EGGA with the
population initialization strategy: Random min (presented in Chapter 5), the crossover
operator (introduced in Chapter 6), and the mutation operators: 2-Items reinsertion
(presented in Chapter 7). For a fair comparison, for each reproduction technique
studied, we used the following parameter settings. Population size pop_size: 100,
number of parents used for the crossover nc: 40, number of mutated individuals nm,
size of the elite population |B|:0.2, maximum number of generations that a solution
can be in the population without being modified lifespan:10, and maximum number
of generations max gen: 500. As in the design of the crossover and mutation operators,
the performance assessment of each reproduction technique covers the resolution of the
1,400 test instances introduced by Fanjul-Peyro in 2010. Likewise, the performance of
the reproduction techniques is compared based on their RPD to CPLEX, represented in
Equation 3.6. Finally, we analyze the experimental results by using comparative tables.
For a comprehensive analysis of the reproduction techniques algorithmic behavior,
tables present the results with the instances grouped according to the number of jobs
n, the number of machines m, the distribution of the processing times pij, and the 1400
instances together.

The following sections describe the procedure of the reproduction techniques studied in

8.2. EXPERIMENTAL DESIGN FOR THE R||CMAX REPRODUCTION TECHNIQUES111

each phase, contain a comparison of their performance, and highlight the characteristics
that show a positive impact on solving the R||Cmax problem.

8.2.1 Selection and Replacement Mechanisms

As indicated in the experimental design, we only consider selection strategies for the
crossover operator, as we observed that the selection and replacement strategies of the
mutation operator work well. In this order of ideas, in this section, we analyze the
algorithm performance of four strategies to select the solutions used as parents during
the crossover process, known as Random, Ranking, Tournament, and Proportional, as
well as three strategies to replace the offspring generated from the crossover process,
referred to as Random, Worst, and Parents. In this way, we studied twelve reproduction
techniques that consist of a selection and a replacement strategy. Thus, we use the
template selection replacement to refer to each reproduction technique studied. The
way in which the selection and replacement mechanisms used to create the reproduction
techniques were adapted for R||Cmax are described below.

Random selection is the simplest of the four mechanisms studied. Algorithm 3 contains
the procedure followed by this selection mechanism. It starts with a loop that performs
nc iterations, where nc is the number of children to generate (line 1). Each iteration, it
uses the random_selection() method that receives the population as a parameter, and
it chooses the individual ind randomly using a uniform distribution between 1 and the
population size pop_size (line 2). In this way, the pool parents is built by adding the
individual in position ind in the current population (line 3).

Algorithm 3 Random selection
Input: the current population.
Output: the pool with the selected parents.

1: for ind from 1 to nc do
2: ind = random_selection(population);
3: Append the individual population[ind] to the pool of parents;
4: end for

As its name implies, the Ranking selection mechanism uses a strategy to order the
population that allows it to pick the parents according to their fitness. Algorithm 4
shows the procedure of this selection mechanism. It starts using the sort() method that
receives the population as a parameter and returns the sorted_population from best
to worst, according to fitness. Furthermore, if the solutions have the same Cmax, the
sort() method rearranges the individuals according to their number of machines with
a value of Ci = Cmax, from lowest to highest (line 1). Recalling from Chapter 3, Ci

indicates the processing time of the machine i and Cmax represents the maximum Ci

in a solution. Subsequently, it iterates from 1 to the number of children to generate nc

(line 2). Finally, in each iteration, the Ranking selection strategy chooses the individual
in position ind in the sorted_population to add it to the pool of parents (line 3).

On the other hand, the Tournament selection gives preference to good solutions,
avoiding the arrangement of the entire population. Algorithm 5 shows the procedure

112 CHAPTER 8. REPRODUCTION STRATEGIES

Algorithm 4 Ranking selection
Input: the current population.
Output: the pool with the selected parents.

1: sorted_population= sort(population);
2: for ind from 1 to nc do
3: Append the individual sorted_population[ind] to the pool of parents;
4: end for

of the implemented selection mechanism. The Tournament selection uses a loop to
control the number of tournaments to perform based on the number of children to
generate nc (line 1). Recalling from Chapter 3, Ci indicates the processing time of
the machine i and Cmax represents the maximum Ci in a solution. Each iteration,
it uses the random_selection(population) method, which receives the population as a
parameter and returns a randomly chosen individual. In this case, the tournament is
celebrated among two individuals: ind1 and ind2 (lines 2 and 3). If the first individual
selected ind1 is better (it has a lower Cmax value) than the second one (line 4), the
first individual ind1 is added to the pool of parents (line 5). Otherwise, the second
individual ind2 (line 7) is appended. The process is repeated until the pool of parents
is accomplished.

Algorithm 5 Tournament selection
Input: the current population.
Output: the pool with the selected parents.

1: for ind from 1 to nc do
2: ind1 = random_selection(population);
3: ind2 = random_selection(population);
4: if Cmax[ind1]< Cmax[ind2] then
5: Append the individual population[ind1] to the pool of parents;
6: else
7: Append the individual population[ind2] to the pool of parents;
8: end if
9: end for

Like the Tournament selection, the Roulette selection combines the randomness with
the bias to choose the individuals who will participate in the crossover process.
Algorithm 6 contains the procedure of the Roulette selection strategy implemented. The
algorithm starts using the sort() method that receives the population as a parameter
and returns the sorted_population from the best to the worst, considering the same
criteria as in the Ranking selection, i.e., based on their fitness and breaking ties of
solutions with the same Ci, according to their number of machines with a value of
Ci = Cmax, from lowest to highest (line 1). It then sums the fitness of all the solutions,
represented as the general_fitness (lines 1-4). Next, it creates the vector probabilities
to save the likelihood of selecting each individual (line 5). Thus, for each individual ind
in the population (line 6), the probability of each individual ind (line 7) is calculated
and added to the vector of probabilities (line 8). In this way, the roulette wheel

8.2. EXPERIMENTAL DESIGN FOR THE R||CMAX REPRODUCTION TECHNIQUES113

is constructed with a portion for each individual relative to their fitness. Finally,
the Roulette selection uses a loop to select each parent (line 10), by applying the
random_selection() method to generate a random probability rand_prob between 0
and 1 (line 11). Next, the probabilities vector is traversed (line 12) until the individual
to be selected is identified (line 15) and added to the pool of parents (line 14).

Algorithm 6 Proportional selection
Input: the current population and their fitness Cmax.
Output: the pool with the selected parents.

1: sorted_population = sort(population);
2: for ind from 1 to pop_size do
3: general_fitness=general_fitness+Cmax[ind];
4: end for
5: probabilities[];
6: for ind from 1 to pop_size do
7: probability=Cmax[ind]/general_fitness;
8: Append the probability to the probabilities vector;
9: end for

10: for ind from 1 to nc do
11: rand_prob= random_selection();
12: for ind from 1 to pop_size do
13: if probabilities[ind] ≤ rand_prob then
14: Append the individual sorted_population[ind] to the pool of parents;
15: break;
16: end if
17: end for
18: end for

Similarly, the Replacement mechanisms are implemented using methods alike to
those used in Selection mechanisms. The operation of the implemented algorithms
is described below. Algorithm 7 shows the procedure of the Random replacement
algorithm. For each child in the offspring pool generated by the crossover operator
(line 1), this replacement strategy uses the random_selection() method to randomly
select an individual ind from the current population (line 2). Finally, it replaces the
individual ind selected by the child (line 3). Thus, the Random replacement procedure
ends by returning the population updated.

Algorithm 7 Random replacement
Input: the current population and the offspring.
Output: the population updated.

1: for child in offspring do
2: ind = random_selection(population);
3: population[ind] = child;
4: end for

On the other hand, the Worst replacement sets aside randomness to make use of the

114 CHAPTER 8. REPRODUCTION STRATEGIES

ranking of the solutions and uses the worst criteria to select the individuals to be
replaced from the current population. Algorithm 8 shows the Worst replacement
procedure. The algorithm starts from the population arranged based on the
aforementioned sort() method (line 1), which receives the population as a parameter
and returns the sorted_population from best to worst, according to their fitness.
Furthermore, if the solutions have the same Cmax, the sort() method rearranges the
individuals according to their number of machines with a value of Ci = Cmax, from the
lowest to the highest. Recalling from Chapter 3, Ci indicates the processing time of
the machine i and Cmax represents the maximum Ci in a solution. Also, this strategy
uses the index ind, initialized with the population size pop_size (line 2) to control
the replacement of the worst individuals, placed at the end of the sorted_population.
Later, it uses a loop to iterate over the children generated by the crossover operator
(line 3). At each iteration, the individual in position ind of the sorted_population is
replaced by a child of the offspring pool (line 4). Finally, in each iteration, the ind
value is updated by subtracting 1 from it. The Worst replacement procedure ends by
returning the population updated.

Algorithm 8 Worst replacement
Input: the current population and the offspring.
Output: the population updated.

1: sorted_population= sort(population);
2: ind=pop_size;
3: for child in offspring do
4: sorted_population[ind] = child;
5: ind–;
6: end for

Finally, the Parent replacement uses the randomness to choose some individuals
selected as parents to apply the crossover operator to replace them with the offspring.
Algorithm 9 contains the procedure of the implemented Parent replacement strategy.
The algorithm receives as input the current population, the parents, and the offspring.
In this way, it starts by going through each child of the offspring pool (line 1). Each
iteration uses the random_selection() method that receives as a parameter the set
of parents and returns the individual to replace ind (line 2). Finally, it replaces the
individual ind of the population with the child in turn. The procedure ends by returning
the population updated.

Algorithm 9 Parent replacement
Input: the current population, the parents and the offspring.
Output: the population updated.

1: for child in offspring do
2: ind = random_selection(parents);
3: population[ind] = child;
4: end for

Tables 8.1-8.4 show the RPD values obtained by the twelve studied reproduction

8.2. EXPERIMENTAL DESIGN FOR THE R||CMAX REPRODUCTION TECHNIQUES115

techniques, one for each combination of mechanisms of selection and replacement. Each
table (8.1, 8.2, 8.3, and 8.4) contains three reproduction techniques with the same
selection strategy, either Random, Ranking, Tournament, or Proportional. Thus, each
column indicates with which of the three replacement strategies they were combined:
Random, Worst, or Parents. For a comprehensive analysis, we compare the performance
of the reproduction techniques using the before-mentioned criteria to group the 1400
instances, (1) the number of machines (m), (2) the number of jobs (n), the distribution
of the processing times (pij), and (4) the 1400 instances together.

Table 8.1: Comparison of the reproduction techniques: Random-Random, Random-Parents,
and Random-Worst using RPD.

Instance Random Random Random
Set Random Parents Worst

n 100 0.034 0.033 0.027
200 0.033 0.033 0.026
500 0.034 0.033 0.026
1000 0.035 0.035 0.028

m 10 0.034 0.033 0.027
20 0.034 0.034 0.027
30 0.034 0.034 0.028
40 0.035 0.034 0.028
50 0.034 0.034 0.028

pij U(1, 100) 0.045 0.045 0.043
U(10, 100) 0.038 0.038 0.036
U(100, 120) 0.011 0.010 0.009
U(100, 200) 0.026 0.025 0.023
U(1000, 1100) 0.005 0.005 0.004
JobsCorre 0.071 0.068 0.039
MacsCorre 0.046 0.046 0.039

1400 instances 0.035 0.034 0.028

From Tables 8.1-8.4 can be concluded that the Worst replacement strategy showed
the best performance in all the selection mechanisms studied (Random, Ranking,
Tournament, and Proportional). In addition, Table 8.2 suggests that the reproduction
technique with the best performance chooses the best individuals of the current
population for the crossover process and replaces the worst individuals in the current
population with the generated offspring. Given this behavior, in the next phase,
the Best-Worst reproduction technique is used, and different ways of organizing the
population before applying these selection and replacement strategies are explored.

116 CHAPTER 8. REPRODUCTION STRATEGIES

Table 8.2: Comparison of the reproduction techniques: Ranking-Random, Ranking-Parents,
and Ranking-Worst using RPD.

Instance Ranking Ranking Ranking
Set Random Parents Worst

n 100 0.027 0.032 0.025
200 0.026 0.032 0.024
500 0.025 0.031 0.023
1000 0.029 0.033 0.026

m 10 0.028 0.032 0.025
20 0.028 0.032 0.025
30 0.028 0.033 0.026
40 0.028 0.033 0.025
50 0.028 0.033 0.025

pij U(1, 100) 0.052 0.047 0.045
U(10, 100) 0.037 0.038 0.035
U(100, 120) 0.009 0.010 0.009
U(100, 200) 0.021 0.024 0.020
U(1000, 1100) 0.004 0.004 0.003
JobsCorre 0.036 0.062 0.032
MacsCorre 0.038 0.045 0.035

1400 instances 0.028 0.033 0.026

8.2.2 Strategies to sort the population

After observing that the EGGA works better using the reproduction technique
Ranking-Worst, which incorporates a bias towards the selection of the best solutions
and the replacement of the worst solutions, in this stage, we will analyze how different
strategies to sort the population can affect its performance. The objective of this
phase is to identify the repeated solutions to place them at the end of the ordered
population. Therefore, the proposed strategies differ in the criteria used to identify
repeated solutions. Given the Ranking-Worst procedure, these strategies avoid the
selection of the repeated solutions as parents and promote the replacement of the
repeated solutions first. It is important to note that the selection mechanism for the
mutation process is also affected by the sort strategies studied in this phase, since the
mutated solutions are also selected by ranking (the best ones). With this change, the
EGGA has more control of the elite population, avoiding repeated solutions. Thus, the
probability of stagnation at a local optimum is decreased.

The reproduction techniques studied in this stage work as follows. First, they rank
the population according to fitness, to later rearrange the population using the criteria:
Cmax, Cmax - Machines(Ci=Cmax), Cmax - Average(Ci), and Cmax - Machines(Ci=Cmax)
- Average(Ci). Each strategy is identified with the criterion that they use to rearrange

8.2. EXPERIMENTAL DESIGN FOR THE R||CMAX REPRODUCTION TECHNIQUES117

Table 8.3: Comparison of the reproduction techniques: Tournament-Random,
Tournament-Parents, and Tournament-Worst using RPD.

Instance Tournament Tournament Tournament
Set Random Parents Worst

n 100 0.031 0.037 0.026
200 0.030 0.037 0.025
500 0.030 0.037 0.025
1000 0.032 0.038 0.027

m 10 0.031 0.037 0.026
20 0.031 0.037 0.026
30 0.031 0.037 0.026
40 0.031 0.038 0.026
50 0.031 0.038 0.026

pij U(1, 100) 0.047 0.044 0.043
U(10, 100) 0.036 0.039 0.036
U(100, 120) 0.010 0.011 0.009
U(100, 200) 0.023 0.028 0.022
U(1000, 1100) 0.004 0.005 0.004
JobsCorre 0.057 0.087 0.036
MacsCorre 0.042 0.050 0.038

1400 instances 0.031 0.038 0.027

the population. The Cmax reproduction technique is the simplest since it considered
that all the solutions with the same Cmax are repeated. On the other hand, the Cmax

- Machines(Ci=Cmax) reproduction technique incorporates a second criterion. In this
way, it considers that two solutions are equal if they have the same Cmax and the same
number of machines with a processing time equal to its makespan Machines(Ci=Cmax).
Similarly, the reproduction technique Cmax - Average(Ci) uses two criteria. In this
way, if two solutions have the same Cmax, it calculates their average processing time
of the machines Average(Ci). Thus, if the solutions have the same values of Cmax and
Average(Ci), they are considered repeated. Finally, the reproduction technique Cmax

- Machines(Ci=Cmax) - Average(Ci) employees three criteria to determine that two
solution are repeated. If two solutions have the same values of Cmax, it verifies that
they also have the same number of machines with Machines(Ci=Cmax). Thus, if both
criteria are met, it calculates the Average(Ci) of the solutions, and if they also match,
they are considered repeated.

Table 8.5 contains the average RPD values obtained by the four reproduction
techniques proposed in this phase. Each column indicates the results reached by
each variant, identified by the criterion that they use to consider that two solutions
are repeated as Cmax, Cmax - Machines(Ci=Cmax), Cmax - Average(Ci), and Cmax

- Machines(Ci=Cmax) - Average(Ci). For a more detailed study, we compare the

118 CHAPTER 8. REPRODUCTION STRATEGIES

Table 8.4: Comparison of the reproduction techniques: Proportional-Random,
Proportional-Parents, and Proportional-Worst using RPD.

Instance Proportional Proportional Proportional
Set Random Parents Worst

n 100 0.034 0.034 0.027
200 0.033 0.033 0.026
500 0.033 0.033 0.026
1000 0.035 0.035 0.028

m 10 0.034 0.033 0.027
20 0.034 0.034 0.027
30 0.034 0.034 0.027
40 0.035 0.034 0.027
50 0.035 0.034 0.027

pij U(1, 100) 0.045 0.045 0.042
U(10, 100) 0.038 0.038 0.037
U(100, 120) 0.011 0.011 0.010
U(100, 200) 0.026 0.026 0.023
U(1000, 1100) 0.005 0.005 0.004
JobsCorre 0.071 0.070 0.039
MacsCorre 0.047 0.046 0.040

1400 instances 0.035 0.034 0.028

performance of the reproduction techniques using four different criteria to group the
1400 instances, (1) the number of machines (m), (2) the number of jobs (n), the
distribution of the processing times (pij), and (4) the 1400 instances together.

From Table 8.5 can be concluded that the reproduction technique with the best
performance is Cmax - Machines(Ci=Cmax) - Average(Ci) that uses three criteria
to validate that two solutions are the same. These results also indicate that the
reproduction technique with this upgrade improved the EGGA performance from an
RPD value of 0.028 to 0.022, i.e., the criterion introduced to identify the repeated
solutions provided an improved rate of about 27%. These results show the importance
of using a reproduction technique that incorporates knowledge of the problem domain
to efficiently handle the characteristics and conditions of the problem to solve.

8.3 Conclusions of the analysis

Although the crossover and mutation operators are crucial to the performance of a
GGA, they cannot work well without an efficient reproduction technique. Given the
importance of this GGA component, in this chapter, we studied how different strategies
can impact the performance of a reproduction technique. To reach this goal, we

8.3. CONCLUSIONS OF THE ANALYSIS 119

Table 8.5: Comparison of the strategies to sort the population: Cmax, Cmax -
Machines(Ci=Cmax), Cmax - Average(Ci), and Cmax - Machines(Ci=Cmax) - Average(Ci) using
RPD.

Instance Cmax Cmax Cmax Cmax

Set Machines(Ci=Cmax) Average(Ci) Machines(Ci=Cmax)
Average(Ci)

n 100 0.035 0.030 0.023 0.021
200 0.035 0.030 0.022 0.021
500 0.035 0.031 0.022 0.021
1000 0.036 0.031 0.024 0.022

m 10 0.035 0.030 0.023 0.021
20 0.036 0.031 0.023 0.021
30 0.036 0.031 0.023 0.022
40 0.036 0.031 0.023 0.022
50 0.036 0.031 0.023 0.022

pij U(1, 100) 0.046 0.037 0.032 0.028
U(10, 100) 0.037 0.031 0.025 0.021
U(100, 120) 0.013 0.012 0.010 0.009
U(100, 200) 0.029 0.027 0.018 0.018
U(1000, 1100) 0.006 0.006 0.003 0.003
JobsCorre 0.067 0.056 0.038 0.037
MacsCorre 0.057 0.050 0.038 0.037

1400 instances 0.036 0.031 0.023 0.022

proposed an experimental study based on phases. In the first stage, we considered both
random and biased strategies. The knowledge gained from this study was used to design
a purpose-specific reproduction technique for R||Cmax. The designed reproduction
technique was incorporated into the EGGA with specific-purpose components designed
with the systematical studies presented in previous chapters. The results suggested
that the suitable reproduction technique for the EGGA that solves R||Cmax should
use a strategy to arrange the solutions from best to worst, to later rearrange the
population, placing at the end the solutions with the same makespan Cmax, the
same number of machines with Ci = Cmax and the same average processing time
Average(Ci). Moreover, the reproduction technique should select the first individuals
of the ordered population for crossover and introduce the offspring to the population,
replacing the repeated solutions and later the solutions with the worst fitness. Finally,
the selection and replacement strategies for the mutation process are kept. Therefore,
the first solutions of the ordered population (from best to worst and with the repeated
solutions placed at the end) must be mutated, and the cloned solutions must first
replace the repeated solutions and then the solutions with the worst fitness. Hence, as
the reproduction technique is the last GGA component studied, at this point of the
research, we can make a comparison between the performance of the initial GGA and
this latest version of the EGGA that includes the intelligent strategies designed based

120 CHAPTER 8. REPRODUCTION STRATEGIES

on the knowledge obtained from the systematical analysis of the optimization process
of each GGA component. In this way, EGGA includes the population initialization
strategy: Random min (presented in Chapter 6), the crossover operator (introduced
in Chapter 6), the mutation operators: 2-Items reinsertion (introduced in Chapter 7),
and the reproduction technique designed using the knowledge generated from the study
presented in this section, referred to as Ranking BRW (best, repeated, and worst). As
the experimental results indicated, the systematical study of the GGA components in
isolation paid off, improving from the RPD of the initial GGA of 0.069 to an RPD
of 0.022 of the EGGA, which means an improvement rate of about 68%. Since the
reproduction technique was the last GGA component to examine, in the next chapter
we will conduct a characterization of the EGGA optimization process, to study the
algorithmic behavior emerged when all the designed components work together.

Chapter 9
Study of the R||Cmax optimization process

This chapter presents an approach, based on exploratory data analysis techniques, to
characterize the properties of R||Cmax instances and the algorithmic behavior of the
EGGA that includes the intelligent strategies designed from the systematical studies
presented in Chapters 5, 6, 7, and 8 for the population initialization strategy, the
crossover operator, the mutation operator, and the reproduction technique, respectively.
In this order of ideas, this section begins with a review of the state-of-the-art proposals
for the characterization of combinatorial optimization problems (COPs). Later, it
presents an experimental study of the R||Cmax properties and the EGGA optimization
process that consists of (1) identifying the instance characteristics that give information
useful to understand its structure and as well as the indexes to collect information
related to the EGGA optimization process and its final performance, (2) refining the
instance characteristics and the measures for the study of the EGGA optimization
process to discard incorrect, redundant, or irrelevant indexes, (3) seeking for relations
among the instance characteristics, the EGGA optimization process measures, and its
final performance that explain the EGGA algorithmic behavior, and (4) understanding
the EGGA algorithmic behavior, identify its opportunity niches, and improve its
performance. The experimental results indicate that the difficulty of the R||Cmax

instance are mainly related to its size and the distribution of its processing times.
Furthermore, the study of relations among the R||Cmax and the optimization process
suggested that the EGGA performance could be improved by incorporating a different
strategy to generate the initial population as well as a heuristic strategy to provide
more exploration. Lastly, this chapter presents the last improvement to the EGGA
designed with the knowledge gained from this characterization study, referred to as the
Final GGA (FGGA). Experimental results indicated that the improvements performed
to the EGGA with the knowledge obtained from the characterization study allowed an
improvement rate of about 63%. Therefore, this means an improvement rate of about
392% from the initial GGA to its final version.

121

122 CHAPTER 9. STUDY OF THE R||CMAX OPTIMIZATION PROCESS

9.1 Approaches for the characterization of COPs

One of the main challenges in the design of heuristic algorithms is to identify which
strategies make an algorithm show better performance and under what conditions they
obtain it. Much of the recent progress, in the development of algorithms, has been aided
by a better understanding of the properties of problem instances and the performance
of the algorithms that solve them. Examples of that are the numerous studies about
the complexity of instances and the performance of algorithms for the Propositional
Satisfiability Problem and the Traveling Salesman Problem [385, 386]. However,
the percentage of studies carried out to understand how and why the algorithms
follow particular behaviors is much lower than the works that create such algorithms.
Furthermore, the characteristics that explain the degree of difficulty of the instances of
many COPs have not yet been studied [387, 388].

The related works about the characterization and analysis of the algorithmic
optimization process include different approaches, such as the algorithm selection
problem introduced by Rice in 1976 [389]. The key idea of this proposal is to select
an effective or best algorithm given some independent characteristics of the problems
which are important for the algorithm selection and performance. From the seminal
work of Rice, there have been important efforts to predict the performance of algorithms
for COPs via the application of statistical methods, multivariate analysis, and machine
learning techniques [390].

Another important field is meta-learning, an active area of research, especially
concerning algorithm selection and configuration [391, 392]. Likewise, the analysis of
the problem search space structure is another successful approach since it has allowed
studying metrics to characterize the search space and its properties, used to analyze a
wide variety of COPs [393, 394, 395].

On the other hand, studies of the relative hardness of instances for various NP-hard
COPs have shown a phase transition property around which the most difficult problems
occur. The identification of these properties has allowed characterizing the instances as
easy or hard, and a large number of experimental results have demonstrated the effect
of these properties for both exact and heuristics algorithms [396, 397].

The difficulty of the NP-hard COPs instances can also be characterized by studying the
structure of optimal solutions. For some COPs, it has been possible to identify sets of
backbone variables that have fixed values amongst all optimal solutions, showing that
there is a relation between the magnitudes of these sets and the degree of the difficulty
of the instances [398, 395].

Although various studies have focussed on measuring the instance difficulty for COPs,
the complexities of NP-hard COPs and heuristic algorithms have shown that a single
characterization approach is not sufficient to understand the performance of the
algorithms and the difficulty of the instances. The state-of-the-art highlights the need
for a more complete analysis, combining all the proposed characterization techniques
to obtain better explanations regarding the performance of the heuristic algorithms
and the difficulty of the instances solved. This type of study is important since it can
provide a solid basis for the analysis and design of algorithms.

9.2. EXPERIMENTAL STUDY OF THE OPTIMIZATION PROCESS OF R||CMAX 123

A good experimental analysis of heuristic algorithms should enable to understand the
relationships between features of instances and algorithmic behavior, to explain the
strengths and weaknesses of each algorithm. The definition of the optimal subset of
features that adequately measure the relative difficulty of the instances is a critical task,
the way instances structure affects the performance of the algorithms represent a big
challenge and the explanations of the algorithmic behavior depend in an unstable way on
the features actually used. The construction of features to characterize the structure of
the instances of an optimization problem can be made via problem-independent metrics,
considering the search space and its properties, and via problem-specific features.
Smith-Miles and Lopes review some of the problem-specific features that have been
constructed to characterize the problem difficulty of various COPs [399]. However, as
far as we know, there is not any work related to the characterization of Parallel-machine
scheduling problems. The motivation behind the work presented in this chapter is to
contribute to the construction of suitable problem-specific features that allow us to
characterize and understand the hardness of Parallel-machine scheduling problems.

9.2 Experimental study of the optimization process
of R||Cmax

This section describes the characterization process of the R||Cmax problem, the EGGA
algorithmic behavior analysis, and its final performance. This study is conducted
following the four phases of the approach proposed by Quiroz-Castellanos [400]. That
is characterization, characteristics refining, relations study, and algorithmic behavior
explanations.

The first stage, characterization, consists of identifying the most relevant properties
of the instances of the problem studied, and measuring them via characterization
functions (indexes), which provide valuable information that could enable us to explain
the performance of the heuristics that solve them.

On the other hand, the characteristics refining phase involves the use of exploratory data
analysis techniques to discard incorrect, redundant, or irrelevant indexes; if necessary,
new indexes are incorporated, in order to characterize all the relevant factors that allow
discriminating between instances with different features. Next, in the third phase, the
relations study, an exploratory analysis of the final set of indexes is carried out to
look for characteristics of the test instances explaining the algorithmic behavior of the
heuristics under research. Finally, as the last phase of the approach, the knowledge
resulting from this study conducts an understanding of the behavior of the heuristic
algorithms, explaining how their final performance is affected by several factors that
cause the features of the instances.

The following sections present the results obtained of applying the characterization
method to the EGGA, created based on the intelligent strategies designed in Chapters
4, 5, 6, 7, and 8.

124 CHAPTER 9. STUDY OF THE R||CMAX OPTIMIZATION PROCESS

9.2.1 Phase 1: Characterization

The main objective of the characterization phase is to identify and measure relevant
factors that describe the structure of the instances, the algorithmic behavior, and the
final performance of the algorithm studied. In this section, we describe the set of
indexes used to measure the most relevant properties of the 1400 test instances of the
R||Cmax problem, the EGGA behavior, and its final performance.

Measuring R||Cmax instances hardness

Knowing and understanding the structure of the R||Cmax instances play an important
role in predicting the quality of the solutions generated by the metaheuristic algorithms
that address them. It is well-known that factors such as the number of jobs and
machines, the central tendency of their processing times, and their distribution,
influence on the difficulty level that an instance may have for a solution algorithm.
However, the challenge is the formulation of indexes able to characterize these factors.
Like this is the first effort to characterize R||Cmax, we apply several general-purpose
indexes, based on descriptive statistics, to analyze different characteristics of the
problem and collect relevant information about the parameters of every instance. The
detail of the instances used in this work can be found in Section 3.2.

The characteristics used to generate this benchmark are the first that allow us to
discriminate between instances with different structures. In this sense, given an
instance of R||Cmax, we use the number of machines m and the number of jobs n
to measure the size of the problem. Another important factor to characterize R||Cmax

is the distribution of the processing times pij, which can be studied measuring its
form, centralization, dispersion, as well as the correlation concerning the jobs and the
machines.

Recalling from Section 3.1, constructive heuristics for the Parallel-machine scheduling
problem consider different properties to classify the jobs before scheduling them (see
Figure 5.1), like the processing time pij required by the fastest machine to process
each job (lowest) and the difference between the two fastest machines to process
each job (diff_fastest). In order to explore the impact of these properties on the
performance of the algorithms, we generate plots for each instance to observe the way
these characteristics can vary among different instances. For example, the multiplicity
of the instance property lowest, represented as a vector that contains the processing
times pij required by the fastest machine i to process each job j, is an aspect that
could incise on the difficulty of the instances. Figure 9.1 holds information about it,
which allows us to analyze how the multiplicity(lowest) varies from one instance to
another. To generate this figure, first, for each instance I, the set lowest was created
with the minimum processing time pij required to process every job j, to later identify
the different values in lowest, and count its frequency. In this way, Figure 9.1 contains
the instances of the extremes, i.e., the instance where the most frequent processing time
is the highest and the one with the lowest of the 1400 cases. In each graph, the x−axis
depicts the processing time of the jobs, and the y−axis indicates its frequency as a
percentage of the total number of jobs. Besides, in the upper right corner, each figure

9.2. EXPERIMENTAL STUDY OF THE OPTIMIZATION PROCESS OF R||CMAX 125

holds the general characteristics of the plotted instance, including its id, the range used
to generate its values of pij, the number of jobs n, and the number of machines m. As
can be seen in these graphs, the benchmark considered in this work contains instances
where the lowest processing times are not very repeated, such as the one shown in
Figure 9.1a with 0.16 percent incidence. In contrast, Figure 9.1b indicates that this
benchmark also includes instances with the lowest processing times repeated up to 92.5
percent.

20 40 60 80 100
lowest

2 106

0

0.2

0.4

0.6

0.8

1

fr
e
q
u
e
n
c
y

pij:U(2, 120)

m:10

n:1000

id:1011

(a) Instance 1011 of the set JobsCorr
100 101

lowest

0

0.2

0.4

0.6

0.8

1

fr
e
q
u
e
n
c
y

pij:U(100, 120)

m:50

n:1000

id:1051

(b) Instance 1051 of the set U(100, 120)

Figure 9.1: Multiplicity of the lowest processing times of jobs (lowest).

Another aspect that could be related to the difficulty of the instances is the difference
between the processing times of the two fastest machines to process each job
(diff_fastest), mainly for metaheuristic algorithms that allocate the jobs using this
information (see Figure 5.1). Figure 9.2 shows how the values of this feature vary
from one instance to another. To generate this figure, for each instance I, the set
diff_fastest is created, to later sort the jobs in increasing order according to this
property. In this way, Figure 9.2 holds the plots for the instances with the greatest and
the smallest value in diff_fastest of the 1400 cases, respectively. In each graph, the
x−axis depicts the jobs in increasing order according to their values in diff_fastest,
and the y−axis indicates the difference between the processing times of the two fastest
machines to process each job. Besides, the upper right corner of each graph presents
the general characteristics of the plotted instance: the criterion used to generate its
values of pij, the number of machines m, the number of jobs n, and the identifier id.
From these figures can be observed that, in some instances, the difference between the
two fastest machines to process each job is small, like the one plotted in Figure 9.2a
with differences of 0 and 1 only. In contrast, Figure 9.2b shows that the benchmark also
includes instances with values of diff_fastest that can vary between 0 and 70. This type
of information can be helpful to build a solution since it indicates that, in some cases,
the fastest machines to process all jobs have similar speeds. Consequently, placing the
jobs in the fastest or the second-fastest machine affects less than when there exists a
wide variation among the speed of the two fastest machines.

Table 9.1 contains the general indexes proposed to analyze the 1400 instances, where
the first column includes the name of each index, and the second one its description.

126 CHAPTER 9. STUDY OF THE R||CMAX OPTIMIZATION PROCESS

0 20 40 60 80 100
Jobs

0

20

40

60

80
d
if
f_

fa
s
te

s
t

pij:U(2, 120)

m:40

n:100

id:141

(a) Instance 141 of the set JobsCorr
0 200 400 600 800 1000

Jobs

0

20

40

60

80

d
if
f_
fa
s
te
s
t

(b) Instance 1018 of the set U(1000, 1100)

Figure 9.2: Difference between the processing times of the two fastest machines to process
each job (diff_fastest).

In this sense, for each instance I, we collect the number of jobs n and machines m; the
quotient of the number of jobs by the number of machines n

m
; the minimum min(pij)

and the maximum min(pij) processing time; the average mean(pij) and the coefficient
of variation of the processing times cv(pij); the difference range(pij) and the quotient
(q) between the maximum and minimum processing times; and the level of correlation
among the processing times of jobs (job_corre) and machines (mach_corre). These
indexes allow measuring the general characteristics of the structure of the instances.
Equation 9.1 shows how to calculate the job correlation of an instance I, where
range(pj) indicates the subtraction of the largest and minor processing time of the
job j, n represent the number of jobs, and range(pij) depicts the difference between
the highest and the lowest processing time of I, respectively. In this way, as the
value of job_corre of I approaches 1, its jobs are more correlated, indicating that its
jobs have similar processing times for all machines (either short, medium, or long).
Similarly, Equation 9.2 is used to measure the machine correlation (mach_corre) of
an instance I, where range(pi) collects the subtraction of the highest and the lowest
processing time of the machine i, m indicates the number of machines, and range(pij)
depicts the difference between the largest and minor processing time of I, respectively.
Like job_corre, as the value of mach_corre of I approaches 1, its machines are more
correlated, indicating that its machines have similar speeds to process all the jobs
(either fast or slow).

job_corre = 1−

∑n
j=1 range(pj)

n

range(pij)
(9.1)

mach_corre = 1−

∑m
i=1 range(pi)

m

range(pij)
, (9.2)

9.2. EXPERIMENTAL STUDY OF THE OPTIMIZATION PROCESS OF R||CMAX 127

Table 9.1: General characteristics for I.

Index Description
n Number of jobs to be scheduled.
m Number of machines available.
n
m

Quotient of n between m.
min(pij) Minimum processing time in I.
max(pij) Maximum processing time in I.
mean(pij) Average processing time in I.
cv(pij) Coefficient of the processing times variations in I.
range(pij) Difference between Gmin(I) and Gmax(I) in I.
q Quotient of max(pij) between min(pij).
job_corre Level of correlation among jobs in I.
mach_corre Level of correlation among machines in I

Additionally, different features of jobs and machines are independently analyzed using
the seven descriptive measures defined in Table 9.2. In this table, the first column
includes the name of each index, and the second one holds its description. As can be
seen from this table, each index requires an argument (X) that can represent either
a set of processing times of a job, a machine, or any specific feature extracted from a
given instance I. For example, the m processing times pij from p1j to pmj of each job
j are used to create the set X to analyze the general structure of the jobs. In this way,
the seven measures listed in Table 9.2 (i.e., mean, cv, uniformity, min, max, range,
and multiplicity) are applied to each job independently, to later calculate the average
of each measure regarding the n jobs under study.

The information collected with these measures and the process mentioned above
allow examining the general distribution, uniformity, form, and size of the jobs in a
given instance. Furthermore, these measures can also be used to study more specific
characteristics of jobs, like the behavior followed by the shortest, the longest, and the
average processing time of jobs. To collect this information, first, the characteristic of
interest is extracted from each job and then used as the argument (X) of the measures
to be calculated. Thereby, data related to the characteristic of interest, like its central
tendency, dispersion, and uniformity, can be explored using the indexes listed in Table
9.2.

Similar to jobs, several machine characteristics are studied using the seven descriptive
measures detailed above. In this sense, to analyze the general structure of machines, the
measures are applied to each machine independently. That is, forming the set X with
the n possible processing times pij for each machine i, from pi1 to pin. Furthermore,
more specific features of machines are explored, like the time required by each machine
to process the job with the shortest processing time (shortest), the number of jobs
that each machine processes faster than the other ones (n_fastest), the average
speed of machines considering the n jobs (average_speed), and the average speed
of machines considering only the jobs that each machine process faster than the others
(average_speed_fastest).

128 CHAPTER 9. STUDY OF THE R||CMAX OPTIMIZATION PROCESS

Table 9.2: Descriptive measures.

Index Description
mean(X) Mean of the data set X.
cv(X) Coefficient of variation of the data set X.
uniformity(X) Uniformity of the data set X [400].
min(X) Minimum value in the data set X.
max(X) Maximum value in the data set X.
range(X) Difference between the maximum and the minimum value in X.
multiplicity(X) Multiplicity of the data set X [400].

In addition to this, we used indexes with specific-purpose. For example, to analyze
relations jobs-machines we use four indexes: above n

m
, equal n

m
, and below n

m
. To

calculate these indexes, first, the vector n_fastest with length m is created where
each position of the vector includes the number of jobs that each machine processes
faster than the other ones. In this way, the characteristics of this property can be
studied, applying the indexes of Table 9.2. Additionally, we measure above n

m
that

counts the number of machines processing faster a lower number of jobs that n
m

, equal
n
m

that indicates the number of machines processing faster an equal number of jobs
that n

m
, and below n

m
that measures the number of machines processing faster a lower

number of jobs that n
m

. However, it is important to note that these indexes are not
standardized.

On the other hand, we also use the descriptive measures in Table 9.2 to collect
information related to the difference between the processing times of the two fastest
machines to process each job (see Figures 5.1 and 9.2). The information collected from
this property is important since it allows detecting the contrast among processing the
jobs by the machine that processes them fastest or the second one. Recalling from
Figure 9.2b, this difference can be considerably large. To generate this data, first, the
vector diff_fastest is created with the difference between the two fastest machines to
process each job, to later use the seven indexes listed in Table 9.2 to analyze its central
tendency, uniformity, form, and multiplicity.

Finally, we use the indexes in Table 9.2 to analyze data of the instances related to the
instance property lowest (see Figure 5.1 and 9.1). The study of this property (lowest)
is very useful since it provides information related to the shortest time in which the jobs
of an instance I can be processed. In this way, indexes of Table 9.2 bring information
with respect to its central tendency, distribution, form, and multiplicity. Additionally,
we apply the indexes max_repe, introduced by Quiroz-Castellanos in [400] as well as
no_multiplicity, introduced in this work. Max_repe indicates the frequency of the
most recurrent processing time, and no_multiplicity counts the number of processing
times that only appear one time. Likewise, it is important to take into account the
characteristic lowest, since one of the first ideas that can arise at the moment of solving
an R||Cmax problem is to assign the jobs to the machine that processes them faster. In
this sense, the information collected from this property can help to validate the use of
said heuristic or discard it and guide the selection of a new heuristic.

9.2. EXPERIMENTAL STUDY OF THE OPTIMIZATION PROCESS OF R||CMAX 129

Measuring the EGGA Behavior

This section describes the indexes used to measure the algorithmic performance of
the EGGA, proposed based on the studies conducted in Chapters 4, 5, 6, 7, and 8.
The main objective of this section is to understand the operational functioning of the
EGGA, in order to identify possible niches of opportunity to improve its performance.
In this sense, we applied different measures to analyze the efficiency and usefulness of
each EGGA component, including the strategy to generate the initial population, the
crossover and mutation operators, as well as the selection and replacement mechanisms.
The studied indexes seek to characterize the individual capabilities of each operator,
as well as their contribution to the performance of the EGGA by working all together.

To analyze the algorithmic behavior of each EGGA component, we use the seven
descriptive measures described in Table 9.2 together with an extra index to measure
the number of repeated solutions repe(X) that receives a set X of solutions and counts
how many of them share the same Cmax, the number of machines with Ci = Cmax, and
the average processing time of the machines average (Ci). It is important to note that
although these three criteria do not guarantee that two solutions are selfsame, they
help to identify very similar solutions to measure the population convergence degree.

In this way, we use the aforementioned indexes to analyze the central tendency,
dispersion, and uniformity of the population at different stages of the search. For
example, to study the algorithmic behavior of the population initialization strategy,
we apply the indexes to the initial population. That is, we create the vector X
with the Cmax of each solution to recognize the characteristics of the initial solutions
generated by the population initialization strategy, in order to identify its strengths
and weaknesses. Similarly, we apply the indexes to the final solution set to analyze the
search abilities that the EGGA components have when working together. Additionally,
we employ these indexes to analyze different aspects of the population generated in each
generation. To conduct this study, we generate eight vectors, one for each descriptive
measure: min(), max(), distance, etc., and one for the repeated solutions repe. Each
vector collects the result of applying a descriptive measure to the population of every
generation. Therefore, they were called mins, maxs, distances, etc. When the search
process ends, the seven indexes are applied again to each of those vectors. Thus, we
can study in detail the exploration and exploitation capabilities of the EGGA to try to
identify whether it stagnated in local optima or it maintained diversity in population
throughout the search. That is, we generate 8× 7 = 56 indexes for this purpose.

In addition, we measure other indexes such as the success rate of the crossover
success_rate(crossover) and mutation success_rate(mutation) operators to identify
the percentage of solutions that improve their quality when going through these
processes. We consider that the crossover process was successful if the solution
generated is better than at least one of the two parents. In the case of mutation,
the operation is considered successful if the generated solution improves the quality of
the initial solution. Finally, the solver index stores the strategy that generates the best
solution during the search, which allows identifying the individual contribution of each
component to the final performance of the EGGA. Thus, solver stores 0 if the EGGA
does not find a solution equal to or better than CPLEX. Otherwise, it saves 1 if the

130 CHAPTER 9. STUDY OF THE R||CMAX OPTIMIZATION PROCESS

best solution is found by the population initialization strategy, 2 if it is created by the
crossover operator, and 3 if it is generated by the mutation operator.

The fifty-nine indexes described above were used to collect information on the
performance of the EGGA. As can be seen, the number of indexes studied is somewhat
large, so in the next stage (refining) the indexes that provide the most useful information
will be identified to avoid redundancy and future problems during the analyses stage.

Measuring the EGGA Final Performance

One of the most important aspects to consider during the characterization of the EGGA
behavior is its final performance. Therefore, this section presents the indexes used to
collect this information. In this way, we cover the three elements necessary to solve
a combinatorial problem like R||Cmax, i.e., the input (instance characteristics), the
process (algorithmic behavior), and the output (final performance).

A significant index in the algorithmic behavior analyses the quality of the solutions
obtained. To characterize the EGGA final performance, we use the Relative Percentage
Deviation (RPD). A value RPD = 0 means that the Cmax found is equal to that
found by two hours of CPLEX, a negative value indicates that a better solution is
found by EGGA, and a positive value means that the result of EGGA is worse than the
CPLEX result. Another important index is the time factor, we characterize it using
two indexes: the real-time (t) that the algorithm required to try to solve the problem,
and the number of generations g that the algorithm used to find the best solution.
As can be seen, the indexes used to measure the final performance of EGGA are few;
therefore, no refinement will be necessary.

9.2.2 Phase 2: Characteristics Refining

Once R||Cmax interest indexes have been defined, it is necessary to perform an
exploratory analysis of the variables of interest to eliminate redundant measures, discard
incorrect and irrelevant indexes and validate the proposed indexes. During this stage,
first, we analyze the relationships among each pair of indexes used to characterize
the R||Cmax problem, looking for redundant, irrelevant, and incorrect indexes. In this
manner, we generated and analyzed a correlation matrix with those variables. As
a result, we observed that some pairs of indexes measuring features related to the
processing times of the R||Cmax instances collect redundant information since they are
strongly correlated. Finally, the conducted study enabled observing the contribution
and consistency of each index, detecting those that do not hold meaningful information
for the characterization of the structure of the R||Cmax instances. Thus, we discarded
inconsistent, irrelevant, and redundant indexes to avoid the noise provided by them
to the analysis of the instance structure. Table 9.3 includes the detail of the final set
of indexes used to analyze the structure of the R||Cmax instances. The first column
indicates the type of information that collects, while the second one holds the name of
every index.

9.2. EXPERIMENTAL STUDY OF THE OPTIMIZATION PROCESS OF R||CMAX 131

Table 9.3: Final set of indexes for R||Cmax characterization.

Type Index

Size
n
m
q

Centralization mean(pij)
mean(diff_fastest)

Dispersion

range(pij)
cv(pij)

cv(min(pj))
cv(n_fastest)

Form
uniformity(pi)
uniformity(pj)

uniformity(n_fastest)

Location max(pij)
min(pij)

Relations n
m

job-machine below n
m

Machine
max(diff_fastest)

mach_corre

Jobs multiplicity(lowest)
job_corre

After identifying the final set of indexes to characterize the structure of the R||Cmax test
instances, we conduct a Principal Components Analysis (PCA), that allows plotting
eight subsets of instances, arranged according to Table 9.4. In this table, the first
column indicates the processing time distribution of each collection of instances,
followed by its number of jobs, its number of machines, and its identifier from 1 to
8. Figure 9.3 contains the instances of the eight groups plotted according to the first
three principal components. As can be seen in this figure, the instances of each group
are together, and the groups do not overlap. That is, the first three components are
enough for discriminating among instances with different characteristics. The first
component, called relation job-machine, comprises indexes like the number of machines
m and the quotient of the number of jobs by the number of machines (n

m
) associated

with the size of the problem. Furthermore, it contemplates the form of the processing
time distribution of the jobs (i.e., the uniformity of the jobs uniformity(pj)) and
variables that collect information from the machines that process fastest the jobs using
the diff_fastest vector that includes the difference between the two fastest machines to
process each job. On the other hand, the second component, called job structure,
contemplates characteristics of the instances related to the form (uniformity) and
dispersion (range and coefficient of variation) of the processing time of the jobs. Finally,
the third component, machine structure, embraces information related to the form
of the processing time distribution of the machines (i.e., uniformity of the machines
uniformity(pi)), the number of jobs that each machine could process in an extreme

132 CHAPTER 9. STUDY OF THE R||CMAX OPTIMIZATION PROCESS

case n, and the frequency between the processing times required by the fastest machine
to processes each job multiplicity(lowest).

Table 9.4: Characteristics of the eight groups of instance. pij: processing time distribution.
n: number of jobs. m: number of machines. identifier: identifier of each collection of
instances.

pij n m id

U(1, 100)
100 10 1

50 2

1000 10 3
50 4

U(1000, 1100)
100 10 5

50 6

1000 10 7
50 8

-4
4

-2

0

8

st
ru

ct
u

re
 o

f
th

e
m

ac
h

in
es

2

structure of the jobs

4

relation jobs - machines

6

-4
-4 -6

1

2

3

4

5

6

7

8

id
en

ti
fi

er

Figure 9.3: PCA of the twenty characteristics studied.

Once identified the indexes to characterize the problem structure, we proceed to refine
the indexes proposed to measure the algorithmic behavior as follows. First, we analyze
the relationships among each pair of the fifty-nine measures used to characterize the
EGGA behavior, looking for the ones that collect the most useful information to
understand the EGGA algorithmic behavior, and discarding the redundant or irrelevant
ones. The selected indexes were compared versus the final set of the problem structure
indexes and the final performance measures. Thus, we selected the algorithmic behavior
measures presenting the higher correlations. The next section includes the correlation
matrices with the indexes and measures that provide relevant information about the
EGGA algorithmic behavior, together with 3D scatter plots that explain these relations.

9.2. EXPERIMENTAL STUDY OF THE OPTIMIZATION PROCESS OF R||CMAX 133

9.2.3 Phase 3: Study of relations

The main goal of this phase is to explain the EGGA algorithmic behavior under
research. Hence, we use different data analysis techniques to try to understand how the
properties immersed in the R||Cmax instances influence on its difficulty. In this fashion,
we use the information collected by the indexes and the measures to look for relations
between the structure of the R||Cmax instances, the EGGA behavior during the search
process, and its final performance.

The lineal association analysis was the first technique used to look for immersed
relations among the three types of indexes: problem structure (input), algorithmic
behavior (process), and final performance (output). This study was conducted as
follows.

First, we identify the problem characteristics strongly related to the final performance of
the EGGA (RPD and g), where we observe that the indexes with the highest correlation
are the number of jobs n and the variation coefficient of the minimum processing times of
the jobs cv(min(pj)). Subsequently, these indexes were compared against the measures
of algorithmic behavior to try to find input, process, and output relationships that
allow understanding the EGGA optimization process. Below are the correlation tables
and 3D scatter plots that help to understand the algorithmic behavior of the different
EGGA components.

In order to individually analyze the algorithmic behavior of the main EGGA
components and their contribution to the search process, in this stage, we identify
the characteristics of the problem and the measures of the final performance related
to the optimization process of each component. One of the most important EGGA
components is the strategy to generate the initial population. The aspects to consider
during the design of this strategy depend on the characteristics of the problem to solve.
Therefore, it is relevant to know the performance and contribution of this component
to the EGGA final performance. Table 9.5 shows the correlation matrix of the two
measures that provide more information to understand the algorithmic behavior of
the population initialization strategy. average(ini_pop): saves the mean quality of
the solutions, which, being normalized based on the best solution found by CPLEX,
helps to see the distance of the population to CPLEX. On the other hand, cv(ini_pop)
measures the diversity of the population based on the quality of the solutions.

Table 9.5 shows the correlation matrix with the selected indexes to analyze the behavior
of the strategy to initialize the population. We use two problem characteristics: n to
measure the number of jobs and cv(min(pj)) to collect the coefficient of variation of
the minimum processing times of the jobs; two final performance measures: RPD
that indicates the average percentage deviation from the solutions found by EGGA to
CPLEX and g that indicates the generation in which EGGA found the best solution;
and two measures to analyze the algorithmic behavior of the population initialization
strategy: average(ini_pop) that indicates the average RPD from initial population to
CPLEX and cv(ini_pop) that collects information related to the diversity of the initial
solutions.

The correlation matrix indicates that n has a negative correlation with the algorithmic

134 CHAPTER 9. STUDY OF THE R||CMAX OPTIMIZATION PROCESS

Table 9.5: Problem characteristics, final performance measures, and indexes to analyze the
algorithmic behavior of the population initialization strategy.

n cv(min(pj)) average(ini_pop) cv(ini_pop) RPD g
n 1.00
cv(min(pj)) 0.0052 1.00
average(ini_pop) -0.1821 0.7276 1.00
cv(ini_pop) -0.4351 0.5541 0.7916 1.00
RPD 0.4167 0.3800 0.2853 0.0590 1.00
g 0.6270 -0.1502 0.3610 -0.6028 0.1867 1.00

behavior measures average(ini_pop) and cv(ini_pop). That is, the greater the number
of jobs (n) in the instance to solve, the initial population strategy generates the solutions
closer to the best-known (small average(ini_pop) values), and at the same time, the
initial population has less diversity (low cv(ini_pop) values). In contrast, n has a
positive correlation with the final performance measures RPD and g. Thus, as the
number of jobs n increases, the distance between the solutions found by EGGA and
CPLEX becomes larger (high RPD values), and the generation in which the best
solution is found also grows (high g values). On the other hand, cv(min(pj)) has a
positive correlation with three measures studied. In this way, when the cv(min(pj))
grow (the minimum time to process the jobs are more diverse), the initial population
moves away from the best-known solution (high average(ini_pop) values) and the
initial population has greater diversity (high cv(ini_pop) values). Regarding the
final performance, none of the measures has a strong relationship with cv(ini_pop).
However, the correlation matrix indicates that, when the initial population is generated
far from the best-known solution (high cv(ini_pop) values), the quality of the best
solution found by EGGA decreases (high RPD values), and the search gets stuck at
local optima (low g values).

Figure 9.4 contains four 3D scatter plots with the problem characteristics n and
cv(min(pj)) and the final performance measures RPD and g that give more information
about the performance of the strategy to generate the initial population. The four
graphs include the two indexes n and cv(min(pj)) and can vary in performance measures
and measures to analyze the behavior of the initialization strategy average(ini_pop)
and cv(ini_pop), which indicate the average distance of the initial solutions to the
best-known solution and the diversity of the population, respectively.

The following list enumerates the conclusions obtained during the analysis of the
correlation matrix that can be graphically observed in the four 3D scatter plots (Figure
9.4).

– Figure 9.4a shows that the EGGA finds better solutions (small RPD values) when
the initial population is closer to the best-known solution (small average(ini_pop)
values).

– Figure 9.4b indicates that EGGA sparingly uses generations (high g values) when
the initial population is closer to the best-known solution (small average(ini_pop)
values).

9.2. EXPERIMENTAL STUDY OF THE OPTIMIZATION PROCESS OF R||CMAX 135

Figure 9.4: Scatter plots for the population initialization strategy.

– Figure 9.4c shows that the EGGA locates better solutions (small RPD values)
when the initial solutions are similar (small cv(ini_pop) values).

– Figure 9.4d indicates that the EGGA makes better use of generations (high g
values) when the initial solutions are similar (small cv(ini_pop) values).

– Figures 9.4a and 9.4c allow observing that, for each number of jobs n, EGGA finds
better solutions (small RPD values) in instances with less variety in the minimum
processing times of the jobs cv(min (pj).

– Figures 9.4b and 9.4d show that EGGA makes better use of generations (high g
values) in instances with high cv(min(pj) values.

Another important aspect related to the EGGA performance is diversity, which has
an important role to avoid a local optima stagnation. Table 9.6 shows the correlation
matrix with the measures that provided the most useful information, selected following
the same process, about the way EGGA handles the population diversity during the
search process. cv(ini_pop) saves the diversity of the initial populations, cv(fin_pop)
indicates the variance of the final population, average(cvs) collects the average diversity

136 CHAPTER 9. STUDY OF THE R||CMAX OPTIMIZATION PROCESS

Table 9.6: Problem characteristics, final performance measures, and, indexes to analyze the
way EGGA handles diversity.

n cv(min(pj)) cv(ini_pop) cv(fin_pop) average(cvs) cv(cvs) g
n 1
cv(min(pj)) 0.0052 1
cv(ini_pop) -0.4350 0.5540 1
cv(fin_pop) -0.4560 0.5218 0.8199 1
average(cvs) -0.5017 0.4840 0.8548 0.9607 1
cv(cvs) -0.0497 -0.1503 0.0264 -0.1602 -0.1338 1
g 0.6268 -0.1502 -0.6028 -0.4682 -0.5097 -0.2479 1

of the entire search process, and cv(cvs) indicates the way the variance keeps or changes
in all the generations. In this study, we use the final performance measure g, which
saves the generation in which the best solution is found. In this way, the measures
and indexes highly correlated indicate how the diversity in the population influences
the EGGA stagnation in local optima. Table 9.6 suggests that when EGGA tries to
solve instances with many jobs (high values of n), the population of solutions starts
and ends with little diversity (low values of cv(ini_pop) and cv(end_pop)). On the
contrary, the variance is greater in instances where the minimum processing times of
the jobs vary (high values of cv(min(pj))). Also, when the initial population has a
lot of variance (high values of cv(ini_pop)), EGGA gets stall easily in local optima
(low values of g). This effect is more marked in instances with high coefficients of
variation in the minimum processing times of the jobs (high values of cv(min(pj))).
Similarly, Table 9.6 suggests that EGGA gets stall when it promotes too much diversity
throughout the search process (low values of g for high values of average(cvs), cv(cvs)
and cv(fin_pop)).

In order to graphically see the way EGGA handles diversity during the search process,
Figure 9.5 includes four 3D scatter plots with the problem characteristics n and
cv(min(pj)) and the final performance measure g. Each graph differs in the measure
used to analyze the diversity. The four graphs in Figs 9.5a-9.5d reveal that EGGA
stagnates faster when the diversity is high in the initial population cv(ini_pop), during
the search process average(cvs) and cv(cvs), and in the final population cv(fin_pop).

Like diversity, convergence is another important aspect to take into account to
analyze the EGGA performance. Since it, together with diversity, brings EGGA
the exploration-exploitation capability. Therefore, it is important to keep a balance
between diversity and convergence during the entire search process. Table 9.7 presents
the correlation matrix with the measures that provided the most useful information
about the way EGGA handles the population convergence during the search process.
average(ini_pop) saves the convergence of the initial population, average(fin_pop)
indicates the convergence of the final population, average(averages) collects the
average convergence of the entire search process, and cv(averages) indicates the way the
convergence keeps or changes during the search process. In this study, we use the final
performance measure RPD, which indicates the distance from the best solution found
by EGGA and CPLEX. Hence, the highly correlated measures and indexes indicate
how the EGGA convergence capability influences its final performance. Table 9.7

9.2. EXPERIMENTAL STUDY OF THE OPTIMIZATION PROCESS OF R||CMAX 137

Figure 9.5: Scatter plots to analyze the way EGGA handles the diversity.

suggests that the most difficult instances are those with more jobs (high n values)
and those with the highest coefficient of variation in the minimum processing time of
the jobs (high cv(min(pj)) values. Likewise, Table 9.7 indicates that as an instance has
a higher cv(min(pj)) value, the population of solutions starts and ends further from the
best-known solution. Also, when the initial population is far away from the best-known
solution (high values of average(ini_pop)), EGGA does not have high-quality solutions
(high RPD values). The same phenomenon occurs when the population stays away
from the best-known solution throughout the search average(averages). Accordingly,
if the final population ends far from the best-known (high values of average(fin_pop)),
the EGGA performance is not good.

To graphically analyze the way EGGA convergence capability during the search process,
Figure 9.6 presents four 3D scatter plots with the problem characteristics n and
cv(min(pj)) and the final performance measure RPD. Each graph differs in the measure
used to analyze the convergence. The four graphs in Figs 9.6a-9.6d suggest the quality
of the solutions found by EGGA decreases when the initial population is generated far
from the best-known solution, the population keeps far from the well-known solution

138 CHAPTER 9. STUDY OF THE R||CMAX OPTIMIZATION PROCESS

Table 9.7: Problem characteristics, final performance measures, and indexes to analyze the
way EGGA handles the convergence.

n cv(min(pj)) average(ini_pop) average(fin_pop) average(averages) cv(averages) average(cvs) RPD
n 1
cv(min(pj)) 0.0052 1
average(ini_pop) -0.1821 0.7276 1
average(fin_pop) -0.0850 0.5542 0.5168 1
average(averages) 0.0668 0.6035 0.6245 0.9286 1
cv(averages) 0.09990 0.4867 0.7292 0.0169 0.2973 1
average(cvs) -0.5017 0.4840 0.6976 0.6335 0.5525 0.2003 1
RPD 0.4166 0.3800 0.2853 0.5927 0.6385 0.0575 0.0354 1

during the entire search process, and the final population remains far.

Figure 9.6: Scatter plots of the EGGA convergence.

Finally, to reinforce the conclusions obtained from the exploratory data analysis
described above, we generated the graph presented in Figure 9.7 with the indexes that
exhibit the stronger relations and allow understanding the EGGA optimization process
for the R||Cmax problem. This diagram includes all the indexes that intervene in the
relations studied above and other interest indexes that show significant information
about the difficulty of the R||Cmax instances and the algorithmic behavior of the

9.2. EXPERIMENTAL STUDY OF THE OPTIMIZATION PROCESS OF R||CMAX 139

EGGA. The diagram comprises: (1) the six more relevant R||Cmax characteristics:
mach_corre, job_corre, q, cv(min(pij)), n, and multiplicity(lowest); (2) the eight
measures that provide the most significant information of the EGGA algorithmic
behavior, including four measures to analyze the diversity: cv(cvs), cv(ini_pop),
cv(fin_pop), and average(cvs); as well as four measures to examine the convergence:
cv(averages), average(averages), average(fin_pop), and average(ini_pop); and (3)
the final performance measures RPD and g.

Figure 9.7: Diagram with the relations between the R||Cmax instances, the EGGA algorithmic
behavior, and its final performance.

In the graph presented in Figure 9.7, we emphasize that the six R||Cmax characteristics
are directly related to the EGGA final performance, including the correlation in the
distribution of the machines processing times mach_corre and the jobs processing times
job_corre; the dispersion of all the processing times, measured from the coefficient of
variation of the minimum processing times of the jobs cv(min(pj)) and the quotient
q of the maximum processing time of an instance by the minimum; the size of the
instances, analyzed from the number of jobs n; and the structure of the jobs, examined

140 CHAPTER 9. STUDY OF THE R||CMAX OPTIMIZATION PROCESS

with the multiplicity of the minimum processing times of the jobs multiplicity(lowest).
Furthermore, we highlight in this graph that most of the diversity measures, i.e.,
cv(ini_pop), cv(fin_pop), and average(cvs), are related to the number of generations
g used to find the best solution for the complete search. This behavior makes sense
since, depending on the EGGA’s abilities to handle diversity, it can fully exploit the
use of available generations, or it can get stuck in local optima. In contrast, most
of the measures to analyze convergence i.e., average(ini_pop), average(fin_pop),
and average(averages), are more related to the quality of the solutions RPD. This
phenomenon is because as EGGA presents a better ability to exploit the search space,
it finds better quality solutions. Finally, we emphasize in this graph a relation showing
that the R||Cmax characteristics that affect the way EGGA handles diversity are the
correlation in the jobs job_corre, the dispersion of the minimum processing times of the
jobs cv(min(pij)), and the quotient q of the maximum processing time of an instance
by the minimum. On the other hand, the characteristics that promote the convergence
to a greater extent are associated with the size of the instances n, the multiplicity of
the minimum processing times of the jobs multiplicity(lowest), the correlation in the
jobs job_corre, the dispersion of the minimum processing times of the jobs cv(pij), and
the quotient q of the maximum processing time of an instance by the minimum.

As a final conclusion of this study, the diagram, the tables, and the 3D scatter plots
suggest that the EGGA needs a strategy to generate the initial population closer to
the best-known in order to find better solutions, as well as some strategy to maintain
a better balance of exploration and exploitation of the search space. The next section
details the proposals to improve the EGGA performance and the experimental results.

9.2.4 Phase 4: Explanations of the algorithmic behavior and
proposed improvements

In the previous section, the performance relationships obtained from the EGGA
experimental analysis revealed that the strategies included in it, for the generation of the
initial population and the search space exploration, presented certain inconsistencies
and did not allow it to leave local optima and explore other search space regions.
The study also suggested that EGGA requires strategies to maintain better control
of the convergence of the population during the search process. In this section, we
present the main conclusions obtained from the analysis of strategies that define the
algorithm structure and behavior. The EGGA main strategies are examined, identifying
the causes of the algorithmic behavior and proposing areas for improvement. The
knowledge obtained is used to redesign the algorithm structure and obtain a new version
that exhibits a better performance.

Population initialization

The tabular and graphical analysis of the population initialization revealed that EGGA
needs to start from an initial population with similar characteristics and as close to the
best-known solution as possible to locate better solutions. Derived from this, in this

9.2. EXPERIMENTAL STUDY OF THE OPTIMIZATION PROCESS OF R||CMAX 141

section, we introduce a set of strategies to initialize the population in search of a strategy
capable of generating solutions closer to the best-known solution. The three proposed
strategies are called Fastest-lb, Two-faster, and Two-faster-lb.
As its name implies, the algorithm Fastest lb assigns each job j to the machine i that
processes it fastest, as long as it does not exceed the lower bound lb. Algorithm 10
shows the Fastest lb procedure, which receives as input the set of jobs[] to assign,
the set of available machines[], the matrix data[][] with the processing time required
by each machine i to process each job j, the vector fastest[] with the machine i that
processes each job fastest, and the lower bound lb. lb is equal to the sum of the minimum
processing times for each job Min(pij) divided by the number of jobs n. The Fastest lb
procedure is as follows, it uses four variables: vector[][] to store the set of jobs assigned
to each machine, Ci[] to indicate the processing time each machine requires to process
its jobs, free_jobs[] to save jobs that cannot be assigned because they exceed lb, and
permuted_jobs which stores a permutation of jobs Permutate(jobs)(lines 1-4). Next,
the permuted_jobs[] are traversed (line 5). Thus, the function lb_verification() (line
6) is applied to each job j to verifies if the fastest machine i to processes job j can
process it without exceeding lb. If machine i can process the job j, Fastest_lb() returns
the machine i, job j is assigned to the machine i and its processing time Ci is updated
(lines 7-9). Otherwise, it returns -1, and the job j is added to the array of free_jobs
(lines 9 and 10).
After going through all the Permutate(jobs), Fastest lb iterates through the
free_jobs[] (line 14). Thus, the function Min() is applied to each job j, which returns
the machine i that processes j faster. In this way, job j is added to machine i and its
Ci is updated (line 15-17).
On the other hand, the algorithm Two Fastest assigns each job j to one of the
two-fastest machines to process it. Algorithm 11 presents the Two fastest procedure,
which receives as input the sets of jobs[] and available machines[], the processing times
data[][], and the vectors with the fastest[] machine and second − fastest[] machine
to process each job, respectively. The Two fastest strategy uses three variables:
vector[][] to store the solution, Ci[] to save the processing time each machine requires
to process its assigned jobs, and permuted_jobs which stores a permutation of the jobs
Permutate(jobs)(lines 1-3). In this way, Two fastest traverses the permuted_jobs[]
(line 4). Thus, it applies the function Best() to each job j, that return the machine i
that process faster job j, considering only the two fastest machines (line 5). Next, it
appends the job j to the machine i. Finally, it updates the processing time Ci of the
machine i (lines 6 and 7).
Similarly, the Two Fastest lb algorithm assigns each job j to one of the two-fastest
machines to processes it, as long as it doesn’t exceed the mentioned above lower
bound lb. Algorithm 12 describes the Two fastest lb procedure, which also receives
jobs[], machines[], data[][], fastest[], second − fastest[], and lb as input. The Two
fastest lb procedure employees four variables: vector[][] to store the solution, Ci[] to
save the machine processing times, free_jobs[] to collect jobs that exceed lb, and
permuted_jobs which stores a permutation of the jobs Permutate(jobs)(lines 1-4). In
this way, Two fastest lb goes through all the permuted_jobs[] (line 5). Thus, it uses
the function Best− lb() to each job j, that returns the machine i that process faster job

142 CHAPTER 9. STUDY OF THE R||CMAX OPTIMIZATION PROCESS

Algorithm 10 Fastest lb
Input: jobs[], machines[], data[][], fastest[], and lb.
Output: A solution.

1: vector=[][];
2: Ci=[];
3: free_jobs=[];
4: permuted_jobs[] = Permutate(jobs[]);
5: for job j in permuted_jobs[] do
6: i = lb_verification(Ci, fastest[j], lb);
7: if i ̸= −1 then
8: Append j to vector[i][];
9: Update Ci[i];

10: else
11: Append j to free_jobs[];
12: end if
13: end for
14: for job j in free_jobs[] do
15: i = Min(Ci, fastest[j]);
16: Append j to vector[i][];
17: Update Ci[i];
18: end for

Algorithm 11 Two fastest
Input: jobs[], data[][], fastest[], and second− fastest[].
Output: A solution S.

1: vector=[][];
2: Ci=[];
3: permuted_jobs[] = Permutate(jobs[]);
4: for job j in permutedjobs[] do
5: i = Best(Ci, fastest[j], second− fastest[j]);
6: Append j to vector[i];
7: Update Ci[i];
8: end for

9.2. EXPERIMENTAL STUDY OF THE OPTIMIZATION PROCESS OF R||CMAX 143

j, as long as it doesn’t exceed lb, considering only the two fastest machines. Otherwise,
it returns -1 (line 6). If machine i can process job j (line 7), job j is assigned to
machine i and its processing time Ci it is updated (lines 8 and 9). Otherwise, the job j
is added to the free_jobs[] vector (line 11). After traversing all the Permutate(jobs),
Two fastest lb iterates through the free_jobs[] (line 14). Thus, the function Min()
is applied to each job j, which returns the fastest machine i to processes job j (line
15). Next, the job j is added to machine i (line 16). Finally, the processing time Ci of
machine i is updated (line 17).

Algorithm 12 Two fastest lb
Input: jobs[], machines[], data[][], fastest[], second− fastest[], and lb.
Output: A solution.

1: vector=[][];
2: Ci=[];
3: free_jobs=[];
4: permuted_jobs[] = Permutate(jobs[]);
5: for job j in permuted_jobs[] do
6: i = Best− lb(Ci, fastest[j], second− fastest[j]);
7: if i ̸= −1 then
8: Append j to vector[i];
9: Update Ci[i];

10: else
11: Append j to free_jobs[];
12: end if
13: end for
14: for job j in free_jobs[] do
15: i = Min(Ci, fastest[j]);
16: Append j to vector[i];
17: Update Ci[i];
18: end for

In order to analyze the performance of the proposed strategies, we conducted an
experimental study using the following criteria. We run three EGGA variants for
R||Cmax, one with each strategy described above, referred to as EGGA Fastest,
EGGA Two-Fastest, and EGGA Two-fastest-lb. The performance of each algorithm
is evaluated over the 1400 benchmark instances. To promote a fair comparison, the
effectiveness and efficiency of the three EGGA variants are compared by using the same
parameter configuration. Population size |P | = 100; number of individuals selected
for the crossover nc = 28; number of individuals selected for the mutation nm = 81;
elite population size |B| = 12; Life expectancy life_span=8, and maximal number of
generations max_gen = 500. In this way, we analyze the strengths and weaknesses
of each population initialization strategy, distinguishing the quality of the solutions
found by each EGGA variant and their ability to escape from local optima. Finally, for
each instance, a single execution of the algorithms is run with the same initial seed for
the random number generator. Thus, we compare the performance of the initialization
strategies based on the RPD from each EGGA variant to CPLEX.

144 CHAPTER 9. STUDY OF THE R||CMAX OPTIMIZATION PROCESS

Table 9.8: Comparison of EGGA variants with different population initialization strategies:
EGGA Fastest-lb, EGGA Two-fastest, and EGGA Two-fastest-lb using RPD.

Instance set EGGA EGGA
Fastest-lb

EGGA
Two-fastest

EGGA
Two-fastest-lb

n

100 0.0217 0.0168 0.0135 0.0135
200 0.0215 0.0168 0.0132 0.0130
500 0.0223 0.0178 0.0139 0.0135
1000 0.0225 0.0172 0.0140 0.0139

m

10 0.0217 0.0170 0.0140 0.0139
20 0.0220 0.0174 0.0143 0.0141
30 0.0222 0.0178 0.0145 0.0143
40 0.0224 0.0182 0.0147 0.0145
50 0.0225 0.0185 0.0148 0.0145

pij

U(1, 100) 0.0262 0.0228 0.0245 0.0257
U(10, 100) 0.0209 0.0152 0.0185 0.0198
U(100, 120) 0.0092 0.0070 0.0013 0.0014
U(100, 200) 0.0187 0.0053 0.0058 0.0060
U(1000, 1100) 0.0034 0.0009 0.0005 0.0005
JobsCorr 0.0402 0.0207 0.0131 0.0130
MacsCorr 0.0392 0.0566 0.0411 0.0363

1400 instances 0.0225 0.0184 0.0150 0.0147

Table 9.8 contains the experimental results values obtained by each EGGA. For a
more detailed study, we compare the performance of the algorithms using four different
criteria to group the 1400 instances: the number of jobs n, the number of machines m,
the distribution of the processing times pij, and the 1400 instances together. The first
and second columns indicate the criteria used to group the test instances: n, m, pij,
and the 1400 instances. The remaining columns contain the average RPD obtained by
each EGGA for the four grouping criteria, highlighting the best results in bold. Each
EGGA is identified with the population initialization strategy that they use as EGGA
Fastest-lb, EGGA Two-fastest, and EGGA Two-fastest-lb.

The experimental results in Table 9.8 suggest that the most suitable population
initialization strategy is Two-fastest-lb with an average RPD of 0.0147 since it
improved the EGGA performance about 35%. Furthermore, Table 9.8 suggests that
if we consider only the distribution of processing times pij, the initialization strategy
Fastest-lb is the best option to address instances where q = max(pij)/min(pij) is
greater than or equal to 2. That is, the instances in the sets U(1, 100), U(10, 100), and
U(100, 200), while in the rest of the instance sets, it is better to use the Two-fastest-lb
strategy.

Additionally, Figure 9.8 graphically displays the performance of the four EGGA variants
(the EGGA under investigation and the three EGGAs with the proposed population
initialization strategies). Each graph shows the average performance of the four

9.2. EXPERIMENTAL STUDY OF THE OPTIMIZATION PROCESS OF R||CMAX 145

Figure 9.8: Graphical comparison of the proposed population initialization strategies
Fastest-lb, Two-fastest, and Two-fastest-lb using the grouping criteria n, m, and pij.

algorithms in the 1400 instances, grouped with respect to one criterion: n, m, and
pij. These graphs allow validating the conclusions obtained from the tabular analyses,
where the strategy Two-fastest-lb presented the best results.

Rearrangement heuristics for mutation

In addition to the need for an improvement to the population initialization strategy,
the study of the EGGA optimization process also revealed that it needs a change on
its structure and behavior to maintain a better balance of exploration and exploitation
of the search space. Derived from this, in this section, we introduce a set of strategies
to enhance the mutation operator. We decided to work with this operator because the
knowledge obtained from the optimization study of each EGGA component allowed

146 CHAPTER 9. STUDY OF THE R||CMAX OPTIMIZATION PROCESS

identifying that it has one of the most important roles in the optimization process.
Moreover, we observed that the good or bad behavior of the mutation impacts directly
on the EGGA performance. Finally, we noticed that the designed mutation operator
still has several areas of opportunity. Therefore, in this section, we introduce a set of
strategies to improve the mutation algorithmic behavior. In this way, we generated four
EGGA variants, one for each proposed rearrangement heuristic, referred to as EGGA
Interchange, EGGA 2-Best, EGGA 4-Best, and EGGA Injection.
The proposals are focused on improving the rearrangement strategy Assemble and
are applied when it cannot perform an insertion or interchange without affecting the
quality of elite solutions, i.e., the best |B| solutions of the current population. In this
manner, EGGA Interchange improves the rearrangement strategy Assemble as follows.
If Assemble cannot modify a solution, it performs the exchange that least affects the
solution. Similarly, EGGA 2-Best and EGGA 4-Best incorporate strategies that release
two and four jobs from each machine, respectively, and reinsert them with the heuristic
Best() when Assemble cannot modify a solution. Finally, EGGA Injection replaces the
solutions that the rearrangement heuristic cannot modify with one solution generated
with the Two-fast-lb strategy.
To analyze the performance of the proposed strategies, we conducted an experimental
study using the before-mentioned criteria. That is, we run the four EGGA variants and
evaluate them over the 1400 benchmark instances. To promote a fair comparison, the
effectiveness and efficiency of the four EGGA variants are compared by using the same
parameter configuration. |P | = 100; nc = 28; nm = 81; |B| = 12; life_span=8, and
max_gen = 500. Finally, for each instance, a single execution of the algorithms is run
with the same initial seed for the random number generator. In this way, we compare
the performance of the proposed strategies based on the RPD from each EGGA to
CPLEX.
Table 9.9 contains the experimental results values obtained EGGA, EGGA Interchange,
EGGA 2-Best, EGGA 4-Best, and EGGA Injection. Like in Table 9.8, for a
comprehensive study, the instances are grouped with respect to the number of jobs n,
the number of machines m, the distribution of the processing times pij of the instances,
and the complete benchmark (1400 instances). The first two columns denote the criteria
used to group the test instances: n, m, pij, and the 1400 instances. On the other hand,
the remaining columns contain the average RPD obtained by each EGGA variant for
the four grouping criteria, respectively, highlighting the best results in bold.
The experimental results in Table 9.9 indicate that the EGGA Injection has a high
performance in the most difficult instances U(1, 100), U(10, 100), and MacsCorr,
improving the results of the state-of-the-art for the sets U(1, 100), U(10, 100). This
behavior is interesting because it indicates that, in problems where the quotient of
variation of the maximum processing time by the minimum q is high, it is necessary to
add new solutions during the optimization process to generate new search directions.
On the other hand, Table 9.9 also indicates that the EGGA Interchange showed the best
average performance since it obtained better solutions in the instances where EGGA
injection did not, i.e., U(100, 120), U(100, 200), U(1000, 1100), and JobsCorr. From
this study we conclude that if the instances have a high value of q or have correlated
machines, it is better to use a strategy that incorporates a lot of diversity, such as

9.2. EXPERIMENTAL STUDY OF THE OPTIMIZATION PROCESS OF R||CMAX 147

Table 9.9: Comparison of EGGA variants with different strategies to handle diversity using
RPD: EGGA Interchange, EGGA 2-Best, EGGA 4-Best, and EGGA Injection using RPD.

Instance set EGGA EGGA
Interchange

EGGA
2-Best

EGGA
4-Best

EGGA
Injection

n

100 0.0136 0.0124 0.0128 0.0125 0.0122
200 0.0130 0.0124 0.0126 0.0123 0.0125
500 0.0135 0.0130 0.0131 0.0128 0.0142
1000 0.0133 0.0130 0.0134 0.0131 0.0198

m

10 0.0137 0.0130 0.0135 0.0132 0.0149
20 0.0139 0.0134 0.0138 0.0134 0.0148
30 0.0142 0.0137 0.0140 0.0137 0.0142
40 0.0143 0.0138 0.0142 0.0139 0.0141
50 0.0145 0.0140 0.0143 0.0140 0.0136

pij

U(1, 100) 0.0239 0.0237 0.0263 0.0249 0.0150
U(10, 100) 0.0205 0.0167 0.0168 0.0159 0.0149
U(100, 120) 0.0025 0.0014 0.0014 0.0014 0.0146
U(100, 200) 0.0057 0.0050 0.0050 0.0046 0.0146
U(1000, 1100) 0.0008 0.0004 0.0004 0.0004 0.0146
JobsCorr 0.0128 0.0110 0.0115 0.0113 0.0151
MacsCorr 0.0347 0.0410 0.0405 0.0407 0.0151

1400 instances 0.0144 0.0142 0.0145 0.0142 0.0147

148 CHAPTER 9. STUDY OF THE R||CMAX OPTIMIZATION PROCESS

Injection, but if the values of q of the instances are small, it is better to use a strategy
that incorporates diversity in a more measured way, such as interchange. Finally, as
the average performance of all variants was very similar, we will select the EGGA
Interchange, since it does not represent a significant extra computational cost. Thus,
as this is the last improvement to the EGGA studied, the EGGA Interchange will be
referred to as the Final GGA (FGGA).

9.3 Conclusions of the characterization

In this chapter, we presented a characterization study of a set of R||Cmax instances
and the EGGA algorithmic behavior. The experimental results suggested that the
instances of R||Cmax are more difficult when they have a larger number of jobs, a
high quotient of the largest and the shortest processing times, correlated machines,
and much variability of the minimum processing times of the jobs. Furthermore, these
results allowed identifying some paths of work to improve the EGGA performance. In
this fashion, we observed that the EGGA could be improved by replacing its strategy
to generate the initial population with a heuristic able to generate solutions closer
to the best-known solutions, as well as incorporating a strategy to provide EGGA
the capability to explore and exploit the search space efficiently. The knowledge
obtained from this work was used to design a new population initialization strategy
for the EGGA and to improve the mutation operator by incorporating a rearrangement
heuristic to modify the solutions that the mutation operator cannot alter by itself. The
improvement study for the EGGA revealed that in problems with a high quotient q or
correlated machines, it is necessary to use strategies that promote a lot of diversity, as
the injection strategy. In contrast, in problems with a low quotient q or correlated jobs,
it is better to incorporate a strategy promoting diversity in a more controlled way, as the
interchange strategy. Finally, thanks to knowledge obtained from the characterization
study and the proposed enhancements to EGGA, an improvement rate of about 35%
was obtained. These results demonstrate the importance of the characterization and
analysis of the optimization process to solve a problem. Chapter 10 presents a study
to analyze the strengths and weaknesses of the final version of the EGGA, referred to
as FGGA that includes the intelligent strategies introduced in this chapter.

Chapter 10
Performance analysis of the FGGA for
R||Cmax

This chapter presents the main computational experiments used to analyze different
aspects of the FGGA performance for the NP-hard combinatorial optimization grouping
problem R||Cmax. This study covers from the initial GGA version to its final
improvement (FGGA), presented in the previous section, to analyze the way in which
its performance evolved until reaching the current version. Moreover, it includes a
robustness study to examine the performance of FGGA for R||Cmax by conducting
different runs with different seeds. Finally, it presents a set of experiments to explore
the FGGA capabilities in a long term by performing different runs with distinct
numbers of generations. The experimental results show the good performance of the
FGGA, demonstrating the usefulness of the method used in this work to improve the
performance of metaheuristic algorithms.

10.1 Components of FGGA

This section includes a general description of the FGGA components, standing out its
main characteristics. After performing the extensive experimentation detailed in the
previous sections, the components of the FGGA are as follows.

– Initialization strategy: Two-fastest-lb that uses a permutation of the jobs to assign
them to one of the two machines that process them faster until reaching a lower
bound lb, the rest of the jobs are assigned with the Min() allocation strategy (see
Chapter 9).

– Crossover operator: IE-Two machines that organize the parent machines based on
their processing times Ci, rearranging the tied machines according to the number
of jobs assigned to them Njobs. During the transmission, both parents transmit
their machines, giving priority to the one with the lowest Ci and, if necessary,
breaking the tie randomly. Finally, the crossover operator removes repeated jobs
to avoid repeated genetic material and generates only one child (see Chapter 6).

149

150 CHAPTER 10. PERFORMANCE ANALYSIS OF THE FGGA FOR R||CMAX

– Mutation operator: 2-Items Reinsertion that randomly chooses two jobs from
two different machines to release them and later reinsert them with the Min()
allocation heuristic (see Chapter 7).

– Rearrangement strategy: Assemble that works based on insertion and interchange
operations. The rearrangement process is only applied if, after releasing and
reinserting the jobs, the genetic material of the mutated solution has not been
modified (see Chapter 7).

– Reproduction strategy: Ranking BRW (best, repeated, and worst) that use a
strategy to arrange the solutions from best to worst, to later rearrange the
population, placing at the end the solutions that meet the following three criteria:
(1) the same makespan Cmax, (2) the same number of machines with Ci =
Cmax, and (3) the same average processing time Average(Ci). In this way, the
reproduction technique selects the first individuals of the ordered population (the
best ones without repeated solutions) for crossover and introduces the offspring to
the population, replacing the repeated (or similar) solutions and later the solutions
with the worst fitness. Similarly, this reproduction technique mutates the first
solutions of the ordered population (the best). To avoid the loss of good solutions,
Ranking BRW clones elite solutions before mutating them, replacing repeated (or
similar) solutions and then the solutions with the worst fitness by the clones (see
Chapter 8).

– Parameter setting: we use the covering array approach proposed by
Quiroz-Castellano et al. [11] to configure FGGA. As a result, the final configuration
is as follows. Population size |P | = 100; number of individuals selected for the
crossover nc = 28; number of individuals selected for the mutation nm = 81; elite
population size |B| = 12; Life expectancy life_span=8, and maximal number of
generations max_gen = 500.

The following sections present a set of experimental studies to analyze different aspects
of the FGGA, described above. In this way, we look for demonstrating the usefulness
of the characterization approach used in this work.

10.2 Evolution of the GGA performance

Although many GGA variants were developed during this research project in search
of opportunity niches, the following three versions set the course for this research, and
they allow seeing the way in which the GGA performance improved until reaching the
current version.

– The initial GGA, which is an adaptation of the state-of-the-art Grouping
Genetic Algorithm with Controlled Genes Transmission (GGA-CGT) introduced
by Quiroz-Castellanos et al. to solve the Bin Packing problem [11] (see Chapter
4).

– The Enhanced GGA (EGGA), generated from the study and individual
improvement of each component of the Initial GGA, including the strategy for

10.2. EVOLUTION OF THE GGA PERFORMANCE 151

initial population (see Chapter 5), crossover (see Chapter 6), mutation (see
Chapter 7), and the reproduction technique (see Chapter 8).

– The Final GGA (FGGA) resulted from the observations and improvements made
by using the algorithmic behavior characterization approach (see Chapter 9).

Table 10.1 shows the experimental results of the study conducted to compare GGA,
EGGA, and FGGA. For a comprehensive analysis, we distributed the RPD values
reached by the three GGA versions in groups of instances sorted according to the
number of machines m, the number of jobs n, the processing time of the jobs pij, and
the 1400 instances together. The first and second columns indicate the criteria used to
group the test instances, and the remaining columns contain the average RPD obtained
by each GGA version, highlighting in bold the metaheuristic algorithm with the lowest
average RPD for each set.

Table 10.1: Comparison of GGA, EGGA, and FGGA using RPD.

Instance set GGA EGGA FGGA

n

100 0.0659 0.0211 0.0124
200 0.0655 0.0209 0.0124
500 0.0657 0.0212 0.0130
1000 0.0688 0.0220 0.0130

m

10 0.0683 0.0211 0.0130
20 0.0683 0.0213 0.0134
30 0.0683 0.0215 0.0137
40 0.0683 0.0217 0.0138
50 0.0683 0.0218 0.0140

pij

U(1, 100) 0.1027 0.0278 0.0237
U(10, 100) 0.1119 0.0206 0.0167
U(100, 120) 0.0256 0.0094 0.0014
U(100, 200) 0.0829 0.0175 0.0050
U(1000, 1100) 0.0121 0.0031 0.0004
jobsCorr 0.0586 0.0374 0.0110
MacsCorr 0.0955 0.0365 0.0410

1400 instances 0.0699 0.0218 0.0142

Table 10.1 indicates that the rate of improvement between the initial version and the
improved version is 62%. While the rate of improvement between the initial version and
the final version is 76%. Furthermore, Figure 10.1 graphically displays the performance
evolution of the GGA. Each graph shows the average performance of the three GGA
variants in the 1400 instances, grouped with respect to three criteria. In this way,
Figures 10.1a, 10.1b, and 10.1c show the way the GGA behavior change according to
the number of jobs n, the number of machines m, and the distribution of the processing
times pij, respectively. In each graph, the x−axis represents the criteria used to group
the instances, and the y−axis indicates the RPD achieved for each set of instances.

152 CHAPTER 10. PERFORMANCE ANALYSIS OF THE FGGA FOR R||CMAX

Figure 10.1: Graphical comparison of the GGA, EGGA, and FGGA using the grouping
criteria n, m, and pij.

Therefore, the blue, orange, and gray lines represent the average RPD reached for
each set by the GGA, EGGA, and FGGA, respectively. These graphs allow validating
the conclusions obtained from the tabular analyses and showing how the performance
of the GGA improved with each enhancement performed. From Figure 10.1 emerges
that the initial GGA performance is affected by the number of machines (Figure 10.1a)
and the number of jobs (Figure 10.1b), decreasing its performance when increasing the
number of jobs. In contrast, the EGGA and the FGGA are more robust regarding the
number of machines and jobs, because both incorporate heuristic strategies designed
by using knowledge of the problem domain. This knowledge was generated from the
study of the algorithmic behavior of each GGA component (see Chapters 5, 6, 7, and 8)
and the characterization of the Cmax problem and the EGGA optimization process (see

10.2. EVOLUTION OF THE GGA PERFORMANCE 153

Table 10.2: p-Values of the Wilcoxon test for the initial GGA and the FGGA.

Instance Set p-Value

n

100 8.17E-44
200 4.94E-69
500 1.27E-84
1000 5.08E-82

m

10 2.86E-76
20 1.18E-63
30 2.24E-45
40 8.85E-40
50 1.15E-42

pij

U(1, 100) 6.06E-45
U(10, 100) 4.93E-66
U(100, 120) 3.32E-56
U(100, 200) 3.63E-65
U(1000, 1100) 4.42E-66
JobsCorr 3.75E-65
MacsCorr 1.52E-29

1400 Instances 1.17E-253

Chapter 10). Finally, Figure 10.1c reveals that the distribution of processing times pij
has an impact on the performance of the three GGA versions, being the most difficult
classes U(1, 100), U(10, 100) and MacsCorr.

Additionally, we applied the Wilcoxon rank-sum test to assess whether the differences
in the RPD achieved by the initial GGA and the FGGA for the 1,400 test instances
are statistically significant. The Wilcoxon rank-sum is a non-parametric test that
compares two algorithms without assuming a Normal distribution of the results samples,
even for small sample sizes [401]. Table 10.2 presents the results obtained by the
Wilcoxon rank-sum for the RPD values reached by both algorithms in the benchmark
considered with a 95%-confidence level. For a comprehensive comparison, we generated
a hypothesis test for the RPD achieved by both GGAs in groups of instances sorted
according to the number of jobs n, the number of machines m, the distribution of the
processing times pij of the instances, and the complete benchmark (1400 instances). In
this way, the first column indicates the criterion used to compare the algorithms, the
second one contains the classes covered for each grouping criterion, and the last column
indicates the p-Values obtained by the Wilcoxon test.

Table 10.2 indicates that the FGGA is indeed statistically better than the initial GGA
considering the RPD that they reached for the test benchmark for all the groups of
instances considered since all p-Values are less than the level of significance α = 0.05.

154 CHAPTER 10. PERFORMANCE ANALYSIS OF THE FGGA FOR R||CMAX

Table 10.3: Comparison of the FGGA performance with ten different seeds using RPD.

Instance set Min Max Average Std

n

100 0.0087 0.0170 0.0125 0.0053
200 0.0086 0.0166 0.0123 0.0044
500 0.0095 0.0169 0.0129 0.0032
1000 0.0093 0.0175 0.0131 0.0053

m

10 0.0092 0.0178 0.0131 0.0052
20 0.0094 0.0181 0.0134 0.0052
30 0.0097 0.0184 0.0137 0.0052
40 0.0098 0.0186 0.0139 0.0052
50 0.0100 0.0188 0.0141 0.0052

pij

U(1, 100) 0.0153 0.0353 0.0248 0.0101
U(10, 100) 0.0113 0.0236 0.0168 0.0044
U(100, 120) 0.0008 0.0021 0.0014 0.0007
U(100, 200) 0.0030 0.0071 0.0049 0.0008
U(1000, 1100) 0.0002 0.0006 0.0004 0.0001
JobsCorr 0.0064 0.0158 0.0107 0.0027
MacsCorr 0.0341 0.0481 0.0406 0.0023

1400 instances 0.0101 0.0190 0.0142 0.0051

10.3 FGGA robustness test

After analyzing the FGGA performance with the improvements made, we conduct an
experimental study with 10 runs using different seeds to know its robustness. Table 10.3
includes the experimental results. For a fair comparison, the test instances are grouped
with respect to the number of jobs n, the number of machines m, the distribution of the
processing times pij of the instances, and the complete benchmark (1400 instances).
The criteria used to group the test instances are indicated in columns one and two:
n, m, pij, and the 1400 instances. The remaining columns indicate the best solution
found (Min), the worst (Min), the mean (Average), and the standard deviation (Std)
based on the RPD. Additionally, Figure 10.2 graphically displays the best (Min), worst
(Max), and mean (Average) RPD of the solutions found by the FGGA in the ten runs.
Each graph shows these three measures (Min, Max, and Average) from the ten runs
of the FGGA with different seeds in the 1400 instances, grouped with respect to three
criteria. In this way, Figures 10.2a, 10.2b, and 10.2c show the best (Min), worst (Max),
and mean (Average) GGA algorithmic behavior according to the number of jobs n, the
number of machines m, and the distribution of the processing times pij, respectively.
In each graph, the x−axis represents the criteria used to group the instances, and the
y−axis indicates the RPD with each measure (Min, Max, and Average) for each set of
instances. Therefore, the lines blue, orange, and gray represent the average RPD for
the best (Min), worst (Max), and mean (Average) solution, respectively.

The tabular and the graphical analyses conducted from Table 10.3 and Figure 10.2

10.3. FGGA ROBUSTNESS TEST 155

Figure 10.2: Graphical comparison of the FGGA performance with ten different seeds based
on RPD.

allow observing that the FGGA algorithmic behavior is quite stable in the instances
regardless of the number of machines (Figure 10.2a) or jobs (Figure 10.2b). However, if
we analyze the ten executions with respect to the distribution of the processing times
of the instances (Figure 10.2c), we can observe that in some sets like U(100, 120) and
U(1000, 1100) the performance of the FGGA is stable. These two sets have in common
that the instances have the smaller quotient q of their longest and shortest processing
times. Therefore, the instances of the sets U(100, 120) and U(1000, 1100) have values
of q = 1.2 and q = 1.1, respectively. Likewise, these results show that the variations in
the FGGA behavior increase as the instances have higher q values. Therefore, FGGA
presents the largest variations on its performance in the sets U(1, 100) and U(10, 100),
whose quotients are 100 and 10, respectively.

156 CHAPTER 10. PERFORMANCE ANALYSIS OF THE FGGA FOR R||CMAX

Table 10.4: Comparison of the FGGA performance with the max_gen values 500, 1000,
2000, and 10000 using RPD.

Instance set 500 1000 2000 10000

100 0.0123 0.0089 0.0064 0.0037
200 0.0123 0.0085 0.0061 0.0034
500 0.0129 0.0085 0.0058 0.0028n

1000 0.0129 0.0093 0.0068 0.0040

10 0.0129 0.0093 0.0067 0.0040
20 0.0133 0.0094 0.0068 0.0041
30 0.0135 0.0096 0.0069 0.0041
40 0.0137 0.0096 0.0069 0.0040

m

50 0.0139 0.0097 0.0069 0.0040

U(1, 100) 0.0237 0.0208 0.0174 0.0147
U(10, 100) 0.0167 0.0120 0.0105 0.0075
U(100, 120) 0.0013 0.0008 0.0005 0.0002
U(100, 200) 0.0050 0.0034 0.0026 0.0014
U(1000, 1100) 0.0004 0.0002 0.0002 0.0000
JobsCorr 0.0105 0.0068 0.0036 -0.0009

pij

MacsCorr 0.0409 0.0250 0.0143 0.0058

1400 instances 0.0141 0.0098 0.0070 0.0041

10.4 FGGA long-term execution

Once the robustness of the FGGA was analyzed, in this chapter we investigated how
the values of max_gen impact on the FGGA performance to know its algorithmic
behavior in the long term. Recalling from Chapter 4, the max_gen parameter controls
the FGGA execution time. Therefore, in this study, we consider the parameter values
500, 1000, 2000, and 10000. Table 10.4 shows the experimental results for the test
instances grouped with respect to the number of jobs n, the number of machines m, the
distribution of the processing times pij of the instances, and the complete benchmark
(1400 instances). The criteria used to group the test instances are indicated in columns
one and two: n, m, pij, and the 1400 instances. The remaining columns contain the
average RPD obtained by FGGA with different values of max_gen, highlighting the
best results in bold.

The results in Table 10.4 prove that the FGGA can reach high-quality solutions of
a huge variety of R||Cmax instances. Likewise, it demonstrates that the FGGA
performance is still improving as a larger max_gen value is considered. Furthermore,
from Table 10.4 it is possible to observe that the instances generated with a distribution
of the processing times in the ranges U(1, 100) and U(10, 100) and with machines
correlated MacsCorr still show a high degree of difficulty for the FGGA; while, the
instances generated with a distribution of the processing times in the ranges U(100,
120) and U(1000, 1100), and with jobs correlated JobsCorr represent a lower degree

10.5. COMPARING FGGA WITH STATE-OF-THE-ART PROCEDURES 157

of difficulty.

Additionally, Figure 10.3 graphically displays the way the FGGA performance improves
as a larger max_gen value is considered. Each graph shows the average performance
of the FGGA with a different max_gen value in the 1400 instances, grouped with
respect to three criteria. In this way, Figures 10.3a, 10.3b, and 10.3c show the FGGA
algorithmic behavior with the different max_gen values according to the number of
jobs n, the number of machines m, and the distribution of the processing times pij,
respectively. In each graph, the x−axis represents the criteria used to group the
instances, and the y−axis indicates the RPD achieved with each max_gen value for
each set of instances. Therefore, the blue, orange, gray, and yellow lines represent
the average RPD reached for each set by the FGGA with 500, 1000, 2000, and 10000
generations, respectively. These graphs allow validating the conclusions obtained from
the tabular analyses and graphically showing how the FGGA performance can still
improve. This behavior is remarkable compared to the number of iterations required
by state-of-the-art population strategies for other grouping problems like Bin Packing
[12, 402, 275].

Finally, we perform a second tabular study to identify the instances that FGGA can
solve better than CPLEX. Table 10.5 shows the experimental results. For a fair
comparison, the test instances are grouped with respect to the number of jobs n, the
number of machines m, the distribution of the processing times pij of the instances,
and the complete benchmark (1400 instances). The criteria used to group the test
instances are indicated in columns one and two: n, m, pij, and the 1400 instances. The
remaining columns indicate the number of instances that FGGA finds a better solution
than CPLEX, highlighting in bold the best results.

Table 10.5 allows us to observe that, by configuring the FGGA with 10000 generations,
it can find better solutions than CPLEX in most sets of instances. Furthermore, these
results allow reiterating that the sets U(1, 100), U(10, 100), and MacsCorr represent
a greater challenge for the FGGA, since it cannot find any solution better than CPLEX
in the set U(1, 100) and only finds one solution in the sets U(10, 100) and MacsCorr.

10.5 Comparing FGGA with state-of-the-art
procedures

In this section, we present the latest study of the FGGA performance, which consists
of comparing its performance against the best state-of-the-art algorithms. We consider
the best two-phase algorithm, Partial enumeration of Mokotoff and Jimeno [358]; the
best exact method, Recovering Beam Search (RBS) of Ghirardi and Potts [374]; the
best local search Iterative Greedy local search of Fanjul-Peyro and Ruiz, referred to as
NVST-IG+ [346]; and hybrid method, the Hybrid Tabu Search of Sels et al., referred
to as HTS [96]. In this way, we compare their results presented in Section 3.2 against
the FGGA results with 10000 generations.

Table 10.6 contains the experimental results. For a comprehensive analysis, we
distribute the RPD values reached by the solution methods in groups of instances,

158 CHAPTER 10. PERFORMANCE ANALYSIS OF THE FGGA FOR R||CMAX

Figure 10.3: Graphical comparison of the FGGA performance with different values of the
parameter max_gen using the grouping criteria n, m, and pij.

sorted according to the distribution of the processing times pij of the instances, and
we also analyze the average RPD for the complete benchmark (1400 instances). The
first column indicates the criteria used to group the test instances, and the remaining
columns contain the average RPD obtained by each algorithm for each grouping criteria
used. The best values are indicated in bold.

10.5. COMPARING FGGA WITH STATE-OF-THE-ART PROCEDURES 159

Table 10.5: Comparison of the FGGA performance with the max_gen values 500, 1000, 2000,
and 10000 based on the number of instances that it finds a better solution than CPLEX.

Instance set 500 1000 2000 10000

n

100 2 4 8 27
200 12 17 18 35
500 1 6 18 36
1000 1 4 9 34

m

10 0 0 2 4
20 0 2 1 10
30 11 16 19 31
40 3 4 10 39
50 2 9 21 48

pij

U(1, 100) 0 0 0 0
U(10, 100) 0 0 0 1
U(100, 120) 1 1 7 21
U(100, 200) 5 6 7 13
U(1000, 1100) 7 14 17 35
JobsCorr 3 10 21 61
MacsCorre 0 0 1 1

Total 16 31 53 132

Table 10.6: Analysis of the average RPD reached by the state-of-the-art algorithms: Partial,
RBS, NVST-IG+, HTS, and FGGA for the 1400 instances.

Instance Set Partial RBS NVST-IG+ HTS FGGA

U(1, 100) 0.0288 0.0203 0.0134 0.0183 0.0147
U(10, 100) 0.0131 0.0187 0.0075 0.0151 0.0075
U(100, 120) 0.0033 0.0013 0.0004 0.0000 0.0002
U(100, 200) 0.0105 0.0081 0.0032 0.0008 0.0014
U(1000, 1100) 0.0023 0.0018 0.0002 -0.0001 0.0000
JobsCorr 0.0234 0.0035 0.0048 -0.0053 -0.0009
MacsCorr 0.0094 0.0236 0.0055 0.0038 0.0058

1400 instances 0.0130 0.0110 0.0050 0.0047 0.0041

From Table 10.6 can be observed that FGGA reaches better results on solving the
1400 instances because it finds better solutions in the sets U(1, 100) and U(10, 100)
than HTS. Likewise, it has a better performance than NVST-IG in the sets U(100,
120), U(100, 200), U(1000, 1100), and JobsCorr. This study shows that the sets U(1,
100) and U(10, 100) not only represent a great difficulty for the FGGA, but also for
all state-of-the-art algorithms. Among the two main characteristics that share the
instances in these sets are (1) that all their processing times pij are less than or equal

160 CHAPTER 10. PERFORMANCE ANALYSIS OF THE FGGA FOR R||CMAX

to 100 and (2) that their quotient q of the largest by the shortest processing time are
the highest of the benchmark. The set U(1, 100) has a value of q =100 and U(10, 100)
a value of q =10. This implies that, for example, for the set U(1, 100) there may be
instances with jobs that require up to 100 times more processing time than other ones.
In the same way, the time needed by a machine to process a job can be 100 more than
the time needed for the other ones.

Chapter 11
Conclusions and future work

This chapter presents the conclusions and final results obtained from the conducted
research project, covering the design of the first GGA for R||Cmax, going through
the improvements proposed based on the knowledge generated from the set of the
systematical study performed to each GGA component in isolation, and ending with the
enhancements achieved through the characterization approach implemented. Likewise,
it presents suggestions for the development of future work.

11.1 Conclusions

The research work presented in this thesis addressed the problem of building robust
and highly effective heuristic strategies that incorporate knowledge of the problem
domain to solve the NP-hard grouping problem Unrelated Parallel-Machine Scheduling
with Makespan Minimization R||Cmax. To achieve this goal, we presented the first
GGA for R||Cmax, based on the GGA-CGT proposed for the Bin Packing problem
[11]. As GGA-CGT includes knowledge of the Bin Packing problem domain, the GGA
results were good, but they are far from the state-of-the-art algorithms. Therefore,
we analyzed the optimization process of each GGA component in isolation, that
is, the initialization strategy, the crossover and mutation operators, as well as the
reproduction technique. Thus, we identified the aspects that intervene during each
GGA sub-process (initialization, crossover, mutation, selection, and replacement) to
study and understand how they impact the GGA performance. The knowledge obtained
was used to generate intelligent strategies of specific-purpose heuristics for R||Cmax

that were incorporated into the GGA, giving rise to the Enhanced GGA (EGGA) that
showed a performance considerably better than the initial GGA with an improvement
rate of about 68%.

Likewise, we adopted a characterization approach based on exploratory data analysis
techniques to identify the properties of difficult instances of R||Cmax and to investigate
the behavior of the proposed EGGA algorithm. In this way, we proposed a set of
indexes to collect important information about the instances and a collection of indexes
to measure the EGGA algorithmic behavior at different stages of the search process.

161

162 CHAPTER 11. CONCLUSIONS AND FUTURE WORK

The experimental results allowed identifying the R||Cmax instance characteristics that
impact on their difficulty, as well as the needs of the EGGA to show a better
performance. The gained knowledge was used to improve the EGGA by replacing
the population initialization strategy Random min with a new one, referred to as
Two-fastest-lb, that generates solutions closer to the best-known of each instance and
incorporates an improvement to the mutation operator, giving rise to the Final GGA
(FGGA). Finally, we performed a set of tests to analyze the efficiency and robustness of
the proposed FGGA. In this order of ideas, the conducted experimental studies allowed
generating the following conclusions:

1. The characterization is an useful tool to know in detail the studied problem
instances and identify possible paths in the design of a solution method. The
structure of the R||Cmax instances can be characterized with indexes that measure
their size; the centralization, dispersion, shape, and location of processing times;
particular characteristics of machines and jobs; and the existing relationships
between machines and jobs. These characteristics helped in the design of the
GGA presented in this work, providing information about the algorithm behavior
of the designed intelligent strategies when solving R||Cmax instances with similar
structures.

2. The R||Cmax instances are more difficult as they have a larger number of jobs, a
high quotient of the largest and the shortest processing times and a high variability
of the minimum processing times of the jobs.

3. The initial GGA, an adaptation of the GGA-CGT designed to solve the Bin
Packing Problem (BPP), does not perform well on solving the R||Cmax problem,
even conducting different improvements on its operators. The above reaffirms
the importance of designing specific-purpose operators for the characteristics and
constraints of the problem to be solved, even when the problems belong to the
same class, such as BPP and R||Cmax that are grouping problems.

4. The population initialization strategy generates solutions closer to the best-known
in instances with many jobs, few machines, and a low quotient q of maximum
processing time by the minimum. In this sense, we observed that the designed
GGA shows a better performance when it uses a population initialization strategy
that generates solutions closer to the best-known. Therefore, we designed an
intelligent strategy that promotes the allocation of each job to the machine that
processes it fastest.

5. The crossover operator can be very disruptive when the right strategies are not
used since allocating a job in the wrong machine can considerably reduce the
quality of a solution. Therefore, we implement intelligent strategies to control the
crossover process using criteria that promote the transmission of the most suitable
machines, reducing the above disruption as far as possible. These intelligent
strategies (1) order the machines from best to worst, based on their processing
times Ci and the number of jobs assigned to them Njobs; (2) control the gene
transmission process, giving priority to the machine with the lowest Ci and, if
necessary, breaking the ties randomly; (3) avoid the repeated genetic material,

11.1. CONCLUSIONS 163

removing the repeated jobs; and (4) generate only one child to evade premature
convergence.

6. Unlike most of the state-of-the-art GGAs for grouping problems that use mutation
operators modifying the entire groups, the search space conditions of R||Cmax

instances need a mutation operator that slightly alters the solution structure
by modifying only the location of certain jobs (items) in strategically selected
machines (groups). Therefore, we designed a set of intelligent strategies to select
the machines to mutate, pick the jobs to relocate, and rearrange the jobs when
the GGA get stuck in a local optima.

7. The properties of the R||Cmax search space and the designed operators algorithmic
behavior promote the generation of solutions with similar characteristics that
can lead to premature convergence. To counteract this behavior, we designed a
reproduction technique that uses an intelligent strategy to promote the selection of
the solutions with the best characteristics for the crossover and mutation processes,
discarding the solutions with similar genetic material and the same quality. Alike,
this strategy promotes the replacement of solutions with similar genetic material
before the worst ones. It is important to noted that the process to verify that two
individuals represent the same solution has a high computational cost. Therefore,
we proposed a set of simple criteria that allow identifying solutions with similar
genetic material.

8. In problems with a high quotient q or correlated machines mach_corre, GGA
needs strategies that promote too much diversity. The index q collects information
on the differences in the jobs’ processing times by calculating the number of times
the shortest processing time can be processed faster than the longest one. In other
order of ideas, the index mach_corre measures if each machine can process all
jobs in a similar time. This index is important because it allows identifying the
instances with machines that process all the jobs faster than the others. Thus, a
test instance with very different jobs’ processing times or machines processing all
the jobs faster than the others demands a search process with too much diversity.
In contrast, in problems with a low quotient q or correlated jobs jobs_corre, it is
better to incorporate a strategy promoting diversity in a more controlled way. The
index jobs_corre measures if all the machines can process each job in a similar
time. This information allows identifying the instances with jobs that need a
shorter processing time than the others, regardless of the machine that processes
them. Therefore, a test instance with analogous jobs’ processing time lengths or
with machines that process every job with a similar processing time demands a
search process promoting diversity in a more controlled way.

9. It is important to know in-depth the problem studied and the algorithmic behavior
of the solution methods that are designed, since this information can be used
to design high-performance algorithms and improve the algorithmic behavior of
existing solution methods. In this sense, the approach used in this thesis project
to study the GGA algorithmic behavior allowed reaching an improvement rate of
around 392%, exceeding the effectiveness of the state-of-the-art solution methods
by using only 10000 generations. This behavior is remarkable compared to the
number of iterations required by state-of-the-art population strategies for other

164 CHAPTER 11. CONCLUSIONS AND FUTURE WORK

grouping problems like Bin Packing [12, 402, 275]. Finally, it is important to
emphasize that the designed GGA outstands in test instances with correlated jobs
JobsCorr and processing times in the ranges U(1000, 1100) and U(100, 120),
where it finds better solutions than CPLEX. The instances in the JobsCorr set
have jobs with shorter processing times than others, regardless of the machine
processing them; in this way, the jobs with the shorter processing times for all the
machines can be identified easily. In other order of ideas, the sets U(1000, 1100)
and U(100, 120) have instances with very similar jobs concerning the number of
times the shortest processing time can be processed faster than the longest one.
On the other hand, the instances representing the biggest challenge are in the sets
MacsCorr, U(1, 100), and U(10, 100). The main particularity of the MacsCorr
set is that its instances have machines processing all the jobs faster than the others;
therefore, the fastest machine to process all the jobs can be identified easily. On
the other hand, the sets U(1, 100) and U(10, 100) have very different jobs for
the number of times the shortest processing time can be processed faster than the
longest one. In this way, the instances in the set U(1, 100) have instances with
job processing times that can be up to 100 times shorter than others.

The approach used to characterize the instances and solution methods, the tabular and
graphical analysis models generated, and the application of the knowledge obtained
respond positively to the two hypotheses raised at the beginning of this investigation
(see Section 1.5). Likewise, the systematical study of the optimization process of
the population initialization strategy (see Chapter 5), the crossover operator (see
Chapter 6), the mutation operator (see Chapter 7), and the reproduction technique (see
Chapter 8) for the R||Cmax problem, together with the characterization of the R||Cmax

problem and the EGGA algorithmic behavior (Chapter 9), and the performance
achieved by the proposed FGGA (Chapter 10) made possible to accomplish all the
proposed objectives, as the experimental results showed that the GGA performance
was considerably improved. Therefore, if we compare the initial GGA vs the FGGA
with 500 generations, the FGGA presented an improvement rate of about 392%. Finally,
from the contributions presented in this research, we highlight the following ones:

1. We presented the first GGA for the R||Cmax problem.

2. We presented a set of systematical studies to analyze the optimization process of
each GGA component in isolation.

3. As a result, we designed intelligent strategies of specific-purpose for R||Cmax,
including a strategy to initialize the population, crossover and mutation operators,
and a reproduction technique.

4. In this sense, we proposed the strategy to initialize the population: Two-fastest-lb
that generates solutions closer to the best-known solution.

5. Moreover, we introduced the crossover operator: IE-Two machines, characterized
by the way in which it sorts the machines before transmitting the genetic material,
based on their processing times and the number of jobs that they have assigned.

6. Furthermore, we presented the mutation operator:2-Items Reinsertion that seeks
to reduce the processing time of machines with the highest workload.

11.2. FUTURE WORK 165

7. In addition, we designed the rearrangement strategy: Assemble based on insertion
and interchange operations, which helps FGGA to get out of local optima.

8. Finally, from the systematical studies, we introduced the reproduction technique:
Ranking BRW that controls selective pressure by eliminating solutions with similar
characteristics.

9. The designed intelligent strategies of purpose-specific for R||Cmax were
incorporated into the GGA to design the Enhanced GGA (EGGA).

10. On the other hand, we introduced and applied a collection of indexes to
characterize a set of instances of the R||Cmax problem.

11. Likewise, we defined and applied a set of measures to analyze the optimization
process of the EGGA and its final performance when solving R||Cmax.

12. In this way, we analyzed the EGGA performance through graphs and tables
that allowed obtaining explanations about its optimization process and its final
performance in the solution of R||Cmax instances with different characteristics.

13. The knowledge obtained from the study of the EGGA algorithmic behavior was
used to improve its performance by designing new specific-purpose operators that
incorporate knowledge of the R||Cmax problem-domain. Thus, the developed
operators were incorporated into the EGGA to design the Final GGA (FGGA).

14. Finally, we analyzed the FGGA robustness and efficiency through graphs and
tables, which showed the usefulness of the set of systematic studies to analyze the
optimization process of each GGA component in isolation and the characterization
approach used to analyze the structure of the R||Cmax problem and the algorithmic
behavior presented by the designed intelligent strategies when working together in
FGGA. If we compare the performance of the initial GGA with an RPD of 0.0699
versus the one obtained by the FGGA of 0.0122, we can observe that the achieved
improvement rate is of about 392%. Additionally, the experimental results indicate
that FGGA can outstand the best results of the state-of-the-art algorithms with
only 10000 generations.

11.2 Future work

From this work, we identified the following paths of work:

1. Applying the systematic experimental examination approach used in this work to
analyze the algorithmic behavior of other solution methods for R||Cmax looking
for extending the knowledge of the problem-domain obtained from this work.

2. Using the knowledge obtained from this work to improve the performance
of state-of-the-art algorithms and to design solutions methods under other
approaches, like swarm intelligence.

3. Applying the systematic experimental examination approach used in this work
to other grouping problems to characterize their structure and the algorithmic
behavior of the solution methods that solve them.

166 CHAPTER 11. CONCLUSIONS AND FUTURE WORK

4. Facilitating the FGGA parameter configuration by incorporating adaptive
strategies.

5. Using the FGGA proposed in this work to solve other grouping problems with
similar characteristics to R||Cmax.

The knowledge gained from this type of studies is useful to understand the algorithmic
behavior of heuristic strategies for NP-hard problems and can be used to develop new
high-performance procedures.

Bibliography

[1] Thomas Stützle. Local search algorithms for combinatorial problems-analysis,
algorithms and new applications. DISKI-Dissertationen zur Künstlichen
Intelligenz, Infix, Sankt Augustin, Germany, 1999.

[2] Michael R Garey. A guide to the theory of np-completeness. Computers and
intractability, 1979.

[3] David H Wolpert and William G Macready. No free lunch theorems for
optimization. IEEE transactions on evolutionary computation, 1(1):67–82, 1997.

[4] Ali Husseinzadeh Kashan, Ali Akbar Akbari, and Bakhtiar Ostadi. Grouping
evolution strategies: An effective approach for grouping problems. Applied
Mathematical Modelling, 39(9):2703–2720, 2015.

[5] M Quiroz-Castellanos. Caracterización del proceso de optimización de algoritmos
heurísticos aplicados al problema de empacado de objetos en contenedores. PhD
in Computer Science, Instituto Tecnológico de Ciudad Madero, 2014.

[6] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., USA, 1979.

[7] Octavio Ramos-Figueroa, Marcela Quiroz-Castellanos, Efrén Mezura-Montes,
and Oliver Schütze. Metaheuristics to solve grouping problems: A review and a
case study. Swarm and Evolutionary Computation, page 100643, 2020.

[8] Emanuel Falkenauer. A new representation and operators for genetic algorithms
applied to grouping problems. Evolutionary computation, 2(2):123–144, 1994.

[9] AK Bhatia and Sandip K Basu. Packing bins using multi-chromosomal genetic
representation and better-fit heuristic. In International Conference on Neural
Information Processing, pages 181–186. Springer, 2004.

[10] Tansel Dokeroglu and Ahmet Cosar. Optimization of one-dimensional bin packing
problem with island parallel grouping genetic algorithms. Computers & Industrial
Engineering, 75:176–186, 2014.

[11] Marcela Quiroz-Castellanos, Laura Cruz-Reyes, Jose Torres-Jimenez, Claudia
Gómez, Héctor J Fraire Huacuja, and Adriana CF Alvim. A grouping genetic
algorithm with controlled gene transmission for the bin packing problem.
Computers & Operations Research, 55:52–64, 2015.

167

168 BIBLIOGRAPHY

[12] Emanuel Falkenauer. A hybrid grouping genetic algorithm for bin packing.
Journal of Heuristics, 2(1):5–30, 1996.

[13] Alok Singh and Ashok K Gupta. Two heuristics for the one-dimensional
bin-packing problem. OR Spectrum, 29(4):765–781, 2007.

[14] David Wilcox, Andrew McNabb, and Kevin Seppi. Solving virtual machine
packing with a reordering grouping genetic algorithm. In 2011 IEEE Congress of
Evolutionary Computation (CEC), pages 362–369. IEEE, 2011.

[15] Özgür Ülker, Emin Erkan Korkmaz, and Ender Özcan. A grouping genetic
algorithm using linear linkage encoding for bin packing. In International
Conference on Parallel Problem Solving from Nature, pages 1140–1149. Springer,
2008.

[16] Tayfun Kucukyilmaz and Hakan Ezgi Kiziloz. Cooperative parallel grouping
genetic algorithm for the one-dimensional bin packing problem. Computers &
Industrial Engineering, 125:157–170, 2018.

[17] Sukru Ozer Ozcan, Tansel Dokeroglu, Ahmet Cosar, and Adnan Yazici. A novel
grouping genetic algorithm for the one-dimensional bin packing problem on gpu.
In International Symposium on Computer and Information Sciences, pages 52–60.
Springer, 2016.

[18] Tabitha James, Evelyn Brown, and Cliff T Ragsdale. Grouping genetic algorithm
for the blockmodel problem. IEEE Transactions on Evolutionary Computation,
14(1):103–111, 2009.

[19] Shyam Sundar and Alok Singh. Metaheuristic approaches for the blockmodel
problem. IEEE Systems Journal, 9(4):1237–1247, 2014.

[20] Fereydoun Farrahi Moghaddam, Reza Farrahi Moghaddam, and Mohamed
Cheriet. Carbon-aware distributed cloud: multi-level grouping genetic algorithm.
Cluster Computing, 18(1):477–491, 2015.

[21] Michael Mutingi and Charles Mbohwa. A fuzzy grouping genetic algorithm for
care assignment task. 2014.

[22] Eduardo Vila Gonçalves Filho and Alexandre José Tiberti. A group genetic
algorithm for the machine cell formation problem. International Journal of
Production Economics, 102(1):1–21, 2006.

[23] Pierre De Lit, Emanuel Falkenauer, and Alain Delchambre. Grouping genetic
algorithms: an efficient method to solve the cell formation problem. Mathematics
and Computers in simulation, 51(3-4):257–271, 2000.

[24] Evelyn C Brown and Robert T Sumichrast. Cf-gga: a grouping genetic algorithm
for the cell formation problem. International Journal of Production Research,
39(16):3651–3669, 2001.

[25] Emmanuelle Vin, Pierre De Lit, and Alain Delchambre. A multiple-objective
grouping genetic algorithm for the cell formation problem with alternative
routings. Journal of Intelligent Manufacturing, 16(2):189–205, 2005.

[26] K Yasuda*, L Hu, and Y Yin. A grouping genetic algorithm for the
multi-objective cell formation problem. International Journal of Production
Research, 43(4):829–853, 2005.

BIBLIOGRAPHY 169

[27] Tabitha L James, Evelyn C Brown, and Kellie B Keeling. A hybrid grouping
genetic algorithm for the cell formation problem. Computers & Operations
Research, 34(7):2059–2079, 2007.

[28] L Hu and K Yasuda. Minimising material handling cost in cell formation
with alternative processing routes by grouping genetic algorithm. International
Journal of Production Research, 44(11):2133–2167, 2006.

[29] Michael Mutingi and Godfrey C Onwubolu. Integrated cellular manufacturing
system design and layout using group genetic algorithms. In Manufacturing
System. IntechOpen, 2012.

[30] Emmanuelle Vin, Pascal Francq, and Alain Delchambre. A grouping
genetic algorithm (simoggas) simultaneously to solve two grouping problems
applied to the cell formation problem with alternative process plans. Group
Technology/Cellular Manufacturing (GTCM06), 2006.

[31] N Jawahar and R Subhaa. An adjustable grouping genetic algorithm for the
design of cellular manufacturing system integrating structural and operational
parameters. Journal of Manufacturing Systems, 44:115–142, 2017.

[32] Shyam Sundar and Alok Singh. Two grouping-based metaheuristics for clique
partitioning problem. Applied Intelligence, 47(2):430–442, 2017.

[33] Allan Tucker, Jason Crampton, and Stephen Swift. Rgfga: An efficient
representation and crossover for grouping genetic algorithms. Evolutionary
Computation, 13(4):477–499, 2005.

[34] LE Agustı, Sancho Salcedo-Sanz, Silvia Jiménez-Fernández, Leopoldo
Carro-Calvo, Javier Del Ser, José Antonio Portilla-Figueras, et al. A new grouping
genetic algorithm for clustering problems. Expert Systems with Applications,
39(10):9695–9703, 2012.

[35] S Salcedo-Sanz, J Del Ser, and ZW Geem. An island grouping genetic algorithm
for fuzzy partitioning problems. The Scientific World Journal, 2014, 2014.

[36] Javad Vahidi, Seyed Saeed Mirpour Marzuni, and Sara Farzai. Comparing
performance of parallel grouping genetic algorithm with serial grouping genetic
algorithm for clustering problems. International Journal of Mechatronics,
Electrical and Computer Technology, 5(15):2198–2206, 2015.

[37] Sayede Houri Razavi, E Omid Mahdi Ebadati, Shahrokh Asadi, and Harleen
Kaur. An efficient grouping genetic algorithm for data clustering and big data
analysis. In Computational Intelligence for Big Data Analysis, pages 119–142.
Springer, 2015.

[38] Santhosh Peddi and Alok Singh. Grouping genetic algorithm for data clustering.
In International Conference on Swarm, Evolutionary, and Memetic Computing,
pages 225–232. Springer, 2011.

[39] Emin Erkan Korkmaz, Jun Du, Reda Alhajj, and Ken Barker. Combining
advantages of new chromosome representation scheme and multi-objective genetic
algorithms for better clustering. Intelligent Data Analysis, 10(2):163–182, 2006.

170 BIBLIOGRAPHY

[40] Peiyong Li, Chengfang Wang, and Yunsheng Mao. A hybrid grouping genetic
algorithm for one-dimensional cutting stock problem. Journal-Shanghai Jiaotong
University-Chinese Edition-, 40(6):1015, 2006.

[41] Emanuel Falkenauer. Applying genetic algorithms to real-world problems. In
Evolutionary Algorithms, pages 65–88. Springer, 1999.

[42] Emanuel Falkenauer. Solving equal piles with the grouping genetic algorithm. In
Proceeding of the Sixth International Conference on Genetic Algorithms, pages
492–497, 1995.

[43] Henrik Höglund. Estimating discretionary accruals using a grouping genetic
algorithm. Expert systems with applications, 40(7):2366–2372, 2013.

[44] Michael AP Taylor. Grouping genetic algorithm in GIS: a facility location
modelling. PhD thesis, EASTS-Eastern Asia Society for Transportation Studies,
2005.

[45] Michael Mutingi and Charles Mbohwa. Grouping Genetic Algorithms. Springer,
2017.

[46] Kaiji Liu, Peng Ye, Tao Hong, and Bo Li. Research of the time-dependent electric
vehicle routing problem. In Proceedings of the 2nd International Conference on
Control and Computer Vision, pages 97–101, 2019.

[47] A Aybar-Ruiz, S Jiménez-Fernández, L Cornejo-Bueno, C Casanova-Mateo,
J Sanz-Justo, P Salvador-González, and S Salcedo-Sanz. A novel grouping
genetic algorithm–extreme learning machine approach for global solar radiation
prediction from numerical weather models inputs. Solar Energy, 132:129–142,
2016.

[48] Pilar García-Díaz, Isabel Sánchez-Berriel, Juan A Martínez-Rojas, and Ana M
Diez-Pascual. Unsupervised feature selection algorithm for multiclass cancer
classification of gene expression rna-seq data. Genomics, 112(2):1916–1925, 2020.

[49] James C Chen, Cheng-Chun Wu, Chia-Wen Chen, and Kou-Huang Chen. Flexible
job shop scheduling with parallel machines using genetic algorithm and grouping
genetic algorithm. Expert Systems with Applications, 39(11):10016–10021, 2012.

[50] André Rossi, Alok Singh, and Marc Sevaux. A metaheuristic for the fixed job
scheduling problem under spread time constraints. Computers & operations
research, 37(6):1045–1054, 2010.

[51] Wilhelm Erben. A grouping genetic algorithm for graph colouring and exam
timetabling. In International Conference on the Practice and Theory of
Automated Timetabling, pages 132–156. Springer, 2000.

[52] Özgür Ülker, Ender Özcan, and Emin Erkan Korkmaz. Linear linkage encoding
in grouping problems: applications on graph coloring and timetabling. In
International Conference on the Practice and Theory of Automated Timetabling,
pages 347–363. Springer, 2006.

[53] Brahim Rekiek, Alain Delchambre, and Hussain Aziz Saleh. Handicapped person
transportation: An application of the grouping genetic algorithm. Engineering
Applications of Artificial Intelligence, 19(5):511–520, 2006.

BIBLIOGRAPHY 171

[54] M Mutingi and Charles Mbohwa. Home healthcare worker scheduling: a group
genetic algorithm approach. 2013.

[55] M Mutingi and C Mbhwa. Task assignment in home health care: A fuzzy group
genetic algorithm approach. 2013.

[56] M Mutingi and C Mbohwa. Home health care staff scheduling: Effective grouping
approaches. In IAENG Transactions on Engineering Sciences-Special Issue of the
International Multi-Conference of Engineers and Computer Scientists, IMECS
and World Congress on Engineering, CRC Press, Taylor & Francis Group, pages
215–224, 2014.

[57] Brahim Rekiek, Pierre De Lit, Fabrice Pellichero, Thomas L’Eglise, Patrick
Fouda, Emanuel Falkenauer, and Alain Delchambre. A multiple objective
grouping genetic algorithm for assembly line design. Journal of Intelligent
Manufacturing, 12(5-6):467–485, 2001.

[58] Chang Yu Hung, Robert T Sumichrast, and Evelyn C Brown. Cpgea: a grouping
genetic algorithm for material cutting plan generation. Computers & Industrial
Engineering, 44(4):651–672, 2003.

[59] Kavita Singh and Shyam Sundar. A new hybrid genetic algorithm for the
maximally diverse grouping problem. International Journal of Machine Learning
and Cybernetics, pages 1–20, 2019.

[60] Evelyn C Brown and Mark Vroblefski. A grouping genetic algorithm for
the microcell sectorization problem. Engineering Applications of Artificial
Intelligence, 17(6):589–598, 2004.

[61] Victor B Kreng and Tseng-Pin Lee. Modular product design with grouping genetic
algorithm—a case study. Computers & Industrial Engineering, 46(3):443–460,
2004.

[62] Michael Mutingi, Partson Dube, and Charles Mbohwa. A modular product
design approach for sustainable manufacturing in a fuzzy environment. Procedia
Manufacturing, 8:471–478, 2017.

[63] Alok Singh and Anurag Singh Baghel. A new grouping genetic algorithm for the
quadratic multiple knapsack problem. In European Conference on Evolutionary
Computation in Combinatorial Optimization, pages 210–218. Springer, 2007.

[64] Alex S Fukunaga. A new grouping genetic algorithm for the multiple knapsack
problem. In 2008 IEEE Congress on Evolutionary Computation (IEEE World
Congress on Computational Intelligence), pages 2225–2232. IEEE, 2008.

[65] Alok Singh and Anurag Singh Baghel. A new grouping genetic algorithm approach
to the multiple traveling salesperson problem. Soft Computing, 13(1):95–101,
2009.

[66] Evelyn C Brown, Cliff T Ragsdale, and Arthur E Carter. Formulating the multiple
traveling salesperson problem for a grouping genetic algorithm. In IIE Annual
Conference. Proceedings, page 1. Institute of Industrial and Systems Engineers
(IISE), 2004.

172 BIBLIOGRAPHY

[67] Evelyn C Brown, Cliff T Ragsdale, and Arthur Carter. A grouping genetic
algorithm for the multiple traveling salesperson problem. International Journal
of Information Technology & Decision Making, 6(02):333–347, 2007.

[68] Dharm Raj Singh, Manoj Kumar Singh, Tarkeshwar Singh, and Rajkishore
Prasad. Genetic algorithm for solving multiple traveling salesmen problem using
a new crossover and population generation. Computación y Sistemas, 22(2), 2018.

[69] Alok Singh, Marc Sevaux, and André Rossi. A hybrid grouping genetic algorithm
for multiprocessor scheduling. In International Conference on Contemporary
Computing, pages 1–7. Springer, 2009.

[70] Jordi Balasch-Masoliver, Victor Muntés-Mulero, and Jordi Nin. Using genetic
algorithms for attribute grouping in multivariate microaggregation. Intelligent
data analysis, 18(5):819–836, 2014.

[71] Jose Alejandro Cano. Parameters for a genetic algorithm: An application for the
order batching problem. IBIMA Business Review, 2019:802597, 2019.

[72] Giselher Pankratz. A grouping genetic algorithm for the pickup and delivery
problem with time windows. Or Spectrum, 27(1):21–41, 2005.

[73] Mark Vroblefski and Evelyn C Brown. A grouping genetic algorithm for
registration area planning. Omega, 34(3):220–230, 2006.

[74] Tabitha James, Mark Vroblefski, and Quinton Nottingham. A hybrid grouping
genetic algorithm for the registration area planning problem. Computer
Communications, 30(10):2180–2190, 2007.

[75] Sachchida Nand Chaurasia and Alok Singh. A hybrid evolutionary approach to
the registration area planning problem. Applied intelligence, 41(4):1127–1149,
2014.

[76] Yuan Chen, Zhi-Ping Fan, Jian Ma, and Shuo Zeng. A hybrid grouping
genetic algorithm for reviewer group construction problem. Expert Systems with
Applications, 38(3):2401–2411, 2011.

[77] Chun-Hao Chen, Cheng-Bon Lin, and Chao-Chun Chen. Mining group stock
portfolio by using grouping genetic algorithms. In 2015 IEEE Congress on
Evolutionary Computation (CEC), pages 738–743. IEEE, 2015.

[78] Chun-Hao Chen and Chih-Hung Yu. A series-based group stock portfolio
optimization approach using the grouping genetic algorithm with symbolic
aggregate approximations. Knowledge-Based Systems, 125:146–163, 2017.

[79] Chun-Hao Chen, Cheng-Yu Lu, Tzung-Pei Hong, and Ja-Hwung Su. Using
grouping genetic algorithm to mine diverse group stock portfolio. In 2016 IEEE
Congress on Evolutionary Computation (CEC), pages 4734–4738. IEEE, 2016.

[80] Chun-Hao Chen, Yu-Hsuan Chen, Jerry Chun-Wei Lin, and Mu-En Wu. An
effective approach for obtaining a group trading strategy portfolio using grouping
genetic algorithm. IEEE Access, 7:7313–7325, 2019.

[81] Chun-Hao Chen, Cheng-Yu Lu, Tzung-Pei Hong, Jerry Chun-Wei Lin, and
Matteo Gaeta. An effective approach for the diverse group stock portfolio

BIBLIOGRAPHY 173

optimization using grouping genetic algorithm. IEEE Access, 7:155871–155884,
2019.

[82] Chun-Hao Chen, Wan-Yi Shen, Mu-En Wu, and Tzung-Pei Hong. A
divide-and-conquer-based approach for diverse group stock portfolio optimization
using island-based genetic algorithms. In 2019 IEEE Congress on Evolutionary
Computation (CEC), pages 1473–1471. IEEE, 2019.

[83] Chun Hao Chen, Cheng Yu Lu, and Cheng Bon Lin. An intelligence approach
for group stock portfolio optimization with a trading mechanism. Knowledge and
Information Systems, pages 1–30, 2019.

[84] Gilberto Rivera, Luis Cisneros, Patricia Sánchez-Solís, Nelson Rangel-Valdez, and
Jorge Rodas-Osollo. Genetic algorithm for scheduling optimization considering
heterogeneous containers: A real-world case study. Axioms, 9(1):27, 2020.

[85] Lucas Cuadra, Adrián Aybar-Ruíz, MA Del Arco, Julio Navío-Marco,
José Antonio Portilla-Figueras, and Sancho Salcedo-Sanz. A lamarckian hybrid
grouping genetic algorithm with repair heuristics for resource assignment in
wcdma networks. Applied Soft Computing, 43:619–632, 2016.

[86] Seyedeh Yasaman Rashida, Masoud Sabaei, Mohammad Mehdi Ebadzadeh, and
Amir Masoud Rahmani. A memetic grouping genetic algorithm for cost efficient
vm placement in multi-cloud environment. Cluster Computing, pages 1–40, 2019.

[87] Boxiong Tan, Hui Ma, and Yi Mei. A group genetic algorithm for resource
allocation in container-based clouds. In European Conference on Evolutionary
Computation in Combinatorial Optimization (Part of EvoStar), pages 180–196.
Springer, 2020.

[88] Luis E Agustín-Blas, Sancho Salcedo-Sanz, Emilio G Ortiz-García, Antonio
Portilla-Figueras, Ángel M Pérez-Bellido, and Silvia Jiménez-Fernández. Team
formation based on group technology: A hybrid grouping genetic algorithm
approach. Computers & Operations Research, 38(2):484–495, 2011.

[89] Luis E Agustín-Blas, Sancho Salcedo-Sanz, Emilio G Ortiz-García, Antonio
Portilla-Figueras, and Ángel M Pérez-Bellido. A hybrid grouping genetic
algorithm for assigning students to preferred laboratory groups. Expert Systems
with Applications, 36(3):7234–7241, 2009.

[90] Yoo-Min Choi and Dong-Jin Lim. Automatic feasible transition path generation
from uml state chart diagrams using grouping genetic algorithms. Information
and Software Technology, 94:38–58, 2018.

[91] . Model-based Test Suite Generation for Fault Localization using Search-based
Mutation Testing Technique. PhD thesis, , 2020.

[92] Luis E Agustín-Blas, Sancho Salcedo-Sanz, Pablo Vidales, G Urueta, and
José Antonio Portilla-Figueras. Near optimal citywide wifi network deployment
using a hybrid grouping genetic algorithm. Expert Systems with Applications,
38(8):9543–9556, 2011.

[93] Emanuel Falkenauer. The grouping genetic algorithms-widening the scope of the
gas. Belgian Journal of Operations Research, Statistics and Computer Science,
33(1):2, 1992.

174 BIBLIOGRAPHY

[94] Halil Yetgin, Kent Tsz Kan Cheung, Mohammed El-Hajjar, and Lajos Hanzo
Hanzo. A survey of network lifetime maximization techniques in wireless sensor
networks. IEEE Communications Surveys & Tutorials, 19(2):828–854, 2017.

[95] R Kamalakannan, R Sudhakara Pandian, T Sornakumar, and SS Mahapatra. An
ant colony optimization algorithm for cellular manufacturing system. In Applied
Mechanics and Materials, volume 854, pages 133–141. Trans Tech Publ, 2017.

[96] Veronique Sels, Jose Coelho, Antonio Manuel Dias, and Mario Vanhoucke. Hybrid
tabu search and a truncated branch-and-bound for the unrelated parallel machine
scheduling problem. Computers & Operations Research, 53:107–117, 2015.

[97] Dipak Laha and Jatinder ND Gupta. An improved cuckoo search algorithm
for scheduling jobs on identical parallel machines. Computers & Industrial
Engineering, 126:348–360, 2018.

[98] RM Branco and CR Rocha. Group technology: Hybrid genetic algorithm
with greedy formation and a local search cluster technique in the solution
of manufacturing cell formation problems. In Book of Abstracts of the
25th International Joint Conference on Industrial Engineering and Operations,
page 21, 2019.

[99] Runwei Cheng and Mitsuo Gen. Parallel machine scheduling problems using
memetic algorithms. In 1996 IEEE International Conference on Systems, Man
and Cybernetics. Information Intelligence and Systems (Cat. No. 96CH35929),
volume 4, pages 2665–2670. IEEE, 1996.

[100] Claus de Castro Aranha and Hitoshi Iba. Using memetic algorithms to improve
portfolio performance in static and dynamic trading scenarios. In Proceedings
of the 11th Annual Conference on Genetic and Evolutionary Computation, pages
1427–1434. ACM, 2009.

[101] Christian Blum, Jakob Puchinger, Günther R Raidl, and Andrea Roli. Hybrid
metaheuristics in combinatorial optimization: A survey. Applied Soft Computing,
11(6):4135–4151, 2011.

[102] Mirsad Buljubasic. Efficient local search for several combinatorial optimization
problems. Theses, Université Montpellier, November 2015.

[103] Marco Chiarandini, Irina Dumitrescu, and Thomas Stützle. Stochastic local
search algorithms for the graph colouring problem. Computer & Information
Science Series, Chapman & Hall, CRC, 2018.

[104] Haroldo G Santos, Túlio AM Toffolo, Cristiano LTF Silva, and Greet
Vanden Berghe. Analysis of stochastic local search methods for the unrelated
parallel machine scheduling problem. International Transactions in Operational
Research, 26(2):707–724, 2019.

[105] Antonio Martinez-Sykora, Ramón Alvarez-Valdés, Julia A Bennell, R Ruiz, and
José Manuel Tamarit. Matheuristics for the irregular bin packing problem with
free rotations. European Journal of Operational Research, 258(2):440–455, 2017.

[106] Zeping Pei, Zhuan Wang, and Yiwen Yang. Research of order batching variable
neighborhood search algorithm based on saving mileage. In 3rd International

BIBLIOGRAPHY 175

Conference on Mechatronics Engineering and Information Technology (ICMEIT
2019). Atlantis Press, 2019.

[107] Thomas Kämpke. Simulated annealing: use of a new tool in bin packing. Annals
of Operations Research, 16(1):327–332, 1988.

[108] Daniel Schermer, Mahdi Moeini, and Oliver Wendt. A hybrid vns/tabu search
algorithm for solving the vehicle routing problem with drones and en route
operations. Computers & Operations Research, 109:134–158, 2019.

[109] Brototi Mondal, Kousik Dasgupta, and Paramartha Dutta. Load balancing
in cloud computing using stochastic hill climbing-a soft computing approach.
Procedia Technology, 4:783–789, 2012.

[110] Biao Yuan, Chaoyong Zhang, and Xinyu Shao. A late acceptance hill-climbing
algorithm for balancing two-sided assembly lines with multiple constraints.
Journal of Intelligent Manufacturing, 26(1):159–168, 2015.

[111] F Yu Vincent and Shih-Wei Lin. Multi-start simulated annealing heuristic for
the location routing problem with simultaneous pickup and delivery. Applied soft
computing, 24:284–290, 2014.

[112] Shinji Sakamoto, Elis Kulla, Tetsuya Oda, Makoto Ikeda, Leonard Barolli, and
Fatos Xhafa. A comparison study of hill climbing, simulated annealing and genetic
algorithm for node placement problem in wmns. Journal of High Speed Networks,
20(1):55–66, 2014.

[113] M Emin Aydin and Terence C Fogarty. A simulated annealing algorithm for
multi-agent systems: a job-shop scheduling application. Journal of intelligent
manufacturing, 15(6):805–814, 2004.

[114] Amanda Hiley and Bryant A Julstrom. The quadratic multiple knapsack problem
and three heuristic approaches to it. In Proceedings of the 8th annual conference
on Genetic and evolutionary computation, pages 547–552. ACM, 2006.

[115] Mhand Hifi. Dynamic programming and hill-climbing techniques for constrained
two-dimensional cutting stock problems. Journal of combinatorial optimization,
8(1):65–84, 2004.

[116] Marina Yusoff and Nurhikmah Roslan. Evaluation of genetic algorithm
and hybrid genetic algorithm-hill climbing with elitist for lecturer university
timetabling problem. In International Conference on Swarm Intelligence, pages
363–373. Springer, 2019.

[117] Laith Mohammad Abualigah, Ahamad Tajudin Khader, Mohammed Azmi
Al-Betar, Zaid Abdi Alkareem Alyasseri, Osama Ahmad Alomari, and Essam Said
Hanandeh. Feature selection with β-hill climbing search for text clustering
application. In 2017 Palestinian International Conference on Information and
Communication Technology (PICICT), pages 22–27. IEEE, 2017.

[118] Fan Wang and Zhou Xu. Metaheuristics for robust graph coloring. Journal of
Heuristics, 19(4):529–548, 2013.

[119] Sebastian Henn and Verena Schmid. Metaheuristics for order batching and
sequencing in manual order picking systems. Computers & Industrial Engineering,
66(2):338–351, 2013.

176 BIBLIOGRAPHY

[120] Edilson Reis Rodrigues Kato, Gabriel Diego de Aguiar Aranha, and
Roberto Hideaki Tsunaki. A new approach to solve the flexible job shop problem
based on a hybrid particle swarm optimization and random-restart hill climbing.
Computers & Industrial Engineering, 125:178–189, 2018.

[121] Luiz FO Moura Santos, Renan Sallai Iwayama, Luísa Brandão Cavalcanti,
Leandro Maciel Turi, Fabio Emanuel de Souza Morais, Gabriel Mormilho, and
Claudio B Cunha. A variable neighborhood search algorithm for the bin
packing problem with compatible categories. Expert Systems with Applications,
124:209–225, 2019.

[122] I Davydov and Yury Kochetov. Vns-based heuristic with an exponential
neighborhood for the server load balancing problem. Electronic Notes in Discrete
Mathematics, 47:53–60, 2015.

[123] Masood Fathi, Amir Nourmohammadi, Amos HC Ng, Anna Syberfeldt, and
Hamidreza Eskandari. An improved genetic algorithm with variable neighborhood
search to solve the assembly line balancing problem. Engineering Computations,
2019.

[124] Jiawen Lu and Ling Wang. A bi-strategy based optimization algorithm for the
dynamic capacitated electric vehicle routing problem. In 2019 IEEE Congress on
Evolutionary Computation (CEC), pages 646–653. IEEE, 2019.

[125] Ivan C Martins, Rian GS Pinheiro, Fábio Protti, and Luiz S Ochi. A hybrid
iterated local search and variable neighborhood descent heuristic applied to the
cell formation problem. Expert Systems with Applications, 42(22):8947–8955,
2015.

[126] Yongzhen Wang, Yan Chen, and Yan Lin. Memetic algorithm based on sequential
variable neighborhood descent for the minmax multiple traveling salesman
problem. Computers & Industrial Engineering, 106:105–122, 2017.

[127] Ivan Davydov, Yury Kochetov, and Stephan Dempe. Local search approach
for the competitive facility location problem in mobile networks. International
Journal of Artificial Intelligence, 16(1):130–143, 2018.

[128] Fuqing Zhao, Shuo Qin, Yi Zhang, Weimin Ma, Chuck Zhang, and Houbin
Song. A hybrid biogeography-based optimization with variable neighborhood
search mechanism for no-wait flow shop scheduling problem. Expert Systems with
Applications, 126:321–339, 2019.

[129] France Roanne. A variable neighborhood search with integer programming for
the zero-one multiple-choice knapsack problem with setup. Variable Neighborhood
Search, page 152, 2019.

[130] Frederico Dusberger and Günther R Raidl. Solving the 3-staged 2-dimensional
cutting stock problem by dynamic programming and variable neighborhood
search. Electronic Notes in Discrete Mathematics, 47:133–140, 2015.

[131] Rafidah Abdul Aziz, Masri Ayob, Zalinda Othman, Zulkifli Ahmad, and
Nasser R Sabar. An adaptive guided variable neighborhood search based on
honey-bee mating optimization algorithm for the course timetabling problem.
Soft Computing, 21(22):6755–6765, 2017.

BIBLIOGRAPHY 177

[132] Jack Brimberg, Nenad Mladenović, Raca Todosijević, and Dragan Urošević.
Solving the capacitated clustering problem with variable neighborhood search.
Annals of Operations Research, 272(1-2):289–321, 2019.

[133] Gintaras Palubeckis, Eimutis Karčiauskas, and Aleksas Riškus. Comparative
performance of three metaheuristic approaches for the maximally diverse grouping
problem. Information Technology and Control, 40(4):277–285, 2011.

[134] Dragan Matic, Jozef Kratica, and Vladimir Filipovic. Variable neighborhood
search for solving bandwidth coloring problem. Computer Science and
Information Systems, 14(2):309–327, 2015.

[135] Yin-Yann Chen, Chen-Yang Cheng, Li-Chih Wang, and Tzu-Li Chen. A
hybrid approach based on the variable neighborhood search and particle swarm
optimization for parallel machine scheduling problems—a case study for solar cell
industry. International Journal of Production Economics, 141(1):66–78, 2013.

[136] Sana Frifita, Malek Masmoudi, and Jalel Euchi. General variable neighborhood
search for home healthcare routing and scheduling problem with time windows
and synchronized visits. Electronic Notes in Discrete Mathematics, 58:63–70,
2017.

[137] Xu Yingzhuo and Geng Qing Yang. Research on network load balancing method
based on simulated annealing algorithm and genetic algorithm. In Journal of
Physics: Conference Series, volume 1237, page 022137. IOP Publishing, 2019.

[138] M Yang, L Ba, Y Liu, HY Zheng, JT Yan, XQ Gao, and JM Xiao. An improved
genetic simulated annealing algorithm for stochastic two-sided assembly line
balancing problem. Int simul model, 18:175–186, 2019.

[139] Kenan Karagul, Yusuf Sahin, Erdal Aydemir, and Aykut Oral. A simulated
annealing algorithm based solution method for a green vehicle routing problem
with fuel consumption. In Lean and green supply chain management, pages
161–187. Springer, 2019.

[140] R Kamalakannan, R Sudhakara Pandian, and P Sivakumar. A simulated
annealing for the cell formation problem with ratio level data. International
Journal of Enterprise Network Management, 10(1):78–90, 2019.

[141] Chi Hwa Song, Kyunghee Lee, and Won Don Lee. Extended simulated annealing
for augmented tsp and multi-salesmen tsp. In Proceedings of the International
Joint Conference on Neural Networks, 2003., volume 3, pages 2340–2343. IEEE,
2003.

[142] Kamyla Maria Ferreira and Thiago Alves de Queiroz. Two effective simulated
annealing algorithms for the location-routing problem. Applied Soft Computing,
70:389–422, 2018.

[143] Fernando Garza-Santisteban, Roberto Sánchez-Pámanes, Luis Antonio
Puente-Rodríguez, Ivan Amaya, José Carlos Ortiz-Bayliss, Santiago
Conant-Pablos, and Hugo Terashima-Marín. A simulated annealing
hyper-heuristic for job shop scheduling problems. In 2019 IEEE Congress
on Evolutionary Computation (CEC), pages 57–64. IEEE, 2019.

178 BIBLIOGRAPHY

[144] Adil Baykasoglu, Turkay Dereli, and Sena Das. Project team selection using fuzzy
optimization approach. Cybernetics and Systems: An International Journal,
38(2):155–185, 2007.

[145] Ivan Adrian Lopez Sanchez, Jaime Mora Vargas, Cipriano A Santos,
Miguel Gonzalez Mendoza, and Cesar J Montiel Moctezuma. Solving binary
cutting stock with matheuristics using particle swarm optimization and simulated
annealing. Soft Computing, 22(18):6111–6119, 2018.

[146] Nuno Leite, Fernando Melício, and Agostinho C Rosa. A fast simulated
annealing algorithm for the examination timetabling problem. Expert Systems
with Applications, 122:137–151, 2019.

[147] Sattar Seifollahi, Adil Bagirov, Ehsan Zare Borzeshi, and Massimo
Piccardi. A simulated annealing-based maximum-margin clustering algorithm.
Computational Intelligence, 35(1):23–41, 2019.

[148] Alper Kose, Berke Aral Sonmez, and Metin Balaban. Simulated annealing
algorithm for graph coloring. arXiv preprint arXiv:1712.00709, 2017.

[149] Shih-Wei Lin and Kuo-Ching Ying. A multi-point simulated annealing heuristic
for solving multiple objective unrelated parallel machine scheduling problems.
International Journal of Production Research, 53(4):1065–1076, 2015.

[150] Eric H Grosse, Christoph H Glock, Rafael Ballester-Ripoll, et al. A simulated
annealing approach for the joint order batching and order picker routing problem
with weight restrictions. International Journal of Operations and Quantitative
Management, 20(2):65–83, 2014.

[151] Amir Mohammad Fathollahi-Fard, Kannan Govindan, Mostafa
Hajiaghaei-Keshteli, and Abbas Ahmadi. A green home health care supply chain:
New modified simulated annealing algorithms. Journal of Cleaner Production,
240:118200, 2019.

[152] Yves Crama and Michaël Schyns. Simulated annealing for complex portfolio
selection problems. European Journal of operational research, 150(3):546–571,
2003.

[153] Joaquim L Viegas, Susana M Vieira, Elsa MP Henriques, and Joao MC Sousa.
A tabu search algorithm for the 3d bin packing problem in the steel industry. In
CONTROLO’2014–Proceedings of the 11th Portuguese Conference on Automatic
Control, pages 355–364. Springer, 2015.

[154] Nadim Téllez, Miguel Jimeno, Augusto Salazar, and E Nino-Ruiz. A tabu search
method for load balancing in fog computing. Int. Artif. Intell, 16(2):1–31, 2018.

[155] Kadir Buyukozkan, Ibrahim Kucukkoc, Sule Itir Satoglu, and David Z Zhang.
Lexicographic bottleneck mixed-model assembly line balancing problem: artificial
bee colony and tabu search approaches with optimised parameters. Expert
Systems with Applications, 50:151–166, 2016.

[156] Farhad Ghassemi Tari and Khatereh Ahadi. Cellular layout design using tabu
search, a case study. RAIRO-Operations Research, 53(5):1475–1488, 2019.

BIBLIOGRAPHY 179

[157] Tolga Bektas. The multiple traveling salesman problem: an overview of
formulations and solution procedures. Omega, 34(3):209–219, 2006.

[158] Mauricio Romero Montoya, Rogelio González Velázquez, Martín Estrada Analco,
José Luis Martínez Flores, and María Beatriz Bernábe Loranca. Solution search
for the capacitated p-median problem using tabu search. International Journal
of Combinatorial Optimization Problems and Informatics, 10(2):17–25, 2019.

[159] Jun-Qiang Li, Peiyong Duan, Jinde Cao, Xiao-Ping Lin, and Yu-Yan Han. A
hybrid pareto-based tabu search for the distributed flexible job shop scheduling
problem with e/t criteria. IEEE Access, 6:58883–58897, 2018.

[160] Roberto Aringhieri. Composing medical crews with equity and efficiency. Central
European Journal of Operations Research, 17(3):343–357, 2009.

[161] Jin Qin, Xianhao Xu, Qinghua Wu, and TCE Cheng. Hybridization of tabu search
with feasible and infeasible local searches for the quadratic multiple knapsack
problem. Computers & Operations Research, 66:199–214, 2016.

[162] Meghdad HMA Jahromi, Reza Tavakkoli-Moghaddam, Ahmad Makui, and Abbas
Shamsi. Solving an one-dimensional cutting stock problem by simulated annealing
and tabu search. Journal of Industrial Engineering International, 8(1):24, 2012.

[163] Paula Amaral and Tiago Cardal Pais. Compromise ratio with weighting functions
in a tabu search multi-criteria approach to examination timetabling. Computers
& Operations Research, 72:160–174, 2016.

[164] Ali Falah Yaqoob and Basad Al-Sarray. Finding best clustering for big networks
with minimum objective function by using probabilistic tabu search. Iraqi Journal
of Science, 60(8):1837–1845, 2019.

[165] Abraham Duarte and Rafael Martí. Tabu search and grasp for the maximum
diversity problem. European Journal of Operational Research, 178(1):71–84, 2007.

[166] Sebastian Henn and Gerhard Wäscher. Tabu search heuristics for the order
batching problem in manual order picking systems. European Journal of
Operational Research, 222(3):484–494, 2012.

[167] Zhuo Yihe, Liu Ran, and Hua Yikang. Tabu search algorithm for periodic home
health care problem. China Sciencepaper, (14):22, 2015.

[168] Majid M Aldaihani and Talla M Al-Deehani. Mathematical models and a tabu
search for the portfolio management problem in the kuwait stock exchange.
International Journal of Operational Research, 7(4):445–462, 2010.

[169] Chong Peng, Guanglin Wu, T Warren Liao, and Hedong Wang. Research on
multi-agent genetic algorithm based on tabu search for the job shop scheduling
problem. PloS one, 14(9), 2019.

[170] ore Stakic, Ana Anokic, and Raka Jovanovic. Comparison of different
grasp algorithms for the heterogeneous vector bin packing problem. In 2019
China-Qatar International Workshop on Artificial Intelligence and Applications
to Intelligent Manufacturing (AIAIM), pages 63–70. IEEE, 2019.

[171] Sisca Octarina, Sugandi Yahdin, and Belly Wardhani. Implementasi algoritma
greedy randomized adaptive search procedure (grasp) dan formulasi model dotted

180 BIBLIOGRAPHY

board pada penyelesaian cutting stock problem bentuk irregular. In Annual
Research Seminar (ARS), volume 4, pages 228–233, 2019.

[172] Temel Öncan. Milp formulations and an iterated local search algorithm with tabu
thresholding for the order batching problem. European Journal of Operational
Research, 243(1):142–155, 2015.

[173] Mariana de Siqueira Guersola and Maria Teresinha Arns Steiner. Iterated local
search adapted to clustering and routing problems. In 2015 Latin America
Congress on Computational Intelligence (LA-CCI), pages 1–6. IEEE, 2015.

[174] Eduardo Raul Hruschka, Ricardo JGB Campello, Alex A Freitas, et al. A survey
of evolutionary algorithms for clustering. IEEE Transactions on Systems, Man,
and Cybernetics, Part C (Applications and Reviews), 39(2):133–155, 2009.

[175] Soukaina Laabadi, Mohamed Naimi, Hassan El Amri, and Boujemâa Achchab.
A crow search-based genetic algorithm for solving two-dimensional bin packing
problem. In Joint German/Austrian Conference on Artificial Intelligence
(Künstliche Intelligenz), pages 203–215. Springer, 2019.

[176] Omid Homaee, Arsalan Najafi, Mohammad Dehghanian, Mehdi Attar, and
Hamid Falaghi. A practical approach for distribution network load balancing
by optimal re-phasing of single phase customers using discrete genetic algorithm.
International Transactions on Electrical Energy Systems, 29(5):e2834, 2019.

[177] Han-ye Zhang. An immune genetic algorithm for simple assembly line balancing
problem of type 1. Assembly Automation, 39(1):113–123, 2019.

[178] Ali Baniamerian, Mahdi Bashiri, and Reza Tavakkoli-Moghaddam. Modified
variable neighborhood search and genetic algorithm for profitable heterogeneous
vehicle routing problem with cross-docking. Applied Soft Computing, 75:441–460,
2019.

[179] Yu Zhu and Lin Wu. Structure study of multiple traveling salesman problem
using genetic algorithm. In 2019 34rd Youth Academic Annual Conference of
Chinese Association of Automation (YAC), pages 323–328. IEEE, 2019.

[180] Fabrício Lacerda Biajoli, Antonio Augusto Chaves, and Luiz Antonio Nogueira
Lorena. A biased random-key genetic algorithm for the two-stage capacitated
facility location problem. Expert Systems with Applications, 115:418–426, 2019.

[181] Ali Asghar Rahmani Hosseinabadi, Javad Vahidi, Behzad Saemi, Arun Kumar
Sangaiah, and Mohamed Elhoseny. Extended genetic algorithm for solving
open-shop scheduling problem. Soft computing, 23(13):5099–5116, 2019.

[182] Hyeongon Wi, Seungjin Oh, Jungtae Mun, and Mooyoung Jung. A team
formation model based on knowledge and collaboration. Expert Systems with
Applications, 36(5):9121–9134, 2009.

[183] Roozbeh Sanaei, Kevin Otto, Kristin Wood, Katja Hölttä-Otto, et al. A rapid
algorithm for multi-objective pareto optimization of modular architecture. In
DS 87-4 Proceedings of the 21st International Conference on Engineering Design
(ICED 17) Vol 4: Design Methods and Tools, Vancouver, Canada, 21-25.08.
2017, pages 169–178, 2017.

BIBLIOGRAPHY 181

[184] Ebaa Fayyoumi and Omar Nofal. Applying genetic algorithms on
multi-level micro-aggregation techniques for secure statistical databases. In
2018 IEEE/ACS 15th International Conference on Computer Systems and
Applications (AICCSA), pages 1–6. IEEE, 2018.

[185] Ali Nadi Ünal. A genetic algorithm for the multiple knapsack problem in dynamic
environment. In Proceedings of the World Congress on Engineering and Computer
Science, volume 2, 2013.

[186] Anton Orlov, Vladimir Kureichik, and Alexander Glushchenko. Hybrid genetic
algorithm for cutting stock and packaging problems. In 2016 IEEE East-West
Design & Test Symposium (EWDTS), pages 1–4. IEEE, 2016.

[187] MA El-Shorbagy, AY Ayoub, AA Mousa, and IM El-Desoky. An enhanced genetic
algorithm with new mutation for cluster analysis. Computational Statistics, pages
1–38, 2019.

[188] Jing Luan, Zhong Yao, Futao Zhao, and Xin Song. A novel method to solve
supplier selection problem: Hybrid algorithm of genetic algorithm and ant colony
optimization. Mathematics and Computers in Simulation, 156:294–309, 2019.

[189] Said Labed, KOUT Akram, and Salim Chikhi. Solving the graph b-coloring
problem with hybrid genetic algorithm. In 2018 3rd International Conference on
Pattern Analysis and Intelligent Systems (PAIS), pages 1–7. IEEE, 2018.

[190] Muflih Hafidz Danurhadi, Dida Diah Damayanti, and Widia Juliani. Identical
parallel machine scheduling using genetic algorithm to minimize total tardiness
for cnc 4 axis in pt dirgantara indonesia (persero). eProceedings of Engineering,
6(2), 2019.

[191] Chih Ming Hsu, Kai Ying Chen, and Mu Chen Chen. Batching orders in
warehouses by minimizing travel distance with genetic algorithms. Computers
in Industry, 56(2):169–178, 2005.

[192] Rahma Borchani, Malek Masmoudi, and Bassem Jarboui. Hybrid genetic
algorithm for home healthcare routing and scheduling problem. In 2019 6th
International Conference on Control, Decision and Information Technologies
(CoDIT), pages 1900–1904. IEEE, 2019.

[193] R Yusuf, BD Handari, and GF Hertono. Implementation of agglomerative
clustering and genetic algorithm on stock portfolio optimization with possibilistic
constraints. In AIP Conference Proceedings, volume 2168, page 020028. AIP
Publishing, 2019.

[194] A Yoosefelahi, M Aminnayeri, H Mosadegh, and H Davari Ardakani. Type ii
robotic assembly line balancing problem: An evolution strategies algorithm for a
multi-objective model. Journal of Manufacturing Systems, 31(2):139–151, 2012.

[195] DAVID Mester. An evolutionary strategies algorithm for large scale vehicle
routing problem with capacitate and time windows restrictions. In Proceedings of
the Conference on Mathematical and Population Genetics, University of Haifa,
Israel, 2002.

[196] Adam Stawowy. Evolutionary strategy for manufacturing cell design. Omega,
34(1):1–18, 2006.

182 BIBLIOGRAPHY

[197] Alejandro Teran-Somohano and Alice E Smith. Locating multiple capacitated
semi-obnoxious facilities using evolutionary strategies. Computers & Industrial
Engineering, 133:303–316, 2019.

[198] Ramiro Varela, Alberto Gomez, Camino R Vela, Jorge Puente, and Cesar Alonso.
Heuristic generation of the initial population in solving job shop problems by
evolutionary strategies. In International Work-Conference on Artificial Neural
Networks, pages 690–699. Springer, 1999.

[199] Han Wang, Zhilei Ren, Xiaochen Li, and He Jiang. Solving team making
problem for crowdsourcing with evolutionary strategy. In 2018 5th International
Conference on Dependable Systems and Their Applications (DSA), pages 65–74.
IEEE, 2018.

[200] Samir Ribić and Samim Konjicija. Evolution strategy to make an objective
function in two-phase ilp timetabling. In 2011 19thTelecommunications Forum
(TELFOR) Proceedings of Papers, pages 1486–1489. IEEE, 2011.

[201] C-Y Lee and EK Antonsson. Dynamic partitional clustering using evolution
strategies. In 2000 26th Annual Conference of the IEEE Industrial Electronics
Society. IECON 2000. 2000 IEEE International Conference on Industrial
Electronics, Control and Instrumentation. 21st Century Technologies, volume 4,
pages 2716–2721. IEEE, 2000.

[202] Alan Robert Resende de Freitas, Frederico Gadelha Guimarães, Rodrigo
César Pedrosa Silva, and Marcone Jamilson Freitas Souza. Memetic self-adaptive
evolution strategies applied to the maximum diversity problem. Optimization
Letters, 8(2):705–714, 2014.

[203] Chiuh-Cheng Chyu and Wei-Shung Chang. A competitive evolution strategy
memetic algorithm for unrelated parallel machine scheduling to minimize total
weighted tardiness and flow time. In The 40th International Conference on
Computers & Indutrial Engineering, pages 1–6. IEEE, 2010.

[204] Piotr Lipinski, Katarzyna Winczura, and Joanna Wojcik. Building risk-optimal
portfolio using evolutionary strategies. In Workshops on Applications of
Evolutionary Computation, pages 208–217. Springer, 2007.

[205] László Kota and Karoly Jarmai. Mathematical modeling of multiple tour
multiple traveling salesman problem using evolutionary programming. Applied
Mathematical Modelling, 39(12):3410–3433, 2015.

[206] Raymond Chiong, Yang Yaw Chang, Pui Chang Chai, and Ai Leong Wong.
A selective mutation based evolutionary programming for solving cutting
stock problem without contiguity. In 2008 IEEE Congress on Evolutionary
Computation (IEEE World Congress on Computational Intelligence), pages
1671–1677. IEEE, 2008.

[207] Gursel A Suer. Evolutionary programming for designing manufacturing cells. In
Proceedings of 1997 IEEE International Conference on Evolutionary Computation
(ICEC’97), pages 379–384. IEEE, 1997.

BIBLIOGRAPHY 183

[208] Ling Wang and Da-Zhong Zheng. A modified evolutionary programming for
flow shop scheduling. The International Journal of Advanced Manufacturing
Technology, 22(7-8):522–527, 2003.

[209] Ai-Qing Yu and Xing-Sheng Gu. Hybrid quantum-inspired evolutionary
programming for identical parallel machines scheduling. Control and Decision,
26(10):1473–1478, 2011.

[210] Qing Tan, Qing He, Weizhong Zhao, Zhongzhi Shi, and E Stanley Lee. An
improved fcmbp fuzzy clustering method based on evolutionary programming.
Computers & Mathematics with Applications, 61(4):1129–1144, 2011.

[211] Kevin Sim and Emma Hart. Generating single and multiple cooperative
heuristics for the one dimensional bin packing problem using a single node genetic
programming island model. In Proceedings of the 15th annual conference on
Genetic and evolutionary computation, pages 1549–1556. ACM, 2013.

[212] Adil Baykasoglu and Lale Ozbakir. Discovering task assignment rules for assembly
line balancing via genetic programming. The International Journal of Advanced
Manufacturing Technology, 76(1-4):417–434, 2015.

[213] Liang Feng, Yew-Soon Ong, Caishun Chen, and Xianshun Chen. Conceptual
modeling of evolvable local searches in memetic algorithms using linear genetic
programming: a case study on capacitated vehicle routing problem. Soft
Computing, 20(9):3745–3769, 2016.

[214] Christos Dimopoulos. A genetic programming methodology for the solution of the
multiobjective cell-formation problem. In Proceedings of the 8th Joint Conference
in Information Systems (JCIS 2005), pages 1487–1494, 2005.

[215] Su Nguyen, Mengjie Zhang, Mark Johnston, and Kay Chen Tan. Genetic
programming for job shop scheduling. In Evolutionary and Swarm Intelligence
Algorithms, pages 143–167. Springer, 2019.

[216] John H Drake, Matthew Hyde, Khaled Ibrahim, and Ender Ozcan. A
genetic programming hyper-heuristic for the multidimensional knapsack problem.
Kybernetes, 43(9/10):1500–1511, 2014.

[217] Rushil Raghavjee and Nelishia Pillay. A comparison of genetic algorithms and
genetic programming in solving the school timetabling problem. In 2012 Fourth
World Congress on Nature and Biologically Inspired Computing (NaBIC), pages
98–103. IEEE, 2012.

[218] Andrew Lensen, Bing Xue, and Mengjie Zhang. Genetic programming for evolving
similarity functions for clustering: Representations and analysis. Evolutionary
computation, pages 1–29, 2019.

[219] Alireza Fallahpour, Ezutah Udoncy Olugu, Siti Nurmaya Musa, Dariush
Khezrimotlagh, and Kuan Yew Wong. An integrated model for green supplier
selection under fuzzy environment: application of data envelopment analysis
and genetic programming approach. Neural Computing and Applications,
27(3):707–725, 2016.

[220] Paresh Tolay and Rajeev Kumar. Evolution of hyperheuristics for the biobjective
graph coloring problem using multiobjective genetic programming. In Proceedings

184 BIBLIOGRAPHY

of the 11th Annual conference on Genetic and evolutionary computation, pages
1939–1940. ACM, 2009.

[221] Marko Durasević, Domagoj Jakobović, and Karlo Knežević. Adaptive scheduling
on unrelated machines with genetic programming. Applied Soft Computing,
48:419–430, 2016.

[222] Liad Wagman. Stock portfolio evaluation: An application of
genetic-programming-based technical analysis. Genetic Algorithms and Genetic
Programming at Stanford, 2003:213–220, 2003.

[223] Juan Carlos Gomez and Hugo Terashima-Marín. Evolutionary hyper-heuristics
for tackling bi-objective 2d bin packing problems. Genetic Programming and
Evolvable Machines, 19(1-2):151–181, 2018.

[224] Poontana Sresracoo, Nuchsara Kriengkorakot, Preecha Kriengkorakot, and Krit
Chantarasamai. U-shaped assembly line balancing by using differential evolution
algorithm. Mathematical and Computational Applications, 23(4):79, 2018.

[225] Siwaporn Kunnapapdeelert and Ratchaphong Klinsrisuk. Determination of green
vehicle routing problem via differential evolution. International Journal of
Logistics Systems and Management, 34(3):395–410, 2019.

[226] Jin Kiat Chong and Xin Qiu. An opposition-based self-adaptive differential
evolution with decomposition for solving the multiobjective multiple salesman
problem. In 2016 IEEE Congress on Evolutionary Computation (CEC), pages
4096–4103. IEEE, 2016.

[227] Rui Chi, Yixin Su, Zhijian Qu, and Xuexin Chi. A hybridization of cuckoo search
and differential evolution for the logistics distribution center location problem.
Mathematical Problems in Engineering, 2019, 2019.

[228] Xiuli Wu, Xiajing Liu, and Ning Zhao. An improved differential evolution
algorithm for solving a distributed assembly flexible job shop scheduling problem.
Memetic Computing, 11(4):335–355, 2019.

[229] Deng Libao, Wang Sha, Jin Chengyu, and Hu Cong. A hybrid mutation
scheme-based discrete differential evolution algorithm for multidimensional
knapsack problem. In 2016 Sixth International Conference on Instrumentation
& Measurement, Computer, Communication and Control (IMCCC), pages
1009–1014. IEEE, 2016.

[230] Khalid Shaker, Salwani Abdullah, and Arwa Hatem. A differential evolution
algorithm for the university course timetabling problem. In 2012 4th Conference
on Data Mining and Optimization (DMO), pages 99–102. IEEE, 2012.

[231] Mohammed Alswaitti, Mohanad Albughdadi, and Nor Ashidi Mat Isa.
Variance-based differential evolution algorithm with an optional crossover for
data clustering. Applied Soft Computing, 80:1–17, 2019.

[232] Sunil Kumar Jauhar and Millie Pant. Sustainable supplier selection: a new
differential evolution strategy with automotive industry application. In Recent
developments and new direction in soft-computing foundations and applications,
pages 353–371. Springer, 2016.

BIBLIOGRAPHY 185

[233] Iztok Fister and Janez Brest. Using differential evolution for the graph coloring.
In 2011 IEEE Symposium on Differential Evolution (SDE), pages 1–7. IEEE,
2011.

[234] Xueqi Wu and Ada Che. A memetic differential evolution algorithm for
energy-efficient parallel machine scheduling. Omega, 82:155–165, 2019.

[235] AA Adebiyi and CK Ayo. Portfolio selection problem using generalized differential
evolution 3. Applied Mathematical Sciences, 9(42):2069–2082, 2015.

[236] Kaustabha Ray, Sunanda Bose, and Nandini Mukherjee. A load balancing
approach to resource provisioning in cloud infrastructure with a grouping
genetic algorithm. In 2018 International Conference on Current Trends towards
Converging Technologies (ICCTCT), pages 1–6. IEEE, 2018.

[237] Murat Şahin and Talip Kellegöz. An efficient grouping genetic algorithm for
u-shaped assembly line balancing problems with maximizing production rate.
Memetic Computing, 9(3):213–229, 2017.

[238] Abdeljawed Sadok, Jacques Teghem, and Habib Chabchoub. A hybrid grouping
genetic algorithm for the inventory routing problem with multi-tours of the
vehicle. International Journal of Combinatorial Optimization Problems and
Informatics, 1(2):42–61, 2010.

[239] Emmanuelle Vin and Alain Delchambre. Generalized cell formation: iterative
versus simultaneous resolution with grouping genetic algorithm. Journal of
intelligent manufacturing, 25(5):1113–1124, 2014.

[240] Ladda Pitaksringkarn and Michael AP Taylor. Grouping genetic alogirhtm in
gis: A facility location modelling. Journal of the Eastern Asia Society for
Transportation Studies, 6:2908–2920, 2005.

[241] Michael Mutingi and Charles Mbohwa. Modeling modular design for sustainable
manufacturing: A fuzzy grouping genetic algorithm approach. In Grouping
Genetic Algorithms, pages 199–211. Springer, 2017.

[242] Sami Khuri, Tim Walters, and Yanti Sugono. A grouping genetic algorithm for
coloring the edges of graphs. In SAC (1), pages 422–427. Citeseer, 2000.

[243] Michael Mutingi and Charles Mbohwa. Modeling supplier selection using
multi-criterion fuzzy grouping genetic algorithm. In Grouping Genetic
Algorithms, pages 213–228. Springer, 2017.

[244] Michael Mutingi and Charles Mbohwa. Optimizing order batching in order
picking systems: Hybrid grouping genetic algorithm. In Grouping Genetic
Algorithms, pages 121–140. Springer, 2017.

[245] Mazyar Ghadiri Nejad, Ali Husseinzadeh Kashan, and Seyed Mahdi Shavarani.
A novel competitive hybrid approach based on grouping evolution strategy
algorithm for solving u-shaped assembly line balancing problems. Production
Engineering, 12(5):555–566, 2018.

[246] Ali Husseinzadeh Kashan, Babak Rezaee, and Somayyeh Karimiyan. An efficient
approach for unsupervised fuzzy clustering based on grouping evolution strategies.
Pattern Recognition, 46(5):1240–1254, 2013.

186 BIBLIOGRAPHY

[247] Ali Husseinzadeh Kashan, Marziehsadat Keshmiry, Jalil Heidary Dahooie, and
Amin Abbasi-Pooya. A simple yet effective grouping evolutionary strategy (ges)
algorithm for scheduling parallel machines. Neural Computing and Applications,
30(6):1925–1938, 2018.

[248] Hong-Fang Yan, Ci-Yun Cai, De-Huai Liu, and Min-Xia Zhang. Water wave
optimization for the multidimensional knapsack problem. In International
Conference on Intelligent Computing, pages 688–699. Springer, 2019.

[249] Fuqing Zhao, Huan Liu, Yi Zhang, Weimin Ma, and Chuck Zhang. A discrete
water wave optimization algorithm for no-wait flow shop scheduling problem.
Expert Systems with Applications, 91:347–363, 2018.

[250] Simone A Ludwig and Azin Moallem. Swarm intelligence approaches for grid
load balancing. Journal of Grid Computing, 9(3):279–301, 2011.

[251] Bassem Jarboui, Saber Ibrahim, Patrick Siarry, and Abdelwaheb Rebai. A
combinatorial particle swarm optimisation for solving permutation flowshop
problems. Computers & Industrial Engineering, 54(3):526–538, 2008.

[252] Absalom E Ezugwu and Francis Akutsah. An improved firefly algorithm for the
unrelated parallel machines scheduling problem with sequence-dependent setup
times. IEEE Access, 6:54459–54478, 2018.

[253] Sara Tabaghchi Milan, Lila Rajabion, Hamideh Ranjbar, and Nima Jafari
Navimipoir. Nature inspired meta-heuristic algorithms for solving the
load-balancing problem in cloud environments. Computers & Operations
Research, 2019.

[254] Georgi Evtimov and Stefka Fidanova. Ant colony optimization algorithm for 1d
cutting stock problem. In Advanced Computing in Industrial Mathematics, pages
25–31. Springer, 2018.

[255] Thatchai Thepphakorn, Pupong Pongcharoen, and Srisatja Vitayasak. A new
multiple objective cuckoo search for university course timetabling problem. In
International Workshop on Multi-disciplinary Trends in Artificial Intelligence,
pages 196–207. Springer, 2016.

[256] Ming Hao Xue, Tie Zhu Wang, and Sheng Mao. Double evolutsional artificial
bee colony algorithm for multiple traveling salesman problem. In MATEC Web
of Conferences, volume 44, page 02025. EDP Sciences, 2016.

[257] Deeptimanta Ojha, Rajesh Kumar Sahoo, and Satyabrata Das. Automatic
generation of timetable using firefly algorithm. International Journal, 6(4), 2016.

[258] Tsai Duan Lin, Chiun Chieh Hsu, and Li Fu Hsu. Optimization by ant colony
hybrid local search for online class constrained bin packing problem. In Applied
Mechanics and Materials, volume 311, pages 123–128. Trans Tech Publ, 2013.

[259] A Selvakumar and G Gunasekaran. A novel approach of load balancing and
task scheduling using ant colony optimization algorithm. International Journal
of Software Innovation (IJSI), 7(2):9–20, 2019.

[260] Xiaokun Duan, Bo Wu, Youmin Hu, Jie Liu, and Jing Xiong. An improved
artificial bee colony algorithm with maxtf heuristic rule for two-sided assembly

BIBLIOGRAPHY 187

line balancing problem. Frontiers of Mechanical Engineering, 14(2):241–253,
2019.

[261] Erfan Babaee Tirkolaee, Mehdi Alinaghian, Ali Asghar Rahmani Hosseinabadi,
Mani Bakhshi Sasi, and Arun Kumar Sangaiah. An improved ant colony
optimization for the multi-trip capacitated arc routing problem. Computers &
Electrical Engineering, 77:457–470, 2019.

[262] Xinye Chen, Ping Zhang, Guanglong Du, and Fang Li. Ant colony optimization
based memetic algorithm to solve bi-objective multiple traveling salesmen
problem for multi-robot systems. IEEE Access, 6:21745–21757, 2018.

[263] Tatyana Levanova and Alexander Gnusarev. Development of ant colony
optimization algorithm for competitive p-median facility location problem with
elastic demand. In International Conference on Mathematical Optimization
Theory and Operations Research, pages 68–78. Springer, 2019.

[264] Zilong Zhuang, Zizhao Huang, Zhiyao Lu, Liangxun Guo, Qi Cao, and Wei Qin.
An improved artificial bee colony algorithm for solving open shop scheduling
problem with two sequence-dependent setup times. Procedia CIRP, 83:563–568,
2019.

[265] Marilyn Bello, Rafael Bello, Ann Nowé, and María M García-Lorenzo. A method
for the team selection problem between two decision-makers using the ant colony
optimization. In Soft Computing Applications for Group Decision-making and
Consensus Modeling, pages 391–410. Springer, 2018.

[266] Ann Ahu Aksut. Population-based ant colony optimization for multivariate
microaggregation. Nova Southeastern University, 2013.

[267] Min Kong, Peng Tian, and Yucheng Kao. A new ant colony optimization
algorithm for the multidimensional knapsack problem. Computers & Operations
Research, 35(8):2672–2683, 2008.

[268] Munirah Mazlan, Mokhairi Makhtar, Ahmad Firdaus Khair Ahmad Khairi,
and Mohamad Afendee Mohamed. University course timetabling model using
ant colony optimization algorithm approach. Indonesian Journal of Electrical
Engineering and Computer Science, 13(1):72–76, 2019.

[269] Retno Subekti, ER Sari, and R Kusumawati. Ant colony algorithm for clustering
in portfolio optimization. In Journal of Physics: Conference Series, volume 983,
page 012096. IOP Publishing, 2018.

[270] Lingyan Lv, Chao Gao, Jianjun Chen, Liang Luo, and Zili Zhang.
Physarum-based ant colony optimization for graph coloring problem. In
International Conference on Swarm Intelligence, pages 210–219. Springer, 2019.

[271] T Warren Liao and Poan Su. Parallel machine scheduling in fuzzy environment
with hybrid ant colony optimization including a comparison of fuzzy number
ranking methods in consideration of spread of fuzziness. Applied Soft Computing,
56:65–81, 2017.

[272] Chen-Yang Cheng, Yin-Yann Chen, Tzu-Li Chen, and John Jung-Woon Yoo.
Using a hybrid approach based on the particle swarm optimization and ant

188 BIBLIOGRAPHY

colony optimization to solve a joint order batching and picker routing problem.
International Journal of Production Economics, 170:805–814, 2015.

[273] Ting Zhang, Xintong Yang, Qingxin Chen, Liping Bai, and Wenge Chen. Modified
aco for home health care scheduling and routing problem in chinese communities.
In 2018 IEEE 15th International Conference on Networking, Sensing and Control
(ICNSC), pages 1–6. IEEE, 2018.

[274] A Steven, Gatot Fatwanto Hertono, and Bevina Desjwiandra Handari. Clustered
stocks weighting with ant colony optimization in portfolio optimization. In AIP
Conference Proceedings, volume 2023, page 020204. AIP Publishing, 2018.

[275] Arnaud Laurent and Nathalie Klement. Bin packing problem with priorities and
incompatibilities using pso: application in a health care community. 2019.

[276] Neha Sethi, Surjit Singh, and Gurvinder Singh. Improved mutation-based particle
swarm optimization for load balancing in cloud data centers. In Harmony Search
and Nature Inspired Optimization Algorithms, pages 939–947. Springer, 2019.

[277] Emel Kızılkaya Aydoğan, Yılmaz Delice, Uğur Özcan, Cevriye Gencer, and Özkan
Bali. Balancing stochastic u-lines using particle swarm optimization. Journal of
Intelligent Manufacturing, 30(1):97–111, 2019.

[278] Yannis Marinakis, Magdalene Marinaki, and Athanasios Migdalas. A
multi-adaptive particle swarm optimization for the vehicle routing problem with
time windows. Information Sciences, 481:311–329, 2019.

[279] Vahid Mahmoodian, Armin Jabbarzadeh, Hassan Rezazadeh, and Farnaz
Barzinpour. A novel intelligent particle swarm optimization algorithm for solving
cell formation problem. Neural Computing and Applications, 31(2):801–815, 2019.

[280] Shanchen Pang, Tan Li, Feng Dai, and Meng Yu. Particle swarm optimization
algorithm for multi-salesman problem with time and capacity constraints. Applied
Mathematics & Information Sciences, 7(6):2439, 2013.

[281] IA Osinuga, AA Bolarinwa, and LA Kazakovtsev. A modified particle swarm
optimization algorithm for location problem. In IOP Conference Series: Materials
Science and Engineering, volume 537, page 042060. IOP Publishing, 2019.

[282] Maroua Nouiri, Abdelghani Bekrar, Abderezak Jemai, Smail Niar, and
Ahmed Chiheb Ammari. An effective and distributed particle swarm optimization
algorithm for flexible job-shop scheduling problem. Journal of Intelligent
Manufacturing, 29(3):603–615, 2018.

[283] Walaa H El-Ashmawi, Ahmed F Ali, and Mohamed A Tawhid. An improved
particle swarm optimization with a new swap operator for team formation
problem. Journal of Industrial Engineering International, 15(1):53–71, 2019.

[284] Orlando Durán, Luis Pérez, and Antonio Batocchio. Optimization of modular
structures using particle swarm optimization. Expert Systems with Applications,
39(3):3507–3515, 2012.

[285] Xuan Ma and Yufeng Zhang. A particle swarm optimization based on
many-objective for multiple knapsack problem. In 2019 14th IEEE Conference
on Industrial Electronics and Applications (ICIEA), pages 260–265. IEEE, 2019.

BIBLIOGRAPHY 189

[286] Thatchai Thepphakorn and Pupong Pongcharoen. Variants and parameters
investigations of particle swarm optimisation for solving course timetabling
problems. In International Conference on Swarm Intelligence, pages 177–187.
Springer, 2019.

[287] Laith Mohammad Abualigah, Ahamad Tajudin Khader, and Essam Said
Hanandeh. A new feature selection method to improve the document clustering
using particle swarm optimization algorithm. Journal of Computational Science,
25:456–466, 2018.

[288] RJ Kuo, SY Hong, and YC Huang. Integration of particle swarm
optimization-based fuzzy neural network and artificial neural network for supplier
selection. Applied Mathematical Modelling, 34(12):3976–3990, 2010.

[289] Ze-shu RAO, Wan-ying ZHU, and Kai ZHANG. Solving graph coloring
problem using parallel discrete particle swarm optimization on cuda. DEStech
Transactions on Engineering and Technology Research, (amsm), 2017.

[290] SH Pakzad-Moghaddam. A lévy flight embedded particle swarm optimization
for multi-objective parallel-machine scheduling with learning and adapting
considerations. Computers & Industrial Engineering, 91:109–128, 2016.

[291] Chananes Akjiratikarl, Pisal Yenradee, and Paul R Drake. Pso-based algorithm
for home care worker scheduling in the uk. Computers & Industrial Engineering,
53(4):559–583, 2007.

[292] Efim Bronshtein and Olga Kondrateva. The decision support of the securities
portfolio composition based on the particle swarm optimization. In 7th Scientific
Conference on Information Technologies for Intelligent Decision Making Support
(ITIDS 2019). Atlantis Press, 2019.

[293] Mohamed Abdel-Basset, Gunasekaran Manogaran, Laila Abdel-Fatah, and
Seyedali Mirjalili. An improved nature inspired meta-heuristic algorithm for 1-d
bin packing problems. Personal and Ubiquitous Computing, 22(5-6):1117–1132,
2018.

[294] Deepak Garg and Pardeep Kumar. Evaluation and improvement of load balancing
using proposed cuckoo search in cloudsim. In International Conference on
Advanced Informatics for Computing Research, pages 343–358. Springer, 2019.

[295] Zixiang Li, Nilanjan Dey, Amira S Ashour, and Qiuhua Tang. Discrete cuckoo
search algorithms for two-sided robotic assembly line balancing problem. Neural
Computing and Applications, 30(9):2685–2696, 2018.

[296] Jon Henly Santillan, Samantha Tapucar, Cinmayii Manliguez, and Vicente Calag.
Cuckoo search via lévy flights for the capacitated vehicle routing problem. Journal
of Industrial Engineering International, 14(2):293–304, 2018.

[297] Bouchra Karoum and Youssef Bouazza Elbenani. Discrete cuckoo search
algorithm for solving the cell formation problem. International Journal of
Manufacturing Research, 14(3):245–264, 2019.

[298] Asri Bekti Pratiwi, Nur Faiza, and Edi Edi Winarko. Penerapan cuckoo search
algorithm (csa) untuk menyelesaikan uncapacitated facility location problem
(uflp). Contemporary Mathematics and Applications, 1(1):34–45, 2019.

190 BIBLIOGRAPHY

[299] Rakesh Kumar Phanden, Zuzana Palková, and Rahul Sindhwani. A framework
for flexible job shop scheduling problem using simulation-based cuckoo search.
Advances in Industrial and Production Engineering: Select Proceedings of
FLAME 2018, page 247, 2019.

[300] Hayam G Wahdan, Sally S Kassem, and Hisham ME Abdelsalam. Product
modularization using cuckoo search algorithm. In International Conference on
Operations Research and Enterprise Systems, pages 20–34. Springer, 2016.

[301] Ezreen Farina Shair, SY Khor, AR Abdullah, HI Jaafar, NZ Saharuddin,
and AF Zainal Abidin. Cuckoo search approach for cutting stock problem.
International Journal of Information and Electronics Engineering, 5(2):138, 2015.

[302] Krishna Gopal Dhal, Arunita Das, Swarnajit Ray, and Sanjoy Das. A clustering
based classification approach based on modified cuckoo search algorithm. Pattern
Recognition and Image Analysis, 29(3):344–359, 2019.

[303] G Kanagaraj, SG Ponnambalam, and N Jawahar. Reliability-based total
cost of ownership approach for supplier selection using cuckoo-inspired hybrid
algorithm. The International Journal of Advanced Manufacturing Technology,
84(5-8):801–816, 2016.

[304] Claus Aranha, Keita Toda, and Hitoshi Kanoh. Solving the graph coloring
problem using cuckoo search. In International Conference on Swarm Intelligence,
pages 552–560. Springer, 2017.

[305] Elham Shadkam, Reza Delavari, Farzad Memariani, and Morteza Poursaleh.
Portfolio selection by the means of cuckoo optimization algorithm. International
Journal on Computational Science & Application, 2015.

[306] Luocheng Shen, Jiazhou Li, Yan Wu, Zhenyu Tang, and Yi Wang. Optimization
of artificial bee colony algorithm based load balancing in smart grid cloud. In 2019
IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia), pages 1131–1134.
IEEE, 2019.

[307] Jing Xiong, Xiaokun Duan, and Erhua Wang. A hybrid artificial bee colony
algorithm for balancing two-sided assembly line with assignment constraints.
In Journal of Physics: Conference Series, volume 1303, page 012145. IOP
Publishing, 2019.

[308] M Davoodi, M Malekpour Golsefidi, and MS Mesgari. A hybrid optimization
method for vehicle routing problem using artificial bee colony and genetic
algorithm. The International Archives of Photogrammetry, Remote Sensing and
Spatial Information Sciences, 42:293–297, 2019.

[309] Adinarayanan Arunagiri, Uthayakumar Marimuthu, Prabhakaran
Gopalakrishnan, Adam Slota, Jerzy Zajac, and Maheandera Prabu Paulraj.
Sustainability formation of machine cells in group technology systems using
modified artificial bee colony algorithm. Sustainability, 10(1):42, 2018.

[310] Shin Siang Choong, Li-Pei Wong, and Chee Peng Lim. An artificial bee colony
algorithm with a modified choice function for the traveling salesman problem.
Swarm and evolutionary computation, 44:622–635, 2019.

BIBLIOGRAPHY 191

[311] José A Delgado-Osuna, Manuel Lozano, and Carlos García-Martínez.
An alternative artificial bee colony algorithm with destructive–constructive
neighbourhood operator for the problem of composing medical crews. Information
Sciences, 326:215–226, 2016.

[312] Shima Sabet, Mohammad Shokouhifar, and Fardad Farokhi. A discrete
artificial bee colony for multiple knapsack problem. International Journal of
Reasoning-based Intelligent Systems, 5(2):88–95, 2013.

[313] Changsheng Zhang, Dantong Ouyang, and Jiaxu Ning. An artificial bee colony
approach for clustering. Expert Systems with Applications, 37(7):4761–4767, 2010.

[314] Francisco J Rodriguez, Manuel Lozano, Carlos García-Martínez, and Jonathan D
GonzáLez-Barrera. An artificial bee colony algorithm for the maximally diverse
grouping problem. Information Sciences, 230:183–196, 2013.

[315] Baris Yuce and Ernesto Mastrocinque. A hybrid approach using the bees
algorithm and fuzzy-ahp for supplier selection. In Handbook of research
on advanced computational techniques for simulation-based engineering, pages
171–194. IGI Global, 2016.

[316] Kui Chen and Hitoshi Kanoh. A discrete artificial bee colony algorithm based
on similarity for graph coloring problems. In International Conference on Theory
and Practice of Natural Computing, pages 73–84. Springer, 2016.

[317] Erdal Caniyilmaz, Betül Benli, and Mehmet S Ilkay. An artificial bee colony
algorithm approach for unrelated parallel machine scheduling with processing set
restrictions, job sequence-dependent setup times, and due date. The International
Journal of Advanced Manufacturing Technology, 77(9-12):2105–2115, 2015.

[318] Zhonghua Li and Zijing Zhou. An effective batching method based on the artificial
bee colony algorithm for order picking. In 2013 Ninth International Conference
on Natural Computation (ICNC), pages 386–391. IEEE, 2013.

[319] TD Maydina, GF Hertono, and BD Handari. Implementation of agglomerative
clustering and modified artificial bee colony algorithm on stock portfolio
optimization with possibilistic constraints. In AIP Conference Proceedings,
volume 2168, page 020030. AIP Publishing, 2019.

[320] Chuanxin Zhao, Lin Jiang, and Kok Lay Teo. A hybrid chaos firefly algorithm
for three-dimensional irregular packing problem. Journal of Industrial &
Management Optimization, pages 147–157, 2018.

[321] Gundipika Kaur and Kiranbir Kaur. An adaptive firefly algorithm for load
balancing in cloud computing. In Proceedings of Sixth International conference
on Soft Computing for Problem Solving, pages 63–72. Springer, 2017.

[322] Lixia Zhu, Zeqiang Zhang, and Yi Wang. A pareto firefly algorithm for
multi-objective disassembly line balancing problems with hazard evaluation.
International Journal of Production Research, 56(24):7354–7374, 2018.

[323] Asma M Altabeeb, Abdulqader M Mohsen, and Abdullatif Ghallab. An improved
hybrid firefly algorithm for capacitated vehicle routing problem. Applied Soft
Computing, 84:105728, 2019.

192 BIBLIOGRAPHY

[324] Supriya Ingole and Dinesh Singh. Unequal-area, fixed-shape facility layout
problems using the firefly algorithm. Engineering Optimization, 49(7):1097–1115,
2017.

[325] Mostafa Mohammadi, Golman Rahmanifar, and GARNA GHASEM KAVEH.
Optimization multiple traveling salesman problem by considering the learning
effect function in skill and workload balancing of salesman with using the firefly
algorithm. 2016.

[326] A Rahmani and SA MirHassani. A hybrid firefly-genetic algorithm for the
capacitated facility location problem. Information Sciences, 283:70–78, 2014.

[327] Beibei Fan, Wenwei Yang, and Zaifang Zhang. Solving the two-stage hybrid flow
shop scheduling problem based on mutant firefly algorithm. Journal of Ambient
Intelligence and Humanized Computing, 10(3):979–990, 2019.

[328] Adil Baykasoğlu and Fehmi Burcin Ozsoydan. An improved firefly algorithm
for solving dynamic multidimensional knapsack problems. Expert Systems with
Applications, 41(8):3712–3725, 2014.

[329] Abhilash Namdev and BK Tripathy. Scalable rough c-means clustering using
firefly algorithm. International Journal of Computer Science and Business
Informatics, 16(2):1–14, 2016.

[330] Kui Chen and Hitoshi Kanoh. A discrete firefly algorithm based on similarity for
graph coloring problems. In 2017 18th IEEE/ACIS International Conference on
Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed
Computing (SNPD), pages 65–70. IEEE, 2017.

[331] Latifa Dekhici, Rabeh Redjem, Khaled Belkadi, and Abderrahman El Mhamedi.
Discretization of the firefly algorithm for home care. Canadian Journal of
Electrical and Computer Engineering, 42(1):20–26, 2019.

[332] Hassan Heidari and Laya Neshatizadeh. Stock portfolio-optimization model
by mean-semi-variance approach using of firefly algorithm and imperialist
competitive algorithm. International Journal of Business and Development
Studies, 10(1):115–143, 2018.

[333] Ali Husseinzadeh Kashan, Mina Husseinzadeh Kashan, and Somayyeh
Karimiyan. A particle swarm optimizer for grouping problems. Information
Sciences, 252:81–95, 2013.

[334] Yanxin Xu. A novel grouping particle swarm optimization approach for
2d irregular cutting stock problem. International Journal of Control and
Automation, 9(8):369–380, 2016.

[335] Mingyue Feng, Xianqing Yi, Guohui Li, Shaoxun Tang, and He Jun. A grouping
particle swarm optimization algorithm for flexible job shop scheduling problem. In
2008 IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial
Application, volume 1, pages 332–336. IEEE, 2008.

[336] Weian Guo, Ming Chen, Lei Wang, Yanfen Mao, and Qidi Wu. A survey
of biogeography-based optimization. Neural Computing and Applications,
28(8):1909–1926, 2017.

BIBLIOGRAPHY 193

[337] Fuqing Zhao, Shuo Qin, Yi Zhang, Weimin Ma, Chuck Zhang, and Houbin
Song. A two-stage differential biogeography-based optimization algorithm and
its performance analysis. Expert Systems with Applications, 115:329–345, 2019.

[338] Michael Mutingi and Charles Mbohwa. Grouping genetic algorithms: Advances
for real-world grouping problems. In Grouping Genetic Algorithms, pages 45–66.
Springer, 2017.

[339] Ethel Mokotoff. Parallel machine scheduling problems: A survey. Asia-Pacific
Journal of Operational Research, 18(2):193, 2001.

[340] Ronald L Graham, Eugene L Lawler, Jan Karel Lenstra, and AHG Rinnooy Kan.
Optimization and approximation in deterministic sequencing and scheduling: a
survey. In Annals of discrete mathematics, volume 5, pages 287–326. Elsevier,
1979.

[341] Eugene L Lawler, Jan Karel Lenstra, and AHG Rinnooy Kan. Recent
developments in deterministic sequencing and scheduling: A survey. In
Deterministic and stochastic scheduling, pages 35–73. Springer, 1982.

[342] Luis Fanjul-Peyro and Rubén Ruiz. Iterated greedy local search methods for
unrelated parallel machine scheduling. European Journal of Operational Research,
207(1):55–69, 2010.

[343] Jan Karel Lenstra, David B Shmoys, and Eva Tardos. Approximation algorithms
for scheduling unrelated parallel machines. Mathematical programming,
46(1-3):259–271, 1990.

[344] James Bruno, Edward G Coffman Jr, and Ravi Sethi. Scheduling independent
tasks to reduce mean finishing time. Communications of the ACM, 17(7):382–387,
1974.

[345] Ellis Horowitz and Sartaj Sahni. Exact and approximate algorithms for scheduling
nonidentical processors. Journal of the ACM (JACM), 23(2):317–327, 1976.

[346] Oscar H Ibarra and Chul E Kim. Heuristic algorithms for scheduling independent
tasks on nonidentical processors. Journal of the ACM (JACM), 24(2):280–289,
1977.

[347] Prabuddha De and Thomas E Morton. Scheduling to minimize makespan on
unequal parallel processors. Decision Sciences, 11(4):586–602, 1980.

[348] Ernest Davis and Jeffrey M Jaffe. Algorithms for scheduling tasks on unrelated
processors. Journal of the ACM (JACM), 28(4):721–736, 1981.

[349] Ci N Potts. Analysis of a linear programming heuristic for scheduling unrelated
parallel machines. Discrete Applied Mathematics, 10(2):155–164, 1985.

[350] AMA Hariri and Chris N Potts. Heuristics for scheduling unrelated parallel
machines. Computers & operations research, 18(3):323–331, 1991.

[351] Steef L van de Velde. Duality-based algorithms for scheduling unrelated parallel
machines. ORSA Journal on Computing, 5(2):192–205, 1993.

[352] CA Glass, CN Potts, and P Shade. Unrelated parallel machine scheduling using
local search. Mathematical and Computer Modelling, 20(2):41–52, 1994.

194 BIBLIOGRAPHY

[353] Nanda Piersma and Wim van Dijk. A local search heuristic for unrelated
parallel machine scheduling with efficient neighborhood search. Mathematical
and Computer Modelling, 24(9):11–19, 1996.

[354] Silvano Martello, François Soumis, and Paolo Toth. Exact and approximation
algorithms for makespan minimization on unrelated parallel machines. Discrete
applied mathematics, 75(2):169–188, 1997.

[355] Bharatendu Srivastava. An effective heuristic for minimising makespan on
unrelated parallel machines. Journal of the Operational Research Society,
49(8):886–894, 1998.

[356] Ethel Mokotoff and Philippe Chrétienne. A cutting plane algorithm for the
unrelated parallel machine scheduling problem. European Journal of Operational
Research, 141(3):515–525, 2002.

[357] Maria Serna and Fatos Xhafa. Approximating scheduling unrelated
parallel machines in parallel. Computational Optimization and Applications,
21(3):325–338, 2002.

[358] Ethel Mokotoff and JL Jimeno. Heuristics based on partial enumeration for the
unrelated parallel processor scheduling problem. Annals of Operations Research,
117(1-4):133–150, 2002.

[359] Yunsong Guo, Andrew Lim, Brian Rodrigues, and Liang Yang. Minimizing the
makespan for unrelated parallel machines. International Journal on Artificial
Intelligence Tools, 16(03):399–415, 2007.

[360] Michele Pfund, John W Fowler, and Jatinder ND Gupta. A survey of algorithms
for single and multi-objective unrelated parallel-machine deterministic scheduling
problems. Journal of the Chinese Institute of Industrial Engineers, 21(3):230–241,
2004.

[361] VS Kumar, Madhav V Marathe, Srinivasan Parthasarathy, and Aravind
Srinivasan. A unified approach to scheduling on unrelated parallel machines.
Journal of the ACM (JACM), 56(5):28, 2009.

[362] Martin Gairing, Burkhard Monien, and Andreas Woclaw. A faster combinatorial
approximation algorithm for scheduling unrelated parallel machines. Theoretical
Computer Science, 380(1-2):87–99, 2007.

[363] Aleksei V Fishkin, Klaus Jansen, and Monaldo Mastrolilli. Grouping techniques
for scheduling problems: Simpler and faster. Algorithmica, 51(2):183–199, 2008.

[364] YK Lin, ME Pfund, and JW Fowler. Minimizing makespans for unrelated parallel
machine scheduling problems. In Service Operations, Logistics and Informatics,
2009. SOLI’09. IEEE/INFORMS International Conference on, pages 107–110.
IEEE, 2009.

[365] P Sivasankaran, T Sornakumar, and R Panneerselvam. Efficient heuristic to
minimize makespan in single machine scheduling problem with unrelated parallel
machines. Intelligent Information Management, 2(3):188–198, 2010.

[366] Panneerselvam Sivasankaran, Thambu Sornakumar, and Ramasamy
Panneerselvam. Design and comparison of simulated annealing algorithm

BIBLIOGRAPHY 195

and grasp to minimize makespan in single machine scheduling with unrelated
parallel machines. 2010.

[367] Christoforos Charalambous, Krzysztof Fleszar, and Khalil S Hindi. A hybrid
searching method for the unrelated parallel machine scheduling problem. In IFIP
International Conference on Artificial Intelligence Applications and Innovations,
pages 230–237. Springer, 2010.

[368] Luis Fanjul-Peyro and Rubén Ruiz. Size-reduction heuristics for the unrelated
parallel machines scheduling problem. Computers & Operations Research,
38(1):301–309, 2011.

[369] Yang-Kuei Lin, Michele E Pfund, and John W Fowler. Heuristics for minimizing
regular performance measures in unrelated parallel machine scheduling problems.
Computers & Operations Research, 38(6):901–916, 2011.

[370] David B Shmoys and Éva Tardos. An approximation algorithm for the generalized
assignment problem. Mathematical programming, 62(1-3):461–474, 1993.

[371] Evgeny V Shchepin and Nodari Vakhania. An optimal rounding gives a better
approximation for scheduling unrelated machines. Operations Research Letters,
33(2):127–133, 2005.

[372] Klaus Jansen and Lorant Porkolab. Improved approximation schemes for
scheduling unrelated parallel machines. Mathematics of Operations Research,
26(2):324–338, 2001.

[373] Panneerselvam Sivasankaran, Thambu Sornakumar, and Ramasamy
Panneerselvam. Design and comparison of simulated annealing algorithm
and grasp to minimize makespan in single machine scheduling with unrelated
parallel machines. Intelligent Information Management, 2(07):406, 2010.

[374] Marco Ghirardi and Chris N Potts. Makespan minimization for scheduling
unrelated parallel machines: A recovering beam search approach. European
Journal of Operational Research, 165(2):457–467, 2005.

[375] Yang-Kuei Lin, Michele E Pfund, and John W Fowler. Heuristics for minimizing
regular performance measures in unrelated parallel machine scheduling problems.
Computers & Operations Research, 38(6):901–916, 2011.

[376] Octavio Ramos-Figueroa, Marcela Quiroz-Castellanos, Efrén Mezura-Montes,
and Rupak Kharel. Variation operators for grouping genetic algorithms: A review.
Swarm and Evolutionary Computation, 2020.

[377] MHMA Jahromi, R Jafari, and A Shamsi. Solving fms assignment problem
with grouping genetic algorithm. International Journal of Research in Industrial
Engineering, 1(3):60–68, 2012.

[378] Rhydian Lewis and Ben Paechter. Finding feasible timetables using group-based
operators. IEEE Transactions on Evolutionary Computation, 11(3):397–413,
2007.

[379] Felipe Arenales Santos and Alexandre CB Delbem. Grouping genetic algorithm
with efficient data structures for the university course timetabling problem.
PATAT 2010, page 542.

196 BIBLIOGRAPHY

[380] L’udmila Jánošíková and Patrik Vasilovskỳ. Grouping genetic algorithm for the
capacitated p-median problem. In 2017 International Conference on Information
and Digital Technologies (IDT), pages 152–159. IEEE, 2017.

[381] Itziar Landa-Torres, Javier Del Ser, Sancho Salcedo-Sanz, Sergio Gil-Lopez,
José Antonio Portilla-Figueras, and Oscar Alonso-Garrido. A comparative study
of two hybrid grouping evolutionary techniques for the capacitated p-median
problem. Computers & Operations Research, 39(9):2214–2222, 2012.

[382] Kim-Fung Man, Kit Sang Tang, and Sam Kwong. Genetic algorithms: concepts
and designs. Springer Science & Business Media, 2001.

[383] Thomas Back. Selective pressure in evolutionary algorithms: A characterization
of selection mechanisms. In Proceedings of the first IEEE conference on
evolutionary computation. IEEE World Congress on Computational Intelligence,
pages 57–62. IEEE, 1994.

[384] Tobias Blickle. Tournament selection. Evolutionary computation, 1:181–186,
2000.

[385] Doug Hains. Structure in combinatorial optimization and its effect on heuristic
performance. PhD thesis, Colorado State University. Libraries, 2013.

[386] Jorge Kanda, Andre de Carvalho, Eduardo Hruschka, Carlos Soares, and Pavel
Brazdil. Meta-learning to select the best meta-heuristic for the traveling salesman
problem: A comparison of meta-features. Neurocomputing, 205:393–406, 2016.

[387] Marco Chiarandini, Luis Paquete, Mike Preuss, and Enda Ridge. Experiments
on metaheuristics: Methodological overview and open issues. Technical
report, Technical Report DMF-2007-03-003, The Danish Mathematical Society,
Denmark, 2007.

[388] Kenneth Sörensen, Marc Sevaux, and Fred Glover. A history of metaheuristics.
Handbook of heuristics, pages 1–18, 2018.

[389] John R Rice. The algorithm selection problem. In Advances in computers,
volume 15, pages 65–118. Elsevier, 1976.

[390] Lars Kotthoff. Algorithm selection for combinatorial search problems: A survey.
In Data Mining and Constraint Programming, pages 149–190. Springer, 2016.

[391] Kate A Smith-Miles. Cross-disciplinary perspectives on meta-learning for
algorithm selection. ACM Computing Surveys (CSUR), 41(1):6, 2009.

[392] Pavel Brazdil and Christophe Giraud-Carrier. Metalearning and algorithm
selection: progress, state of the art and introduction to the 2018 special issue,
2018.

[393] Erik Pitzer and Michael Affenzeller. A comprehensive survey on fitness landscape
analysis. In Recent advances in intelligent engineering systems, pages 161–191.
Springer, 2012.

[394] Hui Lu, Rongrong Zhou, Zongming Fei, and Chongchong Guan. Spatial-domain
fitness landscape analysis for combinatorial optimization. Information Sciences,
472:126–144, 2019.

BIBLIOGRAPHY 197

[395] Khulood Alyahya and Jonathan E Rowe. Landscape analysis of a class of np-hard
binary packing problems. Evolutionary computation, 27(1):47–73, 2019.

[396] Zhihui Wang, Bryan O’Gorman, Tony T Tran, Eleanor G Rieffel, Jeremy Frank,
and Minh Do. An investigation of phase transitions in single-machine scheduling
problems. In Twenty-Seventh International Conference on Automated Planning
and Scheduling, 2017.

[397] Bastien Chopard and Marco Tomassini. Phase transitions in combinatorial
optimization problems. In An Introduction to Metaheuristics for Optimization,
pages 171–189. Springer, 2018.

[398] Toby Walsh and John Slaney. Backbones in optimization and approximation.
In Proceedings of the Seventeenth International Joint Conference on Artificial
Intelligence (IJCAI-01), 2001.

[399] Kate Smith-Miles and Leo Lopes. Measuring instance difficulty for combinatorial
optimization problems. Computers & Operations Research, 39(5):875–889, 2012.

[400] Marcela Quiroz-Castellanos. Caracterización del proceso de optimización
de algoritmos heurísticos aplicados al problema de empacado de objetos en
contenedores. PhD thesis, Instituto Tecnológico de Tijuana, 2014.

[401] Frank Wilcoxon. Individual comparisons by ranking methods. In Breakthroughs
in statistics, pages 196–202. Springer, 1992.

[402] Tugrul Bayraktar, Mehmet Emin Aydin, and Muharrem Dugenci. A
memory-integrated artificial bee algorithm for 1-d bin packing problems. In Proc.
CIE IMSS, pages 1023–1034, 2014.

	Contents
	Introduction
	Background
	Problem statement
	Justification
	Thesis goals
	Thesis main goal
	Thesis specific goals

	Thesis hypotheses
	Scope and limitations
	Thesis organization

	Grouping problems
	Metaheuristic algorithms in grouping problems
	Neighborhood searches
	Evolutionary algorithms
	Swarm intelligence algorithms

	Conclusions of the literature review

	The R||Cmax problem
	Solutions methods for R||Cmax
	R||Cmax benchmark of instances
	Analysis of the R||Cmax state-of-the-art algorithm results

	The first GGA to solve the R||Cmax problem
	Genetic encoding, fitness function and initial population
	Adapted Gene-level crossover operator
	Download mutation operator
	Selection and replacement strategies
	Computational Experiments
	Impact analysis of crossover and mutation rate on GGA
	Conclusions of the experimental study

	Population initialization strategies
	State-of-the-art constructive heuristics for the R||Cmax problem
	Constructive heuristics for the R||Cmax problem
	Lowest
	Lowest min
	Highest min
	Mean min
	Diff_fastest min
	Random
	Random min
	Random lowest bound min
	Lowest 4g min
	Highest 4g min
	Diff_fastest 4g min

	Analysis of the R||Cmax constructive heuristics results
	Conclusions of the analysis

	Crossover operators
	State-of-the-art of grouping crossover operators
	Experimental design for the R||Cmax crossover operators
	State-of-the-art operators
	Strategies to rank the machines
	Strategies to establish the machine transmission order and the number of children
	Strategies to handle the repeated jobs and machines

	GGA with the old and the new crossover operators
	Conclusions of the analysis

	Mutation operators
	State-of-the-art grouping mutation operators
	The Swap operator
	The Insertion operator
	The Elimination operator
	The Merge & Split operator

	Experimental design for the R||Cmax mutation operators
	State-of-the-art operators
	Handled machines and removed jobs
	Machines selection strategy
	Rearrangement heuristics

	GGA with the old and the new mutation operators
	Comparing the effectiveness of GGA with the old and the new mutation operators
	Comparing the efficiency of GGA with the old and the new mutation operators

	Conclusions of the analysis

	Reproduction strategies
	State-of-the-art of reproduction techniques
	Selection mechanisms
	Replacement mechanisms

	Experimental design for the R||Cmax reproduction techniques
	Selection and Replacement Mechanisms
	Strategies to sort the population

	Conclusions of the analysis

	Study of the R||Cmax optimization process
	Approaches for the characterization of COPs
	Experimental study of the optimization process of R||Cmax
	Phase 1: Characterization
	Phase 2: Characteristics Refining
	Phase 3: Study of relations
	Phase 4: Explanations of the algorithmic behavior and proposed improvements

	Conclusions of the characterization

	Performance analysis of the FGGA for R||Cmax
	Components of FGGA
	Evolution of the GGA performance
	FGGA robustness test
	FGGA long-term execution
	Comparing FGGA with state-of-the-art procedures

	Conclusions and future work
	Conclusions
	Future work

	Bibliography

